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Abstract—In multi-instance multi-label (MIML) instance
annotation, the goal is to learn an instance classifier while
training on a MIML dataset, which consists of bags of instances
paired with label sets; instance labels are not provided in
the training data. The MIML formulation can be applied in
many domains. For example, in an image domain, bags are
images, instances are feature vectors representing segments in
the images, and the label sets are lists of objects or categories
present in each image. Although many MIML algorithms have
been developed for predicting the label set of a new bag, only
a few have been specifically designed to predict instance labels.
We propose MIML-ECC (ensemble of classifier chains), which
exploits bag-level context through label correlations to improve
instance-level prediction accuracy. The proposed method is
scalable in all dimensions of a problem (bags, instances, classes,
and feature dimension), and has no parameters that require
tuning (which is a problem for prior methods). In experiments
on two image datasets, a bioacoustics dataset, and two artificial
datasets, MIML-ECC achieves higher or comparable accuracy
in comparison to several recent methods and baselines.

I. INTRODUCTION

Instance annotation for multi-instance multi-label (MIML)
data is a recent and little-studied problem for supervised
classification. A MIML dataset consists of bags of instances
paired with sets of labels. For example, in an image domain,
a bag is an image, the instances in the bag are feature vectors
describing regions, and the label set for a bag indicates
which objects or categories the image contains. There are
many algorithms that train a classifier on a MIML dataset
to predict the label set for a new bag (e.g., the original
formulation of MIML by [33]). In contrast, MIML instance
annotation aims to train a classifier on a MIML dataset
to predict the instance labels. For example, we train a
classifier on images paired with sets of objects they contain,
then predict the class label for each region of a new image.

MIML instance annotation differs from the traditional
MIML problem of label set prediction (e.g., M3MIML [30]),
and multi-label classification (MLC, e.g., binary relevance).
In particular, it is commonly assumed that each instance
only belongs to one class, thus the predictions to be made
are single labels for instances, not label sets. An appropriate
objective for MIML instance annotation is to maximize
instance-level accuracy (the fraction of correctly classified
instances). However, it is not possible to train a model that
directly optimizes accuracy on the training data, because
instance labels are not available for training. Sometimes it

Figure 1. Inductive instance annotation without context – “What class is
the region of pixels inside the red box?”

is possible to modify a MIML or MLC algorithm that is de-
signed for label set prediction, to predict instance labels. The
problem with this approach is that the model is optimized for
label set accuracy, not instance accuracy. Domain-specific
instance annotation problems (e.g., for images) have been
widely explored, however, to our knowledge only two prior
studies have specifically considered the general domain-
independent MIML instance annotation problem [3, 4].
Briggs et al. [3, 4] proposed rank-loss Support Instance
Machines (SIM), a collection of SVM-style algorithms that
learn a linear instance classifier by minimizing a rank loss
objective on bag-level labels.

Prior work [3, 4] has observed that the rank-loss SIM al-
gorithms, as well as several other baseline methods, achieve
lower accuracy for inductive classification of instances (pre-
dicting instance labels for previously unseen bags) in com-
parison to transductive classifications (predicting instance
labels for bags with known label sets). We hypothesize that
one way to improve the performance of inductive classifi-
cation is to exploit the contextual information provided by
other instances in the same bag.

Figure 1 illustrates the importance of using context in
inductive instance annotation. The region of pixels inside
the red box is an instance. A MIML instance annotation
classifier might be asked to predict the class label of this
instance. Without the context provided by the rest of the
image, it is hard to classify, even for a human. Figure 2
shows the rest of the image. With this context available,
it is much easier to recognize the instance. The situation
illustrated by Fig. 1 is how inductive MIML instance anno-
tation is posed in prior work [3, 4]. It is not as important
to use the context provided by other instances in the same
bag for transductive classification, because the bag label set
is already known, and provides a similar kind of context.
Consider the same example in Fig. 1. If we know that the



image contains labels “cow” and “grass,” we do not need to
see the rest of the image to conclude that the label for this
instance should be “cow.”

Figure 2. Inductive instance annotation with context – “What class is the
region of pixels inside the red box?” This image is from the VOC12 data.

This paper proposes a new algorithm for MIML instance
annotation designed to improve inductive instance classifi-
cation accuracy by exploiting the context provided by other
instances in the same bag. In particular, we capture the
context by modeling label correlations in the bag label
set. The proposed algorithm is a multi-instance multi-label
ensemble of classifier chains, called MIML-ECC (Sec. IV).
MIML-ECC has no “tuning” parameters (which are neces-
sarily selected by a heuristic in prior work) (Sec. V-D), and
is asymptotically efficient in all dimensions of a problem
(number of bags, instances, classes, and feature dimension)
(Sec. IV-D). The training algorithm is closely related to
EM (Sec. IV-C), and the classification algorithm selects the
maximum a posteriori (MAP) instance label as estimated by
the ensemble (Sec. IV-B). Experiments show that MIML-
ECC achieves higher accuracy than several recent methods
and baselines, including Hamming, rank, and ambiguous-
loss SVMs, and comparable accuracy to a recent graphical
model (Sec. V-E). Further experiments show that the chain
structure outperforms binary relevance (Sec. V-F), and an
ensemble of chains outperforms a single chain (Sec. V-G).

II. PROBLEM STATEMENT
Our goal is to learn an instance-level classifier by training

on a MIML dataset consisting of n bags paired with their
corresponding label sets {(B1, Y1), . . . , (Bn, Yn)}, where
Bi is a bag, Yi ⊆ Y = {1, . . . , c} is its label set, and c is the
total number of classes. Each bag Bi contains ni instances,
i.e., Bi = {xi1, . . . ,xini},x ∈ X = Rd.

We assume that each instance x in Bi has a single label
y ∈ Y . The instance labels are not available in the training
data; and we only have ambiguous information about them
provided through the bag label sets.

