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[1] Most spatially explicit hydrologic models require estimates of air temperature patterns.
For these models, empirical relationships between elevation and air temperature are
frequently used to upscale point measurements or downscale regional and global climate
model estimates of air temperature. Mountainous environments are particularly sensitive to
air temperature estimates as spatial gradients are substantial, and air temperature plays a
critical role in snow-related processes. We use a distributed, coupled ecohydrologic model
to compare estimates of streamflow, snowmelt, transpiration, and net primary productivity
(NPP) using five temperature interpolation approaches for a forested mountain basin that is
dominated by a rain-snow zone in Western Oregon, USA. We compare model estimates
using a standard adiabatic lapse rate of �6.5�C km�1; basin-specific lapse rates created
using daily point observations at high, middle, and low elevations; and gridded temperature
estimates from the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
derived at 800 and 50 m resolutions. We show that temperature interpolation strategies
influence model calibration. Point-based estimates using a low-elevation station or 800 m
PRISM grids result in significantly fewer parameter sets that model streamflow well,
suggesting a bias in parameter selection due to errors in input data. The greatest
postcalibration impact of temperature lapse rate estimates occurs for model estimates of
NPP. The constant temperature lapse rate results in substantially reduced NPP estimates that
are more sensitive to the interannual variation in climate forcing.
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1. Introduction

[2] Spatial and temporal variation in climate forcing is
difficult to capture in mountainous terrain due to the high
spatial heterogeneity coupled with sparse meteorologic
instrumentation [Running et al., 1987; Chen et al., 1999;
Minder et al., 2010]. Commonly used interpolation
approaches may lead to substantial interpolation bias in
these regions, particularly because climate stations are
often located at relatively low elevations [Phillips et al.,
1992]. Temperature interpolation can also be confounded
in locations susceptible to cold-air pooling, which occurs
when cold, dense air collects in a mountain valley and
becomes stagnant, leading to atmospheric decoupling from
air at higher elevations [Whiteman, 2000]. In regions sus-
ceptible to atmospheric decoupling, typical temperature
interpolation techniques do not accurately reflect the

regional air temperature pattern [Lundquist, 2008]. Distrib-
uted hydrologic and coupled ecohydrologic models
typically require continuous spatial coverage of meteoro-
logic input data; however, errors in interpolated tempera-
ture are a large source of uncertainty in distributed
modeling [Chen et al., 1999; Liston and Elder, 2006]. Inac-
curate representation of spatial patterns may have impor-
tant implications for developing climate change scenarios
and for improving our understanding of modeling the syn-
ergistic interactions between environmental change and
ecohydrologic processes [Baron et al., 1998; Gerten et al.,
2004; Luo et al., 2008]. When the source of input data is
station data, measurements must be interpolated over
space. In climate change scenario development, ecologic
and hydrologic models are driven by regional and global
climate model outputs. The spatial resolution of global and
regional climate model estimates remains relatively coarse
[Huffman et al., 2001; Hack et al., 2006; Pierce et al.,
2009], and meteorologic inputs derived from climate mod-
els must typically be downscaled to capture local patterns,
especially in mountain environments.

[3] For both upscaling of point and downscaling of
gridded inputs, a �6.5�C km�1 lapse rate with elevation is
often applied to approximate temperature patterns. This
value represents the mean environmental lapse rate of sta-
tionary air with an average moisture content [Ahrens, 2007]
and does not reflect the seasonal variation of a region
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susceptible to atmospheric decoupling and cold-air pooling.
Additionally, it does not account for the topographic influ-
ence of hillslope angle and aspect [Barry, 1992]. Opti-
mally, data recorded by a dense network of sensors would
be used to characterize spatial and temporal patterns of sur-
face temperature [Lookingbill and Urban, 2003; Lundquist
and Cayan, 2007]. However, as resources are seldom avail-
able to implement such projects, approximations are
improved by empirical relationships with topography that
are derived from local data and allow the temperature lapse
rate to vary seasonally. Using local station observations to
create a region-specific constant lapse rate improves the
accuracy of estimated air temperature surfaces [Dodson
and Marks, 1997; Jarvis and Stuart, 2001] as does using
more sophisticated statistical methods such as the Parame-
ter-elevation Regressions on Independent Slopes Model
(PRISM) [Daly et al., 1994, 2002, 2008], which accounts
for prevailing storm directions, proximity to the ocean, sea-
sonal temperature inversions, cold-air drainage and pool-
ing, and other landscape controls on temperature patterns.
While these approaches generally estimate temperature bet-
ter than a mean adiabatic lapse rate (MALR), all must
make simplified assumptions in order to make estimates in
areas of rugged terrain spanning a wide range of elevations.

[4] In the mountains of the western United States, accu-
rate representation of temperature patterns is particularly
important in the rain-snow transition zone. Temperature is
a key control on partitioning incoming precipitation
between rain and snow [U.S. Army Corps of Engineers,
1956; Nolin and Daly, 2006] and influences when and
where snowmelt occurs. Lundquist et al. [2008a, 2008b]
show that in the California American River Basin, a 100 m
location error in the snow-rain transition zone is approxi-
mately equivalent to a 5% error in contributing runoff area
during a storm. Changes in the amount and timing of snow-
melt translate into changes in the seasonal timing of
streamflow [Cayan et al., 2001; Stewart et al., 2004; Ham-
let et al., 2005; Bales et al., 2006]. In mountain environ-
ments, temperature patterns and associated snow dynamics
are also key controls on ecologic processes and influence
plant phenology [Schwartz, 1994; Schwartz and Reiter,
2000; Parmesan, 2007], plant water use [Tague and Dug-
ger, 2010], and net primary productivity (NPP) [Stephen-
son and Mantgem, 2005; Boisvenue and Running, 2006].
These prior studies demonstrate the sensitivity of hydro-
logic and coupled ecohydrologic processes to temperature
patterns, suggesting that a bias in temperature interpolation
may significantly impact assessments of climate impacts.
Analysis of model prediction sensitivity to different tem-
perature interpolation approaches is needed to provide
guidelines for the use and interpretation of ecohydrologic
models in climate change assessment.

