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Abstract. Long-term ecological data are crucial in helping ecologists understand ecosystem function and

environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are

usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods

and spreadsheet software permit rigorous tests of pre-conceived hypotheses and static charts for simple

data exploration, they have limited capacity to provide an overview of the data and to enable ecologists to

explore data iteratively, and interactively, before committing to statistical analysis. These issues hinder how

ecologists gain knowledge and generate hypotheses from long-term data. We present Ecological

Distributions and Trends Explorer (EcoDATE), a web-based, visual-analysis tool that facilitates exploratory

analysis of long-term ecological data (i.e., generating hypotheses as opposed to confirming hypotheses).

The tool, which is publicly available online, was created and refined through a user-centered design

process in which our team of ecologists and visualization researchers collaborated closely. The results of

our collaboration were (1) a set of visual representation and interaction techniques well suited to

communicating distribution patterns and temporal trends in ecological data sets, and (2) an understanding

of processes ecologists use to explore data and generate and test hypotheses. We present three case studies

to demonstrate the utility of EcoDATE and the exploratory analysis processes using long-term data on cone

production, stream chemistry, and forest structure collected as part of the H.J. Andrews Experimental

Forest (HJA), Long Term Ecological Research (LTER), and US Forest Service Pacific Northwest Research

Station programs. We also present results from a survey of 15 participants of a working group at the 2012

LTER All Scientists Meeting that showed that users appreciated the tool for its ease of use, holistic access to

large data sets, and interactivity.
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INTRODUCTION

Facilitated by technological advances, recent

decades have witnessed the proliferation of

complex and large data sets within many fields

of science. In ecology, observations of long-term

change are the key to understanding ecosystem

function and environmental change (e.g., Knapp

et al. 1998, Bowman and Seastedt 2001, Green-

land et al. 2003, Shachak et al. 2004, Magnuson et
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al. 2005, Chapin et al. 2006, Havstad et al. 2006,
Lauenroth and Burke 2008, Redman and Foster
2008, Brokaw et al. 2012). Many ecologists study
population dynamics and associated factors such
as dynamics of seed supply (Silvertown 1980). In
ecosystem and community ecology, long-term
trends in stream water nutrient concentrations
and fluxes from watersheds are used to examine
ecosystem dynamics, such as retention and flux
of nutrients and atmospheric pollutants (Likens
and Bormann 1995). Similarly, long-term data on
plant succession are used to analyze temporal
changes in community composition, structure,
biomass and nutrients (e.g., Foster and Aber
2004).

Long-term ecological studies commonly in-
volve a variety of data sets and hypotheses, but
the analysis usually follows three main steps: (1)
collect ecological and hopefully relevant environ-
mental data; (2) plot and observe overall distri-
butions, temporal trends, and correlation of
variables in typical charts such as static histo-
grams, line charts, and scatter plots; and (3) use
statistical tests to confirm or refute the initial
hypotheses. This approach may work well when
the number of variables is small and interesting
hypotheses can be preconceived. However, when
the number of variables is large, multiple subsets
of data are involved, and/or hypotheses are not
well pre-established, moving between static
charts and statistical tests (often in different
software packages) can become unwieldy, slow,
and a limiting method of data exploration.
Furthermore, when data sets span many decades,
it is likely that the hypotheses and objectives
under which a study began evolve as a result of
unforeseen trends as well as changes in the
knowledge and perceptions of the scientists who
work with or inherit the data and experiments.
Thus, exploration of new or alternative hypoth-

eses is an inherent part of long-term studies. By
data exploration, we mean getting acquainted
with data, detecting and describing patterns,
trends, and relationships in the data while
incorporating the user’s wisdom, knowledge,
and intuition (Tukey 1977, Andrienko and
Andrienko 2006). In other words, the exploration
process usually involves hypothesis generation
as opposed to hypothesis testing, decision-mak-
ing, scientific modeling, or theory development.

Interactive visualizations of data, when com-
bined with traditional analysis approaches, offer
the potential to facilitate exploratory data anal-
ysis, provided that the charts and interactivity
fulfill the analytical needs of ecologists and are
well suited to characteristics of long-term data.
Such an interactive visualization would serve as
an effective user interface for ecologists to explore
data directly, formulate and refine hypotheses,
and discuss their findings with others, prior to
further statistical analysis (Fig. 1). Such a tool
would be also useful for quickly detecting
erroneous or missing values in the data as part
of the data cleansing process. In addition, it is
often much easier to detect outliers during the
data cleansing process by inspecting the data in a
visual representation as opposed to a tabular
form (Anscombe 1973). Nevertheless, while
typical static charts such as histograms, scatter
plots, and line charts have been used by scientists
to explore distribution patterns and temporal
trends in individual variables, little work has
been done to develop interactive visual-analysis
tools that support rapid exploration of large,
multivariate, and long-term data. The paucity of
tools also hinders understanding of potentially
different strategies and processes whereby scien-
tists gain knowledge and generate hypotheses
from long-term data.

We have developed the Ecological Distributions

Fig. 1. The visualization driven exploratory analysis process the EcoDATE tool aims to support. Each rectangle

represents a subprocess and each arrow represents a direction the user can take to go through the process.
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and Trends Explorer (EcoDATE), a web-based
visual-analysis tool that facilitates the collabora-
tive visual inspection of the distribution patterns
and temporal trends of long-term ecological data
(Fig. 2). It was refined and evaluated using the
user-centered design approach (Shneiderman
and Plaisant 2006, Rogers et al. 2007) in which
ecologists worked closely with visualization
researchers during all stages of the development
process from assessing analytical needs to test-
ing. The tool, which is readily available at http://
purl.oclc.org/ecodate, supports multiple chart
views and a wide range of interaction features
involving collaboration among multiple users.

It is important to note that EcoDATE provides a
means of exploring data using information
visualization (InfoVis) rather than the scientific
visualization (SciVis) approach. While there is
not always a clear boundary between the two
fields, they differ in the characteristics of the data
analyzed and the corresponding data represen-
tations. InfoVis tends to deal with interactive
displays of abstract data that do not have natural
mappings to 2D or 3D space, such as counts of

insects, cone production, or vegetation cover
collected over time (Spence 2007). SciVis con-
cerns data that has a natural mapping to two- or
three-dimensional space and the visualizations
usually involve the physical properties of the
data, such as rendering of multiple layers of trees
in a forest from LiDAR data (Spence 2007,
Cushing et al. 2012).

This paper describes the development and
initial application of the tool to three large, long-
term data sets: cone production (Jones and
Franklin 2012), stream chemistry (Johnson and
Fredriksen 2012), and forest structure (Harmon
and Franklin 2012) collected as part of the H.J.
Andrews Experimental Forest (HJA), Long Term
Ecological Research (LTER), and US Forest
Service Pacific Northwest Research Station pro-
grams. We describe how ecologists have used
this tool to overview these datasets, examine and
compare distributions and temporal trends, and
generate and share hypotheses with others (Fig.
1). We also describe an evaluation of the tool in a
working group at the 2012 LTER All-Scientists
Meeting (http://asm2012.lternet.edu/).

Fig. 2. The EcoDATE interface for the cone production data set opened in a browser window. On the left is the

multiple histogram view of observations of Abies grandis trees (grand fir) sampled at Peterson Prairie in the

Gifford Pinchot National Forest, Washington, USA. Ecologists used this view (1) to inspect the distributions of

this sample with respect to the variables of interest and (2) to generate multiple line series of average cone count

over time for multiple sets of trees. The time-series line chart (right view) shows the high degree of synchrony of

cone production among 14 individuals of Abies grandis. It suggests that cone production of Abies grandis occurs on

a biennial cycle but skipped several years, for example, 1969–1970 and 1972–1973, perhaps due to climate factors.

Tree 41 (red line) shows very little cone production from 1973–1992, and then a stress crop in 1993, just before the

tree died.
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PROBLEM CHARACTERIZATION

Here we characterize the analytical needs of
ecologists approaching long-term ecological data.
These needs are prerequisites for understanding
if and how visual analysis can enable insight and
discovery.

