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[1] In this technical note, a steady-state analytical solution of concentrations of a parent
solute reacting to a daughter solute, both of which are undergoing transport and multirate
mass transfer, is presented. Although the governing equations are complicated, the resulting
solution can be expressed in simple terms. A function of the ratio of concentrations, In
(daughter/parent þ P), can be used as a metric of mass transfer and reaction if the reactions
are mostly confined to the immobile domain, where P is the ratio of production of daughter
to decay of parent. This metric is applied with the resazurin-resorufin (Raz-Rru) tracer
system in a stream to obtain an integrated measure of respiration that occurs on or in a
stream bed. The slope of the graph of In (Rru/Raz þ P) versus advective travel time is a
function of the strength of surface—bed interaction and respiration. This graph can be used
for rapid comparison of different experiments and streams.
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1. Introduction

[2] Reactive or decaying solutes in the environment,
e.g., nutrients, tracers, radionuclides, and contaminants, are
commonly exchanged between mobile and immobile
domains and may approach steady-state concentrations at
sufficiently long time with constant boundary conditions.
In this technical note, an analytical solution for a parent
compound undergoing a first-order reaction to a daughter
compound is presented, which can also undergo first-order
reaction. Both compounds experience multirate mass trans-
fer with an immobile domain [e.g., Haggerty and Gorelick,
1995; Haggerty et al., 2000; Dentz and Berkowitz, 2003;
Luo et al., 2008]. Reactions can occur in both the mobile
and immobile domains; however, the analytical solution
may be of most use when reactions are limited to the
immobile domain. The ratio of the daughter to parent con-
centration is a simple function that is sensitive only to ad-
vective travel time, mass transfer, and reaction.

[3] Some related solutions are as follows: (1) steady-
state transport of a single solute with first-order decay and
immobile-domain diffusion [Cunningham and Mendoza-
Sanchez, 2006]; (2) steady-state transport of two solutes
with first-order decay [McLaren, 1969; Burnell et al.,
2012]; (3) transient transport of a decay chain [Sun et al.,
1999] extended to diffusion into a slab [Sun and Buscheck,
2003] and generalized to compounds with differing retarda-
tion factors [Srinivasan and Clement, 2008].

2. Model and Solution

[4] A model for transient solute transport and first-order
reaction along a one-dimensional flow path where water is
exchanged between mobile and a distribution of immobile
zones is described by equations (1)–(4). These equations
modified from Argerich et al. [2011] for a metabolically
active transient storage fraction of 1 and a distribution of
exchange rates as described by Haggerty et al. [2000] or
Luo et al. [2008]. The integrodifferential terms result from
distributions of exchange rates.
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(4)

where subscripts 1 and 2 indicate parent and modeled
daughter, C1 is stream concentration of the parent (mol
L�1), C2 is stream concentration of the daughter (mol L�1),
S1(�) is storage domain concentration (mol L�1) of the par-
ent, S2(�) is storage domain concentration (mol L�1) of the
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daughter, superscript ‘‘a’’ refers to a reaction rate associated
with the storage domain (relatively ‘‘active’’), superscript ‘‘i’’
refers to a reaction rate associated with the stream (relatively
‘‘inactive’’), �a

1 is the rate coefficient for the decay of parent
to all daughters (h�1), �a

2 is the modeled daughter reaction
rate coefficient (h�1), y is the conversion factor between par-
ent and modeled daughter (–), p is the probability density
function of mass transfer exchange rates (h), � is the ratio of
storage to stream mass at equilibrium (–), R is retardation due
to sorption (–) with subscripts indicating parent and daughter,
D is the dispersion coefficient (m2 h�1), Q is discharge
(m3 h�1), and A is cross-sectional area of the stream (m2). If
ya or yi ¼ 1, then parent is converted only to the modeled
daughter, whereas if ya or yi < 1, some parent is simultane-
ously converted to another daughter that is not modeled. The
values p, S1, and S2 are functions of � ; however, we subse-
quently drop the functional notation. Here, it is assumed that
the reaction only happens in the aqueous phase, a valid
assumption for biological reaction [McMurry, 2010, p. 210]
but not for radioactive decay. Radioactive decay would
require retardation factors in the decay terms above.