[5] For hydrologic models, significant temperature inter-
polation bias should be apparent in comparisons of model
predicted streamflow against observed streamflow data.
Hydrologic models, however, are also calibrated against
observed streamflow data; therefore, calibration may
obscure the effects of temperature interpolation bias.
Because distributed hydrologic models are often limited by
data that describe soil hydraulic and subsurface drainage
properties, these properties become calibration parameters
[VanRheenen et al., 2004; Christensen et al., 2004; Hamlet

et al., 2005; Jung and Chang, 2011]. In general, calibration
may bias drainage parameter estimates to compensate for
the errors in input data [Kirchner, 2006; McDonnell et al.,
2007]. Thus, the error associated with air temperature esti-
mates may influence model calibration and lead to inaccu-
rate estimates of subsurface drainage parameters. For
example, if errors in temperature lapse rates lead to earlier
snowmelt predictions, calibration against observed stream-
flow may select for slower drainage parameters to compen-
sate for the effect of the early snowmelt timing. Drainage
parameters can be assumed to remain stationary under a
changing climate. We expect, however, that given the im-
portance of temperature as a control on snow accumulation
and melt, temperature lapse rate errors may change under
climate-warming scenarios if minimum and maximum
temperatures change at different rates or, in regions with
cold-air pooling events, with changes in frequency of anti-
cyclonic conditions [Daly et al., 2010]. Thus, any bias
introduced into drainage parameters during calibration as a
result of inaccurate temperature lapse rates will be prob-
lematic when the model is used to develop climate-
warming scenarios. Further evaluation of models using
streamflow data provides information only on total basin
water balance. Streamflow assessment may not reflect the
influence of temperature lapse rate bias on predictions of
within watershed patterns of ecohydrologic processes,
including forest transpiration and NPP, that are expected to
be sensitive to climate variability and change.

[6] In this paper we compare five methods of surface tem-
perature approximation and the associated sensitivity of
model estimates for streamflow, snow dynamics, transpira-
tion, and productivity in a mountain environment. We use the
Regional Hydro-Ecological Simulation System (RHESSys)
[Tague and Band, 2004], a process-based model, to simulate
coupled ecohydrologic processes. We focus our study in the
HJ Andrews Experimental Forest (HJA), which has been
shown to have cold-air pooling and drainage and strong, sea-
sonally varying temperature inversions [Daly et al., 2007,
2010]. Thus, the HJA, which is dominated by a rain-snow
transition zone, is likely to be particularly sensitive to spatial-
temporal patterns of air temperature. We compare model esti-
mates calculated using a standard, temporally constant mean
temperature lapse rate of �6.5�C km�1, two daily tempera-
ture lapse rates derived from local climate stations within the
basin, and temperatures estimated using two resolutions of
PRISM temperature data [Daly et al., 2002; Smith, 2002].
These five scenarios allow for comparison of (1) linear tem-
perature interpolation methods to PRISM’s nonlinear, spa-
tially distributed interpolation; (2) sensitivity in temperature
estimates to the location of the meteorologic station used to
derive temperature lapse rates; and (3) sensitivity to resolu-
tion of PRISM’s spatially distributed data. We use each of
these methods to provide temperature input data to RHESSys
and compare both model calibration behavior and postcali-
bration estimation of streamflow, forest water use, and pro-
ductivity under historic climate variability.

2. Methods

2.1. Study Area

[7] The HJA is a Long Term Ecological Research site
located in the western Cascade Range of Oregon, USA.
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Elevations in the 64 km2 basin range from 410 to 1630 m
(Figure 1). The forested basin is dominated by conifers
with Tsuga heterophylla (western hemlock) at lower eleva-
tions, Abies amabilis (Pacific silver fir) at higher elevations,
and Pseudotsuga menziessi (Douglas-fir) throughout the
whole basin [Franklin and Dyrness, 1988]. It has a Medi-
terranean climate with wet winters and dry summers where
approximately 75% of the annual precipitation falls from
November to April. Located on the windward slope of the
Cascade Range, the HJA receives orographically enhanced
precipitation that typically increases with elevation, and a
substantial seasonal snowpack develops above 900 m. The
HJA’s steep, incised slopes and valleys create periods of
cold-air drainage and pooling. Negative radiation balance
and slow wind speeds result in temperature inversions near
the ground that switch to a typical temperature profile
above the inversion [Daly et al., 2007]. Estimates of ecohy-
drologic values are likely to be particularly sensitive to
temperature interpolation scenarios in the HJA given that it
is located in a rain-snow transition zone and is prone to
cold-air pooling and temperature inversions.

2.2. Model Description

[8] RHESSys is a spatially distributed, dynamic model
of water, carbon and nitrogen fluxes over spatially variable
terrain. Tague and Band [2004] describe the model’s origi-
nal process representations; however, the model is continu-
ally evolving, and version 5.14.4 is used in the work
presented here. RHESSys uses a hierarchical spatial frame-
work that allows different processes to be modeled at their
most representative scale [Band et al., 2001]. For this study
the resolution for meteorologic, hydrologic, and carbon
cycling processes is similar across temperature lapse rate
scenarios. We use patch sizes of 30 m2 for the three non-
gridded temperature scenarios and 50 m2 for PRISM-
derived temperatures. Daily minimum and maximum air

temperatures and precipitation inputs drive the biogeo-
chemical cycling and hydrologic flux estimates. Here we
give a brief overview to highlight how air temperature
inputs influence model estimates of ecohydrologic varia-
bles. Daily partitioning of incoming precipitation between
rain and snow is based on each grid’s air temperature and
assumes that all precipitation falls as snow below �2�C
and as rain above 2�C based on previously reported obser-
vations [U.S. Army Corps of Engineers, 1956; Daly et al.,
2007], with a linear partitioning for temperature between
�2�C and 2�C based on the average daily temperature.
Snowmelt is modeled using a combined energy budget and
temperature index similar to the approach used by Cough-
lan and Running [1997]. Temperature is also used to calcu-
late potential evapotranspiration. Approaches used to
estimate daily litter, soil, and canopy interception and evap-
oration as well as transpiration are based on Penman or
Penman-Monteith approaches. If vapor pressure deficit
(VPD) data are not available (as is commonly the case in
the application of hydrologic models), then VPD is esti-
mated using the average air temperature, calculated using
the daily minimum and maximum air temperature, follow-
ing Jones [1992]. Because VPD is sensitive to air tempera-
ture, modeled evapotranspiration estimates will also show
some sensitivity to air temperature. Stomatal conductance
is estimated using a Jarvis approach, which includes an air
temperature response function. Transpiration also varies
with soil water availability, which changes with recharge
from snowmelt. Gross photosynthesis is estimated using
the Farquhar approach and includes a temperature term;
and following the approach used by Ryan [1991], respira-
tion of different plant components increases with tempera-
ture. Infiltration and soil moisture storage and drainage all
respond to the timing and magnitude of recharge, which
includes snowmelt. Streamflow is generated through a
combination of lateral hillslope routing of saturation

Figure 1. The 30 m digital elevation map of the HJA located in Oregon, USA. Geographic locations of
climate stations used to calculate daily temperature lapse rates for 2PT-LOW (CS2MET, VANMET)
and 2PT-MID (GSMACK, VANMET) are shown as white squares.
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excess, shallow subsurface flow, and deeper groundwater
flow as described by Tague et al. [2008].