We consider instance annotation in both transductive and
inductive modes, which differ in what information is avail-
able at the classification stage. The transductive classifier is
defined as:

y = f(x, B, Y ) : X × 2X × 2Y → Y (1)

The notation f(x, B, Y ) indicates that we are given all of
the instances in a bag B, its label set Y , and the goal is to

Table I
FRAMEWORKS FOR SUPERVISED CLASSIFICATION

Framework Training Dataset Classifier
SISL (x1, y1), . . ., (xn, yn) y = f(x) : X → Y
MIL (B1, yi), . . ., (Bn, yn) y = F (B) : 2X → {0, 1}
MLC (x1, Y1), . . ., (xn, Yn) Y = f(x) : X → 2Y

MIML (B1, Y1), . . ., (Bn, Yn) Y = F (B) : 2X → 2Y

ALC/SLL (x1, Y1), . . ., (xn, Yn) y = f(x) : X → Y

predict the label y for a specific instance x in B.
The inductive mode classifies an instance without the bag

label set given. Prior work [3] on MIML instance annotation
formulates the inductive classifier as f(x) : X → Y , which
ignores any contextual information from the bag containing
x. We instead formulate the inductive classifier as

y = f(x, B) : X × 2X → Y (2)

The difference is that when classifying an instance x, we
know that it is part of a bag B, and can use the contextual
information of B to improve the prediction.

A. Related Problems

There are many other formulations of supervised classi-
fication that are related to MIML instance annotation. The
main difference between these frameworks is the structure
of training data (instance or bag, single- or multi-label), and
the input to and type of prediction made by the classifier
(instance-level or bag-level, single or multi-label). Refer to
Table I for a statement of the training data and inductive
classifier in each framework.

The most common supervised classification formulation is
single-instance single-label (SISL). Most standard methods
such as support vector machines, decision trees, and logistic
regression are for SISL. Multiple-instance learning (MIL)
is a framework where the training data consists of bags of
instances paired with a single binary label, and the classifier
maps bags to binary labels. Multi-label classification (MLC)
[22] pairs single instances with sets of labels, and the goal
is to predict a label set given a new instance.

Ambiguous label classification (ALC) [8] and superset
label learning (SLL) [16] have the same structure of training
data as MLC, but assume only one label in the set is correct
and the rest are “distractors.” The goal is to learn a classifier
to predict a single label for a new instance. MIML instance
annotation can be reduced to ALC/SLL by pairing each
instance with its bag label set. However, this reduction can
be undesirable as it discards the context of the bag.

III. BACKGROUND

A key observation motivating our approach is that the
context provided by a bag’s label set is useful for classifying
instances. In the previous example, knowing that there is
“grass” in the image can help for predicting the label
“cow” for the given instance, because the labels “cow” and
“grass” are correlated. A natural way to exploit such context
is to follow a classifier-chain approach, which has been



previously developed for MLC to exploit label correlation.
Below we begin with a review of classifier chains for MLC.
We then discuss some design patterns in MIL and MIML
algorithms that learn an instance-level model from bag-level
labels, which provide inspiration for our algorithm.
A. Classifier Chains for Multi-Label Classification

Originally introduced for MLC, classifier chains [22]
exploit label correlation by building a chain of binary
classifiers. Given an instance x, we denote its label set
Y as a binary vector: Y = [Y 1, . . . , Y c], where Y j = 1
if the label set for instance x contains class j. We use
Y 1:j−1 = [Y 1, . . . , Y j−1] to refer to the first j−1 elements
of Y . The key idea of classifier chains is to use a chain
factorization of the conditional joint distribution of Y :

P (Y |x) = P (Y 1|x)
c∏
j=2

P (Y j |x, Y 1:j−1) (3)

During training, one binary model P (Y j |x, Y 1:j−1) is
learned for each class j, which depends on x, and all of
the preceding classes 1, . . . , j − 1. Let ⊕ denote vector
concatenation. The basic training algorithm is:

MLC Probabilistic Classifier Chain – Train
for j = 1, . . . , c :

Dj = {. . . , (xi ⊕ Y 1:j−1
i , Y ji ), . . .}ni=1

train classifier P (Y j |x, Y 1:j−1) on Dj
For each class j, a binary supervised classification prob-

lem Dj is created (this is a standard SISL problem, not an
MLC problem). This 2-class problem has n instances like the
original MLC problem. Each instance consists of the original
feature vector xi concatenated with part of the corresponding
label vector [Y 1

i , . . . , Y
j−1
i ], and paired with the binary label

Y ji . The binary model for class j, namely P (Y j |x, Y 1:j−1),
can be learned using any binary probabilistic classifier, e.g.,
logistic regression or Random Forest (RF) [2].

To classify a new instance x with a probabilistic classifier
chain, one can evaluate P (Y |x) for all 2c possible label
vectors Y , and pick one that minimizes a set-level loss
function. However, this approach may be intractable unless
c is small. An alternative is to greedily construct a single
value of Y . A basic greedy algorithm [9] is:

MLC Probabilistic Classifier Chain – Classify
Y = []
for j = 1, . . . , c :

Y = Y ⊕ I[P (Y j |x⊕ Y ) > 0.5]
return Y

In ensembles of classifier chains (ECC) [22], there are
multiple chains, each of which is learned as above, but
factorizing the classes in a different random order. When
classifying with ECC, each chain votes. ECC reduces the
sensitivity to the specific order of the chain and is generally
observed to improve accuracy over a single chain.

B. From Instance to Bag Labels
A central problem in MIL and MIML is that labels

are only provided at the bag level. Learning an instance
classifier from bag label sets requires an assumption about
the relationship between the observed label sets and the
hidden instance labels. A common assumption in MIL is that
if any instance is positive, the bag label is positive, otherwise
it is negative. The corresponding assumption in MIML is that
the bag label set is equal to the union of instance labels. Prior
algorithms approximate these assumptions using different
formulations, e.g., the max model.