Long-term ecological research and data
Our study was structured around the central

research questions of the HJA LTER program
(http://andrewsforest.oregonstate.edu/): (1) how
do land use, natural disturbances, and climate
affect three key ecosystem properties: carbon and
nutrient dynamics, biodiversity, and hydrology
and (2) how do these relationships change over
time and space? The focus of this work is not to
answer these questions but rather to develop a
visual-analysis tool to help ecologists approach
these questions. To demonstrate the utility of the
tool and the data exploration process, we selected
three long-term data sets that represent the three
major ecological components of biodiversity,
carbon, and hydrology.

Cone production data.—Conifer trees commonly
dominate the forests in which they occur. Seed
production by conifers is not only critical to tree
reproduction, but also a vital food resource for
many organisms. Since readily-observed cone
production is an index of seed production, the
history of cone crops gives clues to roles of
endogenous (physiological) versus exogenous
(climate) factors regulating cone and seed pro-
duction. For instance, cone production is known
to be cyclical as well as responsive to climate and
local environmental conditions (Franklin 1968).

In the Cascade Range of Oregon and Wash-

ington (USA), ecologists have collected data on
cone production of upper-slope conifers at 37
locations across 10 national forests every year
over a period of 53 years (from 1959 to 2011)
(Franklin 1968). The data set has been difficult to
analyze because it is large (45,704 observations)
and contains many sampled trees (934 distinct
trees of 9 species), some of which died or could
not be found again, and others were added to
replace those lost (Table 1).

Stream chemistry data.—For the past 50 years,
small watersheds have been a major setting for
ecosystem studies based on long-term records of
inputs and outputs (Martin and Harr 1988, 1989,
Likens and Bormann 1995). Ecologists have
assessed aspects of ecosystem dynamics, such
as retention of nutrients and atmospheric pollut-
ants in response to natural and management
disturbances of vegetation, growth of vegetation,
and chemical inputs to the ecosystem. Stream
chemistry sampling and analysis was initiated in
two small watersheds within HJA in 1968. Over
time, sampling expanded to eight gauged water-
sheds. Water samples are collected automatically
as a function of stage height and flow and
composited at stream gauging sites. Analytes
include dissolved and particulate nitrogen, phos-
phorus, carbon, as well as pH, conductivity,
suspended sediment, and a full suite of cations
and anions (Table 2).

Forest structure data.—In a study of long-term
forest development, ecologists are studying
temporal changes in the structure and composi-
tion of unmanaged Douglas-fir (Pseudotsuga
menziesii ) forests (Harmon and Franklin 2012)
that established after a stand-replacing wildfire
disturbance. The analysis is based on records
collected from 21 permanent plots at eight

Table 1. Structure of the cone production data set (Jones and Franklin 2012). Each record described by the

following variables represents a cone count observation of a particular tree sampled at a particular plot in a

particular year. Each plot falls within a location which is situated in a national forest.

Variable name Type Description

SPECIES nominal Species code
TREE_NR nominal Tree number, unique for plot
FOREST nominal/spatial National forest code
LOCATION nominal/spatial Location code (within forest)
PLOT nominal Unique plot number (within location)
YEAR ordinal/time-based Sampling year
CONE_COUNT quantitative Number of cones
DBH quantitative Diameter at breast height
STATUS nominal Status of tree (live, dead, missing)
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locations along the Pacific Coast and the Cascade
Mountains in western Oregon and Washington.
The plots were established between 1910 and
1940, when the forests ranged from 42 to 72 years
of age, for the purpose of tracking growth and
timber yield of young Douglas-fir forests; in the
1970s forest ecologists began to study forest
succession in these plots. Of the 21 plots, 17 are
still being measured at regular intervals, provid-
ing a data record of up to 100 years on rates of
tree growth, trajectories of stand productivity,
and the processes and patterns associated with
tree mortality, growth, and regeneration. The
plots are part of a larger network of long-term
plots maintained through the Pacific Northwest
Permanent Sample Plot program (PNW-PSP)
(Acker et al. 1998) (Table 3).

In summary, long-term ecological data sets are
characterized by their large size (thousands of
records) and their complexity in terms of the
multiple biotic and abiotic variables (e.g., loca-
tion, elevation, temperature, and rainfall) of
varying types (e.g., quantitative, nominal, and
ordinal) that are sampled through time. These
characteristics—multivariate, geospatial, and
connected through time—make them good can-
didates for visualization. In this paper, we focus
on observational and experimental data and
exclude modeled or real-time ecological data
(e.g., continuous stream data from sensors).

Visual analytical needs of ecologists
From the information visualization perspec-

tive, each of the three long-term ecological data

Table 2. Structure of the stream chemistry data set (Johnson and Fredriksen 2012). Each record represents a

monthly stream chemistry property collected and aggregated at a particular location in a particular month of a

year.

Variable name Type Description

SITE_CODE nominal Gaging station site code
WATERYEAR ordinal/time-based Water year (October–September)
YEAR ordinal/time-based Calendar year
MONTH ordinal/time-based Month
Q_AREA_MO quantitative Total monthly streamflow
ALK_OUT_MO quantitative Total monthly alkalinity outflow as HCO3-C
SSED_OUT_MO quantitative Total monthly suspended sediment outflow
SI_OUT_MO quantitative Total monthly silica outflow
TDP_OUT_MO quantitative Total monthly total dissolved phosphorus outflow
PO4P_OUT_MO quantitative Total monthly ortho phosphorus (PO4-P) outflow
TDN_OUT_MO quantitative Total monthly total dissolved nitrogen outflow
DON_OUT_MO quantitative Total monthly dissolved organic N outflow
NO3N_OUT_MO quantitative Total monthly nitrate-nitrogen (NO3-N) outflow
NA_OUT_MO quantitative Total monthly sodium outflow
K_OUT_MO quantitative Total monthly potassium outflow
CA_OUT_MO quantitative Total monthly calcium outflow
MG_OUT_MO quantitative Total monthly magnesium outflow
SO4S_OUT_MO quantitative Total monthly sulfate-sulfur (SO4-S) outflow
CL_OUT_MO quantitative Total monthly chloride outflow
DOC_OUT_MO quantitative Total monthly dissolved organic carbon outflow

Table 3. Structure of the forest structure data set (Harmon and Franklin 2012). Each record represents an

observation of trees in terms of basal area, density, and biomass sampled at a particular location in a particular

year.

Variable name Type Description

STANDLOC nominal Stand location
STANDID nominal Stand identifier
AGE ordinal Stand age
SPP nominal Species code
ELEV_M quantitative Elevation (m)
L_BAPH quantitative Basal area of live trees (m2/ha)
L_TPH quantitative Density of live trees (no. trees/ha)
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sets presents a challenging multivariate visuali-
zation problem. Employing the user-centered
design approach—which we describe later in
the Design and Implementation of EcoDATE
section—we have identified the general require-
ments for a visual-analysis tool targeting ecolog-
ical long-term data with an emphasis on
distributions and temporal trends. Specifically,
the tool should enable users to do the following:

Requirement 1 (R1): distribution patterns.—See
and relate distributions of variables simulta-
neously and iteratively without making assump-
tions about their shapes. In doing so, the tool
should also allow users to repetitively filter data
to specific subsets and compare them. In addi-
tion, the tool should be able to handle large data
sets (thousands of records).

Requirement 2 (R2): temporal trends.—See tem-
poral trends of variables and compare these
trends iteratively across space and species. For
example, for the cone production data set,
ecologists are interested in the patterns and
relative strengths of synchronicity of cone pro-
duction across time, space, and species. There-
fore, in this example, the tool should enable
ecologists to isolate time-series for different sets
of trees of interest and to use an appropriate
chart that supports time-oriented data to com-
pare these series.

Requirement 3 (R3): collaboration.—Keep track of
findings at any stage of visualization, share
findings with other users, and invite others to
build on or modify the visualizations. Scientists
and educators may also use the tool to teach
students about data exploration in general, and
their exploratory process in particular.