[9] For this study we assume a mature Douglas-fir stand
for estimates of gross and net photosynthesis, respiration,
and transpiration. To initialize carbon and nitrogen pools
for the forest, vegetation, soil, and litter, we ran RHESSys
for the HJA over a 300 year climate sequence, created by
repeating a 50 year (1957–2007) record. For comparisons
of ecohydrologic estimates across the five different temper-
ature estimation scenarios (described in detail later), we
used the same initial state (carbon, nutrient stores) and ran
the model for water years 1991–2000, where a water year
is defined as 1 October of the previous year through 30
September of the present year. For these comparisons, the
model was calibrated in static mode, where carbon and nu-
trient stores do not change throughout the simulation. This
allowed us to compare vegetation responses (NPP and tran-
spiration) in individual years given the same stand
structure.

[10] The model was calibrated against a daily streamflow
record obtained from stream gauge station GSLOOK (U.S.
Geological Survey (USGS) gage 14161500). A primary
source of uncertainty in hydrologic modeling is the charac-
terization of basin-wide soil properties [Freer et al., 2002;
Beven and Freer, 2001]. While other hydrologic model
parameters can be directly measured, subsurface drainage
and moisture storage properties are influenced by both soil
matrix properties and distributions of preferential flow
paths and macropores over depth, which cannot be directly
measured. Consequently, subsurface drainage parameters
are almost always calibrated for or inferred by parameter
transfer from other regions of similar geology [Beven,
1989, 1996]. Similar to previous applications of RHESSys
[Tague et al., 2004; Tague and Grant, 2009], calibration
was achieved by adjusting parameters that control storage
and drainage rates of water through the soil and subsurface.
We calibrate for six parameters. The upper and lower limits
of each parameter’s values are bounded by literature esti-
mates [Dingman, 1994]. We emphasize that the realistic
ranges for K and m are large due to the presence of macro-
pores and preferential flow paths [Rothacher et al., 1967;
Harr, 1977; McGuire and McDonnell, 2010]. RHESSys
distinguishes between shallow subsurface flow paths that
follow surface topography and interact with the vegetation
rooting zone, and deeper groundwater flow paths that
bypass the rooting zone and are organized at broader hill-
slope scales. In the shallow subsurface flow system, soil
air-entry pressure (ae) and pore size index (po) control the
soil water holding capacity, following the approach of
Brooks and Corey [1964]. Saturated hydraulic conductivity
at the surface (K) and its decay with depth (m) control ver-
tical and lateral shallow subsurface drainage rates. Storage
and routing to a deep groundwater store requires two
groundwater (gw) parameters : the first (gw1) represents a
fixed percentage of infiltrated water that is assumed to
bypass the soil matrix to the deep groundwater store, and
the second (gw2) represents the amount that is routed to the
stream at a calibrated drainage rate.

[11] Calibration was done separately for each of the five
temperature interpolation approaches. We used a Monte-
Carlo-based approach with 1000 simulations over a 10 year
period, water years 1991–2000, with an initial spin-up in

water year 1990. Acceptable parameter sets were selected
based on the three metrics of model performance against
measured streamflow. Specifically, the Nash-Sutcliffe effi-
ciency (NSE) of daily streamflow and log-transformed
daily streamflow were held to greater than 0.6 [Nash and
Sutcliffe, 1970], annual absolute values of streamflow bias
were less than 15%, and August streamflow biases, consid-
ered a low-flow month, were less than 25%. A single pa-
rameter set was selected from these acceptable parameter
sets for each temperature scenario to illustrate differences
in modeled streamflow, snow accumulation, and melt.

[12] For model evaluation, we expand the three perform-
ance measures mentioned earlier. Although calibration
could include additional statistics, calibration of most
hydrologic models and previous RHESSys applications
[Seibert et al., 1997; Hay and Clark, 2003; Tague et al.,
2004] typically focuses on a smaller subset. We use other
performance measures in evaluation, however, to provide a
more detailed analysis of hydrologic behavior. We focus
particularly on spring and summer flows and compute the
root-mean-square error (RMSE) and bias in these seasonal
totals. Spring and summer flows are likely to be most sensi-
tive to temperature controls on snowmelt and evapotranspi-
ration, respectively. Following Stewart et al. [2004], we
also compute the day of water year of the center of mass of
streamflow (DofCM), which reflects the timing of spring
snowmelt in environments where water inputs are domi-
nated by winter snow. The DofCM is the day of water year
in which 50% of the total annual streamflow has been dis-
charged from the basin.

2.3. Model Inputs

[13] Elevation, slope, and aspect layers for the HJA were
based on a 30 m digital elevation model (available at
http://www.fsl.orst.edu/lter). Daily minimum and maxi-
mum temperature records were taken from three stations
within the basin: Climatic Station at Watershed 2
(CS2MET), located in a valley bottom at 430 m elevation;
Andrews Mack Creek Gaging Station (GSMACK), located
at 755 m elevation; and the high-elevation Vanilla Leaf
Meteorological Station (VANMET), located at 1273 m ele-
vation (Figure 1). Precipitation records from CS2MET
were scaled using isohyets derived from 800 m PRISM
data and used to drive all model scenarios.

[14] 2.3.1. Temperature Estimation Scenarios We com-
pare two general approaches, linear interpolation and
PRISM-derived temperature maps, for providing spatially
explicit temperature inputs to RHESSys. It has been shown
that accuracy in temperature estimation is heavily influ-
enced by sensor location [Stahl et al., 2006]. In addition, it
has been shown that the HJA is prone to decoupling
between cold-air pools and free atmosphere at higher eleva-
tions [Daly et al., 2010], leading to fall and winter tempera-
ture inversions. Using a MALR is likely to underestimate
high-elevation temperature data during periods of tempera-
ture inversion or cold-air pooling. Temperature lapse rates
derived from station pairs, on the other hand, can account
for these time-varying controls on temperature patterns, but
results will depend on local effects at the respective pairs.
We examine three linear interpolation scenarios to derive
daily minimum and maximum temperature lapse rates. The
first approach applies a temporally constant MALR of
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�6.5�C km�1 to daily minimum and maximum tempera-
tures and acts as a baseline. This lapse rate is applied to
temperature values recorded at CS2MET for model data
input. This scenario is referred to as MALR throughout the
article. Table 1 lists all scenarios’ acronyms and
descriptions.