In the MIL setting, the max model is: F (B) =
maxx∈B f(x), i.e. the bag-level output F is the max over
the instance-level outputs f on all instances in the bag.

For probabilistic MIL classifiers, the max model has also
been called the “most-likely-cause estimator” [17],

P (y = 1|B, θ) = max
x∈B

p(y = 1|x, θ) (4)

The equivalent formulation for MIML [30, 3] applies the
same principle for each class j = 1, . . . , c:

Fj(B) = max
x∈B

fj(x) (5)

Given a model for connecting bag labels with instance
labels, the output of a bag-level classifier can sometimes be
expressed as a function of a single instance in the bag or
representing the bag. For example, assuming the max model
for MIL we have:

F (Bi) = max
x∈Bi

f(x) = f(x̂i) (6)

x̂i = argmax
x∈Bi

f(x) (7)

where x̂i is referred to as the support instance (or “witness
instance” [1]) for bag Bi. We can define support instances
similarly for MIML, except that one support instance is
defined for each class and each bag.

Many existing algorithms for MIL (e.g., MI-SVM [1] and
EM-DD [31]) and MIML (e.g., SIM [4]) alternate between
computing support instances based on a current classifier,
and training a SISL classifier on the support instances. Our
proposed algorithm follows the same pattern.

IV. PROPOSED METHODS

Our goal is to learn a classifier that predicts the label of
a given instance, using its feature vector x and the context
provided by the bag B containing x. We propose the MIML-
ECC algorithm, which is motivated by the observation that
the prediction of whether an instance belongs to a particular
class can be influenced by the presence/absence of some
other classes in the bag. To capture the label correlation,
we assume an ordered chain structure such that whether an
instance belongs to a particular class depends on whether the
bag contains classes earlier in the chain. Table II summarizes
notation for the proposed method.



Table II
SUMMARY OF NOTATION

Notation Meaning
⊕ vector concatenation operator
Bi i’th bag of instances in the training data
Yi label set for bag Bi, Yi ⊆ {1, . . . , c}
n number of bags in the training set
ni number of instances in bag Bi
π(j) the j’th class in some permutation π
πl(j) the j’th class in the permutation for chain l
Y
πl(j)
i the j’th bit (0 or 1) of the label set Yi in order πl
Y
πl(1):πl(j−1)
i the first j − 1 bits of the label set Yi in order πl

x ∈ Bi an instance in bag Bi, a vector in Rd
fjl instance-level score function for class πl(j)
Fjl bag-level score function for class πl(j)
x̂ijl support-instance for bag i, chain l, class πl(j)
yk indicator variable for instance x in class k

A. Training

A classifier chain for MLC is a chain of SISL classifiers.
At a high level, our method can be viewed as building
an ensemble of L chains of MIL classifiers. Each chain
l = 1, . . . , L in the ensemble views the classes 1, . . . , c
in a different order πl, such that πl(j) is the j’th class
in the order for chain l. We will use Fjl to denote the
MIL classifier for the j-th class in chain l, which predicts
the presence/absence of class πl(j) in the label set of a
bag given the bag and Y πl(1):πl(j−1), the presence/absence
information of the first j−1 classes in chain l. The training
algorithm viewed in terms of MIL classifiers is:

MIML-ECC – Train (Bag-Level View)
Input: MIML dataset {(B1, Y1), . . . , (Bn, Yn)}
Output: MIL classifiers Fjl
for l = 1, . . . , L :
πl = random–permutation([1, . . . , c])
for j = 1, . . . , c:
Djl = {. . . , (Bi ⊕ Y πl(1):πl(j−1)i , Y

πl(j)
i ), . . .}ni=1

train MIL Classifier Fjl on Djl

Each MIL dataset Djl constructed in the algorithm pairs the
bag Bi (and the context Y πl(1):πl(j−1)i ) with one bit of the
label vector Y πl(j)i . In a standard MIL formulation, there are
only bags of instances, so it is a modification of MIL to allow
the context Y πl(1):πl(j−1)i , which is a vector in Rj−1, to be
associated with the bag rather than an instance. However, in
practice we simply append this vector to the end of all of
the instance features.

Because our goal is ultimately to predict instance la-
bels, we instantiate this template with a MIL classifier
that internally builds an instance-level model. The instance-
level models are SISL probabilistic classifiers fjl for j =
1, . . . , c and l = 1, . . . , L. We assume fjl maps the input
x⊕ Y πl(1):πl(j−1) to an output in [0, 1] (as is the case for a
RF). Recall that Y = {1, . . . , c}; we encode the label y ∈ Y
of instance x with c binary indicator variables y1, . . . , yc

where yj = I[y = j], and interpret fjl : Rd+j−1 → [0, 1]
as the posterior probability P (yπl(j)|x, Y πl(1):πl(j−1)). MIL
classifiers Fjl can be obtained from the instance-level clas-
sifiers using the max model, taking into account the context
Y πl(1):πl(j−1):

Fjl(Bi ⊕ Y πl(1):πl(j−1)) = max
x∈Bi

fjl(x⊕ Y πl(1):π(j−1)) (8)

Similar to the MIL algorithm EM-DD, and rank-loss SIM
for MIML, we define the bag-level model in terms of a
support instance. In MIML-ECC, there is a different support
instance for each bag, class, and chain. The bag-level model
in terms of support instances is

Fjl(Bi ⊕ Y πl(1):πl(j−1)) = fjl(x̂ijl ⊕ Y πl(1):πl(j−1)i )

x̂ijl = argmax
x∈Bi

fjl(x⊕ Y πl(1):πl(j−1)i )

The support instance x̂ijl is the instance in bag Bi that
is most representative of class πl(j), according to the
classifiers in chain l.