Requirement 4 (R4): usability.—Learn to use the
tool quickly and easily. From our experience,
users of the tool may have varying levels of
comfort with computer applications. Therefore,
the tool should be simple and easy to use.

EXISTING VISUALIZATION SOLUTIONS

The design of the EcoDATE tool was informed
by related work on visual representation tech-
niques and visual-analysis tools, including those
currently employed by ecologists. In this section,
we assess their applicability to exploring long-
term ecological data, with regards to the four
design requirements (R1–R4).

Visual representations for ecologists
A visual representation or chart type deter-

mines how data are represented or visualized.
Along with interaction features, visual represen-
tation techniques serve as the primary compo-
nents in visual analysis tools that we assess here.
Ecologists typically employ standard 2D/3D
displays as classified by Keim (2002). Examples
include histograms, boxplots, and scatter plots.
They effectively support tasks such as inspecting
distributions, outliers, clusters, and correlations
over one or two variables (Seo and Shneiderman
2005) (support of R1). Ecologists use rank/
abundance plots (Whittaker 1965) to visualize
species abundance and diversity (support of R1).
Ecologists commonly represent time series data
as a line chart in which time is presented as a
linear, ordered x-axis and data cases are plotted
by their time values (Aigner et al. 2007) (support
of R2). The EcoDATE tool incorporates existing
standard displays commonly used by ecologists,
such as multiple histograms and time-series line
charts, into a user-friendly interface and aug-
ments them with appropriate interaction fea-
tures.

Visual analysis tools for ecologists
A visual analysis tool facilitates data analysis

with visual representations and interactive fea-
tures. To the best of our knowledge, little work
has been done to develop visual analysis tools
specifically for analysis of distributions and
temporal trends in long-term ecological data.
Here we discuss the merits of four types of tools
used by ecologists that contain visual analysis
components: (1) widely used software packages
such as spreadsheet programs and statistical
software packages; (2) specific tools for particular
calculations (e.g., estimates of species diversity,
calculation of primary productivity); (3) data
repositories or portals; and (4) workflow man-
agement systems (e.g., Kepler). O’Donoghue et al.
(2010) provide an overview on visualization of
biological data.

Ecologists often use charting components in
spreadsheets and statistical software packages
for visual analysis prior to statistical analyses;
these tools permit quick and simple visual
inspection and they are easy to learn (support
of R4). However, these tools lack interactive
capacity, for instance, they do not readily permit
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iterative subsetting and replotting of data, which
are essential steps in hypothesis formulation
(Andrienko and Andrienko 2006) (lack of inter-
activity for R1 and R2).

A second group of tools includes software
designed for specific types of ecological data
analysis, such as estimation of species diversity
and abundance (Colwell 2010) or simulation of
hydrologic models with input data (Rink et al.
2012). These tools provide rigorous statistical
tests and modeling techniques to answer specific
scientific questions, for example, what is the
species richness of dataset A? Or what data
should be used to define parameters for hydro-
logic model B? However, these tools do not
support exploration of distribution patterns and
temporal trends with interactive charts (lack of
R1 and R2). Therefore, we do not consider these
tools further.

A third type of visual analysis tool is ecological
data repositories or portals that support collec-
tion, archival, and synthesis of long-term data
from multiple sites, for example, EcoTrends
(Servilla et al. 2008, Peters et al. 2011) and Clim-
DB/Hydro-DB (Henshaw et al. 2006). These web-
based portals are usually equipped with static
visual representations such as line charts for
simple and quick visual exploration of temporal
trends in existing long-term data sets (partial
support of R2). Although these tools may have
limited capacity for subsetting, they are not
designed to support distribution patterns in
multiple attributes (lack of R1), interaction
features (lack of interactivity for R1 and R2), or
collaboration features (lack of R3).

A fourth class of software tools for visual
analysis is designed to support ‘‘workflows,’’ i.e.,
the analysis process of scientists (support of R3),
such as Kepler (Ludäscher et al. 2006) and
VisTrails (Callahan et al. 2006). Although these
tools are powerful and potentially useful to
ecologists, they require customization and pro-
gramming to fit the specific analytical needs of
ecologists, especially with respect to visual
representations and interaction features (lack of
R4). Therefore, these tools may be more suitable
for information managers who have expertise in
managing data in repositories and who help
ecologists with data pre-processing tasks such as
data gathering and cleansing.

General visualization tools
In addition to tools developed by and for

ecologists, a wide range of information visualiza-
tion tools is available that, to some extent, meet
the design requirements for ecologists (Roberts
2007, Heer and Agrawala 2008, Heer and Shnei-
derman 2012). For example, software systems
such as Tableau (http://www.tableausoftware.
com/) and Spotfire (http://spotfire.tibco.com/)
are dedicated visual analysis tools, as distin-
guished from charting components in spread-
sheet or statistical tools. They provide pre-
defined chart types and a variety of controls
for interacting with data, for example, to subset
data (support of R4). They also support multiple,
coordinated views; and users can publish and
share visualization dashboards as interactive
Web pages (support of R3). However, these
applications are not necessarily tailored to
specific analytical needs of ecologists (lack of
R1 and R2). For example, ecologists may want to
discretize quantitative variables interactively to
reveal different distribution features of the data
(R1). Also, ecologists may want to repeatedly
generate subsets of time-series data and plot
them in a line chart in order to examine temporal
trends (R2).

THE ECODATE TOOL

A visual analysis tool consists of (1) represen-
tations (i.e., charts, graphs) and (2) interaction
features (i.e., subsetting, bookmarking, etc.). The
various types of interaction features can be
described using a classification system for visual
analysis tasks proposed by Heer and Shneider-
man (2012). The classification consists of three
high-level categories of task types: a user makes a
set of decisions about types of charts and
organization of data (data view and specification),
how to manipulate the visualization views (view
manipulation), and how to reproduce and share
the visualizations ( process and provenance). The
representations and interaction features of Eco-
DATE are outlined following this classification
system (Table 4) and discussed based on the four
design requirements presented earlier (R1–R4).

The EcoDATE interface (Fig. 2) supports
multiple views (or windows) each of which can
be manipulated (select, drag and drop, resize,
and close). While the interface is web-based, its
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look and feel is similar to a desktop interface that

is familiar to users (support of R4).

Chart types

The current version of EcoDATE (ver. 1.0)

supports two widely used chart types: multiple

histograms and a line chart. Coordination be-

tween views of these chart types loosely follows

the master/slave relationship (Roberts 2007), in

which the master views of multiple histograms

are used to query/retrieve data and to generate

line series for line charts. Other than that, views

are independent from each other.

Multiple histograms.—The purpose of this rep-

resentation is to show distributions of multiple

variables, which permit the user to identify and

Table 4. Interaction techniques supported by the EcoDATE tool. Each of the techniques is designed to facilitate

specific analytical needs of ecologists. Most of the techniques (if not explicitly noted) are applied to the multiple

histogram views. The classification is adapted from Heer and Shneiderman (2012).

High-level
category Task type EcoDATE’s features Specific analytical needs of target users

Data and view
specification

Visualize Choose among multiple histograms
and line charts

Inspect distributions of variables with
multiple histograms and temporal
trends with time-series line charts

Filter (or Subset) Filter data based on selection of bins Examine different data subsets or
samples of observations

Sort/Reorder Sort bins within a variable by names
or by abundances

Organize the data according to a
familiar unit of analysis (e.g., rank
species from rare to common)

Reorder variable axes Group axes by their common or user-
defined characteristics (e.g., group of
covariate/response variables)

Derive Discretize quantitative variables Experiment with different discretization
settings (e.g., isolate specific range of
interest) to reveal different features of
the data

Group/ungroup bins within a
variable

Group outliers or similar variable
values to fit users’ hypotheses (e.g.,
group species of the same genus or
family)

Scale (normalize) bins’ abundances Accommodate data sets with different
distributions

View Manipulation Select/Highlight Select or highlight a view, axes, bins,
or line series

Select or highlight elements of interest
for other operations, such as filter,
sort, derive

Navigate Navigate and control views/
windows using the top menu bar
and the bottom status bar

Know where and how to navigate
views

Coordinate Duplicate multiple histogram views Compare data subsets side-by-side
Use multiple histograms as a query

builder to construct series data for
line charts

Construct multiple line series and
compare them

Organize Open, close, resize, and layout views Manage views for comparison or
effective presentation to others

Show/hide error bars in line charts Access additional information on
demand

Process and
Provenance

Record Log user interactions Undo/redo actions, reproduce states
step-by-step. These features are
reserved for future work.

