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Instance Annotation for Multi-Instance Multi-Label Learning

FORREST BRIGGS, XIAOLI Z. FERN, RAVIV RAICH, and QI LOU, Oregon State University

Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to
be classified are bags of instances associated with multiple labels. For example, an image can be represented
as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on
predicting label sets for previously unseen bags. We instead consider the problem of predicting instance
labels while learning from data labeled only at the bag level. We propose a regularized rank-loss objective
designed for instance annotation, which can be instantiated with different aggregation models connecting
instance-level labels with bag-level label sets. The aggregation models that we consider can be factored
as a linear function of a “support instance” for each class, which is a single feature vector representing a
whole bag. Hence we name our proposed methods rank-loss Support Instance Machines (SIM). We propose
two optimization methods for the rank-loss objective, which is nonconvex. One is a heuristic method that
alternates between updating support instances, and solving a convex problem in which the support instances
are treated as constant. The other is to apply the constrained concave-convex procedure (CCCP), which can
also be interpreted as iteratively updating support instances and solving a convex problem. To solve the
convex problem, we employ the Pegasos framework of primal subgradient descent, and prove that it finds
an ε-suboptimal solution in runtime that is linear in the number of bags, instances, and 1

ε . Additionally, we
suggest a method of extending the linear learning algorithm to nonlinear classification, without increasing
the runtime asymptotically. Experiments on artificial and real-world datasets including images and audio
show that the proposed methods achieve higher accuracy than other loss functions used in prior work, e.g.,
Hamming loss, and recent work in ambiguous label classification.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval; I.5.2 [Pattern Recognition]: Design Methodology—Classifier design and evaluation

General Terms: Algorithms, Performance, Experimentation
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support vector machine, subgradient, bioacoustics
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1. INTRODUCTION

Many problems in supervised classification have a certain structure, where the ob-
jects of interest (e.g., images or text documents) can naturally be decomposed into a
collection of parts called a bag-of-instances representation. For example, in image clas-
sification, an image is typically a bag, and the pixels or segments in it are instances.
This structure motivates multiple-instance learning (MIL) [Dietterich et al. 1997]. The
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14:2 F. Briggs et al.

original formulation of MIL concerns problems where bags are associated with a single
binary label. Zhou and Zhang [2007] introduced multi-instance multi-label learning
(MIML), where bags are instead associated with a set of labels. For example, an image
might be associated with a list of the objects it contains.

MIML arises in situations where the cost of labeling individual instances becomes
prohibitive and consequently multiple instances are grouped and associated with a
set of labels. For example, it is much faster to label an image with a few words than
to individually label pixels. In MIML, the training dataset consists of a collection of
bags of instances, where each bag is associated with multiple labels. The standard
goal in MIML is to learn a classifier that predicts the label set for a previously unseen
bag. Numerous algorithms for MIML have been proposed and applied to image, text
[Li et al. 2009; Shen et al. 2009; Zha et al. 2008; Zhou and Zhang 2007; Zhou et al.
2012], and video [Xu et al. 2011] domains. Recently, Wang and Zhou [2012] analyzed
PAC-learnability in MIML.

Learning to predict instance labels from MIML training data is a useful problem
that has received little study [Zhou 2004]. For example, one might train a classifier
on a collection of images paired with lists of object names in each image, then make
predictions about the label for each region in an image. This problem is called the
instance annotation problem for MIML. The key issue in instance annotation is how to
learn an instance-level classifier from a MIML dataset, which presents only bag-level
labels.

A common strategy in designing MIML algorithms for bag-level prediction is to learn
an instance-level model by minimizing a loss function defined at the bag level. For ex-
ample, several previous bag-level MIML algorithms minimize bag-level Hamming loss,
which captures the disagreement between a ground-truth label set, and the predicted
label set. Practically speaking, these instance-level models could be directly used for
instance-level prediction. However, the loss functions (e.g., Hamming Loss) used by
such bag-level MIML algorithms are designed to optimize the prediction performance
at the bag level and can be inappropriate for the purpose of making instance-level
predictions.

For instance annotation, typically the instance-level classifier outputs a score for
each class, and the instance label is predicted as the highest scoring class. Therefore
the predicted label depends on the ranking of class scores. Hamming loss is not ap-
propriate in this context, despite its success at bag-level predictions, because it lacks
a mechanism to calibrate the scores between different classes. This observation mo-
tivates us to introduce a rank-loss objective for instance annotation, which directly
optimizes the ranking of classes.

In order to learn an instance-level classifier using a bag-level loss function, it is
necessary to define an aggregation model that connects instance-level predictions with
bag-level predictions. In this article, we examine two different aggregation models,
which is equivalent to defining a “support instance” for each bag. Therefore, we name
our methods Support Instance Machines (SIM).

In this article, we make the following contributions.

— We propose a regularized rank-loss objective for instance annotation that can be
instantiated with different aggregation models (Section 4.1).

— The rank-loss objective is nonconvex. To address this challenge, we offer two opti-
mization methods that are effective in practice. One is a heuristic that linearizes
the aggregation model, and the other casts the objective as a difference of convex
functions and monotonically decreases the objective using the constrained concave
convex procedure (CCCP) [Yuille and Rangarajan 2002].

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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Instance Annotation for Multi-Instance Multi-Label Learning 14:3

— In either optimization method, the core of the algorithm is to alternate between
updating support instances, and solving a convex problem using the Pegasos frame-
work for primal subgradient descent. We prove that the convex optimization has
linear runtime in the number of bags, instances, and 1

ε
to find an ε-suboptimal solu-

tion (Section 4.3.4).
— Experiments show that SIM with rank loss achieves higher accuracy than Hamming

loss or ambiguous loss (a comparable state of the art approach [Cour et al. 2009,
2011]). A novel softmax aggregation model generally achieves higher accuracy than
the max model, which has been used in prior multi-instance or MIML algorithms,
and CCCP improves accuracy over the heuristic with the same aggregation model
(Section 5.2.4).

— We suggest a method of extending our proposed classifiers from linear to nonlinear
using a fast approximate kernel trick [Rahimi and Recht 2007]. Experiments show
that this method often improves accuracy significantly, while still achieving linear
runtime in the number of bags and instances (Section 4.4).

— We introduce a real-world MIML dataset for instance annotation derived from over
90 minutes of bird song recordings collected in the field, containing multiple simul-
taneously vocalizing birds of different species. Several SIM algorithms achieve over
80% accuracy in predicting the species of bird responsible for each sound in the
recordings given the list of species present in the recording (Section 5.1.1).

2. PROBLEM STATEMENT

In this section we formalize the instance annotation problem and contrast it with sev-
eral related problems. Table I summarizes notation.

We are given a training set of n bags (X1, Y1), . . . , (Xn, Yn). Each Xi is a bag of ni
instances, i.e., Xi = {xi1, · · · , xini}, with xiq ∈ X , where X = R

d is a d-dimensional
feature space. Each bag Xi is associated with a label set Yi ⊆ Y where Y = {1, · · · , c}
and c is the total number of classes. We will assume that each instance xiq has a
hidden label yiq ∈ Y and that the bag label set is equal to the union of the instance
labels, i.e. Yi = ∪q=1,...,niyiq. The goal of instance annotation in MIML is to learn an
instance-level classifier fIA : X → Y that maps an element of the input space X to its
corresponding class label.

We focus on classifiers for instance annotation that use one instance-level model
fj(x) = wj · x for each class j, and predict a specific label via f (x) = arg maxj fj(x). The
goal is to learn the weights W = [ w1, . . . , wc] (note x ∈ R

d, wj ∈ R
d, and W ∈ R

cd).
The instance annotation problem is different from the traditional MIML learning

problem studied by Zhou and Zhang [2007] and many others, where the goal is to
learn a bag-level classifier FMIML : 2X → 2Y . Nonetheless, the design principles of
many traditional MIML algorithms can be used to learn instance-level classification
models, which is the approach we take in this article.

Instance annotation is closely related to the classic supervised classification prob-
lem, where the goal is to learn an instance classifier, but using training data that does
not have a bag structure and has each instance labeled individually. In contrast to
MIML, this classic setting is often referred to as single-instance single-label (SISL)
learning.

Ambiguous label classification (ALC) [Cour et al. 2011; Hüllermeier and Beringer
2006] is another related framework. In ALC, there are no bags; instead instances are
paired with a set of possible labels, only one of which is correct. An ALC dataset is
(x1, Y1), . . . , (xm, Ym), where xi ∈ X and Yi ⊆ Y. In ALC the goal is to learn a classi-
fier that predicts instance labels, hence an ALC classifier is a function fALC : X → Y.
A MIML instance annotation problem can be transformed into an ALC problem by

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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14:4 F. Briggs et al.

Table I. Summary of Notation

Notation Meaning
n number of bags
ni number of instances in bag i
m number of instances in all bags = ∑

ni
c number of classes
xiq instance q in bag i, a feature vector in R

d

Xi bag i, a set of instances
Yi label set for bag i, a subset of {1, . . . , c}
Ȳi complement of Yi
Yij +1 if j ∈ Yi and -1 otherwise
fj(x) instance-level model for class j
Fj(X) bag-level model for class j
wj instance-level weights for class j
W concatenation of w1, . . . , wc as a vector
W(t) weights at the start of iteration t of CCCP or the heuristic
W(t,τ) weights at iteration τ of subgradient descent, iteration t of CCCP or the heuristic
x̂ij(W) support instance for bag i, class j as a function of W
x̂(t)

ij support instance for bag i, class j at iteration t of CCCP or the heuristic

x̂(t,τ)

ij support instance for bag i, class j at iteration τ of subgradient descent, iteration t of CCCP

βi
1

n|Yi||Ȳi|∑
ijk

n∑
i=1

∑
j∈Yi

∑
k/∈Yi

creating one ALC instance for each instance in a MIML bag, paired with all of the la-
bels from the bag. Hence ALC algorithms can be applied to MIML instance annotation
problems. However, this reduction may discard useful bag-level structure in the MIML
data. The bag-level structure in MIML implies that each label in a bag label set must
be explained by at least one of the instances in that bag, whereas this constraint is lost
in the reduction to ALC.