The MIML-ECC training algorithm alternates K times
between updating support instances according to the max
model, then training SISL classifiers on binary datasets that
pair support instances with bits of the label set. In the first
iteration, there are no instance classifiers fjl to compute
support instances from, so we start by setting the support
instances to the average of the instances in each bag, as
in [3, 4]. The instance-level view of the training algorithm is:

MIML-ECC – Train (Instance-Level View)
Input: MIML dataset {(B1, Y1), . . . , (Bn, Yn)}
Output: SISL classifiers fjl
for l = 1, . . . , L :
πl = random–permutation([1, . . . , c])
for k = 1, . . . ,K :

if k = 1 then:
for i = 1, . . . , n : for j = 1, . . . , c :

x̂ijl =
1
ni

∑
x∈Bi x

if k > 1 then:
for i = 1, . . . , n : for j = 1, . . . , c :

x̂ijl = argmaxx∈Bi fjl(x⊕ Y
πl(1):πl(j−1)
i )

for j = 1, . . . , c:
Djl = {. . . , (x̂ijl⊕Y πl(1):πl(j−1)i , Y

πl(j)
i ), . . .}ni=1

train SISL classifier fjl on Djl

B. Classification

In the training phase, instance-level binary classifiers
fjl(x ⊕ Y πl(1):πl(j−1)) are obtained for every class j and
chain l. The output of fjl can be considered an estimate
of the posterior P (yπl(j)|x, Y πl(1):πl(j−1)), so we consider
a probabilistic framework for instance classification based
on the maximum a-posteriori (MAP) approach. This is how
MIML-ECC approximately optimizes instance accuracy, the
desired performance measure for MIML instance annotation.



1) Transductive Mode: In the transductive mode, we
condition on the bag and its label set, and predict instance
labels according to

f(x, B, Y ) = argmax
j∈Y

P (yj |x, B, Y ) = argmax
j∈Y

P (yj |x, Y )

This prediction rule assumes that bag label set Y provides
all of the contextual information that is relevant to predicting
the label for x, i.e. the label is conditionally independent of
the other instances in the bag B given Y .

During training we introduced random orders π for the
purpose of constructing an ensemble. Now we take a
Bayesian approach and assume that π is random variable
from a uniform prior P (π), so each chain in the ensemble
corresponds to one i.i.d. sample πl ∼ P (π) for l = 1, . . . , L.
We estimate the probability for instance x to have label
y = k as P (yk|x, Y ) = Eπ[P (y

k|x, Y, π)] using L samples,
one for each chain in the ensemble.

P (yk|x, Y ) ≈ 1

L

L∑
l=1

∑
{j:πl(j)=k}

P (yπl(j)|x, Y πl(1):πl(j−1), πl)

The algorithm for classification in the transductive mode is:

MIML-ECC – Classify (Transductive)
Input: instance x, label set Y
Output: label y
for j = 1, . . . , c : yj = 0
for l = 1, . . . , L :

for j = 1, . . . , c :
yπl(j) = yπl(j) + fjl(x⊕ Y πl(1):πl(j−1))

y = argmaxj∈Y y
j

2) Inductive Mode: In the inductive setting, the bag label
set is not given, so the posterior required for classification
conditions only on the instances from bag B (and not the
bag label set). Therefore, we predict the instance label as
the class with the highest posterior probability

y = f(x, B) = argmax
j=1,...,c

P (yj |x, B) (9)

The probability P (yj |x, B) is not directly modeled by
the instance-level classifiers fjl; instead we estimate this
probability by marginalizing P (yj |x, Y, B) over the latent
variable Y . This process requires a probabilistic model for
Y given B, which we develop below.

Assumption 1: Given an order π, an instance x and the
bag-level labels Y π(1):π(j−1), yπ(j) is conditionally indepen-
dent of any other instances in the same bag B,

P (yπ(j)|x, B, Y π(1):π(j−1), π) = P (yπ(j)|x, Y π(1):π(j−1), π)

For training, we defined the relation between instance
labels and bag label sets according to the max model. The
max model is also part of our assumptions for inference,
although we will rewrite it in probability notation.

Assumption 2: Bag label sets and instance labels are linked
via the max model,

P (Y π(j)|B, Y π(1):π(j−1), π) = max
x∈B

P (yπ(j)|x, Y π(1):π(j−1), π)

Similar to a classifier chain for MLC, the conditional
distribution of the bag label set is factored as a chain in
the order π as

P (Y |B, π) = P (Y π(1)|B, π)
c∏
j=2

P (Y π(j)|B, Y π(1):π(j−1), π)

Recall that Assumption 2 defines the conditional proba-
bility for Y π(j) in terms of the instance-level probabilities
for yπ(j), while Assumption 1 defines the instance-level
probabilities for yπ(j) in terms of Y π(1):π(j−1).

We estimate P (yj |x, B) by sampling as follows. For a
given π, we apply Assumption 1 to obtain P (yπ(j)|x, B, π)

= EY π(1):π(j−1)|B,π
[
P (yπ(j)|x, Y π(1):π(j−1), B, π)

]
= EY π(1):π(j−1)|B,π

[
P (yπ(j)|x, Y π(1):π(j−1), π)

]
(10)

Because π is a permutation, computing P (yπ(j)|x, B, π) for
j = 1, . . . , c implies computing P (yj |x, B, π) for all j.