Annotate Color axes and Label line series Distinguish among axes or line series
based on their common or user-
defined characteristics

Share Bookmark visualization states Revisit/share visualization states with
others for collaborative and iterative
exploration of data

Export view data Analyze data further with statistical
tools

Guide Display data tips for menu bars,
axes, bins, and line series

Guide users through menu items and
provide additional information on
highlighted items
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interactively specify subsets of data (support of
R1). Like previous work, this multiple histogram
representation presents variables in a parallel
axis layout (Hauser et al. 2002, Pham et al. 2011).
Histograms are placed vertically side-by-side,
one histogram for each variable, as opposed to
horizontally. In these views, the bars extend to
the right (in contrast to the familiar upward-
extending display). A vertical arrangement of
histograms allows more variables to fit in wide-
screen displays and facilitates the placement and
reading of labels from left to right, as shown by
an example of a subset of the cone production
data set (Fig. 2, left view). The ecologist user can
duplicate multiple histogram views to compare
data subsets side-by-side. Continuous numerical
variables are discretized into bins to plot relative
frequency. That is, the length of each bar is scaled
according to l(x) ¼ jxj/jxMAXj where jxj denotes
the number of observations in bin x, and xMAX is
the bin with the most observations for the
variable in question.

Line chart.—The purpose of this representation
is (1) to show overall trends in a continuous, real-
valued variable, such as cone production or tree
density, over the sampling period of interest; and
(2) to support comparison of values of the
variable at different time points or intervals
(support of R2) and across multiple samples. In

line charts, ordinal variables such as time are
presented as a linear ordered axis, x-axis, and
values at each point in time are plotted along the
y-axis. For example, Fig. 2, the right view depicts
multiple line series of average cone count over
time for multiple sets of trees in the cone
production data set. Optionally, users can display
error bars as standard errors or standard
deviations on the line series (Fig. 3).

Interaction features
The EcoDATE tool supports a wide range of

interaction features (Table 4). We extend our
description of a subset of prominent features
here, emphasizing its utility in the context of the
distributions and trends analysis.

Subsetting/filter.—Given an overview of data
distribution in multiple histogram views, ecolo-
gists often want to shift their focus repetitively
among different subsets or samples of observa-
tions, for example, to examine distributions of
species at different locations. Ecologists also want
to generate subsets of data for other representa-
tions, such as a line chart. Subsetting or filtering
operates on selected bins. A filter ‘status’ bar at
the bottom will show the filter query for the
currently selected view (see Fig. 2). To construct a
complex filtering query consisting of multiple
bins, we follow a simple and commonly used

Fig. 3. Line series of average cone production from Pinus species (pine trees) from 1962–2011 showing a

declining trend. Users can select to display error bars as standard errors or standard deviations on the line series.

Users can place the mouse pointer over the data points on the line series for additional information.
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rule articulated by ecologists: bins within a
variable are connected by the ‘‘OR’’ condition,
whereas groups of filtered bins across variables
are connected by the ‘‘AND’’ condition. For
example, the left view of Fig. 2 visualizes a
subset of observations filtered by Abies grandis
trees (grand fir) AND sampled at Peterson Prairie
in the Gifford Pinchot National Forest, Wash-
ington, USA (see the bottom bar for the query).
Users can also inverse (or exclude) the query to
obtain the complement of a subset. To some
extent, multiple histogram views can be used to
quickly and visually construct a query (as
opposed to typing a query command) (support
of R1).

Sort/reorder.—Users can sort bins within a
variable by names or by abundances (support
of R1). The goal is to organize the data according
to a familiar unit of analysis, for example, species
ranked from rare to common. They can also
reorder variable axes according to common or
user-defined characteristics of variables. For
example, they might group a set of covariate/
response variables or create groups of nominal
(e.g., species, habitat), ordinal (e.g., sampling
month, year), or quantitative (e.g., cone count,
basal area) variables.

Derive.—In many cases, to examine different
data distribution settings, ecologists wish to
generate derived data such as discretized quan-

titative variables or groups of bins. While they
can do so prior to importing data for visual
analysis, moving between tools disrupts the flow
of the iterative exploration process (Elmqvist et
al. 2011). Using EcoDATE, ecologists can discre-
tize quantitative variables, based on their knowl-
edge of ecology, without leaving the application
(support of R1). EcoDATE allows ecologists to
flexibly experiment with discretization settings
by specifying the range of interest and bin size
(see Fig. 4). In addition, for categorical variables,
similar to discretization, ecologists can group or
ungroup bins within a variable based on their
hypotheses (support of R1). For example, they
can group species based on their rarity or their
functional groups. For example, ecologists ex-
ploring the forest structure data set may wish to
select and group species such as western hem-
lock (Tsuga heterophylla), western redcedar (Thuja
plicata), Pacific yew (Taxus brevifolia), and bigleaf
maple (Acer macrophyllum) into a group of shade-
tolerant species before comparing it to Douglas-
fir.

Share.—Collaborators are often geographically
dispersed with the physical distance and time
differences making collaborative exploration dif-
ficult. Using the EcoDATE tool, ecologists can
discuss and share findings with collaborators by
bookmarking visualization states (e.g., Fig. 2) as
unique web URLs (support of R3). These

Fig. 4. Discretization settings for variable CONE_COUNT. Ecologists can narrow the range of interest for this

variable to [1, 301] and specify a bin size of 10. The result will automatically include two separate out-of-range

bins for [0, 1) and [301, 5001) as shown in Fig. 2 (left view, the CONE_COUNT histogram).
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bookmarks can be easily shared via email or
embedded to the user’s notes, serving as a
common ground for discussions among collabo-
rators.

The implementation of bookmarking in Eco-
DATE stores ‘‘snapshots’’ of visualization states
(e.g., Fig. 2) including aggregated static data (for
bins and line series) as opposed to providing
dynamic access to the most current data (Heer et
al. 2008b). This implementation decision is based
on the understanding of characteristics of large
ecological data sets. The data are usually static
and the analysis process involves inspecting
distributions or trends of observations as aggre-
gation of data as opposed to individual data
points. Because EcoDATE stores only aggregated
data, the storage cost is efficient and the loading
time of visualization states is fast.

DESIGN AND IMPLEMENTATION

User-centered design with ecologists
A close collaboration between ecologists and

visualization researchers was critical for design
and integration of the EcoDATE tool into the
ecologists’ analysis process. We employed a user-
centered design approach, specifically, participa-
tory design (Shneiderman and Plaisant 2006,
Rogers et al. 2007), in which the ecologists were
included as part of the design team. User-
centered design is both a philosophy and a
process in which the needs, desires, and limita-
tions of the target users (e.g., scientists) are
considered very closely at every stage of the
design process (establishing requirements, de-
sign, implementation, evaluation). The process
has involved three ecologists and two visualiza-
tion researchers, who are co-authors on this
paper.

Our participatory design process was iterative,
required group design sessions over many
weeks, and involved a variety of tools for
assessment of user performance and tool usabil-
ity such as observations, interviews, log books,
and automated logging of user interactions
(Shneiderman and Plaisant 2006). In addition,
the visualization researchers engaged with the
ecologists to the point of becoming assistants in
the process of data exploration. We used email
communications to share and discuss visualiza-
tion state bookmarks. We set up weekly one-hour

meetings between a visualization researcher and
an ecologist in the ecologist’s workplace for
several months. Finally, during the development
process, we also collaborated with information
managers, who manage the ecological data
repository of the HJA LTER site. They helped
clean data, explained the structure of data sets,
and gave feedback on the EcoDATE tool.