3. BACKGROUND

Here we discuss some design patterns that contribute to our proposed methods.

3.1. Connecting Instance Labels with Bag Labels

One common approach in MIML algorithms is to make bag-level predictions based on
the outputs of instance-level models. The connection from instance labels to bag labels
is made via the assumption that the bag label set is the union of instance labels. This
assumption is used in several MIML algorithms including M3MIML [Zhang and Zhou
2008], and D-MimlSvm [Zhou et al. 2012]. The following formulation approximates
this assumption. Let fj(x) : X → R be a function that takes an instance and returns
a real-valued score for class j. The output at the bag-level for class j is defined to be
Fj(X) = maxx∈X fj(x). A bag-level classifier can be obtained by applying a threshold
(e.g., 0) to the bag-level scores, i.e. F(X) = {y ∈ Y : Fy(X) > 0}. Note that if an instance
x∗ within bag X is predicted to belong to class j, i.e., fj(x∗) > 0, the predicted label set
for bag X will necessarily contain j because Fj(X) = maxx∈X fj(x) ≥ fj(x∗) > 0. Hence,
connecting instance and bag-level scores via the max function is related to defining the
bag label set as the union of the instance labels.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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Instance Annotation for Multi-Instance Multi-Label Learning 14:5

3.2. Bag-Level Loss Functions

In contrast with SISL or instance annotation, which are evaluated based on instance-
level accuracy, existing MIML algorithms are typically evaluated based on their label
set predictions. Two common performance measures are Hamming loss, and rank loss
[Zhou et al. 2012]. Hamming Loss is the number of false positives and false negatives,
averaged over all classes and bags,

1
nc

n∑
i=1

c∑
j=1

I[ j ∈ F(Xi), j /∈ Yi] + I[ j /∈ F(Xi), j ∈ Yi] (1)

Rank loss captures the number of label pairs that are incorrectly ordered by the scores
of the MIML classifier. For a given bag, classes in its true label set should receive
higher scores than classes that are not. Let Ȳ denote the complement of Y. Rank loss
is defined as

1
n

n∑
i=1

1

|Yi||Ȳi|
∑

j∈Yi,k∈Ȳi

I[ Fj(Xi) ≤ Fk(Xi)] (2)

These objectives are difficult to optimize directly because they are not continuous.
Several prior algorithms for MIML can be viewed as optimizing a surrogate for Ham-
ming loss. For example, D-MimlSvm [Zhou et al. 2012] and M3MIML [Zhang and Zhou
2008] optimize variations of the following loss function (with different regularization
terms).

1
nc

n∑
i=1

c∑
j=1

max{0, 1 − YijFj(Xi)}, (3)

where Yij = +1 if j ∈ Yi and −1 if j /∈ Yi.
The hinged Hamming-loss objective (3) can be decomposed into a collection of in-

dependent MIL problems, one for each class. As such, it does not calibrate the scores
between classes, which could make predicting an instance label based on the highest
scoring class unreliable. To overcome this limitation, we consider rank loss instead.
Rank loss has been used as an objective for single-instance multi-label SVMs [Elisseeff
and Weston 2001]. However, we are not aware of any MIML algorithms that learn an
instance-level model by minimizing rank loss (rank loss has only been used as a per-
formance measure in MIML, not as an objective).

4. PROPOSED METHODS

Our proposed methods are based on the observation that the predicted instance label
depends on the ranking of scores for each class. Hence, we propose a rank-loss ob-
jective that optimizes this ranking. The rank-loss objective can be instantiated with
different aggregation models that connect instance labels with bag label sets. We con-
sider aggregation models that can be factored as a linear function of support instances,
which are feature vectors that summarize a bag. We propose two optimization meth-
ods for the rank-loss objective, which is nonconvex. One is a heuristic, and the other is
based on CCCP, however both exploit the support instance structure in the optimiza-
tion problem.

4.1. Rank-Loss Objective

Because we are learning from an MIML dataset, we can only measure loss at the bag
level. A bag-level loss function measures the agreement between a bag label set and

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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14:6 F. Briggs et al.

the bag-level scores Fj(Xi). We propose the following a bag-level loss function, which is
a regularized surrogate for rank loss (2).

hRL(W) = λ

2
||W||2 +

n∑
i=1

∑
j∈Yi

∑
k/∈Yi

1

n|Yi||Ȳi|
max{0, 1 − (

Fj(Xi) − Fk(Xi)
)}. (4)

To shorten our notation, let βi = 1

n|Yi||Ȳi|
and

∑
ijk

≡
n∑

i=1

∑
j∈Yi

∑
k/∈Yi

. Then we can rewrite

the objective as

hRL(W) = λ

2
||W||2 +

∑
ijk

βi max{0, 1 − (
Fj(Xi) − Fk(Xi)

)}. (5)

This objective is designed to encourage a correct ranking of the bag-level scores for
each class. For a bag Xi with corresponding label set Yi, if j ∈ Yi and k ∈ Ȳi, then the
loss is zero only if Fj(Xi) > Fk(Xi) + 1 (requiring a difference of at least 1 promotes a
large-margin solution). The objective is also designed to facilitate primal subgradient
descent and CCCP optimization methods, which we discuss in Section 4.3.

4.2. Aggregation Models and Support Instances

Objective (4) can be instantiated with various aggregation models Fj(·) that compute
bag-level scores from instance-level scores. For example, the max model, which has been
used in prior work [Zhang and Zhou 2008; Zhou et al. 2012], with a linear instance
classifier is

Fj(Xi) = max
xiq∈Xi

fj(xiq) = max
xiq∈Xi

wj · xiq. (6)

It is equivalent to write Fj(Xi) = wj · x̂ij(W), where

x̂ij(W) = arg max
xiq∈Xi

wj · xiq. (7)

We refer to x̂ij(W) as the support instance for bag Xi, class j, because the bag-level out-
put for Xi depends only on the support instance for each class (analogous to a support
vector).

The max model represents each bag with the most characteristic instance of each
class. This approach can ignore other instances that are also useful for learning, and
may not be appropriate when the assumption that the bag label set is equal to the
union of instance labels does not hold. We propose an alternative softmax model, which
can also be expressed in terms of support instances, but has the advantage of basing
the support instances on more than one instance per class for each bag. The softmax
model represents each bag as a weighted average of the instances, with weights specific
to each class:

Fj(Xi) =
∑

xiq∈Xi

α
j
iqfj(xiq) =

∑
xiq∈Xi

α
j
iqwj · xiq. (8)

The weights are defined according to a softmax rule,

α
j
iq = ewj·xiq∑

x′∈Xi
ewj·x′ . (9)

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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We can also write the softmax model as Fj(Xi) = wj · x̂ij(W), with the support instances
defined as

x̂ij(W) =
∑

xiq∈Xi

α
j
iqxiq. (10)

For either model, the rank-loss objective in terms of support instances is

ĥRL(W) = λ

2
||W||2 +

∑
ijk

βi max{0, 1 + wk · x̂ik(W) − wj · x̂ij(W)}. (11)

4.3. Optimization Methods for Rank-Loss Support Instance Machines

SIM could be instantiated with any aggregation model that fits the pattern of (11).
However, depending on the aggregation model, different optimization techniques are
required. Using the max and softmax models, x̂ij(W) is a function of wj, and the ob-
jective is nonconvex. We propose two optimization strategies to handle this nonconvex
objective: (1) if Fj(·) is a convex function of W, we can apply CCCP, or (2) as a heuristic,
treat x̂ij as constant, which makes the objective convex.

4.3.1. Constrained Convex Concave Procedure (CCCP). The bag-level surrogate loss func-
tions that arise in multi-instance learning are often nonconvex, but can sometimes
be manipulated into a difference-of-convex (DC) form, which allows the use of CCCP
[Sriperumbudur and Lanckriet 2009; Yuille and Rangarajan 2002]. The advantage of
CCCP is that it decreases the objective monotonically and converges to a local optimum
or a saddle point. CCCP can be applied to optimization problems of the form

min
x

f0(x) − g0(x) (12)

s.t. fi(x) − gi(x) ≤ 0, i = 1, . . . , k, (13)

where all fi and gi are convex. CCCP solves a sequence of convex upper bounds to
the original problem by constructing a linear upper bound of the concave part of the
objective and constraints at the current point. Let x(t) be the current point, then the
next point x(t+1) is obtained by solving the following convex problem.

min
x

f0(x) −
[
g0(x(t)) + �g0(x(t)) · (x − x(t))

]
(14)

s.t. fi(x) −
[
gi(x(t)) + �gi(x(t)) · (x − x(t))

]
≤ 0, i = 1, . . . , k. (15)

If gi is nondifferentiable, a subgradient u ∈ ∂gi(x(t)) can be used in place of the gradi-
ent �gi(x(t)). This is the case for our derivations using CCCP, as gi involves the max
function.

