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ABSTRACT 

Using LiDAR Data to Estimate Effective Leaf Area Index,  

Determine Biometrics and Visualize Canopy Structure  

in a Central Oregon Forest with Complex Terrain 

 

Evan Anthony Hayduk 

Leaf Area Index (LAI), the total one-sided area of leaf tissue per unit ground 

surface area, is an important parameter in many ecological models. LAI is 

important for determining interception loss, and can be used potentially as a 

surrogate for other ecosystem parameters when studying ecosystem processes and 

services. Estimation of LAI at the watershed scale is difficult since traditional, 

direct destructive methods are cumbersome and possible only on small spatial 

scales. Furthermore, estimation of LAI in steep terrain has proven challenging for 

indirect methods using tools that utilize lasers to estimate light penetration 

through canopies. In this study, digital hemispherical photographs were used to 

ground-truth a Light Detecting and Ranging (LiDAR) method of estimating 

effective LAI at both the plot and watershed scales using canopy volume from 

LiDAR point cloud data. Effective LAI differs from true LAI in that it includes 

non-leaf material, such as branches, in the calculation. The LiDAR model seems 

to underestimate effective LAI when compared to ground based methods (R
2
= 

0.3346, p<.001) for 19 of the 133 vegetation plots in Watershed 1 of H.J. 

Andrews Experimental Forest.  

 

LiDAR data were also used to calculate biometrics (height, crown diameter, and 

stem location) of individual trees and to visualize forest structure. When 

compared to vegetation surveys completed for all permanent vegetation plots, 

82% of live trees were identified using LiDAR data. The results of this work can 

be used for modeling throughfall, canopy storage and interception loss for the 

watershed, either scaling from branch, to plot, to watershed leaf area or using 

allometric equations with the identified individual trees. The visualizations 

presented could assist researchers by allowing them to see gaps in the canopy and 

assess variability on a subplot scale. Future research includes assessing what 

factors affect the accuracy of tree identification and how software programs can 

be improved for more accurate tree identification and LAI estimation in complex 

terrain. 
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The major motivation for this thesis, which focuses on estimating Leaf Area 

Index and related visualizations for Watershed 1 (WS1) in the H.J. Andrews 

Experimental Forest, is rooted in the Visualization of Terrestrial and Aquatic 

Systems (VISTAS) project. VISTAS is a collaboration among computer and 

social scientists, ecologists, and students at The Evergreen State College, Oregon 

State University, and the University of Minnesota. The project was born of 

necessity: to solve problems apparent in the current age of massive data stores and 

grand challenge environmental science. Adding to the challenge of addressing 

critical environmental science questions in the presence of massive amounts of 

data are difficulties inherent when dealing with multiple spatial and temporal 

scales, complex physical terrain, and highly distributed and heterogeneous data 

(VISTAS Summary). The VISTAS project posits that visualizing natural 

phenomena can help scientists develop intuition and hypotheses at multiple spatial 

scales, thus improving their ability to formulate new insights about ecosystem 

services, patterns and processes in complex systems and to communicate these 

insights to the wider community (VISTAS Summary).  The objectives of the 

VISTAS project are: 

1) Conduct EcoInformatics research to enable the required visual analytics 

and implement a proof of concept software tool 

2) Co-develop VISTAS software with environmental scientists who will use 

it in studies spanning spatial and temporal scales 

3) Apply social science methods to study the co-development and usability of 

VISTAS and its visual analytics. 
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 Barbara Bond, co-principle investigator (coPI) of the VISTAS project and 

former PI of the Andrews Long Term Ecological Research (LTER) site, and her 

students have studied ecohydrological function in WS1 for decades. Her former 

Master’s student, Scott Allen, now a PhD candidate at Louisiana State University, 

recently completed work in WS1. Allen and others’ work examines the influence 

of spatial patterns of canopy storage, interception, and throughfall on isotopic 

composition of water in the watershed. A portion of his work is related to prior 

research including that by Keim et al. (2005) which used simulated rainfall on 

harvest branches to determine the storage capacity of branches with a known leaf 

area. This branch scale leaf area can then be scaled up to the tree level to estimate 

the capability of individual trees to intercept and store precipitation (Waring et al., 

1977; Gholz et al., 1979; Laurenroth et al., 1993; Bond et al., 2002). Scaling 

Keim’s work to the watershed level requires accurate measurement of Leaf Area 

Index for the watershed, the third objective of this thesis project (stated below).  

The main objectives of this thesis are as follows: 

1) Determine accurate LAI estimates for a subset of permanent vegetation 

plots in WS1 using digital hemispherical photography (DHP) 

2) Use estimates of LAI obtained from DHP (1) to build a LiDAR based 

model of LAI for all 133 permanent vegetation plots 

3) Calibrate the LiDAR based model (2) for LAI to create LAI maps for the 

entire watershed 

4) Test the ability of software programs to extract and identify individual 

trees from LiDAR data in all 133 permanent vegetation plots in WS1 
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5) Create novel visualizations of individual trees in the vegetation plots using 

LiDAR data 

LAI is not only important for measuring interception loss, but as a potentially 

easy way to measure ecosystem parameters that can be used as surrogates for 

calculating ecosystem processes and services. For example, relationships between 

LAI and biomass may facilitate the calculation of carbon (C) stores in forests, and 

relationships between LAI and stomatal aperture may facilitate the calculation of 

gas exchange and C fluxes from forests. Additionally, color-identification 

software may be used in conjunction with LAI to produce estimates of forest 

albedo, which can be used to study global heat flux, and the potential for forests 

to contribute to or protect us from, varying wavelengths of radiation. LAI may 

also be directly related to foliar biomass, which is often useful in biogeochemical 

analyses over time as a proxy for plant nutrient allocation, indicative of soil 

nitrogen (N) concentrations, and potentially related to rates of root development 

and turnover. Most importantly, LAI may be used in all of the above ways to aid 

in calculation of global net primary production (NPP) and net ecosystem 

exchange (NEE), which dictate the planet’s ability to mitigate changes in 

atmospheric C concentrations. Accurate NPP and NEE calculations could be 

particularly useful from a management standpoint as they allow the assignment of 

a relative economic value to forests for their service as a carbon sink, may aid in 

the quantification of ecosystem services, help with management decisions, and be 

a useful measure for policy and decision makers to compare forest capacities 

worldwide.  
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Leaf Area Index (LAI)  

Leaf area index (LAI) was first described by Watson (1947) as the “total one-

sided area of leaf tissue per unit ground surface area." Watson labeled LAI as a 

dimensionless unit that characterizes the canopy of a forest stand. LAI determines 

canopy water interception and radiation extinction, thereby influencing water and 

carbon gas exchange, within- and below- canopy microclimates, and aiding in the 

understanding of biogeochemical cycling in ecosystems (Breda, 2003). Accurate 

measurements of LAI can contribute to a better understanding of water resource 

dynamics and photosynthetic productivity on an individual, stand, or watershed 

scale (Breda, 2003). 

Since Watson (1947) first defined LAI, various techniques have been used 

to measure LAI in ecosystems from simple cropland to dense, complex temperate 

rain forests, and have also been summarized in review articles such as Breda 

(2003), Jonckheere et al. (2004) and Weiss et al. (2004).  Breda (2003) breaks 

down in situ LAI measurement methods into two different categories: direct and 

indirect measurements.  

Direct Methods of LAI Measurement 

Direct methods of determining LAI include harvesting, allometric methods and 

litter collection. Harvesting is a destructive method of measurement that requires 

harvesting and measuring all vegetation within a given area. Leaf samples are 

collected from a site that has a known ground-surface area and then dried and 

weighed. LAI is then computed by multiplying leaf dry mass (g m
-2

) by the 

specific leaf area (m
2
 g

-1 
SLA). Since m

2
 and g are present in both the numerator 
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(leaf area) and denominator (ground area) these measures cancel out, leaving LAI 

as a unitless value. This method is used extensively with crop species, but the 

destructive nature and tedious approach is not applicable to large areas, especially 

forest stands with large trees. 

A less destructive method of sampling is the application of allometric 

relationships between directly (destructively) measured sapwood and leaf area of 

individual trees. The theory supporting this technique is based on the hypothesis 

that leaf area is directly proportionate to conducting tissue (Grier and Waring, 

1974; Makela, 1986; Waring et al., 1977). Consequently, allometric relationships 

are sensitive to site and species, and in extreme cases, to the year of measurement. 

Breda (2003) also recommends replacing sapwood area as the base for 

measurement due to the difficulty in measuring conductive area. Using easily 

measurable variables, such as diameter at breast height (DBH), is a more efficient 

way to measure LAI using allometric relationships, and can be done without 

directly removing a core sample from trees to quantify sapwood. 

The final direct method described by Breda (2003) consists of collecting 

leaves as litter in traps distributed below the canopy during leaf fall. This 

technique is used widely in deciduous stands that shed leaves during the fall 

season. Litter is collected in a set number of traps within a known collection area, 

and harvested often to avoid loss of litter and decomposition. The collected litter 

is dried and weighed, then scaled to trap size in m
2
 to compute the dry mass of 

litter as g m
-2

. Leaf dry mass is then converted to leaf area by multiplying the 

collected biomass by the Specific Leaf Area (SLA). SLA is found by measuring 
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the projected leaf area of leaves and dividing that value by the leaf area dry mass 

of the leaves. SLA relates biomass to cover and is indicative of photosynthetic 

processing and C allocation (Evans and Poorter, 2001).  To obtain LAI, the total 

accumulated leaf area spanning collection times is calculated by adding together 

the leaf area calculations for each trap and from each collection and scaling to the 

plot or landscape scale.   

Indirect Methods of LAI Measurement 

Jonckheere et al. (2004) describe the benefits of indirectly measuring LAI 

whereby leaf area is inferred from one or more other variables. Indirect methods 

are faster and amendable to automation and thus allow for larger spatial samples. 

Additionally, these techniques do not require destructive sampling and can be 

applied in areas where destructive sampling is not possible. Indirect methods fall 

into one of two categories: indirect contact methods and indirect non-contact 

methods. 

 The first indirect contact method described by Jonckheere et al. (2004) is 

the inclined point quadrat technique used by Wilson (1960, 1963). According to 

Jonckheere (2004) this method “consists of piercing a vegetation canopy with a 

long thin needle (point quadrat) under known elevation (i.e., the angle between 

the needle and the horizontal plane when vertically projected) and azimuth angles 

(i.e., the bearing of the needle from North when horizontally projected) and 

counting the number of hits or contacts of the point quadrat with ‘green’ canopy 

elements.” These data are then input into a simple equation based on a radiation 

penetration model: 
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LAI= 1.1 x N(32.5) 

 

where N (32.5) is the number of contacts with an elevation angle of 32.5 degrees. 

The more times the needle is dropped into a vegetative canopy, the more reliable 

are the estimates of LAI. When the needle is dropped repeatedly with different 

angles of insertion, the formula used becomes: 

 

Ni = LKi 

 

where L is LAI, Ni is the number of contacts of the needle dropped with elevation 

i and Ki the extinction coefficient with elevation i. This method, according to 

Jonckheere et al. (2004) is attractive because it does not require an assumption of 

random leaf distribution, but its major drawback is the considerable field work 

involved, often requiring over 1000 insertions to obtain a reliable estimate of LAI. 

This method is also not applicable in canopies taller than 1.5 m, and thus it has 

been limited to determination of LAI on cropland. 

Jonckheere et al. (2004) also consider allometric techniques for the 

measurement of LAI, as mentioned above, which they categorize as an indirect 

contact method, and which rely on destructive sampling to measure sapwood, or 

non-destructive measurement of basal area or diameter at breast height (DBH). 

The destructive sampling of sapwood would fall into the direct methods category, 

mentioned above. Measurement of other variables such as DBH and basal area are 
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considered indirect non-contact due to the non-destructive nature of the 

measurements. Other indirect non-contact measurements of LAI are based on 

measuring light transmission through canopies and are more commonly 

implemented.  

Indirect non-contact methods apply the Beer-Lambert law, which accounts 

for the total radiation intercepted by canopy layers and depends on incident 

irradiance, canopy structure, and optical properties. Indirect non-contact methods 

require forest floor based measurement of total, direct, and/or diffuse radiation 

transmittance to the ground. In the last few decades, a wide range of instruments 

have been developed to measure LAI in real time within plant canopies. These 

instruments use either gap fraction analysis, or gap size distribution analysis, to 

determine LAI. Devices such as the Digital Plant Canopy Imager CI 100 MVI, 

measure gap fraction by incorporating canopy image analysis techniques. Other 

devices, such as Accupar, Demon, Licor LAI-2000 Plant Canopy Analyzer, use 

gap fraction and calculate LAI by comparing differential light measurements 

above and below the canopy (sensu Cutini, 1998). However, the maximum 

measurable LAI is lower for devices that measure gap fraction, because LAI 

reaches an asymptotic saturation level at a value of 5, which causes gap fraction 

saturation as LAI approaches and exceeds 5-6.  Other devices use gap size 

distribution to measure LAI, including the Tracing Radiation and Architecture of 

Canopies (TRAC) instrument.  

Hemispherical photography also uses gap size distribution to estimate LAI 

in forest canopies.  Jonckheere et al. (2004) focus extensively on the use of 
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hemispherical photographs in their review of LAI measurement methods, and 

state that a hemispherical photograph provides a permanent record and is 

therefore a valuable information source for position, size, density and distribution 

of canopy gaps. Hemispherical photography requires the use of a fish-eye lens to 

photograph the canopy from the forest floor with the camera oriented towards 

zenith. This technique also captures the species-, site- and age-related differences 

in the architecture of canopies based on light attenuation and the difference in the 

photograph of light (sky) and dark (canopy).  