Implementation
The EcoDATE tool is a web-based database

application implemented following the client–
server architecture. In this section, we describe
the client and server components of the tool and
justify our choice of the architecture.

Client.—The client side of EcoDATE is respon-
sible for representing processed data from the
server–that is, representing multiple histogram
views and line charts, laying out views and
menus, and communicating user interactions
with the server. We developed the EcoDATE
client interface with Flex 3, which is an open-
source framework by Adobe for creating Flash
rich internet applications.

Server.—Data sets are stored and managed
with the MySQL database management system
(DBMS). In addition, we rely on the program-
ming languages of PHP (Hypertext Preprocessor)
and SQL (Structured Query Language) to handle
requests from the client. Specifically, the server is
responsible for all data-related logic and compu-
tation, such as retrieving and manipulating
ecological data, building and maintaining data
structures of visualization states, and logging
interactions. This client-server model was a
natural choice considering that most of the
ecological data repositories are structured and
stored in a DBMS (Henshaw and Spycher 1998).

Metadata are another distinctive property of
scientific data in general, and ecological data sets
in particular. While generated to aid analysis,
metadata present another challenge to data
visualization. Specifically, the key variables de-
scribed in Tables 1, 2, and 3 were supplemented
with additional information about the variable
such as descriptions of SPECIES or LOCATION.
Technically, the metadata tables need to be joined
with the primary data table to form the data set
for use in the EcoDATE tool.

Our implementation approach can handle
large data sets. Feedback on performance from

v www.esajournals.org 11 September 2013 v Volume 4(9) v Article 112

PHAM ET AL.



ecologists indicates that it is highly responsive for
all three data sets of interest on a typical desktop
PC. From our tests, heavy interactions such as
filtering usually respond in a few seconds
provided a high-speed internet connection.

EVALUATION

One of the most effective ways of evaluating an
information visualization tool is through long-
term case studies of target users exploring real
world data sets using the tool (Shneiderman and
Plaisant 2006). In this section, we evaluate
EcoDATE by three case studies, one for each of
the three data sets: cone production, stream
chemistry, and forest structure. Further, we
discuss the results from the evaluation of the
tool during a working group meeting at the
LTER All Scientists Meeting in 2012.

The objectives of the case studies are (1) to
demonstrate the utility of EcoDATE for ecologists
and (2) to describe how use of the tool reveals
how scientists analyze data, both individually
and collaboratively, and provides scientists with
hypotheses that can be tested outside the tool
(Fig. 1). Each of the case studies involved
multiple observations of ecologists (co-authors
of this paper) in multiple work sessions in
normal environments (i.e., offices) during which
they used the EcoDATE tool to explore the three
data sets.

Cone production data case study
The primary objective of this case study is to

demonstrate the utility of EcoDATE in terms of its
supported visual representations and interaction
techniques. The design of EcoDATE followed
closely the Visual Information Seeking Mantra, the
widely accepted visual design guideline pro-
posed by Shneiderman (1996): ‘‘overview first,
zoom and filter, then details on demand’’. This
mantra suggests that when the user seeks
information from a data set, a tool should allow
the user to start first with an overview of the
entire data set, then to subset the data (filtering
and zooming), and ultimately to get additional
fine details as needed.

Summary of information needs.—According to
the design requirements, the ecologist user was
interested in two key aspects of the cone
production data set. First, she wanted to see the

overall distribution of samples in time and space
(geographic and environmental) and to be able to
relate multiple distributions simultaneously and
iteratively. Second, she was interested in the
patterns and relative strengths of synchronicity
of cone production variation across time, space,
and species.

Overview.—The initial multiple histogram view
helped the ecologist quickly assess the numbers
of sampled trees by species and their distribu-
tions across locations and years. She also
detected that the range for CONE_COUNT
(number of cones per tree) was large (0–5000)
and its distribution was positively skewed with
very few high values. To examine the number of
trees that produced no cones (observations with
zero cone count), she was able to use the
discretization settings (Fig. 4) to derive (Table
4) new bins that displayed the numbers of trees
with zero cones (Fig. 2, left view, the CON-
E_COUNT axis).

Filtering/subsetting.—After inspecting the over-
view, the ecologist focused on a specific location,
in this case, the Gifford Pinchot National Forest
(GP), Washington, USA. This forest was of
interest because of its complex topography and
proximity to Mount St. Helens, whose 1980
eruption may have affected cone production
history. First, she filtered the data by bin ‘GP’
in the ‘FOREST’ variable. While she could select
and filter multiple bins at once, she preferred first
to inspect the distribution of all cone production
observations (i.e., all species) in the GP. Then she
filtered the data to examine cone production for
Abies grandis (grand fir, ABGR) only. Abies grandis
was of interest because it is a common species in
mixed conifer forest communities. The view of
the new subset helped the ecologist discover that
the sampling process was not consistent over
time: trees were sampled starting in 1963, but
because of gradual, cumulative mortality, the
sample size declined over time, so new trees
were added in 1995 (Fig. 2, left view, the YEAR
axis). She was then able to further filter the data
to examine cone production in individual trees
with long-term cone production records, as well
as to examine mortality at tree, plot, species, and
regional scales.

Details on demand.—While inspecting the dis-
tribution of the subset of interest (cone produc-
tion in Abies grandis at the GP), the ecologist
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wanted to compare trends of cone production
between trees that died and those that were
added to replace them. Tree status (health)
during the study period was important because
tree health, morbidity, and mortality affect cone
production. For example, stand-level cone pro-
duction may depend on tree-level processes,
including stress crops from dying individuals,
insect attacks, and partial wind damage. Using
EcoDATE, she was able to identify and plot the
trees that were sampled for subsets of the record,
which produced a visualization of cone produc-
tion in trees that died and trees that were added
to replace them. Specifically, to identify trees that
were not sampled throughout the entire study
period, the ecologist sorted trees (i.e., variable
TREE_NR) by the numbers of years of observa-
tion. After sorting, she selected trees that had less
than a certain number of observations (Fig. 2, left
view, the TREE_NR axis) and added data for
each of the selected trees as a line series into the
YEAR-CONE_COUNT line chart (Fig. 2, right
view).

The time-series line chart (Fig. 2, right view)
helped ecologists quickly formulate hypotheses
that the trees of interest produced cones in
synchrony (timing and magnitude) on a biennial
cycle, but skipped several years, for example,
1969–1970 and 1972–1973, suggesting the hy-
pothesis that some external factor or event may
have disrupted the biennial cycle. The view also
shows multiple trees that were added to the plot
in 1995. In addition, the visualization allowed a
discovery that trees that died sometimes pro-
duced ‘‘stress crops’’ just before dying: tree 41
(red line) shows very little cone production from
1973–1992, and then a stress crop in 1993, just
before the tree died. In all, while the ecologist
found no evidence of an effect of the 1980
eruption of Mount St. Helens on cone production
history, her exploration led to other interesting
scientific discoveries that she did not anticipate
before using the visualization.

Note that while this sequence of actions
demonstrates a single exploration path, the tool
supports pursuit of multiple paths simultaneous-
ly and iteratively. For example, the ecologist
repeated the process and retrieved the data
subset for all ‘PINUS’ or pine trees (Fig. 3). The
time-series line chart for this subset revealed a
declining trend of average cone production of

Pinus spp. from 1962–2011, suggesting the
hypothesis that tree aging, mortality, or expan-
sion of influence of a pest/pathogen may be
contributing to declining cone production.

Sharing and further analyses.—Satisfied with her
findings, the ecologist bookmarked the current
state of the visualization (as shown in Fig. 2) as a
URL and emailed the link to her collaborators
with a description of her findings. She also
exported the data subsets and pursued further
analysis using existing statistical tools (e.g.,
Pearson’s correlation test to quantify the correla-
tion between multiple line series with respect to
sampling years).

Case study summary.—Using EcoDATE, the
ecologist became acquainted with the cone
production data and the tool and developed a
concrete analysis plan, which, to her, had been
vague or possibly subconscious before. Specifi-
cally, EcoDATE provided a holistic overview of
the observations of interest and helped the
ecologist build a mental model of how multiple
variables were distributed in the entire data set.
This model helped the ecologist to formulate
actions such as filter/subset queries, and explore
the data broadly and deeply.