4.3.2. CCCP for Rank-Loss Support Instance Machines. When the aggregation model Fj(·)
is a convex function of W, CCCP can be applied to the rank-loss objective. The max
model is convex, but the softmax model is not. The objective (11) is not a DC function,
but we can still use CCCP with a simple transformation of the problem. The uncon-
strained problem (11) is equivalent to a constrained problem

min
W,ξ

λ

2
||W||2 +

∑
ijk

βiξijk (16)

s.t. Fj(Xi) − Fk(Xi) ≥ 1 − ξijk, for i = 1, . . . , n, j ∈ Yi, k /∈ Yi. (17)

ξijk ≥ 0 (18)

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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The constraint (17) is not convex, but when the aggregation model Fj(·) is convex, the
constraint is DC. As an example of applying the CCCP framework to a convex aggerga-
tion model, we will use the max model. Substituting in the max model and rearranging,
the constraint becomes

1 − ξijk + max
x∈Xi

wk · x
︸ ︷︷ ︸

fijk

− max
x∈Xi

wj · x
︸ ︷︷ ︸

gijk

≤ 0. (19)

We define the support instances at iteration t of CCCP as

x̂(t)
ij = x̂ij(W(t)), (20)

where W(t) are the weights at iteration t.
Following CCCP and constructing the linear upper bound for the concave part −gijk,

we get

1 − ξijk + max
x∈Xi

wk · x − wj · x̂(t)
ij ≤ 0. (21)

Hence CCCP solves the following sequence of convex problems

min
W,ξ

λ

2
||W||2 +

∑
ijk

βiξijk (22)

s.t. 1 − ξijk + max
x∈Xi

wk · x − wj · x̂(t)
ij ≤ 0, for i = 1, . . . , n, j ∈ Yi, k /∈ Yi. (23)

ξijk ≥ 0 (24)

This problem could be further simplified to a convex QP, but we instead solve the
equivalent unconstrained convex problem (because it is amenable to efficient primal
subgradient descent):

h(t)
RL,cccp(W) = λ

2
||W||2 +

∑
ijk

βi max{0, 1 + max
x∈Xi

wk · x − wj · x̂(t)
ij }. (25)

We discuss methods for solving (25) in Section 4.3.4. In summary, the trick we use to
efficiently solve the original nonconvex rank-loss SIM objective with the max model (or
potentially any convex model) is to convert it to an equivalent constrained problem,
construct the CCCP upper bound, then convert the bound back to an unconstrained
problem.

4.3.3. Heuristic for Nonconvex Aggregation Models. If Fj(Xi) is not a convex function of
W, then the constraint (17) does not naturally decompose into a DC function, and
CCCP cannot be applied. This is the situation with the softmax model. In this case,
we propose a heuristic of alternating between computing the support instances, and
solving a convex problem where the support instances are treated as constant. The
heuristic is similar to CCCP, except the convex objective solved in each step changes to

h(t)
RL,h(W) = λ

2
||W||2 +

∑
ijk

βi max{0, 1 + wk · x̂(t)
ik − wj · x̂(t)

ij }. (26)

In contrast with the CCCP algorithm, this heuristic is not proven to decrease objec-
tive (4) monotonically. The difference between the convex problems solved by CCCP
and the heuristic is whether the aggregation model applied to bags with negative la-
bels Fk(Xi) is linearized in terms of the support instance, or not. The heuristic can also
be applied when the aggregation model is convex.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.



�

�

�

�

�

�

�

�

Instance Annotation for Multi-Instance Multi-Label Learning 14:9

ALGORITHM 1: Projected Subgradient with Pegasos Learning Rate

Input: Initial point W(0) ∈ S, number of iterations K
for τ = 1, . . . , K do

Compute a subgradient V ∈ ∂h(W(τ−1))

W(τ ) ← P[ W(τ−1) − 1
λτ

V]

end
return Wbest = arg min

W(τ )

h(W(τ ))

4.3.4. Subgradient Descent. To solve the convex problem in each step of CCCP or the
heuristic [(25) or (26)], we use a subgradient descent method similar to Pegasos, an
algorithm for training linear two-class SVMs [Shalev-Shwartz et al. 2007]. The Pe-
gasos algorithm is based on a general framework for optimizing regularized convex
objectives [Shalev-Shwartz and Singer 2007]. This framework can be applied to con-
vex optimization problems in the form:

min
W∈S

h(W) where h(W) = λ

2
||W||2 + loss(W).

For such problems, Algorithm 1 is efficient. Let a convex set S be the feasible space;
P[ W] = arg min

W′∈S
||W − W′||2 is a projection back into the feasible space. Note that

when S is a ball of radius r, i.e. S = {W : ||W|| ≤ r}, the projection simplifies to
P[ W] = min{1, r

||W|| }W (for reasons that become evident in the runtime analysis, we
will introduce such a constraint into our optimization problems).

Consider iteration t of CCCP or the heuristic, where the convex objective is
h(t)

RL,cccp(W) (25) or h(t)
RL,h(W) (26) respectively. We will show how to apply subgradi-

ent descent to these objectives. We will start by summarizing relevant notation and
stating a subgradient of each objective.

First consider hRL,h as an example. Recall that the decision variable W is the con-
catenation of components wq for each class q = 1, . . . , c. We denote the component of
the subgradient of h(t)

RL,h corresponding to wq as v(t,τ),q
RL,h , where the superscript t indi-

cates the outer iteration of the heuristic, τ indicates the inner iteration of subgradient
descent, and q indicates the class. The full subgradient is V(t,τ)

RL,h = [ v(t,τ),1
RL,h , . . . , v(t,τ),c

RL,h ].

The components of the subgradient of h(t)
RL,cccp are defined similarly, e.g., v(t,τ),q

RL,cccp.

For the heuristic, it is sufficient to compute the support instances x̂(t)
ij once at the be-

ginning of each outer iteration t; then at every inner iteration τ of subgradient descent,
the subgradients depend only on x̂(t)

ij . The subgradient for the heuristic is

v(t,τ),q
RL,h = λw(t,τ)

q +
∑
ijk

βiI[ 1 + w(t,τ)

k · x̂(t)
ik − w(t,τ)

j · x̂(t)
ij > 0]

⎧⎪⎨
⎪⎩

x̂(t)
iq if q = k

−x̂(t)
iq if q = j

0 otherwise

. (27)

For CCCP, the subgradients depend on both x̂(t)
ij , and a different set of support in-

stances that change with each inner iteration τ of sub-gradient descent. We introduce
the notation

x̂(t,τ)

ik = x̂ik(W(t,τ)) (28)
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14:10 F. Briggs et al.

This notation indicates the support instance computed from the weights at iteration τ

of subgradient descent within iteration t of CCCP, in contrast with x̂(t)
ik , which indicates

the support instance computed from the weights at the start of iteration t of CCCP. The
subgradient for CCCP at the inner iteration τ is

v(t,τ),q
RL,cccp = λw(t,τ)

q +
∑
ijk

βiI[ 1 + w(t,τ)

k · x̂(t,τ)

ik − w(t,τ)

j · x̂(t)
ij > 0]

⎧⎪⎨
⎪⎩

x̂(t,τ)

iq if q = k

−x̂(t)
iq if q = j

0 otherwise

. (29)

We have not discussed how to compute the subgradients efficiently, or explained
why a ball-constraint is introduced. These subjects fit naturally into a discussion of
the runtime of subgradient descent.

Runtime of Subgradient Descent. Let W∗ be the solution, i.e. W∗ = arg min
W∈S

h(W).

Shalev-Shwartz and Singer [2007] showed the following convergence rate for Algo-
rithm 1,

min
τ

h(W(τ )) ≤ h(W∗) + O(
log K

K
L
λ

),

where L is a constant bounding the magnitude of the subgradient, i.e. ∀τ , ||V||2 ≤ L.
For practical purposes, the number of iterations of sub-gradient descent K is small
enough to treat log K as constant. Hence, to obtain a solution that is within ε of opti-
mal, it suffices to run K ≈ O( L

λε
) iterations of the preceding algorithm [Shalev-Shwartz

and Singer 2007].
To prove a rate of convergence for subgradient descent, we must establish L, the

bound on the subgradient square magnitude. We begin with the following Lemma.

LEMMA 4.1. Consider any objective of the form h(W) = λ
2 ||W||2 + loss(W), such that

loss(W) ≥ 0 and loss(0) = 1. Let the solution be W∗ = arg min
W

h(W). Then ||W∗||2 ≤ 2
λ
.

PROOF. The solution must be at least as good as W = 0, therefore h(W∗) ≤ 1.
Furthermore, loss(W∗) ≤ 1 (assuming the contrary implies h(W∗) > 1, which is a
contradiction). Because the loss is nonnegative, 0 ≤ loss(W∗) ≤ 1. We will use this
property to finish the proof:

h(W∗) = λ

2
||W∗||2 + loss(W∗) ≤ 1

λ

2
||W∗||2 ≤ 1 − loss(W∗) ≤ 1

||W∗||2 ≤ 2
λ

.

Now we will briefly derive a bound L = c
(√

2λ + R
)2

. The h(t)
RL,cccp(W) and h(t)

RL,h(W)

objectives satisfy the criteria of Lemma 4.1, so we can replace unconstrained minimiza-
tion with minimization restricted to the set S = {W : ||W||2 ≤ 2

λ
} without changing the

solution. It is also necessary to bound the magnitude of an instance feature vector,

||x|| ≤ R. Note that W ∈ S implies ||λwq|| ≤ λ

√
2
λ

= √
2λ. By the triangle inequality,

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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Instance Annotation for Multi-Instance Multi-Label Learning 14:11

ALGORITHM 2: Subgradient V(t,τ)

RL,h

Input: x̂(t)
ij , W(t,τ), {(Xi, Yi)}ni=1

for q = 1, . . . , c : do
vq ← λw(t,τ)

q
end
for i = 1, . . . , n; j ∈ Yi, k ∈ Ȳi do

if 1 + w(t,τ)

k · x̂(t)
ik − w(t,τ)

j · x̂(t)
ij > 0 then

vj ← vj − βix̂
(t)
ij

vk ← vk + βix̂
(t)
ik

end
end

return V(t,τ)

RL,h = [ v1, . . . , vc]

ALGORITHM 3: Subgradient V(t,τ)

RL,cccp

Input: x̂(t)
ij , x̂(t,τ)

ij , W(t,τ), {(Xi, Yi)}ni=1
for q = 1, . . . , c : do

vq ← λw(t,τ)
q

end
for i = 1, . . . , n; j ∈ Yi, k ∈ Ȳi do

if 1 + w(t,τ)

k · x̂(t,τ)

ik − w(t,τ)

j · x̂(t)
ij > 0 then

vj ← vj − βix̂
(t)
ij

vk ← vk + βix̂
(t,τ)

ik
end

end

return V(t,τ)

RL,cccp = [ v1, . . . , vc]

||v(t,τ),q
RL,cccp|| ≤ √

2λ + R. Summing over classes, ||V(t,τ)

RL,cccp||2 = ∑c
q=1 ||v(t,τ),q

RL,cccp||2 ≤
c
(√

2λ + R
)2

.