TRAC and hemispherical photography, which use gap size distribution to 

measure LAI, do not distinguish photosynthetically active leaf tissue from other 

plant elements such as branches, stems and flowers. For this reason, alternative 

terms for LAI have been proposed, with Chen and Black (1992) settling on the 

most widely used term: “effective LAI”.  

What is LiDAR? 

A description of Light Detecting and Ranging (LiDAR) systems and LiDAR data 

is found in the FUSION software manual (McGaughey, 2012): LiDAR systems 

use laser light to measure distances between the source of the LiDAR and the 

object(s) surveyed. Aerial laser scanning is an aircraft based LiDAR system 

which provides accurate, detailed 3D measurement of ground, vegetation, and 

buildings. In open areas, ground contours can be measured within 6 inches of 

actual elevation. In steep, forested areas accuracy is typically .3m to .6m, 

depending on density of canopy cover and the spacing of the laser pulses. The 

speed and accuracy of LiDAR systems allow for highly detailed mapping of large 



 

11 
 

areas previously possibly only with time-consuming and expensive ground 

surveys (McGaughey, 2012), and are increasingly being used to infer forest 

biometrics. 

Aerial LiDAR systems are mounted on a single- or twin-engine plane or 

helicopter for data collection over a large area. An aerial LiDAR system consists 

of four pieces of equipment: 1) a laser emitter/receiver scanning unit on the 

aircraft, 2) global positioning system (GPS) units on the aircraft and on the 

ground, 3) an inertial measurement unit (IMU) attached to the scanner to measure 

roll, pitch, and yam of the aircraft, and 4) a computer system to control the entire 

system and store the data. Several types of LiDAR systems exist, with the most 

commonly used version for forestry being discrete-return, small-footprint 

systems. The term small-footprint refers to the size of the laser beam diameter at 

ground level, typically from .02m to 1m wide. Up to 200,000 pulses of light per 

second are emitted by the laser scanner, and the time it takes for the pulse to 

return to the receiver is measured. The times are used to compute the distance to 

the object on the ground, with the GPS and IMU units used determining the 

precise location and attitude of the laser scanner as the pulses are emitted. All this 

information is used to calculate exact coordinates for each point. Depending on 

the unit, an oscillating mirror or rotating prism on the laser scanner is used to 

sweep light pulses across a wide swath of the landscape. Large areas are surveyed 

using a series of parallel flight paths. The only weather conditions required are 

clear skies and flights can be performed day or night since the system emits its 

own light (Lefsky et al., 2002; Lefsky et al., 2005). 
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The laser altimetry calculated by the aerial system yields direct 3D 

measurements of the ground surface, vegetation, roads, and buildings. The 

millions of data points create a 3D point cloud. After the flight, additional 

calculations are performed to create the final data points, and results can be 

produced in weeks to months. The initial acre of the LiDAR flight is expensive, 

accounting for the costs of the aircraft, equipment and personnel. However, when 

large areas are measured, the costs can drop to as low as $1 to $2 per acre.  

 

Figure 1. Study site map showing WS1 at H.J. Andrews Experimental Forest. Blue circles indicate all 
permanent vegetation plots in the watershed with red circles representing plots in which DHPs were 
taken. 
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Study Site – H.J. Andrews Experimental Forest 

The site where this thesis research was conducted is Watershed 1 on the H. J. 

Andrews Long Term Ecological Research site near Blue River Oregon, USA, in 

the Cascade Mountains (Figure 1).  Study site information for Watershed 1 (WS1) 

was obtained from the H.J. Andrews website (andrewsforest.oregonstate.edu/).  

WS1 is a small watershed of 96 ha located on a first order stream draining to 

Lookout Creek along the McKenzie River in the Western Cascades range of 

Oregon. The bounding coordinates (in decimal degrees) for WS1 are North: 

44.20851700, South: 44.19901700, East: -122.23581300, and West -

122.25683100. WS1 is a well-known low-elevation watershed nestled within the 

greater H.J. Andrews Experimental forest and exhibits "complex terrain" 

characteristic of the region. The minimum elevation on WS1 is 450 meters, 

maximum elevation is 1027 meters, the mean slope measured using ground based 

clinometry is 59.35% and the watershed outlet faces an aspect of 286 degrees. 

Mean January temperature is 35 F (1.6 C), mean July temperature is 69 degrees F 

(20.6 C), although heating and cooling patterns are asymmetric, with cold air 

pooling occurring on approximately 80% of summer nights (Rothacher, 1965; 

Pypker et al., 2007). 

Geology:  Swanson and James (1975) describe the geology of WS1 and the H.J. 

Andrews (HJA). The HJA is underlain by bedrock of volcanic origin of mixed 

mineralogy. Three geologic formations have been mapped for the HJA and 

correspond roughly with elevation. Little Butte Formation bedrock 

(approximately 760 m elevation), dated as Oligocene to lower Miocene, consists 

http://andrewsforest.oregonstate.edu/
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of massive tuffs and breccias derived from mudflows and pyroclastic flows. 

Sardine Formation bedrock (760 m to 1200 m), dated as middle to late Miocene, 

consists of two units: a lower unit containing welded and non-welded ash flows, 

and an upper unit containing basalt and andesite lava flows. Andesitic and basaltic 

lava flows (>1200 m), or the "Pliocascade" Formation, were deposited during the 

Pliocene and overlie Sardine Formation material. Watershed 1 spans the Little 

Butte-Sardine contact area. A large caprock, visible in aerial photography, 

particularly after harvest, and in LiDAR bare earth images, demarcates a distinct 

separation in mineralogy observed by Peterson (2012). Watershed 1 has both 

basaltic and andesitic mineralogy: in the extreme northeast corner of WS1, the 

upper elevations are underlain by deposits of Sardine andesitic flow rock. Most of 

the bedrock of this type in WS1 is slow to weather, displaying rugged 

escarpments and outcroppings (Swanson and James, 1975). However, recent 

research by Pett-Ridge (Peterson, personal communication) suggests that 

weathering rates on parts of WS1 may be relatively rapid; these analyses are 

based on silicate material losses in dissolved water and stream outflow. 

Soils: Soils have not been formally mapped for WS1, although Rothacher (1965) 

characterized several potential soil groups. Additionally, several soil pits have 

been dug on the watershed (1957, mid-1960's, 1982, 2002, 2010) which indicate 

high heterogeneity in soil physical and chemical characteristics (Peterson and 

Lajtha, 2012). Land movements of varying duration and intensity are common on 

the HJA; glacial, fluvial and mass wasting processes are the main factors affecting 

soil development and spatial distribution, especially in geologic contact zones and 
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steeper areas. In WS1, soils vary from shallow and stony to moderately deep with 

well-developed profile features. These soils may affect the establishment and 

survival of vegetative communities.  

Vegetation and Management History:  Rothacher et al. (1967) describe the pre-

logging condition of WS1. Douglas-fir (Psuedotsuga menziesii) was the dominant 

species, ranging in age from 100 to 500 years. Western Hemlock (Tsuga 

heterophylla) was intermixed and generally younger; some western red-cedar 

(Thuja plicata) was also present, mostly in drainage areas. Pacific yew (Taxus 

brevifolia) was present in the understory. Hardwood species were common in 

stem density, but had relatively low biomass compared to conifers. However, 

hardwoods were first to establish on many plots, and created environments on 

which conifers would later thrive. Current hardwoods, in terms of relative 

abundance (number) and in decreasing order are big-leaf maple (Acer 

macrophyllum), Pacific dogwood (Cornus nuttallii), golden chinkapin 

(Chrysolepis chrysophylla), and red alder (Alnus rubra). Some of these, such as 

Alnus rubra, are found mixed within the coniferous plots, while others, such as 

Chrysolepis chrysophylla, clearly dominate dry plots. Six understory plant 

communities were present: 1) hazel-salal (10% of watershed area), 2) 

rhododendron-salal (10%), 3) vine maple-salal (10%), 4) vine maple-Oregon 

grape (25%), 5) gold-thread (25%) and 6) sword-fern (20%). 

Harvest History: Watershed 1 was originally part of a paired watershed study with 

a control watershed (WS2) and a patch clear cut watershed (WS3) of similar size 

and topographic characteristic. WS1 was 100% clear-cut over four year period 
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from fall 1962 to summer 1966. Initially, it was suspected that high lead logging 

could be used, but the method was switched to skyline following the harvest of 

one unit. Even the skyline logging techniques of the day, however, proved to be 

difficult for the initially hired group, Ballinger Logging, and Swiss contractors 

(Wyssen Logging) were called in to construct a method for harvesting larger 

trees. During this time between logging events, regrowth of understory species, 

specifically Ceanothus spp occurred, which may have impacted soil conditions. 

After the entire watershed was harvested, it was burned in 1967 in a burn that was 

"hot and satisfactory," and all debris littering the stream was removed. Since 

1952, the watershed stream outflow has been monitored and regrowth inventoried 

approximately on a six year basis.  These inventories and stream measurements 

are the fundamental components of the current biomass and nutrient studies 

conducted on WS1 to assess the impacts of harvest on watershed productivity and 

nutrient budgets (Peterson 2012). 

Interdisciplinary Nature of this Research 

This thesis follows the VISTAS project with an interdisciplinary approach to 

completing stated objectives. The work’s major goals are those related to ecology 

and pose fundamental questions about how forest ecosystems function. However, 

the methods used to answer these questions are based in the computer sciences, 

including computer programming and data visualization, and the researcher wears 

both hats to carry out the work. It would be difficult for a computer scientist to 

complete field work to acquire hemispherical photographs that are later analyzed 

for LAI calculations. Similarly, it would be difficult for most ecologists to write 
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code to create an executable program, or even to use the complex software needed 

for such work. Furthermore, the results of this study can be used to accomplish 

goals in several disciplines. The estimates of LAI for the watershed can be used 

by ecologists to determine how precipitation interacts with the canopy, either 

being stored or falling as throughfall, and as the first check to the water balance of 

the system. The estimates of total trees in the plots and watershed can be used for 

biogeochemical cycling models to determine nutrient transport and carbon 

sequestration within the watershed. The methods of visualization and tree counts 

could be used by natural resource managers for decision making.  And, finally, 

the suggestions offered for improvement of the LiDAR analysis and visualization 

software can be used by computer scientists to improve these tools, and to build 

even better tools in the future.  

Thesis Organization Overview 

This thesis is organized into four chapters as follows. In Chapter 2, the use of 

remote sensing to estimate LAI is explored. Then, we describe how we used 

digital hemispherical photography (DHP) of 19 plots to estimate LAI for all 133 

plots in WS1, and how we subsequently used LAI estimates from those plots to 

‘ground-truth’ a LiDAR based model to determine LAI for the remaining plots 

and the watershed as whole. In Chapter 3, we present an overview of how LIDAR 

has been used to estimate canopy and stand characteristics. We then describe how 

we used the TreeVaW software to extract and identify individual trees in all 133 

permanent vegetation plots in WS1. TreeVaW results for the 19 plots we 

surveyed are compared to comprehensive vegetation surveys completed at about 
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the same time as the LiDAR data were collected; and TreeVaW and survey data 

of individual tree height are compared. Chapter 4 provides background 

information about forest data visualization and then presents visualizations of 

LiDAR data from WS1 created with the FUSION software, as well as 

visualization of trees identified in 19 plots by TreeVaW. Chapter 5 concludes this 

thesis, and proposes future directions for related research. 
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Chapter 2- Estimating LAI from Digital Hemispherical Photographs and 

LiDAR Data 
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INTRODUCTION AND BACKGROUND 

Remotely Sensed LAI Measurements 

Breda (2003) chose to consider only ground based measurements of LAI, but 

noted that remotely sensed vegetation indices, either from satellite or aerial high-

resolution imagery, have novel potential for estimating LAI at larger scales. His 

review mentions that remotely sensed indices at the time (2003) required a site- 

and stand-specific calibration with ground-based measurements of LAI since 

remote sensing in itself does not yield accurate LAI measurement for complex 

canopies, especially those with high LAI values. Jonckheere et al. (2004) also 

describe air- and space-borne methods for LAI determination at the forest and 

landscape level, but note that the description of those techniques were beyond the 

scope of their review.  

Zheng and Moskal (2009) offer a complete review of estimating LAI 

using remote sensing techniques including theoretical background, methods used 

and sensors utilized. This paper covers the ground based methods discussed 

above, but focuses on the use of remote sensing technologies and includes a 

discussion of sources of error and scaling issues. Aerial passive sensors are 

superior to images obtained from satellites because of their much finer spatial 

resolution.  Unfortunately greater resolution produces in shadows from tree 

canopies that obscure each other and adds bias to estimation of LAI and makes 

simulating a radiation regime difficult without using a geometric optical model.  

In a forest canopy, different angular distributions of foliage elements 

result in solar radiation interaction with foliage at four different scales: a) within 
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groups of trees, b) within individual tree crowns, c) within branches, and d) within 

shoots (Zheng and Moskal, 2009). To correctly estimate LAI, a geometric-optical 

model must use the calculated shape of canopy crowns and spatial distribution of 

canopy elements. The proportion of shadows cast as a function of view direction, 

relative to the hot spot direction, are then calculated, and spectral characteristics 

are obtained based on geometrical shape and arrangement. Finally, the spectral 

reflectance of individual trees or whole canopies can be calculated with the 

geometric optical model (Zheng and Moskal, 2009). 

Satellite retrieval of LAI measurements is based on the unique spectral 

response characteristic of green leaves as opposed to other materials such as bark. 

The absorption of solar radiation of green leaves, with high absorption of visible 

light and red light make vegetation indices such as Simple Ratio (SR), 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI) and the Reduced Simple Ratio (RSR) possible (Zheng and Moskal 2009). 

Each of these indices has certain advantages over the others, depending on the 

forest or ecosystem type being evaluated. 