Stream chemistry data case study
The objective of the next case study is to

illustrate the process of using EcoDATE to gain
insights into data and to generate hypotheses.
Following her experience with EcoDATE and the
analysis of the cone production data, the ecolo-
gist was more aware of the exploration paths that
she would take. From our observations, the
ecologist followed a hypothesis generation pro-
cess that can be summarized as three main tasks
(Fig. 5): (1) specify visualization views (e.g., filter,
sort, reorder, derive data), (2) characterize views
(e.g., distribution patterns and temporal trends),
and (3) gain insights and generate hypotheses. The
process is highly iterative with multiple rounds
of exploration, guided by discoveries in each
round and by the ecological knowledge of the
user.

Summary of information needs.—Exploring the
stream chemistry data set, the ecologist wanted to
investigate distribution and temporal patterns of
multiple chemical properties within and across
locations (e.g., watersheds) over time, and ulti-
mately to make inferences about ecological
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processes and events driving these patterns.
Before the work sessions, she had examined
temporal patterns of stream chemistry using
statistical tools. Despite this prior knowledge,
the multiple histogram views of the data facilitat-
ed by EcoDATE helped her generate additional
hypotheses based on the shapes of distributions of
different chemical constituents. The visualization
of the stream chemistry data is available at http://
purl.oclc.org/ecodate/chemistry.

Round 1 of hypothesis generation.—Starting with
the default specification of the multiple histogram
view (specify), the ecologist quickly noticed (char-
acterize) (1) differences in numbers of samples by
year and location, (2) differences in the shapes of
distributions of the chemical properties over the
years and from one property to another, and (3) a
relatively large number of extreme values. Using
her knowledge, the ecologist related the difference
in record lengths (characterization 1) to the
hypothesis that sampling must have been turned
off and on intentionally at some watersheds
(generate hypotheses). To confirm this hypothesis,
she planned to access the sampling logs for more
information. Further, the characterizations (2) and
(3) prompted the ecologist to pursue these paths
further, as described next.

Round 2 of hypothesis generation.—To compare
the shapes of distributions of the chemical
properties, the ecologist first used the discretiza-
tion feature (Fig. 4) to specify equal numbers of
bins as well as equal numbers of observations in
the extreme value bin (upper range bin) for each
of the histograms of the corresponding chemical
properties. She then found that distributions

varied among properties in the degree of skew
(characterize) (Fig. 6). Specifically, the distribu-
tions for silica (SI) and discharge (Q_AREA_MO)
were similar to one another and differed from the
distributions for nitrate-nitrogen (NO3-N) and
suspended sediment (SSED).

From this characterization of the data, the
ecologist referred to her knowledge and formu-
lated several hypotheses, e.g., (1) extreme suspend-
ed sediment output and nitrate-nitrogen output
may occur under extreme storm events, when
sediment and decomposed litter are entrained;
(2) silica output is more dominated by chronic
export, which is consistent with its origin from
chemical weathering.

Additional rounds of hypothesis generation.—
Following up on the hypotheses generated in
Round 2, the ecologist rapidly completed addi-
tional rounds of exploration. She specified the
time-series line charts for the chemical properties
of interest to investigate how the extreme values
of the properties coincided over time. She
subsetted the data to two specific locations
(watersheds) and cross-compared their temporal
trends of specific chemical properties. After each
of the exploration rounds, the ecologist was able
to bookmark the visualization state, take snap-
shots of the visualization views, and save them
along with her notes. In summary, within four
one-hour work sessions, the ecologist completed
ten rounds of data exploration, generating
hypotheses that could be confirmed quickly as
well as questions that prompted further analyses
(inside or outside of the EcoDATE tool).

Case study summary.—Even though the ecolo-
gist had prior knowledge of the stream chemistry
data, EcoDATE nevertheless permitted in-depth
analysis of the data that led to new insights,
especially with respect to specification and
characterization of multivariate distribution
shapes using the interaction feature of discretiza-
tion of bins. Although existing analysis tools such
as spreadsheet programs also permit this kind of
specification, the process would be cumbersome
and time-consuming. We summarized the anal-
ysis strategy in this case study as an iterative
three-step process of specifying visualization
views, characterizing views, and gaining insights
while incorporating ecological knowledge and
intuition (Fig. 5).

Fig. 5. The iterative process of hypothesis generation

supported by EcoDATE. Each rectangle represents a

task and each arrow represents a transition from one

task to another. The task of involving knowledge in the

center supplements all other tasks.
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Forest structure data case study
While the stream chemistry case study aims to

emphasize the hypothesis generation process
supported by EcoDATE, this case study high-
lights how EcoDATE helped another ecologist
prepare data to upload into EcoDATE, construct
the line charts, and gain insights into the forest
structure data set.

Summary of information needs.—The ecologist
user exploring the forest structure data was
interested in temporal changes in species com-
position as Douglas-fir forests of the Pacific
Northwest transitioned from early to mid-suc-
cession stages of development. Of particular
interest were trends in density and basal area of
shade-tolerant species such as western hemlock
(Tsuga heterophylla), western redcedar (Thuja
plicata), Pacific yew (Taxus brevifolia), and bigleaf
maple (Acer macrophyllum) in relation to the
dominant Douglas-fir trees across the eight study

locations. Therefore, the time-series line chart
played an important role for this data set.
Nevertheless, the ecologist also benefited from
the multiple histogram views of the data when
preparing line charts.

Preparing the data.—EcoDATE facilitated the
preparation of the forest structure data in two
ways. First, the tool allowed the ecologist to load
and visualize the data quickly in three straight-
forward steps: (1) upload data (e.g., comma-
separated values file format), (2) configure data
structure (e.g., specify types for each of the
variables of interest), (3) optionally, add addi-
tional metadata for each of the categorical
variables (e.g., species common names to sup-
plement species codes) (see the EcoDATE tutori-
als at http://purl.oclc.org/ecodate/tutorials/). In
this case it was important for the user to be able
to upload multiple successive versions of data to
EcoDATE because data have been collected from

Fig. 6. Multiple histogram view of observations in the stream chemistry data sets. In this case, the ecologist was

interested in the distribution patterns of total monthly streamflow (Q_AREA_MO, blue axis), total monthly

suspended sediment outflow (SSED_OUT_MO, red axis), total monthly silica outflow (SI_OUT_MO, orange

axis), and total monthly nitrate-nitrogen outflow (NO3N_OUT_MO, green axis).
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many sites over many years and discoveries from

the visualization may prompt the ecologist to re-

consider, synthesize, and re-upload data. For

example, the initial exploration only considered

Douglas-fir and western hemlock. Subsequently,

the ecologist expanded the data to include other

shade-tolerant species and re-uploaded the data.

Second, in addition to discretization of quan-

titative variables, EcoDATE supports grouping of

categories in nominal and ordinal data variables

using the multiple histogram views of the data

(Table 4). The ecologist grouped shade-tolerant

species into a single functional group for com-

parison to Douglas-fir. The grouping process was

exploratory in the sense that the ecologist was

able to experiment iteratively with different

combinations of species based on his ecological

knowledge.

Constructing the line charts.—EcoDATE sup-

ports creation of line charts for any ordinal

variable (e.g., age, year) on the x-axis and any

quantitative variable (e.g., tree density, basal

area) on the y-axis. Note that based on the

configuration of the data structure, EcoDATE can

detect the temporal variables at different resolu-

tions and derive new temporal variables based

on their combinations (e.g., YEAR and MONTH

variables combined creates YEAR-MONTH). For

the forest structure data, the ecologist favored

AGE over YEAR as the x-axis, which facilitated

comparisons of successional trends across the

eight study locations, where each location was an

average of 2–5 plots (Figs. 7, 8). The ecologist

followed the same process of constructing line

series for each of the data subsets of interest as

described in the cone production case study.