Finally, we average the posterior estimates over multiple
samples from a uniform prior on π:

P (yj |x, B) = Eπ
[
P (yj |x, B, π)

]
(11)

As in the transductive mode, each chain in the ensemble
gives one sample of πl ∼ P (π) to estimate the expectation.
The inductive classification algorithm is:

MIML-ECC – Classify (Inductive)
Input: bag B = {x1, . . . ,xni}
Output: instance labels y1, . . . , yni
01: for i = 1, . . . , ni : for j = 1, . . . , c :

02: yji = 0
03: for l = 1, . . . , L :
04: Y = []
05: for j = 1, . . . , c :
06: for i = 1, . . . , ni :

07: y
πl(j)
i = y

πl(j)
i + fjl(xi ⊕ Y )

08: pj = maxi=1,...,ni fjl(xi ⊕ Y )
09: Y = Y ⊕Bernoulli(pj)
10: for i = 1, . . . , ni :

11: yi = argmaxj=1,...,c y
j
i

Line 7 updates the estimate of yπl(j)i based on one sample
of the expectation (10). Line 8 applies the max model
(Assumption 2). In lines 4 through 8, the pseudocode
variable Y stores Y πl(1):πl(j−1). Line 9 samples Y πl(j) from
a Bernoulli(pj) distribution, and appends it to the current
label vector.



C. Similarities with EM

The proposed training algorithm is a heuristic, and is not
proven to converge over multiple support instances updates.
However, it is closely related to prior work using support
instances with expectation maximization (EM). We discuss
this similarity with prior algorithms to provide evidence that
MIML-ECC can be expected to improve in accuracy as the
number of support instance updates K increases.

EM-DD [31] is a widely used algorithm for MIL (single-
labeled bags of instances), in the spirit of EM (a formal
proof is not given). The “E-step” consists of computing
support instances, and the “M-step” maximizes likelihood in
a model involving the support instances. EM-DD also uses
the max model to define the support instances. The main
difference in how support instances are treated in MIML-
ECC is that each bag has a different support instance for
each class and chain. Recall that MIML-ECC trains SISL
classifiers fjl in each iteration. If the base SISL classifier
maximizes log-likelihood (e.g., logistic regression), there is
a direct correspondence with the M-step of EM-DD. In
our implementation of MIML-ECC, fjl is a RF using the
Gini split criteria, which greedily minimizes squared-loss
L2(y, p) = (y − p)2 on the training data [6]. If the entropy
split criteria were used instead, the RF would greedily
maximize likelihood. Gini and entropy are very similar for
binary problems.

D. Asymptotic Complexity

MIML-ECC implemented with RF as the base SISL clas-
sifier is asymptotically efficient in all important dimensions
of problem size. The size of a MIML dataset is determined
by the number of bags n, the total number of instances
in all bags m, the number of classes c, and the instance
feature dimension d. MIML-ECC has several parameters
which affect its runtime: the number of chains L, the
number of trees in each RF T , and the number of support-
instance updates K. Note that the runtime to train a RF
on a SISL dataset of n instances with feature dimension
d is O(T (log d)(n log n)), and to classify it is O(log n). It
follows from the loop-structure of the pseudocode that the
training time for MIML-ECC is

O
(
LKT

(
m(log n)(log d) + cn log n log(d+ c)

))
(12)

An efficient implementation of MIML-ECC classifies all
instances in a bag at once, rather than treating each instance
classification problem separately, in order to share redun-
dant work. Using this optimization, the classification time
is O(LTc log n) per instance. In Section V-I we provide
empirical run time of our algorithm.

V. EXPERIMENTS

Our experiments compare MIML-ECC to prior and base-
line methods on two vision datasets, an audio dataset, and

Table III
MIML DATASETS USED IN OUR EXPERIMENTS

Dataset Classes Dimension Bags Instances
MSRCv2 23 48 591 1,758
VOC 2012 20 48 1,053 4,142
Birdsong 13 38 548 4,998
Carroll 26 16 166 717
Frost 26 16 144 565

two artificial datasets. Our experimental setup is identical to
the setup used in [4] and [16], hence results are directly com-
parable (e.g., the same features and folds for cross validation
are used). Therefore we report new results for MIML-ECC
and baseline methods, and compare to previously reported
results from the aforementioned prior work.

A. Datasets
The datasets used in our experiments are summarized in

Table III. Datasets have been preprocessed through feature
rescaling (which does not affect RF), to improve results for
SVM style-classifiers, by the same process in [8, 3, 4].

1) Vision Datasets: We consider two vision datasets,
Microsoft Research Cambridge v2 (MSRCv2) [25], and
PASCAL Visual Object Recogntion Challenge (2012 “Seg-
mentation”) [11]. Both datasets contain images of objects
with pixel-level labeling of regions. MSRCv2 provides a
single class label for each pixel. VOC provides a segmenta-
tion of each image into objects and a label for each object.
Here bags are images labeled with a list of objects, instances
are objects / regions of pixels, described by a 48-D feature
vector. Single-label images are removed to make the learning
problem more challenging.

2) Bioacoustics Dataset: This dataset was introduced by
[5], applying a MIML formulation for label set prediction
to a real-world application of classifying bird song collected
in field conditions. Each bag is a 10 second audio recording
labeled with the set of species it contains. Each instance
is an utterance of bird sound obtained by an automatic
segmentation algorithm. This dataset has also been used
in work on MIML instance annotation and superset label
learning [3, 4, 16]. For instance annotation, [3] introduced
two variants of this dataset, “filtered” and “unfiltered.” Our
experiments use the filtered variant, as does [16].

3) Artificial Datasets: We use the same artificial MIML
datasets as [3, 4], which are generated to simulate correla-
tions between labels by using letter correlation in English
words. The datasets are generated based on the words in two
poems, “Jabberwocky” by Lewis Carroll [7], and “The Road
Not Taken” by Robert Frost [13], hence they are referred
to as Carroll and Frost. Each bag is a word, its letters are
instances, and the bag label set is the union of instance
labels. The instance features are sampled randomly from the
UCI Letter Recognition dataset [12].

B. Prior & Baseline Methods
We compare MIML-ECC with a number of prior methods

that can be applied to MIML instance annotation.



1) M3MIML: Originally intended for label-set prediction,
M3MIML is a MIML support-vector machine algorithm,
which builds one linear instance-level model per class by
minimizing a heuristic relaxation of bag-level hinge loss, and
connecting instance labels with bag label sets by the max
model. Although not intended for this purpose, the learned
instance-level models can be used for instance annotation.