Other passive sensors discussed by Zheng and Moskal (2009) are Landsat 

series sensors and hyperspectral remote sensing data sets. The Landsat series 

sensors, including thematic mapper and enhanced thematic mapper are used most 

often because of the balance of spectral, spatial and temporal resolution possible 

with the sensors. These sensors have been developed to estimate and map LAI at 

landscape and global levels, based on linear regression relationships between 
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vegetation indices and LAI, as well as on the linear and non-linear estimation 

model.  

The final type of remotely sensed LAI methods reviewed by Zheng and 

Moskal (2009) are those that use active sensors that emit a certain wavelength 

signal and capture the echoes reflected by target objects without receiving the 

reflected solar radiation by land surfaces. Radio Detection and Range (RADAR) 

and Light Detection and Ranging (LiDAR) are the two most commonly used 

active remote sensing systems. LiDAR and other active remote sensing have a 

distinct advantage over optical passive remote sensing in their ability to capture 

detail of three-dimensional structure of the forest. The passive systems can only 

provide two-dimensional information. LiDAR systems can be terrestrial, airborne, 

or satellite-based, and either discrete or full waveform. Discrete LiDAR systems 

provide single or multiple returns for each laser pulse, while the full waveform 

LiDAR provides the waveform for one pulse. Terrestrial LiDAR is a discrete 

system, yet only one return is recorded for each laser pulse, while most other 

discrete systems have three or more echoes bounce back for each laser pulse. 

Discrete systems measure the distance between the emitting sensor and objects by 

recording the time of flight of the laser. Each laser pulse returns two different 

types of information: spatial information in x,y,z coordinates and a corresponding 

intensity value. Aerial, discrete LiDAR systems have been used extensively to 

characterize and explore forest canopies.  

 

 



 

23 
 

LiDAR and LAI Estimation from the Literature 

One of the more recent methods to determine LAI of forest stands uses LiDAR 

data. Morsdorf et al. (2006) evaluated the potential of aerial discrete return 

LiDAR systems to derive fractional cover and LAI for a stand in Switzerland. The 

objective of their work was to establish a predictor variable of LAI that resembles 

the way LAI is estimated using indirect methods in the field. Morsdorf et al. 

(2006) started with an equation from previous literature (Weiss et al. 2004) in 

which LAI at a certain heights is a function of leaf density. The authors added 

contact frequency as a predictor and set the projection function to 0.5, assuming a 

spherical foliage distribution in a study area dominated by conifer species. The 

LAI proxy from LiDAR data used by Morsdorf et al. follows: 

 

      
    

          
 

                

where EFE, ELE, and ESE stand for first echo, last echo, and single echo, which 

were recorded by the LiDAR system used by the authors. The authors used the 

results of the LAI model to produce maps of LAI for the study area. 

In similar research, Riano et al. (2004) also estimated LAI and canopy 

properties, as well as covered ground using hemispherical photography in three 

oak (Quercus myrenaica) and eight pine (Pinus sylvestris) forest plots in the 

Sierra de Guadarrama mountains of central Spain. The purpose of their research 

was to assess the capacity of LiDAR data to estimate LAI and covered ground at 

different spatial scales. To accomplish this, LiDAR data were processed for 
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different radii, from 0.5 to 2.5 meters (0.5 meter increments) and from 2.5 to 20 

meters (2.5 meter increments). The LiDAR predictive variables were: 50, 75 and 

90 percentile of heights, average height, maximum height and percentage of 

canopy hits (returns above 3 meters). The best LAI prediction radius for the oak-

dominated forests was from 7.5-10 meters, while the prediction radius for pine 

forests was 10-12.5 meters. Overall, estimations of LAI for the oak forests were 

more accurate than those for the pine forests. The results of the regressions of 

hemispherical LAI and the LiDAR parameters were then used by the authors to 

map LAI and covered ground for both the oak and pine forest stands. 

Solberg et al (2006) examined the use of LiDAR derived gap fraction 

measurements taken before and after an insect outbreak in a Scots pine stand in 

Norway. The authors compared LAI obtained from a LICOR 2000 device and 

digital hemispherical photographs with gap fraction values obtained with discrete 

return LiDAR data. By ground-truthing the discrete return LiDAR data, Solberg 

et al. (2006) validated the hypothesis that airborne laser scanning could be used to 

map defoliation at high spatial resolution over large areas. The authors concluded 

that this application of LiDAR data could be used for: 1) ad-hoc mapping of acute 

forest damage, 2) routine monitoring of crown density in stands, and 3) producing 

large-scale ground-truth data sets for satellite surveys. 

Lim et al. (2003) focused LiDAR and LAI research on sugar maple (Acer 

saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) stands in the 

Turkey Lakes watershed of Sault Ste. Marie, Ontario, Canada. LiDAR derived 

metrics for the research included maximum laser height, mean laser height, and 



 

25 
 

mean laser height calculated from LiDAR returns based on a threshold applied to 

the intensity of return values. Maximum laser height was found to be the best 

estimator of LAI for the study area. The authors concluded that ‘laser height 

metrics’ are a viable option for estimation of plot heights, stem density, 

aboveground biomass and volume, and other canopy related measures, including 

LAI.  

Selection of a LAI-LiDAR Model 

Research by Richardson et al. (2009), reviewed four models from the literature for 

estimating LAI using aerial LiDAR in the Washington Park Arboretum in Seattle, 

WA. The four LAI models reviewed used LiDAR metrics  based on the mean 

elevation of returns (Lim et al. 2009), fraction of canopy returns to total returns 

(Riano et al. 2004), the ratio of returns above 2m to returns below 2m (Solberg et 

al. 2006), and a canopy volume metric (Lefsky et al. 1999). Similar to work done 

by Coops et al. (2009), Richardson et al. (2009) adapted the methods of Lefsky et 

al. (1999) to use discrete return LiDAR rather than the full waveform LiDAR 

used by Lefsky et al. (1999). These four models were considered for the 

determination of LAI from LiDAR data for this project. The model created by 

Lefsky et al. (1999) was chosen for two reasons: 1) the research took place in a 

similar forest type similar (namely, watershed 1(WS1) at H.J. Andrews), and 2) 

the range of viable LAI produced by the model fell within the expected range of 

LAI for WS1 (Nadkarni, personal communication). The other models were 

calibrated for different forest types and produced lower LAI values: 0.5-4.0 for 

Lim et al. (2003), 0-3 for Riano et al. (2004) and 0-1.6 for Solberg et al. (2006). 
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Richardson et al. (2009) noted that these models performed poorly in “saturated” 

conditions where LAI is high. 

METHODS 

Hemispherical Photograph Acquisition 

For the research reported in this thesis, Digital Hemispherical Photographs 

(DHPs) were taken over two days in May 2012 in Watershed 1 at the H.J. 

Andrews Experimental Forest. The camera used was a Canon PowerShot S3IS 

with an Opteka for Canon 58 mm super wide fisheye lens (0.20X). DHPs were 

taken early in the morning and late in the evening when the sun was below the 

horizon or otherwise blocked by the surrounding terrain, since uniform overcast 

skies were not present. Uniform overcast skies are needed for accurate analysis to 

limit sunflecks and direct sunlight affecting the photograph. The camera setting 

mode button was adjusted to F1 function, the setting used for hemispherical 

photographs with a resulting circular image. The settings were also set to P, or 

programmed automatic, so that the camera automatically adjusted the shutter 

speed to the amount of light available. The camera was also set to ‘auto-bracket’ 

mode, which takes three photographs at three slightly different exposures: 

underexposed, normal and overexposed. The DHP showing the greatest contrast 

between foliage and sky was then used for analysis. 

The camera was mounted to a tripod and leveled with a bubble level 

roughly one meter above the ground level. The top of the camera was oriented to 

the north with a compass, so that the top of the resulting DHP was due north. The 

10-second self-timer function was utilized to limit shaking of the camera while 
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depressing the picture button. Five sets (3 auto-bracketed photos for each) DHPs 

were taken for each 9m radius plot: one in the center of the plot, and four in each 

cardinal direction (N, S, E, and W) roughly 4.5 meters from the center of the plot.  

Immediately after taking a set of DHPs, the photos were transferred to a 

computer and coded according to how other data in the watershed were collected. 

Information included in the code was plot [P], unit [1], watershed [1], transect 

[1,2,6], plot number [01-26], direction [C-center, N-North, E- east, S- south, W- 

west], and camera exposure [N-normal, U-underexposed, O-overexposed]. For 

example, a normal exposure DHP taken in the center of Plot 8 of transect 1 would 

be coded as P1108CN. 

DHPs were taken in 21 of 133 permanent vegetation plots. Before 

analysis, two plots (P11108 and P11211) were removed from the data due to low 

light conditions (P11108) and high light conditions (P11211) at the time the plots 

were photographed. These plots were included in the stem mapping and 

comparison of stem counts derived from LiDAR data with TreeVaW and actual 

tree surveys in the plots (See chapter 3). 

Hemispherical Photograph Analysis 

DHP analysis was completed with the SLIM (Spot Light Interception Model) 

software package 

(www.ualberta.ca/~pcomeau/Light_Modeling/Lite_and_slim_intro.html) 

developed by Phil Comeau. The program is part of the SLIM/LITE software 

package. SLIM is designed to estimate LAI, gap fraction, and fractional 

transmittance from DHPs.   

http://www.ualberta.ca/~pcomeau/Light_Modeling/Lite_and_slim_intro.html
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Analysis of the DHPs is subjective (Comeau, SLIM). SLIM analyzes 

DHPs by classifying each pixel as either a sky or canopy pixel. This converts the 

true color digital photograph into a black and white, ‘thresholded’ image. Since 

uniform sky and light conditions were not present when the DHPs were taken, 

each DHP was analyzed individually for the light and sky conditions at the time 

each photo was taken by hand-selecting areas of the DHP that were sky or 

canopy. Five left clicks on the mouse were used to denote sky and five right clicks 

denoted canopy. The resulting image was visually analyzed to make sure that fine 

details, such as a single branch, were visible in the thresholded image. If fine 

detail was not visible, the brightness of the image was adjusted using a slide bar to 

ensure all canopy features were recognized. SLIM converted the thresholded 

image to a Below Canopy Readings (BCR) image. This grayscale image divided 

the thresholded image into 480 segments. The BCR was then used by the program 

to estimate Leaf Area Index and Canopy Gap Fraction. 

SLIM estimates LAI in three different ways: Poisson, Binomial and Linear 

Average. The Poisson model assumes a random canopy distribution and random 

location of leaves and needles in the plane of projection (Jonckheere et al. 2004). 

The canopy layers are considered thin enough to decrease the probability of 

having more than one contact between incoming rays of light and vegetation 

within one layer (Jonckheere et al. 2004). In most natural systems, this is not the 

case. Binomial models for estimating LAI are described by Nilson (1971) and 

reviewed by Jonckheere et al (2004). The negative binomial model is more 

appropriate for canopies with clumped or more regularly distributed leaves. The 
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final SLIM method for estimating LAI, Linear Average, was first proposed by 

Lang and Xiang (1986), and combines local linear averaging with larger-scale 

logarithmic-linear averaging of transmittance data. The Linear Average method in 

SLIM requires an estimation of leaf angle, data which was not available for this 

research. The Binomial method requires an estimation of clumping, which was 

available from previous work done in WS1 (Kennedy, personal communication). 

Due to its availability of clumping and presence of non-random leaf distribution, 

the Binomial method was used to calculate LAI values in this research. 

For this thesis research, three methods were used to estimate and compare 

LAI for the vegetation plots and surrounding area. The SLIM program uses scope 

as an input parameter, which determines the angle of view for analysis of canopy 

attributes. The default setting for the program is a scope of 60 degrees, resulting 

in a 120 degree view for analysis. The 60 degrees refers to the angle from zenith 

(directly above) that is analyzed. The three methods for determining LAI were: 1) 

LAI for only the plot (LAI_plot), 2) LAI for the plot and immediate area (scope 

60 degrees), and 3) a wider view of LAI around the plot. 

 The first method, LAI_plot required trigonometric calculations and 

ArcMap (ESRI, 2012) analysis to determine the correct scope that would only 

calculate the LAI for the 9 meter radius plot. First, a raster layer provided by the 

HJA for vegetation height was used. This layer was created by researchers at HJA 

and is similar to a Digital Elevation Model (DEM). In ArcMAP (ESRI, 2012), this 

layer was loaded, as well as the shape file for all 133 vegetation plots. The plots 

where the DHPs were taken were selected and a new layer of only these 19 plots 
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was created. From this layer, the create buffer tool was used to create polygons of 

the 9 m radius DHP plots. The polygons represented the borders of the plots. The 

zone by mask tool was then used to clip the vegetation raster to the vegetation 

plots, creating a new layer that only held raster data for the vegetation plots. The 

zonal statistics tool was used to determine the mean value of the vegetation raster 

for each plot. The clipped plots then represented the average canopy height inside 

each plot. Average canopy height was used to calculate the correct scope of view 

for analysis in SLIM. Because average canopy height and plot radius transposed 

to canopy were known, the angle of scope could be calculated with basic 

trigonometry (see Figure 2). 

 

Figure 2. Trigonometric calculation for scope setting in SLIM software for DHP photo analysis. 

The second and third methods required less computation. The second 

method used the same center DHP as the previous method, but used a default 60 

degree setting for LAI analysis. The third method used DHP and computed 

average values of all four cardinal directions ~4 meters from the center of each 

plot. For these DHPs, a default scope of 60 degrees was also used. The average 
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LAI values determined by SLIM were calculated as the ‘wider view’ of LAI 

around each plot. The plot LAI was compared to both the wider LAI and the 

average cardinal direction LAI values using a simple linear regression. 