Fig. 7. Long-term trends in density (trees/ha) of (a) Douglas-fir, and (b) shade-tolerant species in Douglas-fir-

dominated permanent plots in Oregon and Washington (n ¼ 8 locations, 2–5 plots per location). Note different

scales of y-axes.
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Gaining insights.—Findings from the visualiza-

tion underscore the importance of long-term data

in tracking the response of forests and other

ecosystems to disturbance agents and changes in

the environment. The view in Fig. 7A helped the

ecologist quickly assess the declining and con-

verging trends in mean density of Douglas-fir

across locations. Although this trend was not

unexpected given knowledge of stand develop-

ment (Oliver and Larson 1990, Franklin et al.

2002), the finding was interesting given the three-

fold range in density (about 250 to over 800 trees/

ha) when the stands were about 55 years of age.

Equally interesting was the variability in the

timing of increases in the mean density of shade-

tolerant species (Fig. 7B). Fig. 8A displays recent

declines in Douglas-fir basal area at several

locations (GP, MH, OL, WI, WR). This prompted

the ecologist to revisit the raw data on mortality

assessments of individual trees at these locations.

At two of the locations, GP and WR, the

mortality data indicated that Douglas-fir bark

beetles (Dendroctonus pseudotsugae) may have led

to tree death. The beetle mortality occurred first

at GP when the stand was 120 years old, and led

to a pronounced but temporary decline in

Douglas-fir basal area. The drop in Douglas-fir

basal area there was accompanied by increases in

both mean density and basal area of the shade-

tolerant species, likely as a result of increased

resources (e.g., light, nutrients, water) available

to the understory trees. The ecologist also

planned to share the visualization with an

entomologist to gain insights on localized and

Fig. 8. Long-term trends in basal area (m2/ha) of (a) Douglas-fir, and (b) shade-tolerant species, in Douglas-fir-

dominated permanent plots in Oregon and Washington (n ¼ 8 locations, 2–5 plots per location). Note different

scales of y-axes.
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regional outbreaks of Douglas-fir bark beetle.
Case study summary.—This case study empha-

sizes the reusability of EcoDATE (i.e., data
upload and configuration) and how it aids the
scientist in adapting to the pre-defined structure
of the data. In this example, EcoDATE supported
the process of constructing and deriving visual-
ization views–for example, automatic combina-
tions of ordinal variables (e.g., month and year)
derived new ordinal variables (e.g., month-year)
for line charts. These features prove important to
analysis of long-term ecological data since the
data may get updated periodically over time and
there exist multiple levels of data aggregation by
various factors such as time (e.g., day, month,
year), space (e.g., plot and stand), and species
groups.

To summarize, the three case studies serve a
primary purpose of assessing the utility of the
EcoDATE tool in the context of its target users–
three ecologists in this case–for exploring real
world data sets in their normal working envi-
ronment. The qualitative results show how use
led to refinement of the tool and helped
ecologists gain insights into their data and
formulate new research questions. Our next step
was to deploy the tool to a broader pool of
ecologist users, starting with a working group at
the 2012 LTER All Scientists Meeting as we
describe next.

Working group at the LTER ASM 2012
We further evaluated an early version of the

EcoDATE tool in a working group at the 2012
LTER All Scientists Meeting, a network-wide
meeting of over 750 scientists and students for
scientific discussions, plenary talks, working
groups, and scientific posters (http://asm2012.
lternet.edu/). The EcoDATE working group was
an information exchange session focused on (1)
how ecologists approach analysis of long-term
ecological data, (2) how interactive visualization
may help with the data exploration process, and
(3) the pros and cons of the proposed EcoDATE
tool. During the session, we demonstrated the
application of EcoDATE using several long-term
data sets, invited participants to experiment with
the visualizations in focus-group settings, and
obtained feedback via a survey. Fifteen partici-
pants experimented with the tool and completed
the survey: one professor, four LTER site man-

agers/information managers, five post-docs, and
five graduate students.

The evaluation survey consisted of five Likert-
style statements, in which participants were
asked to indicate their level of agreement on a
scale of one (Strongly Disagree) to five (Strongly
Agree), and three open-ended questions. In spite
of relatively short usage time (around 30 min-
utes), most of the participants agreed that the
tool is easy to use (L1 and L2) and they strongly
liked using it (L4 and L5) (Fig. 9).

In addition to the Likert-style statements, the
survey included the following three open-ended
questions: (1) What aspect(s) of the tool did you
like most? (2) What aspect(s) of the tool did you
dislike most? And (3) if possible, how would you
change the tool to improve it? Overall, many
participants praised the tool for its interactivity,
holistic view of multivariate data/histograms,
and ability to share visualizations with others.
Among interactive features, participants highly
favored data subsetting/filtering (nine out of 15
participants). However, some found it difficult to
compare the temporal trends across variables
(i.e., align the time axes across different line chart
views), and they suggested superimposed line
chart with two y-axes (Isenberg and Bezerianos
2011), which is a feature we want to study for
future work. Participants also expressed the wish
to use the tool with their data. We responded to
that request and equipped the current version of
the tool with the data upload feature.

DISCUSSION

Although long-term ecological studies are
essential for detecting changes in the environ-
ment, understanding of these changes is limited
by capacity for data analysis (Fig. 1). Data often
accumulate faster than ecologists can analyze
them, creating a bottleneck. Over time, hypoth-
eses that guided establishment of a study may
become irrelevant, and new hypotheses and new
factors may emerge. Therefore, long-term studies
require exploratory analysis to deal with grow-
ing data and changing scientific questions. Tools
such as machine learning and statistics, which
aim to simplify and automate data analysis, are
of limited value for analysis of long-term
ecological data because they assume well-defined
and confirmatory tasks and hypotheses, such as
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computing the correlation between two variables
or predicting the occurrence of some specific
ecological event. In this paper, we argue that
interactive visualization provides a visual gate-
way to long-term ecological data, allowing users
to explore data directly and complementing
further analyses using statistics or machine
learning.

Development and evaluation of the EcoDATE
tool reveals several different strategies used by
ecologists to explore long-term ecological data.
Target users of interactive visualization for long-
term ecological data occupy a spectrum ranging
from scientists who are interested in general
ecological phenomena and may have little
specific knowledge of the data to scientists who
have collected the data and studied them
intensively. Therefore, an interactive visualiza-
tion tool must permit overview of data as well as
exploration of a priori hypotheses and generation
of new ones. The EcoDATE tool supports a
‘‘breadth-first’’ exploration approach as demon-
strated in the cone production data case study, in
which the ecologist analyzed the data for the first
time. In that case, the main analysis strategy
followed the visual information-seeking mantra
‘‘overview first, zoom and filter, then details on
demand’’ (Shneiderman 1996). On the other
hand, the tool also facilitates ‘‘depth-first’’ anal-
ysis, as demonstrated in the stream chemistry
data and forest structure case studies, in which
the ecologists had prior knowledge of the data. In
these cases, the analysis followed a three-step
process of specifying visualization views, char-
acterizing views, and gaining insights (Fig. 5). A

visualization tool that facilitates open-ended
exploration is essential to accommodate the
varied analysis strategies used with long-term
ecological data.

On a related note, a visualization tool is only
part of a larger analysis process (Fig. 1).
Although exploratory analysis of long-term data
may help ecologists uncover interesting patterns
in the data and essentially formulate new
hypotheses, in many cases, interpretation and
explanation of these patterns rely not only on the
observed data but also the user’s knowledge and
intuition. To confirm these hypotheses, ecologists
may need to refine the hypotheses to make them
ecologically sound and testable, collect addition-
al data and metadata, and test the hypotheses
with appropriate statistical techniques (Fig. 1).