With a more elaborate derivation, we obtain a tighter bound of L′ =
(√

2λ + 2R
)2

(see Appendix 1), which gives a shorter runtime. The bound L′ is applicable for both
the heuristic and CCCP.

To compute V(t,τ)

RL,h or V(t,τ)

RL,cccp, one could compute each component according to Equa-
tion (27) or (29), but this will take O(nc3) time. Algorithms (2) and (3) compute the
subgradients in O(nc2) time (assuming the support instances have already been cal-
culated). Note that updating the support instances takes O(m) time, where m is the
number of instances in all bags. For the heuristic method, computing the support in-
stances is done once at the beginning of each outer iteration, hence it is not part of the
runtime for a single iteration of subgradient descent. In contrast, the CCCP method
must recompute the support instances in each iteration of subgradient descent, so the
runtime of one iteration of subgradient descent is O(m + nc2). Running T = O( L′

λε
)

iterations of subgradient descent gives a runtime of O(m + nc2R2

ε
√

λ
) time to find an ε-

suboptimal solution for the heuristic method, or O(
(m+nc2)R2

ε
√

λ
) for the CCCP method.

4.3.5. Summary of Differences Between CCCP and the Heuristic. Algorithms (4) and (5) list
the heuristic and CCCP optimization methods for the rank-loss SIM objective. We refer
to these algorithms as SIM-Heuristic and SIM-CCCP. A major difference between SIM-
CCCP and SIM-Heuristic is that in SIM-CCCP, the support instances must be recom-
puted in each iteration of subgradient descent, and the subgradient depends on these
different support instances. The heuristic also runs a constant number of iterations
of subgradient descent, whereas the CCCP version runs enough to ensure monotonic
decrease of the objective (see Appendix 2 for further discussion of monotonicity). The
heuristic can be applied to either the max or softmax model, and the CCCP algorithm
can only be applied to the max model because softmax is nonconvex.

Because the general rank-loss objective is nonconvex, the starting weights may af-
fect the optimum that is found by SIM-CCCP or SIM-Heuristic. We discuss starting
weight construction in Appendix 2.
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14:12 F. Briggs et al.

ALGORITHM 4: SIM-Heuristic with rank-loss and max or softmax model
Input: T, K, λ, MIML dataset {(Xi, Yi)}ni=1
for t = 1, . . . , T do

if t = 1 then
W(t) = 0
∀(i, j) : x̂(t)

ij = 1
ni

∑
xiq∈Xi

xiq
else

∀(i, j) : compute x̂(t)
ij using the max or softmax model

end
W(t,1) = W(t)

for τ = 1, . . . , K do
Compute V = V(t,τ)

RL,h with Algorithm 2

W = W(t,τ) − 1
λτ

V

W(t,τ+1) = min{1,

√
2
λ

/||W||}W
end
τ∗ = arg min

τ
h(t)

RL,h(W(t,τ))

Wt+1 = W(t,τ∗)
end
return W(T+1)

4.4. Nonlinear Classification via Kernels

So far we have only considered linear classifiers. There are several ways to extend
our proposed methods to nonlinear classification via kernels. One way is to use the
standard dual kernel trick. Shalev-Shwartz et al. [2011] suggest a different trick for
Pegasos that could be applied to our proposed methods as well. The key idea in ker-
nelizing Pegasos is to observe that all changes to the weights in the primal algorithm
are either adding a linear multiple of instance features or multiplying by a scalar.
We could redefine fj(x) = ∑m

i=1 αijK(xi, x) and proceed with the primal algorithm, but
make equivalent changes to α rather than W. Both of these methods have the disad-
vantage of increasing the asymptotic complexity to solve the optimization problem.

We instead use the random Fourier feature method of Rahimi and Recht [2007]
(Algorithm (6)), which approximates a kernel while preserving linear runtime. The
main idea in this method is to transform the feature vectors first, then apply exactly
the same linear training algorithm. The feature vector x is transformed to a feature
z(x) such that with high probability z(x) · z(y) ≈ k(x, y), where k(x, y) = k(x − y) is
a shift invariant kernel. This method can be applied with the radial basis function
(RBF) kernel k(x, y) = exp{−γ ||x − y||2}. To use this algorithm with the RBF kernel k,
we need to compute its Fourier transform p(ω) and draw D independently, identically,
distributed samples ω1, . . . , ωD ∈ R

d from p(ω), where D is a parameter that can be
adjusted to control approximation accuracy. It can be shown that for the RBF kernel
with parameter γ , this is equivalent to sampling each of the d components of ωi from
a normal distribution with 0 mean and variance 2γ .

5. EXPERIMENTS

Our experiments compare different loss functions, aggregation models, and optimiza-
tion methods. We also investigate the effectiveness of random Fourier kernel features
for nonlinear classification.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.
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ALGORITHM 5: SIM-CCCP with rank loss and max model
Input: T, K, Kmax, λ, MIML dataset {(Xi, Yi)}ni=1
for t = 1, . . . , T do

if t = 1 then
W(t) = 0
∀(i, j) : x̂(t)

ij = 1
ni

∑
xiq∈Xi

xiq
else

∀(i, j) : x̂(t)
ij = arg max

xiq∈Xi

wj · xiq

end
W(t,1) = W(t)

improved = False
τtotal = 0
while (¬improved) ∧ τtotal < Kmax do

for τ = 1, . . . , K do
τtotal = τtotal + 1
∀(i, j) : x̂(t,τ)

ij = arg max
xiq∈Xi

wj · xiq

Compute V = V(t,τ)

RL,cccp with Algorithm 3

W = W(t,τ) − 1
λτtotal

V

W(t,τ+1) = min{1,

√
2
λ

/||W||}W
end
τ∗ = arg min

τ
h(t)

RL,cccp(W(t,τ))

Wt+1 = W(t,τ∗)
if h(t)

RL,cccp(W(t+1)) < h(t)
RL,cccp(W(t)) then

improved = True
end

end
end
return W(T+1)

ALGORITHM 6: Random Fourier Kernel Features [Rahimi and Recht 2007]
Input: Positive definite shift-invariant kernel k(x, y) = k(x − y), feature dimension d,

parameter D
Compute the Fourier transform p of k: p(ω) = 1

2π

∫
e−jω·�k(�)d�

Draw D i.i.d. samples ω1, . . . , ωD ∈ R
d from p(ω)

Let z(x) =
√

1
D [ cos(ω1 · x), sin(ω1 · x), . . . , cos(ωD · x), sin(ωD · x)]

5.1. Experimental Setup

This section discusses the datasets, baseline methods, parameter optimization, and
transductive or inductive modes used in our experiments.

5.1.1. Datasets. Table II summarizes the properties of each dataset used in our exper-
iments. All of these datasets are available online.1

1http://web.engr.oregonstate.edu/∼briggsf/kdd2012datasets
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Table II. MIML Datasets

Dataset Classes Dimensions Bags Instances
HJA Birdsong 13 38 548 10,232
MSRC v2 23 48 591 1,758
Letter-Carroll 26 16 166 717
Letter-Frost 26 16 144 565
Pascal VOC 2012 20 48 1,053 4,143

HJA Bird Song. Our collaborators have collected audio recordings of bird song at the
H. J. Andrews (HJA) Long Term Ecological Research Site, using unattended omnidi-
rectional microphones. Our goal is to automatically identify the species of bird respon-
sible for each utterance in these recordings, thereby generating an automatic acoustic
survey of bird populations. This problem is a natural fit for the MIML instance an-
notation framework. We treat a 10-second audio recording as a bag with labels corre-
sponding to the set of species present in the recording. The instances are segments in a
spectrogram. A spectrogram is a graph of the spectrum of a signal as a function of time
(computed by applying the Fast Fourier Transform to successive overlapping frames
of the audio signal). Figure 1 shows an example spectrogram for a 10-second audio
recording containing several species of birds.

Starting with a 10-second audio recording, we first convert it to a spectrogram. A se-
ries of preprocessing steps are then applied to the spectrogram to reduce noise, and to
identify bird song segments in the audio. Each segment is considered an instance and
described by a 38-dimensional feature vector characterizing the shape of the segment,
its time and frequency profile statistics, and a histogram of gradients.

This dataset contains 548 10-second recordings (bags), and a total of 10,232 seg-
ments (instances), of which 4998 are labeled, and the rest are unlabeled. The available
instance labels were provided by a human expert. The spectrograms were originally
labeled by manually drawing bounding boxes (not shown) around regions of the spec-
trogram corresponding to bird sound, and giving a single species label to each box. The
bag-level label sets were formed by taking the union of these bounding box labels. The
instances (segments) are produced by an automatic segmentation/detection algorithm,
which does not necessarily match the manually drawn boxes. The labels for instances
are obtained by matching each segment with the bounding box that overlaps with it
most. If a segment does not overlap with any bounding box, it is designated as unla-
beled. Further details on the collection of audio and feature extraction for this dataset
are available in Briggs et al. [2012b].

This dataset presents some deviations from the standard MIML assumption that a
bag’s label set is the union of its instance labels. First, there are unlabeled instances
that may not be accounted for in the bag label set. Second, sometimes when mul-
tiple birds make sounds that directly overlap in the spectrogram, the segmentation
algorithm may fail to separate those sounds, and create a segment that is given a sin-
gle label although it actually represents two species. In rare cases, this can lead to
labels in a bag label set that do not correspond with any instance (according to the
instance-level labels).

One of the goals of our experiments is to evaluate how various instance annotation
algorithms handle the issue of unlabeled instances. Toward this goal, we consider two
variants of this dataset: “filtered” and “unfiltered”. For the filtered variant, all of the
unlabeled instances are removed, and in the unfiltered variant they are left in during
the training process. In both variants, the accuracy is measured only on the labeled
instances.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.