LiDAR Data Acquisition 

LiDAR data were collected by Watershed Sciences, Inc., (WS) at the HJA and the 

Willamette National Forest on August 10
th

 and 11
th

, 2008. The total collection 

area, including a 100 meter buffer, was 19,493 acres.  The LiDAR survey used a 

Leica ALS50 Phase II laser system with a sensor scan angle of ±14 degrees from 

nadir (the perpendicular vector to the ground directly below the aircraft) and a 

pulse rate of ≥ eight points per square meter of terrestrial surfaces. All areas were 

surveyed with an opposing flight line side-lap of ≥50% (≥100% overlap) to 

reduce laser shadowing and increase surface laser painting. The system allows for 

up to four range measurements (returns) per pulse, and all discernible laser returns 

were processed for the output data set. An onboard differential GPS unit 

measured the aircraft position twice per second (2 Hz) to accurately solve for 

laser point position (geographic coordinates, x, y, z). Aircraft attitude was 

measure 200 times per second (200 Hz) as pitch, roll, and yaw (heading) with an 

onboard inertial measurement unit. Aircraft/sensor position and attitude were 

indexed by GPS time to allow for post-processing correction and calibration.  

Table 1shows the resulting resolution and accuracy with specification and 

achieved values (Watershed Sciences Report, 2008).  
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 Targeted Achieved 

Resolution: ≥ 8 points/m
2
 9.14 points/m2 

Vertical Accuracy (1 sd) < 13 cm 2.1 cm 

Table 1. Resulting resolution and accuracy of LiDAR data. 

LiDAR Data Analysis 

LiDAR data form a point cloud that represents areas in which the light pulse from 

the plane is reflected back to the receiver after it intercepts canopy or ground. The 

visualization software tool FUSION (McGaughey, 2012 

http://forsys.cfr.washington.edu/JFSP06/lidar_&_ifsar_tools.htm), was developed 

as specialized remote sensing software to process, analyze and display extremely 

large LiDAR data sets. FUSION creates 3-dimentional terrain and canopy surface 

models and fuses LiDAR data with 2-dimentional imagery such as 

orthophotographs, topographic maps, and satellite images. FUSION also includes 

algorithms that allow users to manually measure individual tree attributes or 

automatic capabilities to characterize individual trees.  

The analysis and visualization software consists of two programs, 

FUSION and LiDAR data viewer (LDV), and several other task-specific 

command line programs (FUSION manual, McGaughey 2012). The primary user 

interface for FUSION is a graphical display window and a control window. The 

display window shows all project data in a 2D display, similar to geographic 

information systems. Input for FUSION consists of several data types, including 

shapefiles, images, digital terrain models, canopy surface models, and LiDAR 

return data. The LDV program creates and displays 3D visualizations for 

examination and measurement of spatially explicit data subsets. The command 

http://forsys.cfr.washington.edu/JFSP06/lidar_&_ifsar_tools.htm
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line programs provide specific analysis and data processing capabilities to make 

FUSION suitable for processing large LiDAR acquisitions. Command line 

programs utilities (or executables) used for this thesis project include 

CanopyModel, ClipData, CloudMetrics, and PolyClipData. 

FUSION Executables Used 

In addition to the two main programs of FUSION and LDV, the FUSION package 

includes numerous task-specific executables, or command line utility and 

processing programs. As a part of the FUSION program download, a 

comprehensive manual provided guidance and instructions on proper use of the 

executables.  

The first executable used was ClipData, which creates a sub-sample of the 

LiDAR data for use in other analysis. The options for these selections are 

rectangular or round, and can be created around any point, such as a plot center or 

GPS point. For this project, selections of the LiDAR data were clipped for each 

plot. The syntax for the command line program for ClipData follows: 

 

ClipData [switches] InputSpecifier SampleFile [MinX MinY MaxX MaxY] 

 

where ClipData refers to the program to be used, and 

 [switches] identifies options that can be utilized 

 InputSpecifier identifies the raw LiDAR data files to be clipped 

 SampleFile is the output file created 
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 [MinX MinY MaxX MaxY] are the spatial coordinates for the sample area 

to be clipped.  

Switches used were “Shape: 1” to denote a circle selection, and “dtm:file”  and 

“height” to identify the bare earth model and to normalize the elevation data from 

the raw LiDAR data.  

The second executable used was CloudMetrics, which computes various 

statistical parameters describing a sub-set of LiDAR data. CloudMetrics was 

executed on each of the plots using the output of the ClipData executable 

mentioned above. The output of CloudMetrics is a .csv file. The syntax for 

CloudMetrics follows: 

 

CloudMetrics [switches] InputDataSpecifier OutputFileName 

 

where CloudMetrics refers to the program to be used, and  

 [switches] to specific options that can be utilized 

 InputDataSpecifier to the raw LiDAR data files 

 OutputFileName to the newly created output .csv file 

Switches used included “minht:#” and “above:#” which compute additional 

metrics above a given height break, in this case 3 meters (Fusion Manual, 

McGaughey 2012).  

The next executable utilized was CanopyModel to create a canopy surface 

model from the LiDAR point cloud for the entirety of WS1, as well as for each 

individual plot where DHPs were taken. CanopyModel assigns the elevation of 
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the highest return in each grid cell to the grid cell center, and smooths the surface 

using a median or a mean value for the grid cells. When a bare earth model is 

used with a switch, a canopy height model (CHM) is created. The output of 

CanopyModel is in a PLANS format DTM file that uses floating point elevation 

values and contains coordinate projection information for easy input into GIS 

systems. The syntax for CanopyModel follows: 

 

CanopyModel [switches] surfacefile cellsize xyunits zunits coordsys zone 

horizdatum vertdatum datafile1 datafile2 

 

where CanopyModel refers to the program used,  and 

 [switches] to specific options that can be utilized 

 surface file to the name of the output file 

 cellsize to the desired grid cell size (0.5 meters) 

 xy units and y zunits to units for LiDAR data (M for meters) 

 coordsys to the coordinate system for the canopy model (1 for UTM) 

 zone to the coordinate system zone for the canopy model (10) 

 horizdatum to the horizontal datum used (2 for NAD83) 

 vertdatum to the vertical datum used (2 for NAVD88) and datafile1  

 datafile2 to the raw LiDAR data files used to create the canopy model.  

The switch “ground:file” was used to specify the corresponding  bare earth model 

used to normalize the LiDAR data and create a canopy height model. The canopy 

height model created a canopy volume metric that was used in the LAI LiDAR 
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model; the canopy volume metric was also input into TreeVaW for identification 

and stem mapping of individual trees.  

The final executable used was PolyClipData. This program is similar to the 

Clipdata executable, but uses a shapefile to clip data rather than a set square or 

circle. For this executable, a shapefile of WS1 was used to clip the LiDAR data to 

the extents of the watershed. The syntax for PolyClipData follows: 

PolyClipData [switches] PolyFile OutputFile Datafile 

where PolyClipData refers to the program used, and 

 [switches] to specific options that can be utilized 

 PolyFile to the name of the ESRI shapefile containing polygons 

 OutputFile to the name of the output file 

 Datafile to the name of the LiDAR data file or a list of data files with a .txt 

extension  

Volume Calculation for LAI model 

A CHM model created with FUSION was used to estimate canopy volume for the 

LAI_LiDAR model. The CHM was loaded in FUSION, and the export terrain 

model tool was used to export the CHM as an ASCII grid file. In ArcMap, the 

ASCII to raster conversion tool was used to create a raster from the CHM. The 

new CHM raster output was loaded into ArcMap, along with the bare earth model 

mentioned above. The volume surface calculate tool in ArcMap was used to 

measure the volume of canopy present above the bare earth model for each plot. 

These values were stored in a .csv file for regression analysis using the statistical 

package R (The R project). 
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After the surface volume was calculated for each plot in which DHPs were 

taken, a simple linear regression was performed between those values and the LAI 

plot values from DHP analysis. The regression coefficients, slope and intercept, 

were then used for the LAI from LiDAR model.  

RESULTS 

LAI Results from Digital Hemispherical Photographs using SLIM Software 

 

Table 2. LAI and gap fraction results from SLIM software. Plot LAI was calculated with a limited scope of 
view to capture LAI within each vegetation plot. Wide LAI used the default 60 degree scope for 

calculation and Cardinal LAI is the average of the four cardinal direction LAI values with a 60 degree 
scope. 

Table 2 displays the results of analysis by SLIM software. Plot LAI is 

computed for a scope of view that captured only canopy directly above individual 

plots. LAI for the plots ranged from 2.91 to 10.39. Wide LAI was computed using 

a scope of 60 degrees (from zenith, 120 degrees of view). Wide LAI showed both 

less variation among values and overall lower values in comparison to Plot LAI 

(means). The lowest value for the Wide LAI was 6.03, while the highest was 7.96. 

PLOT Plot LAI Plot Gap Fraction Wide LAI Wide Gap Fraction Cardinal LAI Cardinal Gap Fraction

P11109 8.24 13 6.42 20.3 6.5 18.525

P11110 2.91 58.7 6.68 21.1 6.63 19.675

P11205 6.18 30.9 8.41 8.8 7.875 10.525

P11206 9.08 9.6 7.06 13.7 7.5625 11.125

P11207 7.42 20.2 7.78 11.8 7.555 12.5

P11208 9.32 9.3 7.58 9.7 7.7275 10.8

P11209 10.39 7.7 7.48 11 7.7425 13.65

P11212 5.95 32.7 6.29 22.8 6.41 20.85

P11213 6.97 14.5 6.03 17.7 6.92 14.275

P11608 8.67 7.5 7.17 10.1 7.4475 9.775

P11609 7.15 22.8 7.57 9.7 7.725 8.925

P11610 7.66 19 7.31 11.6 7.35 11.025

P11611 7.5 13.8 7.19 10.4 7.2425 10.325

P11612 9.85 7.3 7.21 11.9 7.595 9.775

P11613 8.34 10.8 7.51 9.7 7.6925 9

P11614 9.22 7.2 7.85 8.1 7.9 8.7

P11615 8.01 20.9 7.96 11.3 7.8825 9.8

P11616 9.54 6.1 7.33 10.5 7.555 8.975

P11617 8.55 11.5 7.44 11.8 7.5225 9.55
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Cardinal LAI is the average of the four DHPs taken in the four cardinal directions 

from center for each plot (also with a 60 degree scope, 120 degrees of view for 

analysis). The Cardinal LAI values are relatively consistent among plots, ranging 

from a 6.41 to 7.8825.  

Before analysis of LAI values, a Q-Q plot of each set of LAI values was 

performed to test for normal distribution. Figure 3 displays the Q-Q plots for each 

set of LAI values. According to these plots, only the Plot LAI measurements are 

normally distributed. Consequently, a natural log transformation was performed 

on the data for regression and correlation analysis in order to reduce variability in 

the tail ends of the distribution.  

 

Figure 3. Q-Q plots for all LAI results: Plot LAI (right), Wide LAI (bottom left) and Cardinal LAI (top 

left). Axes represent theoretical and sample quantiles. Only Plot LAI is normally distributed. 
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Simple Linear Regression of LAI Values 

After natural log transformations were performed on all three sets of LAI values, 

a regression analysis was performed to assess how the Wide LAI and Cardinal 

LAI values compare to the Plot LAI values (Figures 4 and 5).  

 

Figure 4. Regression analysis for ln(Plot LAI) compared to ln(Wide_LAI). The relationship is not 

significant (alpha= .05). 
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Figure 5. Regression analysis for ln(Plot LAI) compared to ln(Cardinal LAI) 

(R2 = 0.3114, p = 0.013). 

 

The relationship between Plot LAI and Wide LAI is neither strong (R
2
= 0.08) nor 

significant (p= 0.217). The analysis reveals a statistically significant relationship 

between Plot LAI and Cardinal LAI (R
2
 = 0.31, p = 0.013).  Outlier plots heavily 

influence the relationships between both plot LAI and wider LAI and plot LAI 

and cardinal LAI. We suspect that although a strong correlation may exist, it may 

be driven primarily by the presence of extremely high and low values of cardinal 

LAI. If the correlations do have physical meaning, however, correlations between 

cardinal LAI and plot LAI as opposed to plot LAI and wider LAI is indicative of 

anisotropy in LAI patterns on the watershed, and suggestive that some form of 
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topographic directionality, potentially driven by mechanisms such as downslope 

water movement or solar angle, may exist in LAI. 

The Plot LAI values were the only normally distributed values. They also 

represent the highest values for the LAI measurements. These values were closest 

to what was expected for LAI range for an even aged, mostly Douglas fir stand 

(Nadkarni, personal communication). For these reasons, only the LAI plot values 

were used for subsequent analysis. 

LiDAR LAI Model Based on Surface Volume of CHM 

In order to assess the relationship between DHP Plot LAI and LiDAR, the Plot 

LAI values were used in a simple linear regression model against the surface 

volume metric from the LiDAR data. Table 3 shows the volume of the Canopy 

Height Model (CHM) for each plot, as well as the corresponding Plot LAI value 

for each plot.  

The coefficients (slope and intercept) of the best fit line from the simple 

linear regression performed between Plot LAI and the volume of each plot was 

used to estimate the value of LAI from LiDAR. The equation, from Richardson et 

al. (2009) was derived by work originally completed by Lefsky et al. (1999), but 

adapted for use with discrete return aerial LiDAR data.  
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Table 3. Plot LAI, Volume of Canopy Height Model, and LiDAR calucalted LAI for each plot studied. 

The slope of the best fit line (0.0026) is the value for α and the intercept (-

2.7785) is the value for β. The following equation from Richardon et al. (2009) 

was used: 

 

LiDAR LAI= α+β(Volume) 

 

This equation was applied to each plot and the results are presented in Table 3. 

The LiDAR calculated LAI was then compared to the Plot LAI values obtained 

from the DHP by running a simple linear regression (Figure 6). The regression 

revealed a somewhat strong (R
2
= 0.3314) and statistically significant (p=0.0099) 

relationship.  