2) Rank-loss SIM: Rank-loss SIM was introduced by [3],
and refers to a class of instance annotation algorithms which
learn one linear instance-level model per class by mini-
mizing a bag-level rank-loss objective. Different variants of
rank-loss SIM consider different models for connecting bag-
level output with instance-level outputs, and apply different
procedures for optimizing the rank-loss objective. We con-
sider SIM-Heuristic using a softmax model and SIM-CCCP
with the max model, with random Fourier kernel features
[20] to achieve nonlinear classification by approximating
an RBF kernel. These models are chosen for comparison
because they achieved the best accuracy in [4].

3) CLPL: Like the other SVM-style algorithms, Convex
Learning from Partial Labels (CLPL) [8] learns one linear
instance-level model per class, but uses an ALC formulation
instead of MIML. CLPL minimizes a loss function which
can be seen as an upper bound to the 0/1 loss on the true-
unknown label, which is part of the candidate label set.

4) LSB-CMM: Logistic Stick-Breaking Conditional
Multinomial Model (LSB-CMM) [16] is a recent hybrid
generative / discriminative graphical model for SLL that
have been used (by reduction) to solve the instance
annotation problem. In particular, the same Birdsong and
MSRCv2 datasets were used in [16] to evaluate its instance
annotation accuracy. We compare to the results reported in
[16] on these two datasets.

5) SISL Random Forest and SVM: We also consider SISL
algorithms, which have an unfair advantage of learning
directly from instance labels. Results with these SISL algo-
rithms are presented for the inductive mode as an empirical
upper bound on the accuracy that can be achieved on these
datasets. For this comparison, we use a SISL RF (with 1000
trees), and refer to prior results from [4] with a SISL multi-
class linear SVM.

C. Transductive and Inductive

In the transductive mode, there is no cross-validation (the
whole dataset is used for training and testing). However,
because MIML-ECC is a randomized algorithm, we run 10
repetitions and report the average accuracy ± the standard
deviation over repetitions. Most of the other algorithms we
compare to are not randomized, so in the transductive mode
there is no uncertainty associated with the accuracy result.

In the inductive mode, we use 10-fold cross validation,
except for the VOC dataset, for which there is a pre-specified
partition into “train” and “val” sets. Results with 10-fold
cross-validation are reported as average accuracy over all

folds ± standard deviation in accuracy. A different random
instantiation of MIML-ECC is used in each fold, so we
do not run multiple repetitions on top of cross-validation.
However, because there is only one fold for the VOC dataset,
we report results ± standard deviation over 10 repetitions
for MIML-ECC (and the randomized baseline method SISL
Random Forest) on VOC.

M3MIML, CLPL, and rank-loss SIM-Heuristic/CCCP all
build one instance-level model per class fj(x). In the
inductive mode, these models are used to predict an instance
label by the rule f(x) = argmaxj=1,...,c fj(x). In the
transductive mode, the rule is f(x, Y ) = argmaxj∈Y fj(x)
(hence when the bag label set Y is known, it is used
to constrain the instance-label predictions). This constraint
provides some context for instance-label prediction, so there
is not as much benefit to be had from looking at other
instances in the transductive mode.

D. Parameter Selection

All of the rank-loss SIM algorithms, CLPL, M3MIML,
and SISL SVM have a regularization parameter (either λ or
C). When random kernel features are used to approximate
the RBF kernel, there is also a kernel parameter γ, and a
parameter D which controls the approximation accuracy. In
prior work, these parameters are optimized post-hoc by a
grid search as described in [4]. This means the experiment
is run once for each parameter setting in a grid, and the best
test accuracy over all parameters is reported. Post-hoc selec-
tion is not feasible without using instance labels to compute
which parameter setting has the best accuracy, but it has
been accepted in prior work on MIML instance annotation
because it is an unsolved problem. Results using post-hoc
selection can be interpreted as the highest accuracy that can
be achieved using an oracle to select meta-parameters.

An important practical advantage of MIML-ECC com-
pared to the above prior methods is that it does not have
regularization parameters that must be tuned. Note that
MIML-ECC has parameters L,K, and T . The accuracy of
the algorithm tends to increase as these parameters increases
up to a limit. So the parameter choices primarily depend on
the time budget for training and testing. Our experiments set
L = 20,K = 20, T = 100, which provides a good tradeoff
between runtime and accuracy.

LSB-CMM [16] has some parameters which can affect
accuracy, but in their experiments these parameters are set
to standard values for all datasets.

E. Results

MIML instance annotation algorithms are evaluated based
on accuracy, which is the fraction of correctly classified
instances. These experiments compare multiple classifiers
on multiple datasets, so following the recommendations of
[10], we summarize results using wins, ties, and losses,
and average ranks. Table IV lists the accuracy and average



Table IV
INSTANCE ANNOTATION ACCURACY RESULTS († – RESULTS FROM [4], ‡ – RESULTS FROM [16])

(a) Transductive accuracy ± standard deviation over 10 repetitions for MIML-ECC and SIM-RF

Algorithm Carroll Frost Birdsong MSRCv2 VOC Avg Rank
Proposed Methods
MIML-ECC (L = 20,K = 20, T = 100) .803 ± .006 .831 ± .004 .779 ± .003 .805 ± .007 .624 ± .004 1.8
Prior Methods
† CLPL .672 .688 .742 .678 .598 4.0
† M3MIML .454 .532 .651 .547 .533 5.0
† SIM-CCCP max + kernel .807 .780 .829 .798 .623 2.2
† SIM-Heuristic softmax + kernel .794 .819 .833 .766 .634 2.0
Baseline Methods
SIM-RF (K = 20, T = 100) .763 ± .014 .787 ± .015 .791 ± .010 .799 ± .007 .618 ± .003