�

�

�

�

�

�

�

�

Instance Annotation for Multi-Instance Multi-Label Learning 14:15

Fig. 1. An example spectrogram from the HJA Birdsong dataset. This spectrogram corresponds to one bag.
Each outlined region is an instance.

Fig. 2. An image from MSRC v2 and the corresponding pixel-level labeling. The classes in this image are
“sky”, “trees”, “grass”, “body”, and “car”. The black regions are ‘void’; we discard void regions.

Image Dataset: MSRC v2. A subset of the Microsoft Research Cambridge (MSRC)
image dataset2 [Winn et al. 2005] named “v2” contains 591 images and 23 classes. The
MSRC v2 dataset is useful for the instance annotation problem, because pixel-level
labels are included (Figure 2). Several authors used MSRC v2 in MIML experiments
[Vijayanarasimhan and Grauman 2009; Yakhnenko 2009; Zha et al. 2008].

We construct a MIML dataset from MSRC v2 as follows. We treat each image as a
bag. The bag label set is the list of all classes present in the ground-truth segmentation
(the union of the instance labels). The instances correspond to each contiguous region
in the ground-truth segmentation (to simplify the experiment, we use the ground-truth
segmentation rather than automatic segmentation). Each instance is described by a
16-dimensional histogram of gradients [Dalal and Triggs 2005], and a 32-dimensional
histogram of colors.

2http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
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Fig. 3. An image from PASCAL VOC 2012, the corresponding segmentation into instances, and the instance
labels.

PASCAL Visual Object Challenge 2012. The PASCAL Visual Object Challenge (VOC)
2012 Segmentation dataset [Everingham et al. 2010] consists of images with per-pixel
ground-truth labeling into 20 classes such as “car”, “boat”, “bird”, “person”, “cow”, and
“chair”. Each image has a corresponding segmentation into objects, and a class-label
for each region (Figure 3). We construct an MIML dataset by treating each image as a
bag, and each object as an instance. In the ground-truth segmentation, each object is
denoted with a different color; in some cases multiple disconnected regions are grouped
as the same object. We construct the same histogram of gradients and histogram of
color features as used in the MSRCV v2 dataset to describe the collection of pixels in
each object.

Many images in VOC only contain one type of object, but multiple instances. There-
fore all of the instances in such images are labeled unambiguously. To make the prob-
lem more challenging, we discard all images with a single label. After discarding
single-label images, we are left with 1053 images.

Synthetic MIML Datasets. Limited availability of MIML datasets with instance la-
bels has been a barrier to studying instance annotation (because instance labels
are needed to evaluate accuracy). Using the Letter Recognition dataset [Frey and
Slate 1991] from the UCI Machine Learning repository, we construct two synthetic
MIML datasets. The Letter Recognition dataset consists of 20,000 instances with
16-dimensional features, and 26 classes. Note that randomly forming the bags will not
be realistic because real-world MIML problems often have correlations between labels.
Instead, we generate datasets derived from the words in two poems, “Jabberwocky”
[Carroll 1896], and “The Road Not Taken” [Frost 1916]. We call these datasets Letter-
Carroll and Letter-Frost. For each word in these poems, we create a bag, with in-
stances corresponding to the letters in the word. For each instance, we sample
(without replacement), an example from the Letter Recognition dataset with the cor-
responding letter. The bag-level labels are the union of the instance labels. For exam-
ple, the word “diverged” is transformed into a bag with 8 instances, and the label set
{d, i, v, e, r, g}.

5.1.2. Transductive vs. Inductive. We consider instance annotation in two different
modes: transductive and inductive. In the transductive mode, the goal is to predict
the instance labels for bags with known label sets. In this mode, the instance-level
classifiers can only predict labels that appear in the bag label set. Formally, the in-
stance classifier in the transductive mode is f (xiq) = arg maxj∈Yi

fj(xiq). In the induc-
tive mode, the goal is to predict instance labels in previously unseen bags (with un-
known label sets). There is no restriction on which label an instance may be given in
this case.

For both modes, we compute classifier accuracy as the fraction of instances correctly
classified. For the inductive mode, we run 10-fold cross-validation and report average
accuracy ± standard deviation in accuracy between folds. We did not use 10-fold cross
validation for the VOC dataset, but instead used a partition of the dataset into “train”
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and “val” subsets, which was included with the dataset. For the transductive mode,
we disregard this partition and use all 1053 images, and for the inductive mode we
learn from the “train” subset and evaluate accuracy on the “val” subset. That is why
the VOC columns in Tables III(c) and (d) do list a standard deviation.

5.1.3. Baseline Methods. To directly compare our proposed rank loss objective with
Hamming loss, we modify the SIM-Heuristic algorithm to use Hamming loss instead
of rank loss. We also consider another baseline M3MIML, which is designed to make
predictions at the bag level but learns an instance-level model using Hamming loss.
We also compare rank loss to the ambiguous loss function used by Cour et al. [2011].
Finally, as a reference we evaluate a SISL SVM classifier, which has the unfair ad-
vantage of learning directly from instance labels. In the following we summarize these
baseline methods.

Hamming-Loss SIM. To compare Hamming loss to rank loss, we use the following
Hamming-loss objective, with Fj(·) instantiated with either the max or softmax aggre-
gation models.

hHam(W) = λ

2
||W||2 + 1

nc

n∑
i=1

c∑
j=1

max{0, 1 − YijFj(Xi)}, (30)

or in terms of support instances,

ĥHam(W) = λ

2
||W||2 + 1

nc

n∑
i=1

c∑
j=1

max{0, 1 − Yijwj · x̂ij}. (31)

To optimize this objective, we use a variation of the SIM-Heuristic algorithm with the
subgradient3

v(t,τ),q
Ham = λw(t,τ)

q − 1
nc

n∑
i=1

I[ Yiqw(t,τ)
q · x̂(t)

iq < 1] Yiqx̂(t)
iq . (32)

M3MIML Algorithm. M3MIML is a MIML algorithm designed to make predictions
at the bag level, however, it learns an instance-level model, which can be used for
instance annotation. Similar to our approach, M3MIML learns one linear model per
class and uses the max bag-level model for Fj. The optimization problem for M3MIML
is formulated as minimizing ||W||2, where W = [ w1, . . . , wc], subject to the constraints
of correct output at the bag level,

YijFj(Xi) ≥ 1 for i = 1, . . . , n, j = 1, . . . , c. (33)

Note that the equivalent unconstrained objective is regularized Hamming-loss. If Yij =
−1, the constraint is convex, and is converted to a set of linear constraints

− max
x∈Xi

wj · x ≥ 1 (34)

∀x ∈ Xi : −wj · x ≥ 1. (35)

3Note that (30) satisfies the conditions for Lemma 4.1 and a bound on the magnitude of the subgradient of

L = c
2

(√
2λ + R

c

)2
suffices. The proof of this bound is similar to the short derivation in Section 4.3.4.
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If Yij = +1, the constraint is nonconvex, and M3MIML’s formulation replaces it with a
linear upper bound:

max
x∈Xi

wj · x ≥ 1
ni

∑
x∈Xi

wj · x ≥ 1. (36)

After several more steps (e.g., adding slack variables and switching to the dual),
M3MIML is formulated as a QP with linear constraints. Unlike the CCCP approach,
only a single QP is solved rather than a sequence.

Ambiguous Label Classification (ALC). Cour et al. [2009] proposed an SVM formu-
lation for the ALC problem. We refer to their algorithm as CLPL because it is imple-
mented in the Convex Learning from Partial Labels Toolbox [Cour et al. 2011]. We
compare our proposed method to CLPL because they both learn one linear model per
class fj(x) = wj · x and predict the instance label as arg maxj fj(x), and both use an
L2 regularized loss function. The primary difference in Cour’s ALC method is that the
loss function is designed for use with ALC data (instead of the bag-level loss functions
we use for MIML data). The ALC loss function is a convex upper bound to the 0/1 loss
with respect to the true (unknown) instance labels,

L(f , x, Y) = max{0, 1 − 1
|Y|

∑
j∈Y

fj(x)}2 +
∑
j/∈Y

max{0, 1 + fj(x)}2.

Minimizing this loss function can be accomplished by a reduction to a SISL SVM
problem with squared hinge-loss, and solved using an off-the-shelf linear SVM. In our
experiments, we use the L2 regularized square-loss dual solver in LIBLINEAR [Fan
et al. 2008] to implement CLPL.

Single Instance Single Label SVM. We also run a standard SISL SVM for the in-
ductive mode, whose performance can be interpreted as an empirical upper bound for
inductive instance annotation because it is trained using unambiguously labeled in-
stances. For this experiment, we use LIBSVM [Chang and Lin 2001] with a linear
kernel. Note that LIBSVM uses one linear model for each pair of classes rather than
one for each class.

5.1.4. Parameter Optimization. The SIM algorithms have a regularization parameter λ.
Similarly, CLPL and M3MIML have a regularization parameter C. We repeat all ex-
periments for each value of λ ∈ {10−6, . . . , 10−9}, C ∈ {101, . . . , 104} for CLPL, and
C ∈ {10−2, . . . , 106} for M3MIML, then report the maximum accuracy achieved by each
method over all parameters (we refer to this process as post hoc parameter selection).
We expect these ranges of parameters to be sufficient based on preliminary experi-
ments in which we used larger ranges [Briggs et al. 2012a].

Where the random Fourier kernel features are used, the parameter D = 50 (as in
Rahimi and Recht [2007]), and we jointly optimize the regularization parameter and
the RBF kernel parameter over a grid with the aforementioned values of λ or C, and
γ ∈ {103, 104, 105}. This range of values for γ was selected by manual tuning.

For the SISL SVM, the regularization parameter C is optimized by nested 10-fold
cross-validation (within each fold of 10-fold cross validation, we run 10-fold cross
validation in the training set to select the parameter). We search over the range
C ∈ {101, . . . , 107}. With values of C larger than 107, LIBSVM becomes prohibitively
slow.