PLOT Plot LAI Volume LiDAR LAI

P11109 8.24 4313.057 8.323283

P11110 2.91 3457.183 6.120263

P11205 6.18 3481.565 6.183021

P11206 9.08 3984.748 7.478215

P11207 7.42 3992.862 7.4991

P11208 9.32 3793.143 6.985023

P11209 10.39 4104.921 7.787541

P11212 5.95 3682.819 6.70105

P11213 6.97 4412.353 8.578869

P11608 8.67 4208.022 8.052922

P11609 7.15 4046.029 7.635951

P11610 7.66 4153.8 7.913353

P11611 7.5 4704.49 9.330831

P11612 9.85 4419.239 8.596594

P11613 8.34 4625.235 9.126827

P11614 9.22 4697.408 9.312602

P11615 8.01 4299.383 8.288085

P11616 9.54 4674.676 9.254088

P11617 8.55 4109.038 7.798137



 

43 
 

 

Figure 6. Simple linear regression model of Plot LAI from hemispherical photographs to LiDAR 

estimated LAI for each plot. 

 

The LiDAR LAI model was applied to the rest of the permanent 

vegetation plots in WS1. Plots P11108, P11202, P11417, P11418, P11427 and 

P11519 were excluded due to missing values. The surface volume values, LiDAR 

calculated LAI and Cover*Height value for all plots are displayed in Appendix A. 

Cover*Height was originally created as a proxy for biomass in prior research in 

the watershed. Peterson and Lajtha (2012) exponentially regressed a 

Cover*Height metric derived from the 1m LiDAR onto allometrically calculated 

values of biomass using the equations in the Pacific Northwest Biomass 

Component Equation Library (Halpern and Means, 2011). These equations were 
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validated against similar sets presented by Lutz (2005).  Two simple linear 

regressions were completed between the LiDAR LAI calculations and 

Cover*Height values. First, for plots in which DHP were taken (Figure 7) and 

second for all plots in the watershed (Figure 8). The relationship for the DHP 

plots was very strong (R
2
= 0.75) and statistically significant (p< 1.578e-8). This 

relationship for all plots was strong (R
2
= 0.5467) and statistically significant (p< 

2.2e-16). 

 

Figure 7. Simple linear regression between LiDAR calculated LAI and Cover*Height values for plots 

in which DHP were taken. 
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Figure 8. Results of simple linear regression for all plots between LiDAR calculated LAI and 

Cover*Height value. 

 

 

DISCUSSION 

In this research, a model of LAI from LiDAR data was successfully run to 

estimate LAI for 133 plots in a small watershed at the H.J. Andrews Experimental 

Forest in Central Oregon. The LiDAR based estimates, and the hemispherical 

photograph LAI estimates, with which the model was calibrated, are both slightly 

less than what would be expected for LAI in the area. The LAI for an even aged, 

dense, roughly 40 year old mostly Douglas fir stand would be expected to be in 

the range of 9-12 (Vose et al. 1994; Waring, 1998). Both estimates, from DHP 

and LiDAR produced estimates ranging from 7-10. The slightly lower estimates 

in DHP and LiDAR may be due to sub-optimality of field and sky conditions on 

the days of measurement. 
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 Previously, a LICOR-2000 device was used to estimate LAI in the 

watershed and, among other errors, also resulted in underestimation of expected 

values. An informal document produced by previous researchers working in the 

watershed detailed issues retrieving LAI for the 133 permanent vegetation plots 

and the whole watershed (Peterson, 2010). The document states that protocol for 

the use of LI-COR in mountainous terrain (i.e., WS1) is complicated because the 

hill slope may shade the hemispherical instrument lens. As mentioned in the site 

description, slopes on WS1 average nearly 60% when measured in the field, such 

that they intercept the view of the hemispheric lens. Special covers exist to direct 

the view to open space away from the hillslope, but experimental error in this case 

is high. Because of this, previous attempts at estimating LAI in the Forest 

Ecohydrology and tELemetry Transect (FEEL), which corresponds with transect 

1 of WS1 have been highly variable (Figure 9). Peterson (2010) also attributes 

this error to both variation in tree foliage over time and the experimental error 

mentioned above. On the FEEL transect, tree species present include Psuedotsuga 

menziesii, Tsuga heterophylla, Arbetus menziesii, Alnus rubra, Acer circinatum, 

and Acer macrophyllum. During the early summer season of the most recent 

measurement, the abundance of Acer spp. understory contributed severely to the 

perceived canopy cover, whereas in measurements made prior and in other 

season, hardwood species did not have such prolific coverage. Allometric 

equations have also been used in the watershed with similar results showing 

variability in foliar contribution depending on the selection of species, stand age, 

and stand vigor used. Kennedy (personal communication) suggested that a scalar 
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correction factor of 1.89 be used to express the density of coniferous leaf area that 

would not be accounted for in measurements of hardwoods in the watershed. 

However, recent calculations of LAI using sapwood values did not use this 

correction factor (Peterson, 2010). As a result of these prior results, I chose for 

this thesis project digital hemispherical photography as the best non-LiDAR 

method of estimation of LAI for the watershed. However, the results of my 

research suggest that this method is prone to errors similar to previous methods.  

 

 

Figure 9. Previous estimates of LAI in the FEEL network in Watershed 1 at H.J. Andrews. 

 

Underestimation of LAI from Hemispherical Photograph Analysis 

 A review of the literature reveals that underestimation and other issues 

surrounding estimation of LAI from hemispherical photographs is common. 

Martens (1993) used four different instruments to estimate LAI in conifer and 
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hardwood forest stands. These instruments fell into two categories: line and 

hemispheric sensors, with the latter including hemispherical photography. 

Different methods in obtaining LAI from hemispherical photographs either 

underestimated (Campbell’s method) or overestimated LAI (Beer-Lambert 

method) when compared to direct measurements taken in the same area. These 

methods are similar to how SLIM estimates LAI in three different ways. Most 

estimation methods for LAI require the assumption that canopy elements are 

randomly dispersed, which is highly unlikely in any natural forest stand. This 

conclusion is similar to that drawn by Dufrene and Breda (1995) in their research 

using one semi-direct and three indirect measurements of LAI in a deciduous 

forest. All three indirect methods underestimated LAI due in part to local 

clumping of architectural canopy components, and in particular, the spatial 

dispositions of branchlets and leaves not being independent. This results in a non-

random distribution of these two canopy elements. 

Clark and Murphy (2011) thoroughly outline the issues surrounding 

hemispherical photography in the estimation of gap fraction and LAI. The 

limitations start with equipment used, including camera spatial, radiometric and 

spectral resolution and software. Accurate estimates are also dependent on 

weather conditions, time of day, crown closure, ground slope, and many other 

factors. Sunny conditions (present at the time of capture of DHPs for this thesis), 

time of day (early morning and late evening) and low crown closure can all lead 

to increased direct sunlight, which can saturate photographs and negatively 

impact the accuracy of gap fraction and effective LAI estimates. The camera and 
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lens used to acquire photographs can also affect LAI estimates. Color blurring in 

digital pictures can result in measurement errors in canopy gaps, edge detection, 

and lead to “blooming”, especially near zenith (straight up) in sunny conditions. 

Clark and Murphy point out that leaf clumping can affect gap fraction and LAI 

measurements; with the threshold level of light between “gap” and “plant” being a 

subjective measure that varies with individual users and which is subject to bias. 

Slope Correction for Hemispherical Photograph Analysis 

Hemispherical photographs are taken to capture the canopy directly above the plot 

or area that is being studied. When this area is flat, capturing the area directly 

above the camera is straightforward. However, when the area is sloped, as is 

much of WS1, capturing the area directly above is more difficult. Some 

researchers have taken this into account, and slope correction for hemispherical 

photograph analysis is an option to correct errors due to slope. Walter and 

Torquebiau (2000) addressed this matter, noting that although much of the 

world’s forests grow on sloped terrain, the issue of ground slope has not been 

addressed in indirect measurements of LAI.  

Schleppi et al. (2007) considered how LAI estimates are obtained from 

hemispherical photographs. LAI is indirectly estimated by measuring the light 

transmission through canopies, and the angle at which the transmission is 

measured enters the calculation at two distinct points: 1) as the angle of incidence 

determining the travel distance of a light ray through the whole canopy, and 2) 

relative to the zenith for the statistical distribution of the angle at which the single 

foliage elements are seen. Schleppi et al. (2007) note that any angle on flat ground 
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is sufficient to describe the zenith angle. However, on sloped ground the angle of 

incidence is not identical to the zenith angle, and each direction in the canopy 

must be classified according to both angles.  

Schleppit et al (2007), referencing Nilson (1971) note that the 

transmission of light through and ideal canopy is described as a function of the 

zenith angle θ: 

 

G(θ)L = K(θ) = -lnT(θ)cos(θ),  θ < π/2 

 

where L is Leaf Area Index, G(θ) is the mean projection ratio of leaves in the 

zenith angle, which is a function of the statistical distribution of the leaf 

inclination angles, T(θ) is the light transmission at angle zenith θ, and K(θ) is the 

‘contact number’, which represents the average number of contacts that a light 

probe would make by passing through the canopy at the zenith angle, relative to 

the thickness of the canopy. This equation is only valid on flat ground. On sloped 

ground, with an angle of (v), and the sensor held horizontally, light travels a 

shorter way through the canopy in the downhill compared to the uphill direction. 

If an observer looked downhill the canopy would appear lighter, and darker when 

looking uphill. Therefore, the zenith angle (θ) can be replaced in the equation on 

the right side by the angle of incidence (τ): 

 

G(θ)L = K(θ) = -lnT(θ, τ)cos(τ),  θ < π/2, τ < π/2 
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This correction would necessarily have to occur within the computer software 

algorithms used to estimate LAI from hemispherical photographs.  

LiDAR LAI Estimates 

Since the LiDAR estimates of LAI were calibrated based on the DHP estimates of 

LAI, they are slightly less than expected as well. However, the high r-squared 

value (R
2
= 0.57) when the estimates for all plots were compared to the 

Cover*Height measurements for each plot is promising in that they compare to a 

widely used metric within the watershed. One way to reassess LAI for the plots 

would be to use a so-called LiDAR only metric, or a model that only uses metrics 

derived from the LiDAR data itself, and does not rely on possibly unreliable 

hemispherical photograph estimates of LAI.  

Many of these LiDAR only models exist in the literature. Jensen et al. 

(2008) noted that most previous attempts to estimate LAI from remote sensing 

have relied on empirical relationships between field-measured observations and 

various spectral vegetation indices (SVIs) derived from optical imagery or the 

inversion of canopy radiative transfer models. Jensen et al. (2008) used LiDAR 

data along with SPOT5- derived SVIs to estimate LAI, but found that LiDAR data 

alone was adequate to do so. The researchers calculated many LiDAR-derived 

model covariates, including canopy height metrics, canopy cover metrics, and 

height distribution metrics. These covariates were compared to known LAI values 

for plots within a multiple regression framework. In estimated LAI for two stands 

in Idaho, nine different models were created and tested, with r-squared values 

ranging from 0.6971 to as high as 0.8612 (Jensen et al. 2008).  
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Overall, the LiDAR derived covariates explained the largest proportion of 

variation in LAI, with most models incorporating LiDAR covariates associated 

with upper story metrics, and all models containing the covariate MAX_HEIGHT. 

The authors point out the logic for including LiDAR: increases in canopy height 

should correlate to increases in LAI. However, the covariate MAX_HEIGHT 

alone did not significantly correlate with the known LAI quantities. When 

considering the vertical foliage distribution covariates, the calculated differences 

in percentile heights played an important role. Similarly to the MAX_HEIGHT 

covariate, the covariate L95_C25, or the 95
th

 percentile value minus the 25
th

 

percentile value, is present in each LAI model.  

Morrison et al. (2011) also set out to compute LAI using LiDAR with 

minimum field data for use in remote areas like the Canadian boreal forest. Their 

research reviewed many LiDAR metrics from articles mentioned above (Lim et 

al. 2003, Riano et al. 2004, Solberg et al. 2006, and Lefsky et al. 1999), but 

concluded that each model was developed for a specific forest type and required 

calibration. Instead, the authors modified an intensity based gap fraction model 

developed by Hopkinson and Chasmer (2007). This model classified LiDAR 

returns into four echo classes (first, single, intermediate, last) and generated grids 

of intensity by summing returns within a raster cell, and takes into account two-

way power transmission loss by intermediate and last return hits using a square 

root function. The subset of first and single hits at or below 1.3 meters represents 

ground returns and an equation combining all these values is used to estimate gap 
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fraction. The gap fraction (P) estimates are then used to estimate effective LAI 

(LAIe) based on the Beer-Lambert Law: 

 

LAIe = -ln(P)/k 

 

where k is the extinction coefficient, which is a function of leaf angle distribution, 

radiation type and direction, and canopy structure and clumping. A standardized, 

mid-value of 0.5 was used by the researchers to represent a spherical (random) 

projection coefficient for leaves of any shape. Using the standard 0.5 extinction 

coefficient, LAIe for conifer species was underestimated, and LAIe was 

overestimated for broad-leaved aspen species. The authors then optimized the 

extinction coefficient for each species studied using DHP LAI estimates. This 

resulted in better LAIe estimates from the LiDAR data.  

Alternative LiDAR Systems  

The LiDAR system used for collection of data for this thesis was a discrete return, 

small footprint system, with similar systems used extensively in the research field 

to estimate LAI and other forest attributes. However, two other systems hold 

promise for estimation of LAI: full waveform aerial LiDAR and ground-based 

terrestrial LiDAR systems. Full waveform systems have already been described in 

this thesis, and were used by Lefsky et al. (1999) for their estimation of LAI.  