[5] During a constant injection to plateau concentrations,
the equations eventually simplify to steady state after pla-
teau is reached:
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Using a first-type upstream boundary condition (C1 x ¼ 0ð Þ
¼ C1; b, C2 x ¼ 0ð Þ ¼ C2; b) and concentration of 0 at infi-
nite distance, the after appropriate substitutions are as
follows:

C2�
i
2 þ �

Z1
0

p �a
2

�

�þ �a
2

C2 þ
�a

1ya�

�þ �a
2

� �
�þ �a

1

� �C1

" #
d�

þ �

Z1
0

p�a
1ya

�þ �a
1

d�� �i
1yi

2
64

3
75C1 ¼ �

Q

A

@C2

@x

þ 1

A

@

@x
AD

@C2

@x

� �
;

(10)

[6] Defining three effective reaction rate functions,
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(the effective rate of production of C2 from C1), equation
(10) can be rewritten as follows:
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[7] The velocity is v ¼ Q/A, the Peclet number is Pe ¼
vL/D, L is the downstream distance to the end of the reach.
All parameters are assumed to be uniform, although solu-
tion could be accomplished with parameters that vary in
space using separation of variables. Results would be simi-
lar to ours except that a number of parameters would
be defined as integrals over space and that the validity of
Pe� 1 would need careful evaluation.

[8] The solution for C1 (in equation (5)) is identical to
solutions that are well known because the steady-state
equation is the same as the Laplace-transformed transient
equation [cf., Valocchi, 1985] and because the distribution
of mass transfer rates is not a function of space:

C1 ¼ C1; b exp m f1ð Þ½ �; (15)
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Observation at x is assumed, and � ¼ 1 if x ¼ L. The solu-
tion to C2 is as follows:
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[9] The ratio of C2 to C1 is given by the following
equation:
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[10] The structure of (20) can be seen more clearly if we
assume Pe� 1:
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3. Application to Resazurin

[11] These relationships are now used for the resazurin-
resorufin (Raz-Rru) tracer system, which is sensitive to
water column-bed exchange and respiration [Argerich
et al., 2011; Gonz�alez-Pinz�on et al., 2012]. Raz transforms
to Rru almost exclusively at the bed or in the sediment
[Haggerty et al., 2008], which means that �i

1 and �i
2 can be

neglected. The ratio of effective rate functions simplifies
tremendously and becomes a function only of reaction
parameters :
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This ratio can be thought of as the rate of production of C2

relative to the rate of decay of C1, which we will call the pro-
duction-decay ratio, P. If reaction is isolated to the storage
zones, P is independent of the mass transfer rate and relative
quantity of storage zone. The effects of mass transfer are iso-
lated within two effective decay coefficients as follows:
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Furthermore, for Pe=���e1 � 1 and Pe=���e2 � 1 (see
Cho [1971] and Burnell et al. [2012]—greater than about 6
is sufficient), the equations can be simplified. Equation
(21b) therefore becomes:
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[12] Equation (24) is very useful. In a stream, the mass
transfer effects (e.g., bed exchange, resulting in respiration)
are confined to the slope of the line, �(�1e � �2e). When
used with Raz-Rru, the slope of the line is therefore an inte-
grated measure of bed exchange and ecosystem respiration.
Although the details of bed exchange may contain many

different rates and volumes which may be nonunique, the
slope of the line can be compared from one location to
another or from one time to another.

[13] The production-decay ratio P is often known or can
be approximated with little consequence. For example, the
parent may decay only to the daughter, and the daughter
may be stable, in which case P ¼ 1. If the parent decays to
other daughters at the same rate as the daughter decays,
P ¼ 1. For the Raz-Rru system, our work to date suggests
that P is of order 0.3 – 0.8 [Haggerty et al., 2008, 2009;
Argerich et al., 2011; and data in preparation for publica-
tion]. If the estimate of P is incorrect, (24) is nonlinear. For
this reason, large errors in P will generate a nonlinear graph
and large errors will therefore be obvious. However, small
errors in P can result in nearly linear graphs and therefore
generate errors in the slope of the line that are not obvious.

[14] To check if the slope of the line (24) recovers the
correct value of �(�1e � �2e), the full transport equations
(1)–(4) were solved using STAMMT-L [Haggerty and
Reeves, 2002]. Figure 1 shows the full results, using the
known value P ¼ 0.667 (blue) and using an incorrect value
P ¼ 0.5 (red). When P was known, the slope of the line
�(�1e��2e) was almost exactly correct. The correct value of
the slope was 0.211, and the small error was due to the
approximations of zero dispersion and no reaction in the
water column in the graphed function.