The parameters T, K, and Kmax control the tradeoff between convergence and
runtime. These parameters are manually selected by empirically observing the typical
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convergence behaviors of different algorithms. In particular, for the SIM heuristic
algorithms, we use T = 10 outer iterations, with K = 100 iterations of subgradient
descent. For the CCCP algorithm, we use T = 10, K = 100, and Kmax = 1000.
Figure 4 shows that most improvement in the rank loss objective occurs within T = 10
outer iterations. We presented empirical results in Briggs et al. [2012a] showing that
K = 100 is a reasonable number of iterations of subgradient descent. Kmax = 1000 is
chosen rather conservatively, based on empirical observation to ensure monotonicity
in CCCP. Note that it is possible further increasing T, K and Kmax values may lead
to slightly better performance due to better convergence, however, we consider these
values sufficient for problems with a similar number of classes.

5.2. Results

Accuracy results are listed in Table III. In particular, Tables III(a) and (b) present
the accuracy results for the transductive mode (with no kernel, and the RBF kernel
respectively). Tables III(c) and (d) present the results for the inductive mode.

Following the recommendations of Demšar [2006] for statistical comparison of multi-
ple classifiers on multiple datasets, we summarize comparisons between two methods
using win-tie-loss counts (and do not discard some wins or losses based on a pairwise
significance test). Counts are aggregated over all datasets including Birdsong* but not
including the unfiltered variant.

5.2.1. Comparison of Loss Functions. We first compare rank loss vs. Hamming loss ver-
sions of SIM-Heuristic. This is a direct comparison between the two loss functions be-
cause all other aspects are kept the same, i.e. the aggregation model and optimization
method. Considering five datasets (all but the unfiltered Birdsong dataset, to avoid
the compounding factor of noise instances), two different aggregation models (max and
softmax), and two different settings (transductive and inductive), there are a total of 20
direct comparisons between the two loss functions. The win-tie-loss count for rank-loss
vs Hamming loss is 20-0-0, a decisive win for rank loss.

We next compare rank-loss SIM-Heuristic and SIM-CCCP with M3MIML. Since
M3MIML uses the max aggregation model, we compare it with the SIM-heuristic
with max, resulting in 10 total comparisons, and a win-tie-loss count of 9-0-1 in fa-
vor of SIM-Heuristic. For SIM-CCCP vs M3MIML, the win-tie-loss count is also 9-0-1.
Finally, comparing SIM-Heuristic with rank loss and max or softmax to CLPL
(ambiguous loss), the win-tie-loss count is 18-0-2. Overall, these results suggest that
rank loss consistently outperforms Hamming or ambiguous loss.

5.2.2. Comparison of Aggregation Models. Next we compare the max and softmax aggre-
gation models. Focusing on rank loss, we count wins, ties, and losses using the SIM-
Heuristic algorithm across five datasets, in transductive and inductive modes, with or
without a kernel, resulting in a total of 20 comparisons. The overall win-tie-loss count
for softmax vs max is 13-1-6 in favor of softmax. Interestingly, if we focus on only linear
models (no kernel features), the win-tie-loss count is 8-1-1, suggesting a dominant win
for softmax. In contrast, when using kernel features, the count is 5-0-5, indicating a
tie between the two aggregation models. We suggest that softmax achieves higher ac-
curacy than max when using linear models because softmax is less sensitive to outliers
and noise. We speculate that the difference between max and softmax is less when a
kernel is used because outliers and noise have a local effect on the decision boundaries
of the classifier, rather than skewing the boundaries globally as with a linear classifier.

5.2.3. The Effect of Unlabeled Instances. Recall that the Birdsong dataset has a filtered
and unfiltered variant (Birdsong* is the filtered variant). The unfiltered variant con-
tains instances that were left unlabeled and are not necessarily accounted for in the
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Table III. Instance Annotation Accuracy Results

(a) Transductive accuracy, no kernel. * – filtered variant

Algorithm Loss Model Carroll Frost Birdsong* Birdsong MSRC v2 VOC
SIM-Heuristic Rank max .719 .780 .815 .801 .699 .633
SIM-CCCP Rank max .744 .805 .816 .803 .720 .634
SIM-Heuristic Rank softmax .721 .814 .815 .810 .718 .630
SIM-Heuristic Hamming max .415 .495 .707 .599 .581 .541
SIM-Heuristic Hamming softmax .500 .548 .781 .603 .603 .557
CLPL Ambiguous – .672 .688 .742 .678 .678 .598
M3MIML Hamming max .454 .532 .651 – .547 .533

(b) Transductive accuracy, random Fourier kernel features

SIM-Heuristic Rank max .817 .792 .822 – .756 .642
SIM-CCCP Rank max .807 .780 .829 – .798 .623
SIM-Heuristic Rank softmax .794 .819 .833 – .766 .634

(c) Inductive accuracy ± standard deviation over 10-fold cross validation, no kernel

SIM-Heuristic Rank max .531 ± .054 .562 ± .057 .602 ± .033 .522 ± .032 .442 ± .044 .354
SIM-CCCP Rank max .551 ± .038 .555 ± .065 .607 ± .038 .530 ± .021 .473 ± .029 .350
SIM-Heuristic Rank softmax .540 ± .049 .573 ± .052 .618 ± .041 .556 ± .062 .460 ± .042 .357
SIM-Heuristic Hamming max .114 ± .030 .141 ± .045 .239 ± .051 .133 ± .062 .152 ± .049 .143
SIM-Heuristic Hamming softmax .150 ± .049 .166 ± .062 .342 ± .044 .197 ± .052 .223 ± .034 .215
CLPL Ambiguous – .464 ± .058 .506 ± .063 .620 ± .038 .535 ± .033 .431 ± .036 .345
M3MIML Hamming max .288 ± .041 .313 ± .041 .433 ± .073 – .317 ± .055 .396
SISL SVM Hinge – .772 ± .049 .753 ± .038 .772 ± .032 – .638 ± .045 .440

(d) Inductive accuracy ± standard deviation over 10-fold cross validation, random Fourier kernel features

SIM-Heuristic Rank max .565 ± .060 .590 ± .051 .645 ± .039 – .499 ± .044 .339
SIM-CCCP Rank max .618 ± .042 .576 ± .065 .630 ± .040 – .519 ± .044 .343
SIM-Heuristic Rank softmax .596 ± .041 .587 ± .066 .642 ± .039 – .506 ± .038 .337

bag-level label sets. Note surprisingly, all algorithms suffer some degradation in accu-
racy in the presence of these unlabeled instances. There are a few interesting points
to note. First, the performance degradation for rank loss is often substantially smaller
relative to the other loss functions used in the comparison, including both Hamming
loss and CLPL. This suggests that rank-loss is more noise robust than other loss func-
tions. We also note that the accuracy of the max model decreases by more than the
accuracy of the softmax model; max is known to be sensitive to outliers and noise. In
contrast the softmax model is more robust in the presence of noise instances.

5.2.4. Comparison of CCCP and Heuristic Optimization. Because SIM-CCCP is not applica-
ble to the softmax model, we focus on the max model in a comparison of SIM-Heuristic
and SIM-CCCP. One point of interest is the convergence of these two algorithms on
the nonconvex rank-loss objective. Figure 4 shows the objective hRL vs the number of
outer iterations for SIM-Heuristic and SIM-CCCP (recall one outer iteration consists
of updating support instances, and solving a convex problem). Observe that CCCP
monotonically decreases the objective, while the heuristic occasionally increases the
objective [e.g., Figure 4(e)]. CCCP generally achieves lower (better) objective values
than the heuristic.

Comparing the accuracy of the two methods over all results in the transductive and
inductive modes, with or without a kernel, the count for SIM-CCCP vs SIM-Heuristic
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Fig. 4. The objective hRL vs number of iterations of SIM-CCCP and SIM-Heuristic. SIM-CCCP is the dotted
line. Transductive mode, max model, λ = 10−7.

is 13-0-7, slightly in favor of CCCP. These results suggest that the lower-objective
solutions obtained by CCCP often translate to improved accuracy.

5.2.5. Random Fourier Kernel Features. We now examine accuracy improvements
achieved by using random Fourier kernel features [Rahimi and Recht 2007]. Re-
sults using this method are listed in Tables III(b) and (d). From these results we
see that the random Fourier kernel features often improve accuracy, sometimes by as
much as 10% (e.g., transductive SIM-Heuristic with max on the Letter-Carroll dataset).
More specifically, we compare the results obtained using kernel features (Tables III(b)
and (d)) against the results of corresponding linear methods (the first three rows of
Tables III(a) and (c) respectively), resulting in a total of 30 comparisons. The aggre-
gated win-tie-loss counts for kernel vs no kernel features is 25-0-5 in favor of kernel
features.

5.2.6. Parameter Selection by Cross-Validation. In all of the results discussed so far, we
use post-hoc parameter selection. In other words, we run the whole experiment multi-
ple times with different parameters, and report the result with the best instance-level
accuracy. This parameter selection is done the same way for all algorithms (includ-
ing CLPL and M3MIML), so no algorithm gains an unfair advantage. However, this
method cannot be used in practice unless some instance labels are known. One might
label a relatively small number of instances specifically for this purpose.

In a scenario where no instance labels are known, cross-validation cannot be used to
select the regularization parameter λ that gives the best instance-level accuracy. We
propose instead to use cross-validated rank loss as a selection criteria for λ as follows:

— Apply κ-fold cross-validation. For each fold l = 1, . . . , κ, partition the dataset into
two sets Train(l) and Test(l).
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Fig. 5. (a–e) Solid line—accuracy vs λ. Dotted line—RL(λ), i.e. cross-validated bag-level rank loss. (f) Scatter
plot of accuracy and RL(λ) for the Letter-Frost dataset.