Development and evaluation also suggests the
potential for integration of the EcoDATE tool
with other tools and archived data sets. We
envision that visual-analysis tools such as Eco-
DATE could become an add-on module in a
workflow system or could take advantage of that
framework for managing provenance or history
of interactions (e.g., visualization states). Current
workflow systems such as Kepler (Ludäscher et
al. 2006) lack support for interactive visualiza-
tions and usability. Also, web-based interactive
visualization tools could support more complex
on-site data exploration within existing data
repositories or portals such as EcoTrends (Servilla
et al. 2008, Peters et al. 2011) and Clim-DB/Hydro-
DB (Henshaw et al. 2006) where large collections
of long-term ecological datasets are archived—
especially for users seeking data from multiple

Fig. 9. Boxplot of responses to each of five Likert-style statements. The participants were asked to indicate their

level of agreement on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree).
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sites. EcoDATE, a web-based application, could
be easily integrated into these portals. In addi-
tion, sample visualizations could be presented to
visitors to promote data analysis.

Design and use of EcoDATE also provides an
insight into the evolution of long-term ecological
data collection and analysis. The three data sets
of interest were initiated several decades ago,
and involve capital- and/or labor-intensive data
collection at a limited number of pre-defined
locations and times. Nowadays, long-term eco-
logical data are increasingly being collected at
fine temporal and spatial scales, at many sites,
and possibly even at moving sites (e.g., tagged
organisms) (e.g., Porter et al. 2005). For these
data, visual analytics tools will need to accom-
modate combinations of time, space, and multi-
ple variables. As an example, while filtering
supported by EcoDATE is limited to values of
bins, we intend to investigate more expressive
filtering based on natural language used by
ecologists or on a structured query language
(Heer et al. 2008a). The visualization community
has shown considerable interest in techniques for
spatio-temporal visualization or geovisualization
(Andrienko and Andrienko 2006).

EcoDATE is now available to the public at
http://purl.oclc.org/ecodate. We hope it will be
utilized by ecologists, who will bring a variety of
data sets and provide feedback and suggestions
for improvements to the tool. In addition, we will
analyze log data to identify dominant usage
patterns and features and to understand how
EcoDATE may play a role in shaping the
scientists’ hypothesis generation strategies in
the context of long-term ecological data.

Conclusions
In this work, we describe the design, imple-

mentation, deployment, and evaluation of Eco-
DATE, an interactive web-based visual-analysis
tool designed for the analysis of long-term
ecological data with a focus on distribution
patterns and temporal trends. The tool combines
information visualization techniques with chart
types commonly used in ecology. EcoDATE was
developed through a process of user-centered
design in collaboration with long-term ecological
research. Application of the EcoDATE tool to
long-term ecological data sets on cone crop
production, stream chemistry, and forest struc-

ture reveals that it facilitates overview, initial
hypothesis testing, and hypothesis formulation
in an open-ended framework. Ecologists’ initial
evaluation of EcoDATE indicates that interactive
visualization promotes discovery in ecology and
reveals several alternative pathways ecologists
pursue for analysis of long-term ecological data.
This study demonstrates that collaboration be-
tween ecologists and visualization researchers
can potentially provide powerful tools for iden-
tifying important ecological patterns and trends
while supporting scientific collaboration. Visual
analysis collaboration between visualization re-
searchers and ecologists underscores a promising
direction likely to benefit ecology as a discipline.
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Goodsell, J. Hériché, C. B. Nielsen, C. North, A. J.
Olson, J. B. Procter, D. W. Shattuck, T. Walter, and
B. Wong. 2010. Visualizing biological data—now
and in the future. Nature 7:S2–S4.

Elmqvist, N., A. Vande Moere, H.-C. Jetter, D. Cernea,
H. Reiterer, and T. J. Jankun-Kelly. 2011. Fluid
interaction for information visualization. Informa-
tion Visualization 10:327–340.

Foster, D. R., and J. D. Aber. 2004. Forests in time: The
environmental consequences of 1,000 years of
change in New England. Yale University Press,
New Haven, Connecticut, USA.

Franklin, J. F. 1968. Cone production by upper-slope
conifers. Research Paper PNW-60. USDA Forest
Service, Pacific Northwest Forest and Range
Experiment Station. Portland, Oregon, USA.

Franklin, J. F., et al. 2002. Disturbances and structural
development of natural forest ecosystems with
silvicultural implications, using Douglas-fir forests
as an example. Forest Ecology and Management
155:399–423.

Greenland, D., D. G. Goodin, and R. C. Smith. 2003.
Climate variability and ecosystem response at long-
term ecological research sites. Oxford University
Press, New York, New York, USA.

Harmon, M., and J. Franklin. 2012. Tree growth and
mortality measurements in long-term permanent
vegetation plots in the Pacific Northwest (LTER
Reference Stands). Long-Term Ecological Research,

Forest Science Data Bank, Corvallis, Oregon, USA.
http://andrewsforest.oregonstate.edu/data/abstract.
cfm?dbcode¼TV010

Havstad, K. M., L. F. Huenneke, and W. H. Schlesinger.
2006. Structure and function of a Chihuahuan
desert ecosystem: the Jornada Basin long-term
ecological research site. Oxford University Press,
New York, New York, USA.

Hauser, H., F. Ledermann, and H. Doleisch. 2002.
Angular brushing of extended parallel coordinates.
Pages 127–130 in IEEE Symposium on Information
Visualization 2002. IEEE Computer Society, Wash-
ington, D.C., USA.

Heer, J., and M. Agrawala. 2008. Design considerations
for collaborative visual analytics. Information
Visualization 7:49–62.

Heer, J., M. Agrawala, and W. Willett. 2008a. Gener-
alized selection via interactive query relaxation.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Association for
Computing Machinery, New York, New York,
USA.

Heer, J., J. Mackinlay, C. Stolte, and M. Agrawala.
2008b. Graphical histories for visualization: sup-
porting analysis, communication, and evaluation.
IEEE Transactions on Visualization and Computer
Graphics 14:1189–1196.

Heer, J., and B. Shneiderman. 2012. Interactive
dynamics for visual analysis. ACM Queue 10(2).

Henshaw, D. L., W. M. Sheldon, S. M. Remillard, and
K. Kotwica. 2006. ClimDB/hydroDB: a web har-
vester and data warehouse approach to building a
cross-site climate and hydrology database. In
Proceedings of the 7th International Conference
on Hydroscience and Engineering (ICHE-2006),
Philadelphia, PA. College of Engineering, Drexel
University, Philadelphia, Pennsylvania, USA.

Henshaw, D. L., and G. Spycher. 1998. Evolution of
ecological metadata structures at the HJ Andrews
Experimental Forest Long-Term Ecological Re-
search (LTER) site. Pages 2–6 in North American
science symposium: toward a unified framework
for inventorying and monitoring forest ecosystem
resources, Guadalajara, Mexico.

Isenberg, P., and A. Bezerianos. 2011. A study on dual-
scale data charts. IEEE Transactions on Visualiza-
tion and Computer Graphics 17:2469–2478.

Johnson, S., and R. Fredriksen. 2012. Stream chemistry
concentrations and fluxes using proportional sam-
pling in the Andrews Experimental Forest, 1968 to
present. Long-Term Ecological Research, Forest
Science Data Bank, Corvallis, Oregon, USA.
http://andrewsforest.oregonstate.edu/data/abstract.
cfm?dbcode¼CF002

Jones, J., and J. Franklin. 2012. Cone production of
upper slope conifers in the Cascade Range of
Oregon and Washington. Long-Term Ecological

v www.esajournals.org 21 September 2013 v Volume 4(9) v Article 112

PHAM ET AL.



Research, Forest Science Data Bank, Corvallis,
Oregon, USA. http://andrewsforest.oregonstate.
edu/data/abstract.cfm?dbcode¼TV019

Keim, D. A. 2002. Information visualization and visual
data mining. IEEE Transactions on Visualization
and Computer Graphics 8:1–8.

Knapp, A. K., J. M. Briggs, D. C. Hartnett, and S. L.
Collins. 1998. Grassland dynamics: long-term
ecological research in tallgrass prairie. Oxford
University Press, New York, New York, USA.

Lauenroth, W. K., and I. C. Burke. 2008. Ecology of the
shortgrass steppe: a long-term perspective. Oxford
University Press, New York, New York, USA.

Likens, G. E., and F. H. Bormann. 1995. Biogeochem-
istry of a forested ecosystem. Second edition.
Springer-Verlag, New York, New York, USA.
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