Adams et al (2012) utilized full waveform LiDAR in their research, noticing that 

with all uses of LiDAR, performance was hindered by an inability to distinguish 

the source of the LiDAR returns as foliage, stems, understory and the ground, 
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other than the relative position of the return. The goal of their research was to 

determine whether drawing distinctions between the type of material that a return 

was hitting would improve analysis with LiDAR data, and if full waveform 

metrics could provide information on foliage density and improve forest health 

and growth measurements.  

 Adams et al. (2012) also cover the major differences between waveform 

systems and discrete return systems and why using full waveform systems might 

better suit the needs of researchers. The major drawback of discrete return 

systems is a ‘blind-spot’ that occurs following each detected return, during which 

no other returns can be detected. Adams et al. (2012) quantified waveform shape 

with various curve-fitting methods, including peak height, half-height width and 

an exponential decay function attributed to each return. However, due to the 

complexity of the surfaces encountered and the multitude of angles, textures and 

paths each new waveform metric showed more potential variation within a 

surface type that it did between surface types. However, ground peaks on average 

showed waveforms with higher peaks, shorter widths and faster decays. Foliage 

returns in turn averaged lower peaks, wider pulses and slower decays. This 

classification could lead to more accurate DEM production from full waveform 

LiDAR, but the clear distinction between surface types still seems impractical for 

the time being. 

 Terrestrial LiDAR systems represent an alternative approach for collecting 

LiDAR data, where collection occurs from below the canopy rather than from an 

aircraft or satellite. Seidl et al. (2012) examined the use of ground-based laser 



 

55 
 

scanning in the analysis of mature forest structure and compared their findings to 

hemispherical photography methods. In all, 35 groups of trees were analyzed by 

the researchers to generate 3D point clouds of the tree axes and leaves. The 

images were used to generate hemispheric views of the canopy. These images 

were compared to actual hemispherical photographs taken in the same area. The 

authors found that their method was problematic for identifying small canopy 

gaps, and wind-induced movements at the time of collection further complicated 

the issue. However, improvements in the systems should speed up the operation 

of the system and/or produce a smaller beam, both of which would help alleviate 

the issue. The authors see a future application of this work being the creation of 

canopy models of growth and photosynthetic carbon gain in mature trees based on 

the 3D canopy structure data collected, which their study showed was well 

represented by terrestrial laser scanning.  

CONCLUSIONS 

Estimation of Leaf Area Index in Watershed 1 at H.J. Andrews Experimental 

Forest using prior methods had proven difficult. The use of hemispherical 

photographs to estimate LAI in this thesis seems prone to the same difficulties. 

The steepness of the terrain and the high density of the vegetation make the 

estimation of LAI very uncertain. However, using LiDAR data to estimate LAI 

seems promising for the watershed. The strong correlation between the LAI 

LiDAR estimates from this work to the Cover*Height metric used in the 

watershed provide evidence that the results are validated against a metric known 

and often used by researchers in the area.  
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The lack of correlation of the plot level LAI to the wider scope LAI and 

cardinal direction LAI is curious. This may be caused by either the hill slope 

affecting the two wider measures of LAI, or the different ways in which light is 

being measured in the photographs within the software itself. Exploring how light 

is reacting differently on the sloped terrain compared to a flat surface may provide 

insight and better results for the wider LAI measurements. Developing new 

algorithms within software programs for specialized use on sloped terrain could 

perhaps solve to this issue.  

A possible next step in the estimation of LAI for the watershed is to 

develop and test a LiDAR model that does not rely on ground-truthed LAI 

estimates. In theory, a model of LAI from LiDAR data that used hemispherical 

photographs, or other methods, as a ground-truth will only be as good as those 

original LAI estimates. A LiDAR only model may be the answer to estimating 

LAI in a steep, densely vegetated watershed, since it has been proven that LiDAR 

can adequately measure these areas.  

Finally, exploration into alternative LiDAR systems may be helpful in the 

estimation of LAI in the watershed. An examination of how full waveform or 

terrestrial systems could improve estimates is certainly possible. The discrete 

return, aerial system used for this thesis seems capable of providing information 

on the upper canopy, but seems to lack the capability to accurately measure and 

assess lower canopy and understory features. An interesting approach to solve this 

issue could be linking the aerial LiDAR data with terrestrial LiDAR data. This 
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would provide a perspective from above and below the canopy, and may provide 

a more complete picture and insight into the complete structure of the forest.  
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Chapter 3- LiDAR used to Describe Stand Characteristics and Identify 

Individual Tree Height and Location 
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INTRODUCTION AND BACKGROUND 

LiDAR data have been used extensively in recent years and have the potential to 

generate high resolution digital terrain surfaces accurately. The resulting surface, 

precise within 15 cm, represents complex natural and semi-natural environments 

at a range of scales (Large and Heritage 2009). One of the first commercial uses 

of LiDAR data in the United States was the identification of encroaching 

vegetation on power line corridors (FUSION manual). Federal agencies in the 

United States, such as the Federal Emergency Management Administration 

(FEMA) and the U.S. Geological Survey (USGS), have used LiDAR with county 

and state agencies to map flood plains and earthquake hazard zones (FUSION 

manual). The following represents a fraction of LiDAR applications in the 

forestry sector: a) the estimation of biomass and carbon stocks, b) description and 

quantification of forest structure and cover, and c) identification of individual 

trees and stem mapping. 

Biomass and Carbon Stocks 

Omasa et al. (2007) assessed the capability of LiDAR to measure carbon (C) 

stocks in forests. Using LiDAR to quantify forest C stocks leads to a more 

complete understanding of terrestrial C cycling, which is important to quantify in 

light of recent climate change research. The ability of a forest to store and 

sequester C is often valued as ecosystem services, so an apt understanding of their 

capacity to do so is essential for both ecological and economical decision making. 

LiDAR is a novel tool for quantifying forest biomass because it allows for remote 

sensing of highly specific biomass components. For example, Garcia et al. (2010) 
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also evaluated LiDAR use to estimate total aboveground, branch and foliar 

biomass in an unmanaged forest in Spain using models based on LiDAR extracted 

height, LiDAR point cloud intensity, or height and intensity data combined. The 

researchers determined that normalizing LiDAR intensity data to a standard range 

removed the range dependence of the intensity signal. The intensity-based models 

proved the most effective and provided more accurate predictions of the 

breakdown of biomass into branch and foliar fractions. They also found that using 

species-specific models of the dominant species in the area improved estimates 

for biomass. Overall, the research demonstrated that LiDAR intensity data could 

be used to segment above ground to branch and foliar biomass from total biomass 

determination. Other variables, derived from LiDAR data and similar to those 

created using CloudMetrics and FUSION software (see Chapter 2), were included 

as explanatory variables in these biomass models. 

Zhao et al (2009) conducted further work with LiDAR data and forest 

biomass, but aimed to move beyond scale-dependent the models that first need to 

be fitted and applied at the same scale or pixel size. The research goal was to 

create methods for scale invariant estimation of forest biomass using LiDAR data, 

and resulted in two models: a linear functional model that used LiDAR-derived 

canopy height distributions and a functionally equivalent nonlinear model that 

used canopy height quantile functions as parameters. These models used a LiDAR 

tree delineation approach to create a fine-resolution biomass map that captured 

individual tree component biomass in Eastern Texas, and the authors’ work 

validated the use of canopy height distributions and canopy height quantiles as 
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LiDAR metrics for estimating biomass, as well as for mapping biomass at a range 

of spatial scales. Furthermore, the results of this work are viable for estimating 

other forest characteristics including belowground biomass, timber volume, crown 

fuel weight and Leaf Area Index. 

Using LiDAR Data to Describe Forest Structure and Cover 

Aerial LiDAR data have been used extensively for describing, measuring and 

quantifying canopy cover and structure of forests all over the world. Magnussen 

and Boudewyn (1998) used canopy-based quantile estimators to derive stand 

height from LiDAR data. Knowing that the proportion of laser pulses returned 

from or above a given reference height is directly proportional to the fraction of 

leaf area above it, the authors hypothesized that an unbiased estimate of this 

relationship could be obtained using the quantile of LiDAR derived canopy 

heights matching the fraction of leaf area above a desired height. Their work 

found a strong relationship between field and LiDAR estimates of stand height, 

and statistical tests supported their hypothesis. Their work demonstrated that 

estimating stand height from LiDAR data based on maximum canopy height 

value in each cell of a fixed grid has been and is likely to continue to be 

successful.  

Smith et al. (2009) used discrete return LiDAR data to compare estimates 

of forest canopy cover from LiDAR and spectral methods and ground based 

measurements. This research used imagery from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), and explored sources of 

error if this technology were used on a large scale. The researchers found that 
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78% of the variability in field-based canopy cover metrics could be described by 

the derived LiDAR metric for canopy cover. They surmised that the other 22% is 

likely due to challenges of using LiDAR to sense understory vegetation and shrub 

dominated plots.  

Hopkinson and Chasmer (2009) compared four models of fractional cover 

to hemispherical photograph fractional cover measurements across five distinct 

ecozones, eight forest species and multiple LiDAR survey configurations. Their 

models used four different LiDAR metrics: 1) a canopy-to-total first returns ratio, 

2) a canopy-to-total returns ratio, 3) an intensity return ratio, and 4) a Beer’s Law 

modified intensity return ratio. Although they found that the intensity based forest 

cover model had the highest R
2
 value, the forest cover method using Beer’s law 

was more useful since its best fit line passes though the origin and has a slope 

near unity. The models used showed promise across all the ecozones, but short 

canopies (less than 2m) and open canopy forest plots posed the greatest challenge 

to the models when predicting forest cover.  

In research by Coops et al. (2007), the authors noted that the variation in 

vertical and horizontal forest structure is difficult to quantify with labor-intensive 

field methods or with passive optical remote sensing techniques that are limited in 

their ability to distinguish structural changes below the top of the canopy. 

Working in primarily Douglas-fir (Pseudotsuga menziesii) and western hemlock 

(Tsuga heterophylla) stands on Vancouver Island, Canada, the researchers chose 

stands that represented a wide range of stand development ages. This research 

built on previous work that used full waveform data to examine open and filled 



 

63 
 

volumes within the canopy itself (Lefsky et al. 1999). The resulting model 

produced a three dimensional canopy structure that was termed “canopy volume 

profiles” or 1 meter tall cells or voxels that were classified either as empty or 

filled depending on whether a LiDAR return was present within the 1m voxel. 

The voxels in the upper most 65% of the canopy were considered “euphotic”, and 

those below that threshold deemed “oligophotic”. The euphotic zone refers to the 

area that intercepts the majority of light within the canopy. Oligophotic refers to 

the area beneath the euphotic zone, which receives less light compared to the 

euphotic zone. 

Coops et al. (2007) adapted the full waveform SLICER LiDAR methods 

used by Lefsky et al. (1999) for their discrete return LiDAR data. The returns 

present into 5x5 meter plot subsets were ‘binned’, and the number of returns 

within each subplot was counted at 1m height intervals. Bin areas were then 

classified as oligophotic or euphotic depending on their placement within the 

canopy, thus  creating canopy volume profiles for the plots, that were found to 

correlate with ground measured stand attributes including crown volume, stem 

density and basal area. The overall canopy surface structure was shown to 

suitably characterize the total amount of open gap area using the methods of 

binning LiDAR into 1m voxels. The limited number of observations precluded 

developing regression models to estimate forest parameters, but the authors 

concluded that the relationship between the canopy volume variables and 

structural attributes suggest that models could be developed for this forest type 

regardless of stand age.    
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Concurrent with the work of Lefsky et al. (1999) was a research paper by 

Means et al. (1999). Using the same SLICER system, the authors compared 

ground measurements for height, basal area, total biomass, and leaf biomass to 

those obtained from the full waveform LiDAR system. The SLICER derived 

measurements correlated well with ground-measured attributes, with R
2
 values of 

0.95 for height, 0.96 for basal area, 0.96 for total biomass and 0.84 for leaf 

biomass. The relationships found were strong up to a height of 52m, a basal area 

of 132 m2/ha, and a total biomass of 1200 Mg/ha.  

Much research has compared LiDAR estimates of forest attributes to field 

measured data, but Smith et al (2009) also considered spectral estimates when 

comparing field and LiDAR estimates of forest canopy cover. This work, situated 

in northern Idaho over an area of 25,000 hectares of mixed conifer forest, 

compared cover measurements from reflective spectral satellite data, and LiDAR 

and field collected measurements with variables measured using spherical 

densiometers. . The research had two goals: 1) to evaluate the overall accuracy of 

spectral and LiDAR derived cover metrics, and 2) to determine whether LiDAR 

data could quantify and reveal the sources of error observed in the spectral-based 

canopy cover metrics. The LiDAR metrics outperformed the spectral metrics 

when compared to field gathered data. However, all metrics were sensitive to the 

presence of herbaceous vegetation, shrubs, seedlings, saplings, and other 

subcanopy vegetation. This work is particularly relevant to this analysis because 

the stand type and site analyzed is similar to the one addressed at H.J. Andrews. 
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Lovell et al (2003) highlighted the importance of obtaining canopy 

structure from LiDAR data since that information is not available from other 

remote sensing methods but is essential for ecological assessments in forest 

inventory. Canopy architecture is particularly relevant to predictions of moisture 

and gas exchange that describe the overall functionality and productivity of the 

forest ecosystem. Their work used both aerial laser scanning, as well as ground 

based ranging systems in measuring important forestry parameters compared to 

standard field inventory, hemispherical photographs, and optical point-quadrat 

sampling. Simple models were developed, including determining predominant 

height of stand by aerial LiDAR, and Leaf Area Index from the ground based 

scanning system. The results of this work justify the further development of 

instrumentation and analysis to combine results from multiple systems to describe 

forest attributes such as height, cover, LAI, and foliage profile.  