[15] The two other temperature estimation scenarios that
use linear interpolation allow spatial patterns of tempera-
ture to vary through time. Daily time series of minimum
and maximum temperature lapse rates were calculated for
water years 1990–2000 using distinct daily minimum and
maximum temperatures from high- and low-elevation sta-
tions. Both scenarios use VANMET as the high-elevation
station. Low-elevation station CS2MET, located on the val-
ley floor, and mid-elevation station GSMACK are used to
calculate the daily temperature lapse rates for scenarios
2PT-LOW and 2PT-MID, respectively. We apply the 2PT-
LOW and 2PT-MID lapse rates to the temperature data
recorded at their respective individual low-elevation mete-
orologic stations, CS2MET and GSMACK. These basin-
wide daily temperature lapse rates were calculated as

G2PT-LOW max;min ¼
TVANMETmax;min � TCS2METmax;min

ZVANMET � ZCS2MET
(1)

G2PT-MID max;min ¼
TVANMETmax;min � TGSMACKmax;min

ZVANMET � ZGSMACK
; (2)

where T is the daily temperature, Z is the elevation, and
Gmax,min are the change in maximum and minimum temper-
atures with elevation, respectively (i.e., daily lapse rate).
Figure 2 shows the daily average temperature lapse rates
averaged across 11 water years (1990–2000). In the HJA,
Gmax for scenarios 2PT-LOW and 2PT-MID approximates
the global mean temperature lapse rate of �6.5�C km�1

during spring and summer. During the fall and winter, both
scenarios’ lapse rates demonstrate strong temperature
inversions. During the periods of inversion G2PT-MIDmax is
on average 3�C higher than G2PT-LOWmax. The steeper tem-
perature lapse rate computed using the mid- and high-
elevation station pair is somewhat surprising given that we
might expect the temperature inversions effect to be greater
from the lower-elevation station. Results indicate that the
2PT-MID elevation pair actually shows a strong tempera-
ture inversion effect. There is a negligible difference
between Gmin for 2PT-LOW and 2PT-MID; both average
�3.5�C km�1, or 3�C km�1 higher than the mean environ-
mental lapse rate. Detailed analysis of the HJA climate is

beyond the scope of this paper; here we focus on the impli-
cations for ecohydrologic estimates. Daly et al. [2010] pro-
vide a more detailed analysis of the climate mechanisms
that controls these rates and their climatic and seasonal
patterns.

[16] We also consider two temperature interpolation sce-
narios that use spatially explicit, long-term (1971–2000)
monthly averages of minimum and maximum temperature
created with PRISM. We compare scenarios based on
PRISM at a resolution of 800 m, which is available for all of
the contiguous United States, and scenarios based on 50 m
resolution maps that are unique to the HJ Andrews (available
at www.fsl.orst.edu/lter/data/abstract.cfm?dbcode¼MS029)
[Smith, 2002; Daly and Smith, 2005]. PRISM-based temper-
ature estimates account for environmental factors such as
forest canopy, cloudiness, and topographic shading of radia-
tion that are known to affect microclimates in forested, high
topography terrain. These gridded temperature data are able
to capture temperature inversions and thermal belts because
PRISM weighs climate stations to account for topographic
positioning and potential for temperature inversion [Daly et
al., 2008]. We use the same methodology, detailed later, to
incorporate 50 and 800 m resolution data into RHESSys and
refer to these scenarios as GRID-50 and GRID-800,
respectively.

[17] To generate daily estimates for both data sets, the
monthly data were downscaled into grids of daily maxi-
mum and minimum temperature for years 1989–2000 using
the CS2MET record. First, the raw, monthly temperature
values were offset with respect to the corresponding
monthly value for the grid cell at the CS2MET climate
station.

oMPT j max;minð Þ;i ¼ MPT j max;minð Þ;i � TCS2MET max;minð Þ;i: (3)

[18] We denote monthly, PRISM-derived minimum or
maximum temperatures for grid cell j at month i as MPTj,i.
The mean monthly PRISM temperature value of the grid
cell that is coincident with the geographic location of

Table 1. Naming Convention of Temperature Interpolation
Methods

Abbreviation
Data Used to Derive Minimum/Maximum Temperature
Lapse Rates

MALR Mean adiabatic lapse rate; constant value of 6.5�C km�1

2PT-LOW Linear interpolation with CS2MET (low) and
VANMET (high)

2PT-MID Linear interpolation with GSMACK (mid) and
VANMET (high)

GRID-50 50 m resolution PRISM-derived grids
GRID-800 800 m resolution PRISM-derived grids

Figure 2. Time series of G2PT-LOWmin,max and G2PT-MID-

min,max averaged over water years 1990–2000, expressed in
C km�1 vertical elevation. Gray lines represent G for 2PT-
MID; black lines represent 2PT-LOW; and dashed and
solid lines are minimum and maximum lapse rates, respec-
tively. A horizontal line at G¼ 0 is included to aid in identi-
fication of inversion periods.
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climatic station CS2MET is TCS2MET,i, and oMPTj,i repre-
sents the gridded temperature values offset by TCS2MET,i for
month i at grid cell j. The daily minimum and maximum
temperature records from CS2MET (CS2METmax,min) are
used to downscale the monthly oMPTj,i to a daily time step.

DoMPT j max;minð Þ;i;k ¼ oMPT j max;minð Þ;i þ CS2MET max;mini;k : (4)

[19] We use DoMPTj(max,min),i,k to refer to the product of
adding grid oMPT at month i to CS2MET’s temperature
value in the same month on day k.

3. Results

3.1. Average Monthly Basin Temperatures

[20] Figure 3 shows the monthly temperature values
averaged over the basin and climate record for each of the
five methods of estimation. The MALR estimated the low-
est maximum and minimum temperatures throughout the
growing season. Mean basin summer and fall maximum
temperatures for 2PT-LOW were on average the highest
estimates of all scenarios (Figure 3a). GRID-800 maximum
temperatures were generally cooler than estimates from
finer resolution GRID-50. Minimum temperature estimates
(Figure 3b) for all scenarios showed the greatest differences
across temperature estimation methods in April–October
and the greatest interannual variation in November. When
averaged over the basin, differences in monthly estimates
due to interpolation approaches were small when compared
with seasonal patterns in air temperature (e.g., differences
between winter and summer temperatures) but were rela-
tively large when compared with interannual variation of
air temperature for a particular month (e.g., shown by
height of bars in Figures 3a and 3b).