— In each fold l, train an SIM on Train(l), then compute unregularized rank loss on
Test(l). Compute the average rank loss over all folds as a function of λ,

RL(λ) = 1
κ

κ∑
l=1

∑
i∈Test(l)

∑
j∈Yi,k/∈Yi

βi max{0, 1 − (
Fj(Xi) − Fk(Xi)

)}. (37)

— Select the λ that gives the lowest loss averaged over all folds,

λ̂ = arg min
λ

RL(λ). (38)

Note that we did not use this method in other experiments because it increases
runtime by an order of magnitude compared to post hoc selection (applying this method
in the transductive mode involves cross-validation; in the inductive mode it would be
nested cross-validation, e.g., 10-fold CV within each fold of 10-fold CV). Cour et al.
[2011] proposed a similar parameter selection scheme for ALC wherein the regulariza-
tion parameter is selected by cross-validated ambiguous loss.

To test our proposed parameter selection method within a reasonable amount of
time, we focus on the transductive mode. Using the SIM-Heuristic algorithm with
softmax, we vary λ ∈ {10−9, . . . , 100} and at each value of λ, compute the instance-
level accuracy and cross-validated rank loss. Figure 5(a–e) shows the instance-level
accuracy and cross-validated rank-loss as a function of λ for each dataset. From these
results, we see that the value of λ selected by minimizing cross-validated rank loss is
generally close to the value of λ that maximizes instance-level accuracy. Figure 5(f)
shows an example scatter plot of accuracy and cross-validated rank loss from the
Letter-Frost dataset. Each point corresponds to one value of λ. The line is a linear
least-squares fit. This plot shows that lower cross-validated rank loss generally cor-
responds with higher instance accuracy. The scatter plots are similar for the other
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Table IV. Empirical Runtime (Seconds), Transductive, No Kernel, λ = 10−7

Algorithm Loss Model Carroll Frost Birdsong* MSRC v2 VOC
SIM-Heuristic Rank max 12.6 9.8 21.0 64.1 139.1
SIM-Heuristic Rank softmax 13.6 10.2 23.3 68.9 147.1
SIM-CCCP Rank max 53.7 59.8 132.8 269.9 443.3

datasets. We find experimentally that the proposed method is reasonably effective for
selecting the regularization parameter in the absence of any instance labels.

5.2.7. Empirical Runtime. Table IV gives empirical runtimes in seconds4 for our pro-
posed methods. These results are obtained in the transductive mode, with a fixed reg-
ularization parameter λ = 10−7, and no kernel. In all cases, the runtime is on the
order of minutes or seconds. The runtime using the softmax model is slightly more
than using the max model. The runtime for CCCP is longer than the heuristic because
it recomputes support instances in every iteration of subgradient descent, and runs
more iterations of subgradient descent to ensure monotonicity.

5.2.8. Overall Summary. Comparing our proposed methods SIM-CCCP with max and
SIM-Heuristic with softmax, neither is best all the time. Generally, we observe that
SIM-CCCP with max achieves higher accuracy when bag label sets are exactly equal
to the union of instance labels. When this assumption does not hold, SIM-Heuristic
with softmax tends to achieve higher accuracy. SIM-Heuristic with softmax provides
the best balance of runtime and accuracy.

SISL SVM in the inductive mode [Table III(c)] achieves a much higher accuracy than
any of the MIML algorithms. This result is expected, as the SISL SVM has access to
labeled instances when training, while the MIML algorithms do not. However, this
accuracy gap suggests that there is still a lot of room for improvement in the instance
annotation algorithms.

6. RELATED WORK

MIML algorithms are developed under multiple frameworks, some of which naturally
lend themselves to instance annotation. One such framework is graphical models,
which have been previously used to perform bag and instance-level classification. Such
models often treat instance labels as latent variables. Inference over such models al-
lows the classification of instances. While a variety of algorithms exists, we highlight
some representative examples of recent work. Dirichlet-Bernoulli Alignment [Yang
et al. 2009] and the Exponential Multinomial Mixture model [Yang et al. 2010] are
topic models for MIML datasets and use variational inference to perform instance la-
beling. Zha et al. [2008] proposed the MLMIL algorithm, a conditional random field
model for MIML image annotation that uses Gibbs sampling to infer instance labels.
Du et al. [2009] proposed another application of graphical models to simultaneous im-
age annotation and segmentation.

While graphical models offer intuitive probabilistic interpretation, the computa-
tional complexity of inference in such models is one of the standing challenges. In this
work, we focus on another class of MIML approaches based on regularized loss mini-
mization. Hamming-Loss SIM can be viewed as an alternative approach for optimizing
a similar objective to the M3MIML algorithm [Zhang and Zhou 2008] (which learns an
instance-level model, but was not designed for instance annotation). Also note that

4These runtimes are measured on a 2010 MacPro with 2.4 GHz Intel Xeon processor and 16 GB of 1066
MHz DDR3 memory. The algorithms are implemented in C++ and compiled with GCC 4.0.
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CLPL follows the same framework of regularized loss minimization (but using a loss
function designed for ALC).

There are a small number of other works that address MIML instance annotation.
Vijayanarasimhan and Grauman [2009] developed an MIML SVM that learns a bag-
level model with a set kernel (it does not learn a model of the instance feature space).
Their algorithm makes predictions at either the bag or instance level by treating an
instance as a bag of one instance. Vezhnevets et al. [2010] proposed an algorithm for
instance annotation in MIML data, where images are represented as a bag of pixels.
Their algorithm alternates between sampling instance labels from an estimated dis-
tribution, and training an ensemble of decision trees on the sampled labels. Similarly,
Nguyen [2010] proposed an MIML SVM algorithm that alternates between assigning
instance labels and maximizing margin, given the assigned labels (although they did
not conduct experiments on instance annotation).

Similar to our approach, the MI-SVM algorithm [Andrews et al. 2002] for multi-
instance learning (MIL) uses CCCP to handle nonconvexity (note the interpretation
of MI-SVM as an instance of CCCP is due to Cheung and Kwok [2006]). D-MimlSvm
[Zhou et al. 2012] also uses CCCP to optimize Hamming loss.

In recent work, Li et al. [2012] consider the problem of identifying the “key in-
stances” that trigger labels. This problem is similar to instance annotation, but differs
in that the goal is not to label all instances, but instead to select a set of instances
explaining each label.

7. CONCLUSION AND FUTURE WORK

In this work, we proposed rank-loss support instance machines for instance annota-
tion. The goal of instance annotation is to learn an instance level-classifier using an
MIML dataset for training data, which does not directly associate instances with la-
bels. We explained why and empirically showed that rank-loss is superior to other
loss functions e.g., Hamming or ambiguous loss for the instance annotation problem.
The SIM algorithm is based on the observation that for the commonly used max model
connecting bag-level labels and instance-level labels, the bag-level output can be repre-
sented as a linear function of a “support instance”, which summarizes the instances in
a bag. The SIM model can also be used with the softmax model, which is less sensitive
to noise. The SIM model poses a nonconvex optimization problem; we offer a heuristic
solution that is applicable to either max or softmax and a CCCP method that can be ap-
plied to the max model and guarantees monotonic decrease in the nonconvex objective.
In either optimization method, the basic process is to alternate between updating sup-
port instances, and solving a convex problem to minimize rank loss. We give a primal
subgradient descent algorithm for solving these convex problems with linear runtime
in the number of bags and instances. We also demonstrate that an approximate kernel
method often improves accuracy, while retaining linear runtime.

In future work we will examine deviations from the basic assumptions of MIML
instance annotation. For example, the assumption that a bag label set is the union
of instance labels, is often violated. This may be the case when the labeler does not
provide a complete labeling of the data, and only labels a subset of relevant classes.
Another interesting problem is recognizing when an instance does not belong to any of
the known classes. This is a common issue in machine vision datasets, where there are
often background scenery or novel objects that are not labeled. Finally, one should re-
member that when MIML instance annotation is applied, the classic SISL approach is
also an option, and typically gives higher accuracy at the cost of increased effort to la-
bel instances. Learning from a mixed granularity dataset consisting of mostly bag-level
label sets and a few unambiguously labeled instances is one potential way to achieve
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the higher accuracy of SISL with the reduced labeling effort of MIML. However, this
idea has received little study so far [Vijayanarasimhan and Grauman 2009].

APPENDIXES

APPENDIX 1. Proof of Bound on Subgradient

We follow the approach of Shalev-Shwartz and Singer [2007] to establish the con-
vergence for sub-gradient descent. Because the number of iterations to reach an
εsuboptimal solution is O( L

λε
), where L is a bound on the subgradient ||V||2 ≤ L, we

proceed with a derivation of L. The bound proved in this appendix applies to subgradi-
ents (27) and (29). Suppressing all sub- and superscripts except for the class index q,
recall that the complete subgradient is V = [ v1, . . . , vq, . . . , vc].