(b) Inductive accuracy ± standard deviation over 10-fold cross validation or 10 repetitions for VOC

Algorithm Carroll Frost Birdsong MSRCv2 VOC
Proposed Methods
MIML-ECC (L = 20,K = 20, T = 100) .618 ± .059 .646 ± .048 .666 ± .052 .611 ± .038 .43 ± .004 1
Prior Methods
† CLPL .464 ± .058 .506 ± .063 .620 ± .038 .431 ± .036 .345 3.6
† M3MIML .288 ± .041 .313 ± .041 .433 ± .073 .317 ± .055 .396 4.2
† SIM-CCCP max + kernel .618 ± .042 .576 ± .065 .630 ± .040 .519 ± .044 .343 2.6
† SIM-Heuristic softmax + kernel .596 ± .041 .587 ± .066 .642 ± .039 .506 ± .038 .337 2.8
‡ LSB-CMM – – .715 .459 –
Baseline Methods
SIM-RF (K = 20, T = 100) .522 ± .079 .589 ± .040 .645 ± .055 .575 ± .045 .444 ± .002
MIML-ECC (L = 1,K = 20, T = 2000) .530 ± .047 .598 ± .040 .644 ± .044 .580 ± .047 .425 ± .003
SISL Methods (uses instance labels)
† SISL SVM (multi-class,linear) .772 ± .049 .753 ± .038 .772 ± .032 .638 ± .045 .440
SISL Random Forest (T = 1000) .809 ± .049 .807 ± .076 .805 ± .033 .729 ± .050 .511 ± .002

rank results in transductive and inductive modes. Average
ranks are computed by sorting the accuracy of MIML-ECC,
and the prior methods M3MIML, CLPL, SIM-Heuristic, and
SIM-CCCP on each dataset, then averaging the position in
the sorted list over all datasets. We do not include LSB-
CMM in the ranking because there are only 2 datasets with
comparable results.

In the inductive mode, MIML-ECC ties with SIM-CCCP
max with RBF kernel on the Carroll dataset, and wins in
all other comparisons. Results are not as decisive in the
transductive mode, but MIML-ECC still achieves the best
average rank over all datasets. This is consistent with our
expectation because the known label sets provide a surrogate
for context to the other algorithms.

It should be noted that due to the use of post-hoc selection
in experiments for CLPL, M3MIML and SIM, they are
actually given an unfair advantage compared to MIML-ECC,
which does not use the test data ground truth in training or
parameter selection.

The comparison with LSB-CMM on two datasets is
less conclusive. MIML-ECC outperforms LSB-CMM by a
margin of 15.2% on the MSRCv2 dataset, but LSB-CMM is
slightly better (by a margin of 4%) on the Birdsong dataset.

F. Ensemble of Chains vs. Binary Relevance (SIM-RF)

MIML-ECC is motivated by the idea that bag-level label
correlations captured through the chain structure are useful

for predicting instance labels. However, it is possible that
the improved performance we observe compared to prior
linear/kernel algorithms is not due to exploiting label cor-
relations, but instead to using a RF as the base-classifier.
To address this hypothesis, we consider an additional com-
parison against a baseline that we call SIM-RF, which is
the same as MIML-ECC in all details except it does not
use a chain or model correlations. SIM-RF is equivalent to
running MIML-ECC with one chain (L = 1) but omitting
all of the concatenation of label set bits, i.e. ⊕Y π1:π(j−1).
SIM-RF is also equivalent to binary relevance with each
class modeled by a MIL classifier which alternates between
computing support instances and training an RF on them.

MIML-ECC achieves better accuracy than SIM-RF most
of the time. The win-loss count is 4-1 in favor of MIML-
ECC for both transductive and inductive modes. The com-
parison to SIM-RF suggests that the chain structure is
actually critical, and the improved performance of MIML-
ECC compared to prior methods cannot be attributed only
to switching from a linear or kernel SVM classifier to RF.

G. Single Chain vs. Ensemble of Chains

We want to know how much benefit the ensemble provides
compared to a single chain. The results we reported so far
are obtained with L = 20,K = 20, T = 100, i.e., 20 chains
and 100 trees and 20 iterations of support instance updates.
To understand the impact of using mulitple chains with a



Table V
RUNTIME FOR TRAINING AND CLASSIFICATION WITH MIML-ECC, PER

FOLD OF CROSS-VALIDATION OR PER REPETITION (SECONDS)

Mode Carroll Frost Birdsong MSRCv2 VOC
Transductive 104.9 84.4 251.8 304.5 798.0
Inductive 69.4 57.8 135.5 202.8 2895.8

fair comparison, we run MIML-ECC with one chain order
(L = 1), and K = 20, T = 2000, so the total number of
decision trees that vote on an instance label is the same.
Table IV (b) lists results for 1-chain MIML-ECC in the
inductive mode (see Baseline Methods). In this comparison,
MIML-ECC with multiple chains achieves higher accuracy
on all datasets than MIML-ECC with a single chain. These
results suggest that given a fixed time budget, it is better to
have multiple chains, each with less trees, than a single chain
with more trees. Recall that when predicting instance scores
for class j, each chain can only use the presence/absence
of other classes which come before j in the chain. Using
multiple chains with random orders increases the chance that
relevant classes are available for use as context (at least in
some of the chains).

H. Comparison to SISL

SISL methods achieve better accuracy in inductive ex-
periments than MIML instance annotation, ALC and SLL
(Table IV (b)), which is expected because they are trained on
unambiguously labeled instances. This improved accuracy
must be weighed against the greater human effort required
to obtain instance labels compared to bag label sets.