3.2. Model Calibration and Performance

[21] The method of temperature estimation influenced
both the number of acceptable parameter sets and the per-
formance statistics values of the best performing parame-
ters. Of all scenarios, 2PT-MID had the greatest number of
acceptable parameter sets (Table 2). Of the spatially dis-
tributed interpolation methods, GRID-50 had the most
parameter sets meeting streamflow metric criteria (Table
2). GRID-50 and 2PT-MID had more than twice as many
acceptable parameter sets as compared to the other three
scenarios. We suggest that the need to correct for tempera-
ture effectively imposed an additional constraint and
reduced the number of acceptable parameters. The effect of
temperature estimation on model calibration was also
reflected in the differences of acceptable parameter values.
Four of the six calibration parameters demonstrate distinct
parameter spaces for each temperature scenario (Figure 4).
All linear interpolation scenarios (MALR, 2PT-LOW, and
2PT-MID) selected for a greater proportion of flow to
deeper groundwater stores (minimum value of 0.1 in Figure
4c), shown as deviation in cumulative distribution of

Figure 3. Monthly (a) maximum and (b) minimum temperatures averaged over the basin and water
years 1991–2000. For each month, bars from left to right represent scenarios MALR, 2PT-LOW, 2PT-
GRID, GRID-50, and GRID-800.

Table 2. Total Number of Parameter Sets That Satisfy the Fol-
lowing Daily Streamflow Performance Metrics From the Original
1000 Calibration Parametersa

Scenario Total

MALR 20
2PT-LOW 10
2PT-MID 67
GRID-50 54
GRID-800 26

aNSE> 0.6, NSE log> 0.65, total error <15%, error in August <25%.
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acceptable parameters from cumulative distribution of the
initial parameter space, following Beven and Freer [2001].
Higher values of gw1 reflect an implementation where a
greater proportion of recharge follows a shallow (and rela-
tively rapid) groundwater flow path. These linear interpola-
tion scenarios also selected for slightly lower values of
gw2, leading to faster drainage rates of the deeper ground-
water store (maximum value of 0.4 in Figure 4d). GRID-
800 selected for gw1 parameters intermediates between
GRID-50 and the linear interpolation scenarios. With
respect to the timing of streamflow, slower drainage of the
deeper groundwater stores in MALR, 2PT-LOW, and 2PT-
MID partially (but not fully) compensates for a greater pro-
portion of recharge traveling through the deeper (rather
than shallow subsurface) flow paths (higher gw1). Parti-
tioning of recharge into the deeper versus shallow ground-
water flow can also influence evapotranspiration rates
because water that remains in the shallow subsurface flow
system can be accessed for transpiration by downslope veg-
etation, particularly in riparian areas. Thus, linear interpola-
tion scenarios may be selecting for greater partitioning into
groundwater stores to reduce growing-season evapotranspi-
ration rates.

[22] Scenario 2PT-LOW also selected for a narrow range
of values for po and ae (Figures 4a and 4b); the smaller
pore size indices and higher air-entry pressure, values that
reflect reduced soil moisture storage capacity, likely lead to
lower growing-season evapotranspiration rates. In general,
2PT-LOW parameters suggested compensation to correct
for a tendency toward higher evapotranspiration rates by
reducing soil moisture storage capacity. Though we cali-
brated for parameters m and K, the difference in acceptable

parameter space between temperature estimate scenarios
differed little, so they are not shown.

[23] A single acceptable parameter set was selected for
each scenario in order to illustrate differences in postcali-
bration ecohydrologic variable estimates across the temper-
ature scenarios. These parameter sets are presented in
Table 3. Where possible, parameter sets were chosen to be
similar across temperature scenarios, while still meeting
the calibration criteria for acceptability. There was no
unique parameter set common to all five scenarios. MALR,
2PT-MID, GRID-50, and GRID-800 scenarios share a com-
mon parameter set meeting streamflow metrics; 2PT-LOW
has a separate, distinctive parameter set, chosen such that
its values of gw1, ae, and po were within 25% of the other
common parameter set so as to minimize differences in soil
moisture storage and total volume of water lost to deep
groundwater.

3.3. Streamflow

[24] Once calibrated, streamflow estimates from all five
temperature scenarios achieved performance statistics for
annual and daily flows (Table 4) that were similar to those

Figure 4. Cumulative frequency analysis of calibration parameters (a) ae, (b) po, (c) gw1, and (d) gw2
for the five temperature estimation scenarios. For each scenario, the parameter value meeting streamflow
metrics listed in Table 2 is plotted against the normalized value of log(NSE). The parameter space for all
1000 initial parameter sets is shown with the gray line.

Table 3. Calibrated Soil Parameters Used for the Presentation of
Modeled Streamflow and Snowpack for Each Temperature Esti-
mation Method in All Scenarios

Scenario m (m�1) K (m d�1) po ae gw1 gw2

MALR, 2PT-MID,
GRID-50, GRID-800

1.18 2180 0.28 .015 0.33 0.13

2PT-LOW 1.24 3250 0.18 0.019 0.25 0.08
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used for previous hydrologic modeling studies in the western
United States [Hay and Clark, 2003; Hay et al., 2006;
Tague and Grant, 2009]. There were, however, some
noticeable differences in performance statistics across tem-
perature scenarios. Table 4 shows daily streamflow metrics
for water years 1991–2000 and demonstrates that in all sce-
narios timing of magnitude was reasonably captured.
Table 5 shows metrics for seasonal streamflow, highlighting
periods of high (spring) and low (typically August) flows.

[25] Overall, 2PT-MID and GRID-50 modeled the tim-
ing and amount of streamflow slightly better than the other
linear or spatially distributed interpolations across all time
scales, based on a range of streamflow metrics (Tables 4
and 5). Although 2PT-LOW had relatively low bias in sea-
sonal (fall and spring) totals, there was a substantial bias to-
ward earlier streamflow (earlier DofCM), leading to a high
RMSE in the spring (Table 5). Timing of center of mass of
streamflow for MARL, 2PT-MID, GRID-50, and GRID-
800 was substantially biased toward later in the season.
The 2PT-MID had a lower RMSE for the spring. GRID-50
and GRID-800 similarly had a higher spring RMSE and the
lowest fall RMSE. MALR gave the poorest performance
with spring and fall biases of approximately 20%, nearly
2–20 times greater than the other scenarios. Monthly
streamflow patterns (Figure 5) show that MALR predicted
a slightly more muted seasonality with reduced differences
between wet and dry season flows. For MALR, the mean
flows in wet months were approximately 10 mm d�1, and
flows in the dry summer months were 2 mm d�1. Figure 6
presents a hydrograph for water year 2000, a year of aver-
age annual precipitation, to illustrate the difference in sce-
narios’ abilities to capture peak flows and recessions. It
shows that MALR underestimated early winter discharge
and overestimated summer low flows. Linear interpolation

scenario 2PT-LOW (Figure 6b) underestimated flow from
March to July and overestimated peak flows. In water year
2000, both GRID-50 and GRID-800 (Figure 6c) have simi-
lar performance and tend to slightly underestimate peak
flow values. In spite of these differences among scenarios,
we emphasize that all produce similar daily streamflow sta-
tistics (NSE, log(NSE)) and acceptable streamflow per-
formance. (A log(NSE) value of greater than 0.8 suggests
that a scenario captures general hydrologic behavior
(peaks, low flows, seasonality) reasonably well.) Figure 7a
shows that MALR’s DofCM occurred later than observed
for all years and 2PT-LOW occurred earlier than the
observed record for all years except for 1993, which was
the year of latest spring peak discharge. All scenarios fol-
low the general trends in interannual variation in timing of
center of mass, with 1993 showing the latest timing of melt
and 1997 the earliest.