Many models using LiDAR data to describe forest structure are based on 

where the LiDAR points are distributed, namely by height. However, Hopkinson 

and Chasmer (2007) used LiDAR intensity values in modeling canopy gap 

fraction by using a modified Beer-Lambert approach. This may be more 

physiologically appropriate since a Beer-Lambert calculation reflects the capacity 

of the canopy to absorb radiation and deflect moisture, whereas a height 

distribution is a descriptive metric with less direct physiological significance. The 

authors related the ratio of ground return power/total return power to the canopy 

gap fraction derived from digital hemispherical photographs. They found that the 

LiDAR intensity based power distribution ratio provided a higher correlation to 
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the DHP gap fraction than the more often used ground to total return ratio. 

Furthermore, they modified the intensity power distribution ratio to account for 

secondary two-way pulse transmission losses within the canopy. This step created 

a model that requires no calibration and provides an accurate estimate of overhead 

canopy cover.  

Hyde et al (2005) pointed out that LiDAR has been used extensively for 

measuring forest attributes in many ecosystems, including tropical, boreal, and 

mid-latitude forests. However, the authors noted that few studies have taken place 

in montane forests, and examined the ability of large footprint LiDAR systems to 

retrieve forest structural attributes in highly variable terrain and different canopy 

conditions in the Sierra Nevada mountains in California. The authors examined 

the effects of slope, elevation, aspect, canopy cover, crown shape, and spatial 

arrangement of canopy forming trees on the accuracy of the LiDAR estimates of 

height, cover and biomass and found good agreement between field and LiDAR 

measurements of height, cover, and biomass at the footprint level, and canopy 

height and biomass at the stand level. The differences encountered between field 

and LiDAR measurements was attributed to the spatial configuration of canopy 

elements, and were less affected by topography, crown shape, or canopy cover.  

LiDAR data have also been utilized to measure, quantify and map the 

structure of understory characteristics. Korpela (2008) used LiDAR data to 

identify and map understory lichens in a barren pine grove in Southern Finland, 

using two different LiDAR data sets and examining the backscatter properties and 

intensity of LiDAR returns to differentiate bare ground from ground covered by 
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reindeer lichen. The remote sensing capabilities of the LiDAR made large scale 

mapping of lichen possible, whereas conventional field methods would have 

proved time-consuming and thus impractical.  

Stem Mapping 

LiDAR data have been used extensively to describe forest structure and cover, 

and to estimate biomass and C stocks, and more recently to identify individual 

trees and take ‘inventory’ of forest stands at various spatial scales. These 

techniques replace older, time consuming field measurements that identify 

individual trees one at a time during forest surveys (Hawk, 1970). Identifying 

individual trees in a stand with LiDAR data is important for this thesis as it 

suggests an alternative to mapping LAI at the watershed scale. If all trees can be 

identified in a stand, then allometric equations of DBH to height (Curtis 1967; 

Waring et al., 1977; Garman et al. 1995) and stem/crown dimension and 

biomass/needle area ratios (Bartelink, 1996) might be used to correctly estimate 

the amount of leaf area for individual trees. The estimates could then be used to 

scale up tree-based estimates to LAI at the stand, watershed or even landscape 

scale.  

Strunk et al (2008) used aerial LiDAR data to estimate basal area for a 

complex forest on the Fort Lewis Military Installation in southeast Puget Sound 

(now Joint Base Lewis-McChord). The authors used the program FUSION 

(McGaughey, 2012) and similar software cited in Chapter 2 of this thesis 

(ClipData, CloudMetrics, GridMetrics) to produce LiDAR metrics that describe 

canopy size and vertical distribution. These metrics calculated basal area using 
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regression analysis. While the research did not explicitly identify individual trees 

from the stands studied, the estimation of basal area of a stand as well as stand 

density, predominant height, crown cover, foliage projected cover, and foliage 

branch projected cover are structural variables that are used to characterize forests 

in inventory, mapping programs and conservation (Specht and Specht, 1999).  

Popescu and Wynne (2004) first set out to develop processing and analysis 

techniques to facilitate the use of discrete return LiDAR data to estimate plot-

level tree height and measure individual trees from three-dimensional LiDAR 

surfaces. Popescu has been a leader in this field, developing TreeVaW, the tree 

extraction software used in this research. His work was conducted in both 

deciduous and coniferous stands, and the methods of using LiDAR derived tree 

metrics with regression models and cross validation of tree heights were more 

successful in the conifer stands than in the deciduous. The process included 

filtering the point cloud data with a circular window for the conifer stands, and a 

square window for the deciduous stands, and calibrating the search window based 

on forest type led to better results overall. 

Similar to methods used by Popescu and Wynne (2004), Tiede et al. 

(2005) used local maximum filtering within a GIS environment to extract and 

delineate single trees from the LiDAR data point cloud. After using local maxima 

to identify individual trees from the point cloud, the authors developed a region-

specific growing algorithm to delineate tree crowns from their data. This method 

used the original laser points rather than a derived raster data set. The authors 

achieved their stated goal for this research, developing and demonstrating a 
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complete GIS-based method from LiDAR data pre-processing, algorithm 

development, analysis and visualization, but noted that a complete count and 

validation of findings required field-verification, especially in complex multi-

tiered deciduous and young stands.  

Chen et al (2006) also derived local maxima in a canopy height model to 

identify individual tree tops using variable sized windows. However, in this 

research the window size was determined by the lower-limit of the prediction 

intervals of the regression curve between crown size and tree height. This was 

done because of ‘commission errors’, or non-treetop local maxima that were 

incorrectly classified as treetops. The authors manually measured tree crown size 

and tree height from the CHM used for analysis. This method was preferable to 

measuring in the field since: 1) it was easy to identify individual trees from the 

LiDAR data set due to the high pulse density present, and 2) sampling within the 

CHM greatly reduced workload and was not limited by factors such as 

accessibility in the field. The authors then used a watershed segmentation method 

by inverting the CHM so local maximums became local minimums, and a canopy 

minimum model (CMM) was produced. The ‘flooding’ of the CMM took place 

and the algorithm developed built ‘dams’ along the divide line between 

neighboring catchment basins (trees). The ‘dams’ were called watershed lines and 

were used to partition individual trees from the flooded CMM. 

Korpela et al (2007) used large-scale aerial imagery, a Digital Terrain 

Model (DTM), and LiDAR data to develop a single-tree remote sensing (STRS) 

system to identify 3D treetop positioning, height estimation, species recognition, 
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crown width estimation, and model-based estimation of individual stem diameter. 

Each step was a part of a semiautomatic system using the tree data sources listed 

above. LiDAR-based crown width estimates were completed using crown 

modeling, where parametric crowns were iteratively fitted with LiDAR data. 

Image-based 3D treetop position and crown width estimation was down with 

multi-scale template matching, and species recognition was done manually by 

visual photo-interpretation. Overall, this method underestimated stem diameters, 

and calibration of the system again would require time-consuming field 

observations and measurements.  

METHODS 

TreeVaW Individual Tree Identification and Stem Mapping 

For this thesis, a canopy height model (CHM) was created using FUSION and 

LiDAR data for WS1 (see Chapter 2). This CHM was clipped to the extents of 

each plot in the watershed using the extract by mask tool in ArcMap (ESRI). 

Because TreeVaW reads an older ENVI file format, with a .dat extension, the 

ArcMap copy raster function was utilized so that  these files could be imported 

into TreeVaW, . The copy raster tool also creates an .hdr, or header file, that 

TreeVaW requires. Files were converted for each plot, after which the .dat 

extension was removed, which is the final step before TreeVaW would read the 

data. TreeVaW also requires unique parameters to calibrate its algorithms to the 

forest type present. Keith Olsen, a researcher at Oregon State University 

completing similar work at H.J. Andrews using TreeVaW provided these values 

(Keith Olsen, personal communication). Each plot file was input into TreeVaW 
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one at a time, and the software output a .csv file with XY location, crown 

diameter, and tree height for each tree identified. The following equation relating 

crown diameter (y) to height (x) was used for TreeVaW input: 

 

y = 0.0000310796916048496 * x
3
 - 0.00267405906767456 * x

2
 + 

0.195530509685481 * x  + 1.61296048520958 

 

H.J. Andrews Vegetation Survey Data 

To compare the output of individual trees produced by TreeVaW, I used a data set 

from the H.J. Andrews website detailing comprehensive vegetation surveys 

completed in WS1 (http://andrewsforest.oregonstate.edu/). The most recent data 

were used (2007) since it would closest temporally to the date when the LiDAR 

data were collected (2008). The HJA data set required pre-processing to allow for 

comparison to the TreeVaW output:  1) Because the data set contained plots for 

both WS1 and WS3, all WS3 data were removed, 2) Next, all trees that were 

noted as “mortalities” were removed, so to analyze only live trees, 3) Finally, 

trees that were too small to measure diameter at breast height (DBH) were 

removed, since those trees would also be too small for the TreeVaW program to 

recognize.  

DBH-Tree Height Relationship and Comparison 

After the HJA data were prepared it was then compared to the TreeVaW output 

for each plot. However, there was no direct way to ‘match up’ the trees present in 

each data set because TreeVaW identified individual trees by XY location, crown 

http://andrewsforest.oregonstate.edu/


 

72 
 

diameter and tree height, while the HJA data set identified trees only by DBH and 

quadrant location (NW, NE, SW, SE). In order to identify which trees TreeVaW 

was finding, asymptotic equations to convert DBH to height were used for each 

individual species (Research Contribution 10, Garman et al. 1995). The equations 

from that report provide predictive regional estimates of height-diameter trends 

for 24 tree species over a wide range of diameters, and used the same equation for 

each species, with regression coefficients for each derived from trees measured in 

8,727 fixed and variable radius plots representing managed and natural stands. 

The equation used along with coefficients for each species converted in this thesis 

is found in Table 4.  

 

Table 4. DBH-Height asymptotic equation and regression coefficients used for each species (Garman et 

al. 1995). 

 

RESULTS 

Total Trees Identified in Plots 

Overall, in all the plots of WS1 TreeVaW identified 2,810 trees of the 3,407 trees 

observed (82.48%) in the vegetation surveys (see Appendix B for complete list of 

trees by plot). Trees identified and trees observed for all the plots in which DHPs 

were taken are presented in Table 5. When TreeVaW was used to identify all trees 

Species CODON B0 B1 B2

Douglas Fir (Pseudotsuga menziesii ) PSME 61.6358 -0.01469 0.92706

Big Leaf Maple (Acer macrophyllum ) ACMA 30.4131 -0.03425 0.6821

Western Hemlock (Tsuga heterophylla ) TSHE 57.4756 -0.01677 1.02854

Red Alder (Alnus rubra ) ALRU 35.55 -0.02832 0.79602

Chinkapin (Castanopsis chrysophylla ) CACH 40.6648 -0.01778 0.87363

Height = 1.37 + (b0[1-exp(b1*DBH)]^b2
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in the watershed, 74,299 trees were identified. However, since all trees in the 

watershed have not been counted, there is no way to assess the accuracy of this 

measure. 

 

Table 5. Observed trees, trees predicted by TreeVaW and percentage of trees identified by TreeVaW 

in plots where digital hemispherical photographs were taken. 

 

Vegetation Survey and TreeVaW Comparison by Plot 

 

In plot P11108, TreeVaW identified 12 of 28 live trees (42.86%). The trees 

identified were the tallest 12 trees present in the plot, according to the vegetation 

survey. Also, the height of the trees calculated by TreeVaw was consistently 

higher than the actual trees in the plot. 

 

Plot Observed Trees Predicted Trees % of Trees Id'ed

P11108 28 12 42.86%

P11109 23 17 73.91%

P11110 23 18 78.26%

P11205 17 17 100.00%

P11206 17 15 88.24%

P11207 15 18 120.00%

P11208 12 14 116.67%

P11209 25 11 44.00%

P11211 38 15 39.47%

P11212 46 22 47.83%

P11213 28 17 60.71%

P11608 24 17 70.83%

P11609 15 12 80.00%

P11610 18 14 77.78%

P11611 19 14 73.68%

P11612 21 17 80.95%

P11613 30 15 50.00%

P11614 19 15 78.95%

P11615 25 20 80.00%

P11616 21 14 66.67%

P11617 13 14 107.69%



 

74 
 

 
Figure 10. Transect 1, plot 8. 

 

In plot P11109 TreeVaW identified 17 of 23 live trees present (73.91%). 

Similarly to P11108, the 17 trees identified by TreeVaW were the tallest 17 trees 

present in the plot. Also, the heights of the trees identified by TreeVaW were 

(again) consistently taller than those in the actual vegetation survey. 

 

 

 
Figure 11. Transect 1, plot 9. 

 

 

 

In plot P11110, TreeVaW identified 18 of 23 live trees present (78.26%). Unlike 

P11108 and P11109, however, TreeVaW identified both tall and short trees, but 

not trees in the middle of the height range. The heights of the taller trees identified 
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by TreeVaw were overestimated and the heights for the shorter trees 

underestimated.  

 

 
Figure 12. Transect 1, plot 10. 

 

In plot P11205, TreeVaW identified 17 of 17 live trees (100%). The heights of all 

the trees identified by TreeVaW were very similar to the actual tree heights from 

the vegetation survey, although heights of the three smallest trees were 

underestimated. This may be due to the fact that these trees were ACMA (Acer 

macrophyllum, or bigleaf maple), while the rest of the trees \ were PSME 

(Psuedotsuga menziesii, or Douglas Fir). Additionally, the DBH data for the 

ACMA (and Castanopsis chrysophylla or CACH) trees on WS1 is difficult to 

incorporate into single bole models such as TreeVaw because it represents the 

average DBH of a clump of stems, so that the stem representing the main 

structural bole (likely the tallest bole) will be de-emphasized by the presence of 

thinner copice stems of secondary boles.  
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Figure 13. Transect 2, plot 5. 