I. Empirical Runtime

Table V lists empirical runtimes for training plus classifi-
cation with MIML-ECC (with L = 20,K = 20, T = 100),
on each dataset, averaged over the number of repetitions
or folds of cross-validation. The runtime is on the order
of seconds or minutes for all datasets. In our experiments,
training is parallelized using threads, and classification is
done sequentially.1

VI. RELATED WORK

Graphical models for MIML sometimes include instance
labels as hidden variables. Inference over these hidden
variables can be used for instance annotation. In addition
to LSB-CMM, some recent examples of graphical models
for MIML include Dirichlet-Bernoulli Alignment [28] and
Exponential Multinomial Mixture model [27]. [29] proposed
MLMIL, a conditional random field for MIML which uses
Gibbs sampling to infer instance labels.

[24] developed a MIML SVM algorithm which uses a
bag-level kernel. Their algorithm predicts instance labels by
applying the bag-level classifier to a bag of one instance.

1Code is C++ compiled with GCC 4.0 (most speed optimizations
enabled). Experiments ran on a Mac Pro with 2x 2.4 GHz Quad-Core Intel
Xeon processor and 16 GB 1066 MHz DDR3 memory, with OS X 10.8.1.

[23] proposed a MIML instance annotation algorithm which
alternates between sampling random instance labels and
training a Semantic Texton Forest (a specialization of RF to
images). [19] proposed a MIML algorithm which alternates
between assigning instance labels and training a maximum
margin classifier. [15] considers the problem of selecting a
set of instances explaining each label, which is different from
instance annotation, where the goal is to label all instances.

Prior work on multi-instance (single-label) learning has
considered the case where instance labels are not inde-
pendent, and encoded instance-label relationships through
a graph [14, 32]. These approaches can be viewed as a
different way to model instance-label correlations.

Several formulations besides the max model have been
used for MIL and MIML to relate instance and bag la-
bels. Different formulations encode different assumptions
about instance labels. One version of the Diverse Density
algorithm for MIL [18] used a Noisy-OR model P (y =

1|B, θ) = 1 −
∏

x∈B

(
1 − P (y = 1|x, θ)

)
. [17] points out

that the max model makes fewer independence assumptions
than the Noisy-OR model, although both generate similar
probabilities in many cases. In later work the EM-DD
[31] algorithm replaced Noisy-OR with max. [21] proposed
Multiple-Instance Logistic Regression, which uses a smooth
softmax approximation to max. [3, 4] used a multi-class
softmax model. [26] propose a model where the bag-label
probability is the average of the instance-label probabilities.

VII. CONCLUSION & FUTURE WORK

We proposed MIML-ECC, an algorithm for context-aware
MIML instance annotation. Experiments on image, audio,
and artificial datasets show that MIML-ECC achieves better
accuracy than other recent algorithms.

MIML-ECC exploits context through correlations, which
can be summarized by statements like “if A is present, B
is also likely to be present.” However, MIML-ECC cannot
exploit a different kind of context, which can be summarized
as “if one A is present, there are likely to be more A’s.” For
example, consider Fig 2. It might be easy to recognize some
of the larger cows in the image, but harder to recognize the
small ones. However, after recognizing one cow, it we might
expect to find more cows. MIML-ECC will not exploit this
kind of context because it can only use information about the
presence or absence of other classes to inform its prediction.
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multiple-instance learning. Advances in Neural Infor-
mation Processing Systems, pages 570–576, 1998.

[19] N. Nguyen. A new svm approach to multi-instance
multi-label learning. In International Conference on
Data Mining, pages 384–392, 2010.

[20] A. Rahimi and B. Recht. Random features for large-

scale kernel machines. Advances in Neural Information
Processing Systems, 20:1177–1184, 2007.

[21] S. Ray and M. Craven. Supervised versus multiple
instance learning: An empirical comparison. In Inter-
national Conference on Machine Learning, pages 697–
704. ACM, 2005.

[22] J. Read, B. Pfahringer, G. Holmes, and E. Frank.
Classifier chains for multi-label classification. Machine
Learning, 85(3):333–359, 2011.

[23] A. Vezhnevets, J. Buhmann, and E. Zurich. Towards
Weakly Supervised Semantic Segmentation by Means
of Multiple Instance and Multitask Learning. In Con-
ference on Computer Vision and Pattern Recognition,
2010.

[24] S. Vijayanarasimhan and K. Grauman. What’s it going
to cost you?: Predicting effort vs. informativeness
for multi-label image annotations. In Conference on
Computer Vision and Pattern Recognition, pages 2262–
2269, 2009.

[25] J. Winn, A. Criminisi, and T. Minka. Object cate-
gorization by learned universal visual dictionary. In
International Conference on Computer Vision, pages
1800–1807, 2005.

[26] X. Xu and E. Frank. Logistic regression and boosting
for labeled bags of instances. Advances in Knowledge
Discovery and Data Mining, pages 272–281, 2004.

[27] S. Yang, J. Bian, and H. Zha. Hybrid Genera-
tive/Discriminative Learning for Automatic Image An-
notation. In Conference on Uncertainty in Artificial
Intelligence, 2010.

[28] S. Yang, H. Zha, and B. Hu. Dirichlet-bernoulli
alignment: A generative model for multi-class multi-
label multi-instance corpora. In Advances in Neural In-
formation Processing Systems, pages 2143–2150, 2009.

[29] Z. Zha, X. Hua, T. Mei, J. Wang, G. Qi, and Z. Wang.
Joint multi-label multi-instance learning for image clas-
sification. In Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

[30] M. Zhang and Z. Zhou. M3MIML: A maximum
margin method for multi-instance multi-label learning.
In International Conference on Data Mining, pages
688–697, 2008.

[31] Q. Zhang and S. Goldman. EM-DD: An improved
multiple-instance learning technique. Advances in
Neural Information Processing Systems, 2:1073–1080,
2002.

[32] Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance
learning by treating instances as non-iid samples. In
International Conference on Machine Learning, pages
1249–1256, 2009.

[33] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li.
Multi-instance multi-label learning. Artificial Intelli-
gence, 176(1):2291–2320, 2012.