Table 4. Daily Streamflow Performance Metrics for Each Tem-
perature Scenario Computed for Water Years 1991–2000

Daily Streamflow Performance Metrics

Scenario Bias (%) NSE log(NSE)

MALR �5.1 0.61 0.81
2PT-LOW �10.1 0.62 0.83
2PT-MID �6.3 0.69 0.85
GRID-50 �7.3 0.65 0.87
GRID-800 �11.7 0.60 0.85

Table 5. Seasonal (Fall and Spring) Streamflow Performance
Metrics for Each Temperature Scenario Computed for Water
Years 1991–2000

Spring, Mar–Apr–May Fall, Low Flow

Scenario
RMSE
(mm)

Bias
(%)

Average Number
of Days Removed
From Observed

DofCM
RMSE
(mm)

Bias
(%)

MALR 16.8 18.3 20 later 11.9 �21.6
2PT-LOW 16.7 �1.0 10 earlier 8.4 �1.3
2PT-MID 8.8 �3.7 12 later 8.0 6.5
GRID-50 12.1 �2.1 9 later 7.3 �14.3
GRID-800 11.6 �5.8 11 later 7.3 �13.9

Figure 5. Average monthly streamflow for water years
1991–2000 for all temperature interpolation scenarios. For
each month, bars from left to right represent scenarios
MALR, 2PT-LOW, 2PT-GRID, GRID-50, and GRID-800.

Figure 6. Modeled streamflow for water year 2000, a
year of average annual precipitation (over record 1957–
2005), illustrates differences in seasonal timing using the
five temperature scenarios.
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3.4. Snow

[26] Model prediction of the timing and amount of snow
is particularly sensitive to temperature strategies. As men-
tioned earlier, Figure 7a shows the influence on timing
using the DofCM; Figure 7b shows the daily snow water
equivalent (SWE) for water years 1991–2000 to illustrate
differences in accumulation. The MALR strategy calculated
a peak mean basin SWE of 400 mm, two to four times the
amount calculated by any other basin-specific strategy. Four
SNOTEL stations near the HJA at elevations from 1140 to
1460 m recorded peak snowpacks ranging from 100 to
900 mm (data not shown). We note that basinwide esti-
mates of SWE are not generally available, and remote sens-
ing of SWE is challenging in densely forested watersheds
[Bales et al., 2006]. Thus, we consider model estimates of
basin-wide average SWE to all be reasonable within a first-
order approximation despite distinct differences in estimates
with temperature strategies. The magnitudes of peak SWE
estimated by 2PT-LOW, GRID-50, and GRID-800 were
roughly equivalent; however, GRID-50 and GRID-800
have a later average day of peak SWE and slower melt
rates; GRID-50 shows slightly higher peak snow. The 2PT-
MID peak snow was substantially greater than that esti-
mated by 2PT-LOW or GRID-50. Basin-average snowpack
accumulation peaks occurred at notably different times:
2PT-LOW occurred in January, 2PT-MID and MALR peak
in February, and the gridded scenarios’ snowpacks shared a
much smoother peak in late February. Differences in peak
SWE estimates have implications for timing of snowmelt.
MALR’s larger snowpack strongly influences its 20 day
delay in DofCM (Table 5 and Figure 7a), and similarly,
2PT-MID’s and the gridded scenarios’ approximate 10 day
delay in DofCM reflects their later melt.

3.5. Ecologic Modeling: Transpiration and Carbon
Cycling

[27] Transpiration and NPP estimates presented are for
all parameter sets that met streamflow metrics of accept-
ability (Table 2). Mean annual transpiration and NPP for

all temperature lapse rate scenarios were between 580 and
800 mm yr�1 and 450 and 2000 g C yr�1 (Table 6), respec-
tively; GRID-800 and 2PT-MID estimated very high mean
annual NPPs of approximately 2000 g C m�2, and MALR
had an NPP estimate of 450 g C m�2, approximately one
quarter the magnitude of GRID-800. MALR modeled the
lowest rates of growing-season transpiration (approxi-
mately 4 mm d�1) and the greatest interannual variation in
its estimates of transpiration and NPP (Table 6), which
implies a greater sensitivity to year-to-year differences in
climate forcing. In contrast, GRID-50 and 2PT-LOW had
the smallest interannual variability in NPP and transpira-
tion estimates, respectively. NPP estimates using the five
different temperature lapse rate scenarios also differed in
their sensitivity to uncertainty in soil drainage parameters
(Figures 8a and 8b). The variability in NPP and transpira-
tion across acceptable parameter sets by 2PT-MID was rel-
atively small given that it reflects estimates of 67
parameters as compared to 21 (MALR) or 10 (2PT-LOW;
Figures 8a and 8b). Figures 8a and 8c also show that the
differences in total annual NPP and transpiration across
scenarios largely reflect differences in late summer fluxes.
MALR, having the lowest annual estimates of NPP, shows
the earliest and steepest declines in summer transpiration
and NPP, reflecting an earlier onset of summer water stress
(Figures 8a and 8c). Similarly, as shown in Figure 8c, the
timing in seasonal peaks of transpiration for 2PT-MID,
GRID-50, and GRID-800 distinguishes these scenarios’
higher rates of total annual (approximately 760 mm yr�1)
transpiration from MALR and to a lesser extent, 2PT-
LOW. Maximum daily rates of estimated transpiration by
GRID-800 peaked at approximately 7 mm d�1 in July,
2 mm higher and 2 months later than MALR.

4. Discussion

[28] Accurate modeling of ecohydrologic processes in
mountainous terrain relies strongly on capturing seasonal
snow patterns. Temperature interpolation methods have
the potential to play a strong role in improving representa-
tion of snow accumulation and melt in regions with warm
winters. Watersheds with large rain-snow transition zones
such as the HJA study site are likely to be particularly
sensitive to temperature estimates. We assume here that
the GRID-50 scenario is the most physically realistic of
the temperature scenarios because it is derived using
PRISM at a fine resolution by using more than 30 temper-
ature sensors within the basin [Smith, 2002]. Thus, it is

Figure 7. Differences in temperature interpolation affect
modeling of snow processes such as (a) timing of snowmelt,
reflected here as streamflow’s DofCM where points mod-
eled above the gray line (observed) indicate delay in melt,
and (b) magnitude, shown as the 10 year average SWE.