We will start with a bound on the qth component of V; using the triangle inequality:

||vq|| ≤ λ||wq|| +
∑
ijk

βiI[ ·]
(
||x̂||I[ q = k] + ||x̂||I[ q = j]

)
. (39)

Note that I[ ·] ≤ 1 and for any support instance ||x̂|| ≤ R. Using these properties

||vq|| ≤ λ||wq|| + R
∑
ijk

βi

(
I[ q = k] + I[ q = j]

)
(40)

||vq|| ≤ λ||wq|| + R
( ∑

ijk

βiI[ q = k] +
∑
ijk

βiI[ q = j]
)
. (41)

The first sum on the RHS of (41) can be computed as

∑
ijk

βiI[ q = k] =
n∑

i=1

βi
∑
j∈Yi

∑
k/∈Yi

I[ q = k] (42)

=
n∑

i=1

βi

c∑
j=1

c∑
k=1

I[ q = k] I[ j ∈ Yi] I[ k /∈ Yi] (43)

=
n∑

i=1

βiI[ q /∈ Yi]
c∑

j=1

I[ j ∈ Yi]

︸ ︷︷ ︸
|Yi|

=
n∑

i=1

βiI[ q /∈ Yi] |Yi|. (44)

Similarly, the second sum on the RHS of (41) can be simplified as

∑
ijk

βiI[ q = j] =
n∑

i=1

βiI[ q ∈ Yi] |Ȳi| (45)

Substituting these terms back into (41),

||vq|| ≤ λ||wq|| + R
( n∑

i=1

βiI[ q /∈ Yi] |Yi| +
n∑

i=1

βiI[ q ∈ Yi] |Ȳi|
)
. (46)

To condense notation we will rewrite this statement as ||vq|| ≤ aq + bq, where

aq = λ||wq|| (47)

bq = R
n∑

i=1

βi

(
I[ q /∈ Yi] |Yi| + I[ q ∈ Yi] |Ȳi|

)
. (48)
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LEMMA A.1. ||V||2 ≤
(√√√√ c∑

q=1

a2
q +

√√√√ c∑
q=1

b2
q

)2

PROOF.

||vq||2 ≤ (aq + bq)2 = a2
q + b2

q + 2aqbq (49)

||V||2 =
c∑

q=1

||vq||2 ≤
c∑

q=1

a2
q +

c∑
q=1

b2
q +

c∑
q=1

2aqbq (50)

≤
c∑

q=1

a2
q +

c∑
q=1

b2
q + 2

√√√√( c∑
q=1

a2
q

)( c∑
q=1

b2
q

)
by Cauchy-Schwarz (51)

≤
(√√√√ c∑

q=1

a2
q +

√√√√ c∑
q=1

b2
q

)2

. (52)

LEMMA A.2.
c∑

q=1

a2
q ≤ 2λ

PROOF.
∑c

q=1 a2
q = ∑c

q=1 λ2||wq||2 = λ2 ∑c
q=1 ||wq||2 = λ2||W||2 ≤ 2λ because W ∈ S.

LEMMA A.3.
c∑

q=1

b2
q ≤ 4R2

PROOF.

c∑
q=1

b2
q = R2

c∑
q=1

( n∑
i=1

βi(I[ q /∈ Yi] |Yi| + I[ q ∈ Yi] |Ȳi|)
)2

(53)

= R2
c∑

q=1

n∑
i=1

n∑
i′=1

βiβi′
(
I[ q /∈ Yi] |Yi| + I[ q ∈ Yi] |Ȳi|

)(
I[ q /∈ Yi′ ] |Yi′ | + I[ q ∈ Yi′ ] |Ȳi′ |

)
.

(54)
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Note that this result is obtained from the identity
( n∑

i=1

xi

)2 =
n∑

i=1

n∑
i′=1

xixi′ . Expanding

the right side of the expression, we will obtain four terms, e.g.,

R2
c∑

q=1

n∑
i=1

n∑
i′=1

βiβi′I[ q /∈ Yi] I[ q /∈ Yi′ ] |Yi||Yi′ | (55)

= R2
n∑

i=1

n∑
i′=1

βiβi′ |Yi||Yi′ |
c∑

q=1

I[ q /∈ Yi] I[ q /∈ Yi′ ] (56)

≤ R2
n∑

i=1

n∑
i′=1

βiβi′ |Yi||Yi′ |
√√√√( c∑

q=1

I[ q /∈ Yi]2
)( c∑

q=1

I[ q /∈ Yi′ ]2
)

by Cauchy-Schwarz (57)

= R2
n∑

i=1

n∑
i′=1

βiβi′ |Yi||Yi′ |
√

|Ȳi||Ȳi′ | (58)

= R2
n∑

i=1

n∑
i′=1

|Yi||Yi′ |
√

|Ȳi||Ȳi′ |
n2|Yi||Ȳi||Yi′ ||Ȳi′ |

= R2

n2

n∑
i=1

n∑
i′=1

1√
|Ȳi||Ȳi′ |

= R2

n2

( n∑
i=1

1√
|Ȳi|

)( n∑
i=1

1√
|Ȳi|

)
.

(59)

The other three terms can be derived similarly. It follows that

c∑
q=1

b2
q ≤ R2

n2

(( n∑
i=1

1√
|Ȳi|

)2 +
( n∑

i=1

1√|Yi|
)2 + 2

( n∑
i=1

1√
|Ȳi|

)( n∑
i=1

1√|Yi|
))

(60)

= R2

n2

( n∑
i=1

( 1√|Yi|
+ 1√

|Ȳi|

))2

≤ R2(1 + 1√
c − 1

)2. (61)

To obtain the last inequality, observe that a label set Yi may not be empty or contain all
c classes, therefore 1 ≤ |Yi| ≤ c − 1 and 1 ≤ |Ȳi| ≤ c − 1. Finally, note that 1 + 1√

c−1
≤ 2,

therefore
∑c

q=1 b2
q ≤ 4R2.

Combining Lemmas A.1, A.2, and A.3, we get

||V||2 ≤
(√√√√ c∑

q=1

a2
q +

√√√√ c∑
q=1

b2
q

)2

(62)

≤
(√

2λ + 2R
)2

. (63)

therefore L′ =
(√

2λ + 2R
)2

is a suitable bound for the Pegasos analysis. This result
applies to either SIM-CCCP or SIM-Heuristic with rank loss.
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APPENDIX 2. Implementation Details

In this appendix, we further discuss the design and implementation of of SIM.

Average Support Instance Initialization. The rank loss objective is nonconvex and
hence the optimum found may depend on the starting point. In preliminary experi-
ments, we tried starting with random weights, then computing the first support in-
stances with max or softmax based on the random weights. However, a problem with
this approach is that the support instance x̂ij computed from random weights is un-
likely to be a good representation of class j for bag i. This approach is prone to get-
ting stuck in bad local optima. Also note that meaningful support instances cannot be
computed from W = 0. Our proposed SIM algorithms instead use an average model
x̂ij = 1

ni

∑
x∈Xi

x, which does not depend on the weights. After solving the convex prob-
lem once with these average support instances, the weights are good enough to com-
pute support instances with max or softmax in subsequent iterations.

Warm Start. Going from one outer iteration of CCCP or the heuristic to the next,
we start at the weights with the lowest objective evaluation on the convex problem
from the previous iteration. We do this because projected subgradient descent is not
guaranteed to monotonically decrease the convex objective (an upper bound on the
objective is guaranteed to decrease monotonically). Hence the best solution may occur
in some iteration of subgradient descent other than the last.

Using an Approximate Solver within CCCP. To show that CCCP monotonically de-
creases the objective, it is assumed that the convex problem in each iteration is solved
exactly [Sriperumbudur and Lanckriet 2009]. However, we are using an approximate
solver in each iteration. We can still ensure monotonic decrease in the original DC
problem by running a sufficient number of iterations of subgradient descent. Recall
that the convex problem solved in each iteration of CCCP uses a linear upper bound
of the concave part of the objective at the current point, which touches the original
DC objective at the current point. Hence at iteration t of CCCP, we have hRL(W(t)) =
h(t)

RL,cccp(W(t)). At iteration τ of subgradient descent within iteration t of CCCP, the ob-

jective value for the convex problem is h(t)
RL,cccp(W(t,τ)). If this objective is less than the

DC objective at the start of the iteration of CCCP, i.e. h(t)
RL,cccp(W(t,τ)) ≤ h(t)

RL,cccp(W(t)),
then τ is a sufficient number of iterations to ensure DC objective is monotonically
decreasing, because

hRL(W(t+1)) ≤ h(t)
RL,cccp(W(t,τ)) ≤ h(t)

RL,cccp(W(t)) = hRL(W(t)). (64)

In our implementation of CCCP, we start by running K iterations of subgradient
descent. If K iterations is enough to decrease the hRL objective, we move on to the
next iteration of CCCP. If not, we repeatedly run K more iterations until either the
hRL objective decreases, or the total number of iterations reaches Kmax. In the latter
case, we terminate CCCP and return the best solution found so far. We do not use this
scheme of increasing the number of iterations of subgradient descent for the heuristic
optimization method (it always uses exactly K iterations).

Feature Rescaling. We apply the following preprocessing to the instance features.
First, we transform each feature to the range [ 0, 1]. Next, we apply the same feature
rescaling process used in the Convex Learning from Partial Labels Toolbox (for am-
biguous label classification [Cour et al. 2011]), which centers the data and scales each
feature by 1√∑m

i=1 ||xi||2
. When the Random Fourier Kernel features are used, we first

apply the preceding process, then apply the transform z, then repeat the process from
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the CLPL a second time. We have observed that the proposed methods are sensitive to
feature scaling, and found these processing steps effective.

Numerical Issues with softmax. Due to large exponents, numerical overflow may
occur when computing the softmax weights as

α
j
iq = ewj·xiq∑

x′∈Xi
ewj·x′ .

This problem is more likely to occur when the regularization parameter λ is small,
because the weights are constrained to a ball with large radius. An equivalent formula
for calculating the softmax weights that avoids numerical issues is

α
j
iq = ewj·xiq−b∑

x′∈Xi
ewj·x′−b

where b = max
x∈Xi

wj · x. (65)
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Dietterich, T., Lathrop, R., and Lozano-Pérez, T. 1997. Solving the multiple instance problem with axis-

parallel rectangles. Artif. Intell. 89, 1–2, 31–71.
Du, L., Ren, L., Dunson, D., and Carin, L. 2009. A Bayesian model for simultaneous image clustering, anno-

tation and object segmentation. In Proceedings of Advances in Neural Information Processing Systems
22, 486–494.

Elisseeff, A. and Weston, J. 2001. A kernel method for multi-labelled classification. In Proceedings of
Advances in Neural Information Processing Systems 14, 681–687.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. 2010. The Pascal visual object
classes (VOC) challenge. Intern. J. Comput. Vis. 88, 2, 303–338.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. 2008. LIBLINEAR: A library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874.

Frey, P. W. and Slate, D. J. 1991. Letter recognition using Holland-style adaptive classifiers. Mach. Learn. 6,
161.

Frost, R. 1916. Mountain Interval. Henry Holt and Company.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 14, Publication date: September 2013.



�

�

�

�

�

�

�

�

14:30 F. Briggs et al.
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