[15] Using (24) with field data from an experiment
reported by Argerich et al. [2011] gives results shown in
Figure 2. Briefly, Raz was injected on 17–18 September
2007 to steady-state concentration in the bedrock reach of
watershed 3 at the H. J. Andrews Experimental Forest,

Figure 1. Plots of equation (24) using a known and an ap-
proximate value of P. The known (true) value of P is
0.667, and the approximated value of P is 0.5. The approxi-
mation error is 33% but the �(�1e � �2e) slope error is
about 9%. The lines were generated from a full simulation
of the advection-dispersion-mass transfer reaction equa-
tions with parameters D ¼ 3600 m2 h�1; v ¼ 250 m h�1; �
¼ 0.3; �i

1 ¼ 9:89� 10�4 h�1 ; �i
2 ¼ 1:75� 10�3 h�1 ;

�a
1 ¼ 1 h�1 ; �a

2 ¼ 0:1 h�1 ; yi ¼ 1; ya ¼ 0.6; and constant
A. The distribution of rate coefficients was single rate, i.e.,
p(�) ¼ �(�) with � ¼ 4 h�1. Injection was constant for 20
h and C2,b/C1,b ¼ 0.025. The reaction and mass transfer pa-
rameters yield effective reaction rates �1e ¼ 0.8 h�1 and
�2e ¼ 0.098 h�1. The correct value of �(�1e��2e) from the
simulation is 0.211 h�1.
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Oregon. Concentrations were measured at eight locations
in the bedrock reach over a distance of 256.5 m. The aver-
age velocity of water in the reach was 132.5 m h�1. As per-
fect knowledge of P did not exist, the results were plotted
for three different values: P ¼ 0.4, 0.5, and 0.6. This gener-
ates a slope of �(�1e � �2e) ¼ 0.095 to 0.134 h�1 Argerich
et al. used a temporal moments method to calculate the
value of 0.105 h�1.

[16] The results in Figures 1 and 2 suggest that the slope
of In (C2/C1 þ P) indicates or at least qualifies the amount
respiration and the amount of interaction between the water
column and the bed. Furthermore, In (C2/C1 þ P) is easy to
graph and thus different sites or conditions can be compared
without numerical modeling. Depending on the assumptions
that can be made and the purpose of the experiment, the
results could be sufficiently accurate that no other modeling
is necessary. Of course, the estimate could always be
improved with more complete use of the data and numerical
modeling.

[17] The results of this note are applicable to any tracer
or compound during steady-state transport that is under-
going first-order decay in the aqueous phase to a second
compound. An example of a stream tracer, resazurin, was
given. The results are also applicable to radionuclides, pro-
vided that they are weakly sorbing so that most of the
decay happens in the aqueous phase. The results are also
applicable to contaminants in groundwater.

Notation

A cross-sectional area of the stream (m2).
C1 stream concentration of the parent solute (mol

L�1).
C1,b upstream boundary condition for parent solute

(mol L�1).
C2 stream concentration of the daughter solute (mol

L�1).
C2,b upstream boundary condition for daughter solute

(mol L�1).
D dispersion coefficient (m2 h�1).

f1 effective decay rate function for parent solute (h�1).
f2 effective decay rate function for daughter solute

(h�1).
f3 effective production rate function for daughter sol-

ute (h�1).
L reach length (L).

m(f) function (see (16) for definition) (–).
p(�) probability density function of mass transfer

exchange rates (h).
P production-decay ratio (see equation (22)) (–).

Pe Peclet number (–).
Q discharge in the stream (m3 s�1).

R1 retardation factor for parent solute due to sorption
(–).

R2 retardation factor for daughter solute due to sorp-
tion (–).

S1(�) storage domain concentration of the parent solute
as a function of � (mol L�1).

S2(�) storage domain concentration of the daughter sol-
ute as a function of � (mol L�1).

t time (h).
v velocity of the stream (m h�1).
x spatial coordinate (L).

ya conversion factor between parent and modeled
daughter in the storage zone (–).

yi conversion factor between parent and modeled
daughter in the water column (–).

� first-order rate coefficient for exchange between the
stream and the storage zone, and equal to the inverse
of the mean residence time in the storage zone (h�1).

� ratio of storage to stream mass at equilibrium, and
equal to As/A as defined in most transient storage
literature (–).

�a
1 rate coefficient for the decay of parent to all daugh-

ters in the storage zone (h�1).
�i

1 rate coefficient for the decay of parent to all daugh-
ters in the water column (h�1).

�1e effective decay coefficient for the parent solute (h�1).
�a

2 rate coefficient for the decay of daughter solute in
the storage zone (h�1).

�i
2 rate coefficient for the decay of daughter solute in

the water column (h�1).
�2e effective decay coefficient for the daughter solute

(h�1).
� advective travel time (h).
� dimensionless distance defined in (18) (–).
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