Table 6. Mean Annual Values of NPP and Transpiration for the
Parameter Sets Meeting Streamflow Metrics Listed in Table 2

Temperature
Scenario

Mean
Annual

NPP
(g C m�2)

Standard
Deviation of
Annual NPP
(g C m�2)

Mean
Annual

Transpiration
(mm yr�1)

Standard
Deviation of

Annual
Transpiration

(mm yr�1)

MALR 450 230 580 80
2PT-LOW 930 80 730 30
2PT-MID 1900 120 760 80
GRID-50 1540 70 760 50
GRID-800 2000 80 800 50
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most likely to capture spatial variation in air temperature
lapse rates and reflect the seasonal, atmospheric decou-
pling that occurs in the basin. We note that a limitation of
GRID-50 is that because daily gridded values were
unavailable, it is downscaled from a monthly-to-daily time
step using data from low-elevation station CS2MET. So
though GRID-50 provides improved spatial information
about the HJA temperature regime, 2PT-LOW and 2PT-
MID have the advantage of providing daily lapse rates,
which may facilitate capturing daily processes like cold-
air pooling. We note however that winter temperature
inversions are still captured at the monthly time scale. The
best postcalibration streamflow performances (percent
daily bias, DofCM, and low-flow bias) were obtained
using the 2PT-MID and GRID-50 scenarios, and these sce-
narios had the greatest number of acceptable parameter
sets. These behaviors lend confidence to our ranking of
GRID-50 as the most realistic temperature scenario.

[29] The standard atmospheric environmental lapse rate
(MALR) modeled two to four times greater snow accumu-
lation than all other scenarios. We suggest that this is
explained in part by MALR’s winter lapse rates not cap-
turing the inversion that exists in the HJA and that
�6.5�C km�1 is not representative of mountainous terrain
in the Pacific Northwest [Minder et al., 2010]. MALR’s
steeper winter temperature lapse rates effectively lower
the average basin temperatures and thus partition a larger
fraction of winter precipitation to snow. Differences in the
fraction of winter precipitation as snow can translate into
significant differences in runoff [Minder et al., 2010;
White et al., 2002]. In these results, MALR shows a 3
week delay on average in peak spring flow and higher av-

erage amounts of late summer streamflow. Scenario 2PT-
MID also had a higher peak SWE that occurred later in
the year than the other basin-specific linear interpolation,
2PT-LOW, and grid-based approaches. Differences
between 2PT-LOW and 2PT-MID highlight the impact of
temperature sensor location on ecohydrologic model esti-
mates, even when time-varying lapse rates with elevation
are accounted for and stations are selected to capture
high-to-low elevation behaviors. The slightly greater
amount of snow accumulation by GRID-50 than by
GRID-800 suggests that the finer resolution temperature
maps better capture cold-air pockets in the HJA.

[30] In spite of substantial difference in snow estimates,
calibration of drainage parameters to some extent compen-
sates for the impact of snowmelt timing on streamflow. We
note, however, that while acceptable NSE and log(NSE)
were obtained for all scenarios, closer examination of sea-
sonal patterns of streamflow does reflect the differences in
snow estimates, even after calibration. The later snowmelt
timing of the MALR, 2PT-MID, and the gridded interpola-
tion scenarios remains evident in streamflow predictions as
shifts toward a later timing of streamflow center of mass.
Discrepancies in interannual variation in spring flow pat-
terns (as captured by DofCM) is to some degree masked in
longer-term daily streamflow metrics such as NSE, percent
bias, and RMSE, which are commonly used model per-
formance metrics. These results suggest the importance of
using an interannual metric such as timing of center of
mass as explicit calibration and performance criteria.

[31] While the differences in snow accumulation among
GRID-50, GRID-800, and 2PT-LOW are substantially less
than those between 2PT-MID and MALR, the impact on

Figure 8. Ten year monthly averages of modeled (a) NPP and (b) transpiration for the parameter sets
that meet streamflow metrics listed in Table 2. August averages for (b) NPP and (d) transpiration allow
for closer inspection of differences in model estimates. For each month, bars from left to right represent
scenarios MALR, 2PT-LOW, 2PT-GRID, GRID-50, and GRID-800.
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parameter selection in calibration of soil parameters is
much greater. Temperature scenario 2PT-LOW produced
the earliest peak snow accumulation and much earlier
snowmelt relative to all other scenarios. We suggest that
the relatively few and distinctive values of acceptable
parameters for 2PT-LOW likely occur because of the
impact of this earlier timing of snowmelt on streamflow.
Similarly, MALR also calibrates for fewer acceptable pa-
rameter sets because it calculates a larger fraction of winter
precipitation as snow. GRID-50, GRID-800, and 2PT-
LOW tend to produce higher summer evapotranspiration
(ET) losses due to a combination of earlier snowmelt, lead-
ing to an earlier start of growing-season and higher summer
temperatures for 2PT-LOW and to a lesser extent GRID-50
and GRID-800 (Figure 3). Because we calibrate against the
timing and magnitude of streamflow, 2PT-LOW’s calibra-
tion selects for those soil moisture storage parameters that
result in reduced soil moisture storage capacity relative to
all other scenarios (Figures 4a and 4b). This adjustment for
reduced soil moisture storage tends to reduce late summer
moisture and overall basin transpiration and NPP, resulting
in a greater decline of transpiration in summer growing sea-
son due to greater water stress for 2PT-LOW (Figure 8c).
Calibration parameter selection and postcalibration per-
formance show that calibration of drainage parameters can
account to some extent for earlier timing of snowmelt and
higher temperatures of 2PT-LOW. It is interesting to note
that drainage parameter selection is more sensitive to 2PT-
LOW errors that lead to earlier melt and higher summer
temperatures relative to MALR errors that tend toward cold
temperature and more snow. In other words, drainage pa-
rameter selection is confounded by errors in temperature
estimation that are particularly evident when temperature
scenarios push the system toward increased water stress.

[32] Temperature scenarios also have implications for
modeling of ecologic processes. For all scenarios, mean an-
nual model estimates of NPP and transpiration fall within a
range of measured values for Pacific Northwest Douglas-
fir, though GRID-800 and 2PT-MID are at the upper
bounds [Gholz, 1982; Granier, 1987; Grier et al., 1989;
Law et al., 2002]. There are, however, substantial differen-
ces across scenarios. Temperature estimates can influence
NPP and transpiration in a variety of ways. Temperature
can directly impact the rates of growing-season photosyn-
thesis and respiration. Growing (or physiologically active)
season evapotranspiration demands will also vary with
each temperature scenario since VPD is calculated using
temperature. Temperature also indirectly influences these
fluxes by changing the timing and magnitude of growing-
season water availability through changes in snow accumu-
lation and melt. Scenarios generally show similar winter
and spring fluxes, suggesting that differences in spring tem-
perature estimates across scenarios are not a critical con-
trol. Differences in transpiration and NPP estimates across
temperature scenarios occur mostly during the late summer,
suggesting that differences in later summer water availabil-
ity may be an important effect. There are also differences
in peak transpiration and NPP values earlier in the summer,
which reflect temperature controls during that period. Thus,
GRID-800 has a greater plant water demand in June
because it has higher temperatures at this time. Interest-
ingly, despite receiving more precipitation as snow,

MALR’s growing season begins at the same time as the
other temperature scenarios. MALR’s maximum monthly
values of NPP and transpiration are less than the minimum
values for 2PT-LOW and 2PT-MID in August and Septem-
ber, despite MALR having two to four times the amount of
snow. In other words, a larger snowpack did not result in
more plant available water in the summer. It is also inter-
esting to note the high sensitivity of 2PT-LOW’s monthly
transpiration and GRID-50’s and GRID-800’s monthly
NPP to soil parameter uncertainty, demonstrating an inter-
action effect between errors in temperature lapse rate esti-
mates and model sensitivity to soil parameter uncertainty.
Because cross-temperature scenario differences in vegeta-
tion carbon and moisture fluxes manifest largely as a differ-
ence in late summer fluxes, we suggest that late summer
VPD estimates of transpiration and temperature for NPP
are important drivers, in addition to differences in water
availability due to differences in soil drainage parameters.
We note that it is a combination of differences in soil cali-
bration parameters and differences in snowmelt timing that
lead to differences in late summer water availability.

[33] The different temperature lapse rate scenarios also
alter the sensitivity of NPP estimates to interannual varia-
tion in climate. Although GRID-800 and 2PT-MID gave
similarly high values for mean annual NPP and transpira-
tion, the 2PT-MID scenario results in higher interannual
variation in these fluxes. Similarly, although both MALR
and GRID-50 have the lowest NPP and transpiration esti-
mates, MALR estimates show substantially greater interan-
nual variation. These results demonstrate the complexity of
cross-scenario differences in NPP and transpiration esti-
mates. The lower values of mean annual MALR’s NPP and
transpiration suggest greater summer water stress or tem-
perature limitations. However, this does not translate into
similar sensitivity to interannual variation in climate. These
differences in estimates of ecologic function, both as means
and climate sensitivity, are more pronounced than differen-
ces in streamflow estimates and suggest that accurate esti-
mates of temperature spatial patterns may be particularly
important for ecohydrologic model applications designed
to explore forest responses to climate change scenarios. We
note that although GRID-800 and 2PT-MID produce
streamflow statistics relatively close to those obtained using
GRID-50, the NPP estimates from GRID-800 and 2PT-
MID are substantially larger than all other scenarios. We
suggest that the GRID-800 estimates of NPP, which exceed
GRID-50 estimates, reflect differences in temperature esti-
mates during the late summer. During August, GRID-800
tends to have higher NPP and lower transpiration relative
to GRID-50 suggesting that GRID-800 estimates greater
water use efficiency. This greater water use efficiency sug-
gests lower temperatures and lower VPDs for a significant
proportion of watershed. In general, differences among
GRID-50, GRID-800, and 2PT-MID emphasize that accu-
rate estimates of streamflow may obscure errors in estimat-
ing within watershed spatial patterns of ecosystem fluxes,
and their sensitivity to climate variability.

5. Conclusion

[34] Ecohydrologic modeling provides the ability to test
and refine our understanding of basin-scale relationships
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between climate and the responses of hydrology and vege-
tation. We have shown that how we interpolate temperature
in a mountain environment dominated by a rain-snow tran-
sition zone significantly influences our estimates of the tim-
ing of key hydrologic and ecosystem processes. We
acknowledge that biases in other climatologic inputs, such
as precipitation, can be a major source of error that influen-
ces these processes, but we focus our analysis on differen-
ces due to temperature estimation. While it is known that
the mean atmospheric lapse rate typically used in hydrocli-
matologic modeling does not accurately represent regional
conditions [Blandford et al., 2008; Dobrowski et al., 2009;
Daly et al., 2010], an important next step is to describe
how that generalization affects our understanding and
model predictions in an environment where these differen-
ces in temperature representation are more likely to effect
model estimates of ecohydrologic processes. Using a pro-
cess-based model, this work compares a MALR to four sce-
narios created using two types of basin-specific
temperature interpolation methods: two scenarios utilize
daily-variable lapse rates created using two local meteoro-
logic stations, and two others use spatially specific PRISM-
based temperature grids. We show that given calibration,
all temperature interpolation methods can be used to pro-
vide estimates of daily streamflow that yield acceptable
performance measures. We note that criteria for acceptabil-
ity are consistent with criteria used in other modeling stud-
ies within the western United States [Perrin et al., 2003;
Hay et al., 2006]. Nonetheless, there are notable differen-
ces in seasonal streamflow behavior associated with the dif-
ferent temperature interpolation strategies. Model estimates
of snow accumulation and melt patterns show more sub-
stantial differences that at least for two temperature strat-
egies (2PT-LOW, MALR) are corrected for by calibration
of drainage parameters. This clearly demonstrates the
potential for streamflow calibration to correct for bias in
temperature. Further, we note that the bias correction is
much greater when that temperature scenario leads to ear-
lier snowmelt. Calibrated parameters that correct for errors
in climate input introduce bias into model projections.
Because climate in the western United States is projected
to warm in the future, the accuracy of model predictions
regarding changes to hydrology and ecology is impacted by
our interpolation of regional temperature variation.

[35] Differences in the temperature interpolation
approach, even with calibration correction, lead to impor-
tant differences in estimates of other ecohydrologic varia-
bles, particularly seasonal timing estimates of summer
moisture stress. The temperature scenario using the MALR
estimates substantially reduces later summer NPP and tran-
spiration relative to the interpolation scenarios using
regionally specific data. Scenarios also differ in the sensi-
tivity of transpiration and NPP to interannual variation in
climate drivers. These differences may have substantial
impacts on future estimates of vegetation responses to
warming. Though the results of this study are specific to
the region, their implications present important considera-
tions for other mountainous basins with warmer winters
where the growing season is not aligned with the primary
flux of precipitation inputs. Vegetation in the western
United States is susceptible to water stress through the
summer, and model estimates of productivity and transpira-

tion depend on accurately representing energy demands on
soil moisture. We suggest that the sensitivity of carbon
sequestration to temperature estimates demonstrated by this
study has implications for climate change model predic-
tions of forests as carbon sinks.
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