In plot P11206, TreeVaW identified 15 of 17 live trees present (88.24%). The 

heights of the trees identified by TreeVaW were slightly overestimated for the 11 

taller trees and slightly underestimated for the 4 shortest trees.  

 

 
Figure 14. Transect 2, plot 6. 

 

In plot P11207, TreeVaW identified 18 trees although only 15 live trees were 

present (120%). Heights for the taller trees identified by TreeVaW were 

overestimated while the heights of the shorter trees were quite close to the 

measured trees heights. The identification of three extra live trees not present may 

be due to identification of snags (dead trees) by TreeVaW that were removed 

from the vegetation survey. 
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Figure 15. Transect 2, plot 7. 

 

In plot P11208, TreeVaW identified 14 trees while only 12 live trees were present 

(116.67%). The two extra trees identified by TreeVaW were smaller than any live 

tree present in the vegetation survey. These extra trees may have been small snags 

that were removed from the vegetation survey. The heights of all trees identified 

by TreeVaw in this plot were overestimated, consistently about 3m taller than the 

trees present according to the vegetation survey. 

 

 
Figure 16. Transect 2, plot 8. 

 

In plot P11209, TreeVaW identified 11 of 25 live trees present (44%). The trees 

identified by TreeVaW for this plot were the tallest trees present according to the 

vegetation survey. Also, the heights of the trees identified by TreeVaW were 

consistently overestimated by about 1-2 meters.  
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Figure 17. Transect 2, plot 9. 

 

In plot P11211, TreeVaW identified 15 of 38 live trees present (39.47%). The 

trees identified by TreeVaW were the tallest trees present according to the 

vegetation survey, and the heights of the trees identified were consistently 7-8 

meters taller than the trees present. Plot 211 is a particularly unique plot on WS1 

because a mortality event occurring on the plot above it, Plot 212, has led to the 

bending and breakage of many trees on Plot 211. We would expect to see this 

over-estimation of height on the model versus the field because the model does 

not take into account the poor tree morphology on this plot due to local 

disturbance. 

 

 
Figure 18. Transect 2, plot 11. 

In plot P11212, TreeVaW identified 22 of 46 live trees present (47.83%). 

TreeVaW identified both the tallest and the shortest trees present in this plot. For 
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the shorter trees, TreeVaW consistently underestimated the height of the trees and 

consistently overestimated the height of the tallest trees. Again, the local mortality 

event on this plot may play a role. While large and small trees may have survived 

the event due to structural resilience or flexibility, respectively, mid-sized trees 

may have been damaged to the extent that they are unrecognizable in LiDAR 

imagery. 

 

 
Figure 19. Transect 2, plot 12. 

 

In plot P11213, TreeVaW identified 17 of 28 live trees present (60.71%). All of 

the trees identified by TreeVaW except one were the tallest trees in the plot. 

TreeVaw overestimated the height of all trees identified. 

 

 
Figure 20. Transect 2, plot 13. 
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In plot P11608, TreeVaW identified 17 of 24 live trees present (70.83%). 

TreeVaW identified the 17 tallest trees in this plot with exceptional precision, 

only overestimating one tree by roughly three meters. 

 

 
Figure 21. Transect 6, plot 8. 

 

In plot P11609, TreeVaW identified 12 of 15 live trees present (80%). TreeVaW 

identified the 11 tallest trees as well as the shortest tree in this plot. It 

overestimated the height for three trees by 2-8 meters and underestimated the 

height of the tallest tree present in the plot. 

 

 
Figure 22. Transect 6, plot 9. 

 

In plot P11610, TreeVaW identified 14 of 18 live trees present (77.78%). 

TreeVaW identified the 12 tallest trees as well as the two shortest trees in this 
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plot. The five tallest trees and two shortest trees were identified accurately for 

height, but TreeVaW slightly overestimated the height for the remaining 7 trees.  

 

 
Figure 23. Transect 6, plot 10. 

 

In plot P11611, TreeVaW identified 14 of 19 live trees present (73.68%). 

TreeVaW again estimated the 14 tallest trees in this plot, fairly accurately with all 

estimated heights falling within two meters of the actual measurements.  

 

 
Figure 24. Transect 6, plot 11. 

 

In plot P11612, TreeVaW identified 17 of 21 live trees present (80.95%). The 

four trees that TreeVaW failed to identify were in the lower third of tree heights. 

The heights for the three smallest trees identified were accurate, and TreeVaW 

slightly overestimated the majority of the other trees identified.  
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Figure 25. Transect 6, plot 12. 

 

In plot P11613, TreeVaW identified 15 of 30 live trees present (50%). The 

shortest tree and the 14 tallest trees were identified by TreeVaW within this plot. 

TreeVaW slightly underestimated the height of the shortest tree and slightly 

overestimated (1-2 meters) the remaining tallest trees identified.  

 

 
Figure 26. Transect 6, plot 13. 

 

In plot P11614, TreeVaW identified 15 of 19 live trees present (78.95%). The 

four trees not identified were the four smallest trees within the plot. Overall, 

TreeVaW slightly overestimated height for all trees identified, with higher 

overestimations for the tallest trees (2-3 meters each).  
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Figure 27. Transect 6, plot 14. 

 

In plot P11615, TreeVaW identified 20 of 25 live trees present (80%). Trees 

identified were among the tallest and shortest trees. For shorter trees identified, 

over- and under-estimation of height occurred while all of the heights for taller 

trees identified were overestimated by TreeVaW. 

 

 
Figure 28. Transect 6, plot 15. 

 

In plot P11616, TreeVaW identified 14 of 21 live trees (66.67%). The tallest trees 

in this plot were the trees that TreeVaW identified, and the heights of each were 

overestimated by 1-5 meters.  
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Figure 29. Transect 6, plot 16. 

 

In plot P11617, TreeVaW identified 14 live trees with only 13 live trees present 

(107.69%).  The heights of all but the shortest and tallest trees were 

overestimated. 

 

 

Figure 30. Transect 6, plot 17. 

 

DISCUSSION 

The TreeVaW software identified most of the tallest trees in most of the plots 

surveyed. This was evident in the graphs for each plot in which DHPs were taken 
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for LAI analysis. These results are expected, given that the method used to 

identify trees uses a CHM. The tallest trees in stands form the peaks and valleys 

of the CHM, and thus are easier to segment and identify (Richardson and Moskal 

2011). In a dense stand such as WS1, the tallest trees would mask or cover the 

smaller trees in the understory, and any existing software or method to identify 

trees would likely miss them. Richardson and Moskal (2011) found that the 

precision of their method was higher for the two taller height classes than the two 

shorter height classes. These findings, also supported by previous studies, 

strongly indicate that LiDAR data are consistently accurate in identifying the 

tallest, or dominant, trees in a stand. Additionally, on WS1, due to complex 

terrain, dominance is in part a function of slope. On steeper slopes, which are 

found deeper "within" the watershed (for example, P11108 and P11211), 

dominant trees are codominant with respect to the plots "above" them on the 

slope. Along the ridgeline (for example, all plots on transect 6, dominance is more 

representative of actual tree heights. 

Andersen et al. (2001) encountered similar results when using LiDAR data 

to create a canopy surface model that measured individual trees. The 

morphologically based tree measurement algorithm performed better where tree 

crowns were larger and more widely dispersed. In denser areas, the canopy 

surface algorithm output errors of omission and commission. Morphologically, 

there are also distinct differences in tree DBH to tree height relationships on WS1, 

especially with respect to aspect. For PSME of the same age, individual trees on 

the north-facing slope are of smaller DBH and closer spacing than those on the 
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south-facing slope. We suggest that the ecological mechanism driving these 

morphological differences is soil moisture availability; although trees on the south 

facing slope will likely have greater radiation, soil moisture on these exposed 

slopes is generally low and weathering is more extensive than on north-facing 

slopes. The initial establishment of the plantation on these slopes was poor, and 

young PSME benefited from growing further apart and slowly under the 

protection of drought-tolerant hardwoods. On the north-facing slope, initial 

establishment of the plantation was highly successful, and PSME with adequate 

soil water and nutrients allocated much biomass to stem height to compete for 

limited radiation. This more rapid height growth of PSME on the north-facing 

slope lead to trees of the same age being at different stages of stand development, 

with north facing PSME undergoing canopy closure sometime between 1995 and 

2001. This led to local mortality events and overall productivity decline. Although 

model algorithms are able to identify general patterns in PSME height and foliar 

component based on DBH, the specifics of stand physiology on WS1 due to 

complex terrain may not be fully represented, and this may account for a number 

of discrepancies we see in modeled versus measured height.  

Hirata et al (2009) tested individual tree identification in stands of variable 

thinning by using a digital canopy model (DCM) and assessed the pulse 

penetration of the LiDAR itself. The researchers inverted the DCM and performed 

watershed segmentation in the basins and drainage divides to identify individual 

trees. The total number of trees identified (607 of 748 or 81.1%) is remarkably 

similar to the tree identification results in this thesis. More trees were accurately 
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identified in the areas where heavy or moderate thinning occurred compared to an 

area that was not thinned. A potential explanation for this is that plots with a 

comparatively sparse distribution of trees allowed for LiDAR penetration of the 

understory. Furthermore, the ratio of unidentified trees to all standing trees was 

higher for trees in the smallest height classes compared to the taller height classes 

of trees. Also similar to some plots in this thesis (P11108, P11110 and P11212), 

Hirata et al. (2009) found that LiDAR underestimated the heights of trees shorter 

than 15 meters, and overestimated heights of trees taller than 15 meters.  

In their research, Edson and Wing (2011) used three different tree 

extraction methods to identify individual trees in mixed conifer stands. They used 

a watershed segmentation method of inverting a canopy height model, manual 

extraction using the FUSION software, and automatic extraction using TreeVaW 

(as in this thesis). These three methods had varying results, but the FUSION 

method was quickly abandoned because how long it took to find individual trees 

and issues in identifying understory trees in dense stands. The authors also noted 

that where and how many LiDAR pulses strike and reflect off trees impacts the 

identification and measurement of individual trees. Especially with conifer 

species, the odds of a pulse striking the highest, single apex point of a tree are 

low. The odds decrease further when the apex of the tree is below the upper 

canopy. Similar to the research previously discussed, Edson and Wing found it 

relatively easy to identify upper trees in dense plots, but smaller trees were 

shrouded by larger ones, and identification of smaller trees was difficult at best. 

They found identifying young conifers in a clear cut also difficult: even with a 
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pulse rate of 8-10 pulses per square meter, the sparseness of young conifer foliage 

caused only one or two LiDAR pulses to strike individual trees, making 

identification difficult to impossible.  

New Methods in Tree Extraction from LiDAR Data 

Seeking to improve upon known methods of individual tree identification, Lee 

and Lucas (2007) noted that most previous work focused primarily on the use of 

Canopy Height Models, and this approach has proven only mildly successful for 

mapping and attributing stems in complex, multilayered forests. They therefore 

developed a novel complementary approach using a Height-Scaled Crown 

Openness Index (HSCOI), which provides a quantitative measure of the 

penetration of LiDAR pulses into the canopy. To quantify the penetration of 

LiDAR pulses into the canopy, the data were transformed into a 3D voxel matrix 

of 1 cubic meter squares. Within the 3D matrix, canopy voxels containing returns 

were attributed with the tallest recorded LiDAR height value within the voxel 

space. The HSCOI was then constructed using the weighted summation of a 

proxy variable of the inverse canopy density, or 1/the number of voxels 

containing returns per 1 square meter vertical column. The HSCOI metric thus 

translates the LiDAR point observations into a measure of relative penetration of 

the LiDAR pulses by scaling them from the top of the canopy so that 0% 

indicated no penetration and 100% full penetration of the pulse to the ground. 

Figure 31 shows the difference between the created HSCOI and a traditional 

CHM.  
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Figure 31. A comparison of a) the newly developed HSCOI metric, and b) a CHM. The high point in 

the CHM is transformed to a low point in the HSCOI because it would be an area where penetration of 

LiDAR pulses would be very low (Lee and Lucas 2007) . 

 

Lee and Lucas (2007) applied the new metric (HSCOI) to mixed species 

forests in Queensland, Australia, which facilitated the mapping of the forest areas, 

delineation of tree crowns and clusters, and estimation of canopy cover. 

Computed tree densities compared well with field measurements at the stand 

level, and the most consistent results were from stem densities of less than 700 

stems/hectare. This metric was combined with the CHM shown above to estimate 

dominant stem height, crown cover, and foliage and branch projective cover to 

sufficient levels of inventory for the stands. However, this method resulted in less 

accurate measurements when applied to a different forest type with increased 

average height and canopy closure.   

Li et al (2012) also set out to develop a new approach that built on the use 

of CHMs in order to segment individual trees, using a similar LiDAR system as 

this thesis, and begun by separating ground returns from aboveground returns. 

The data were ‘normalized’ by subtracting the vegetation point cloud from the 

ground point DEM. As a result, the elevation value at any point represented its 
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height from the ground. The new method relies on the relative spacing between 

trees, which tends to increase from the base of trees to the top of trees. The 

authors note that, although there is overlapping of trees in dense forests, spacing 

between trees exists at higher parts of the canopy. Coniferous trees have, in 

simplicity, a conical shape, such that the crown radius at the base of the crown 

(where it would be measured from a ground based measurement) will be greater 

than that at the top of the crown. Thus, the point density of LiDAR returns, or any 

metric modeling canopy architecture, will be sparser at heights further from the 

canopy base. This method works from the top of a tree, and ‘grows’ the tree by 

including nearby points and excluding points from other trees based on their 

relative spacing, and  becomes more of a challenge farther down the tree as 

spacing decreases and trees overlap.  However, classifying points sequentially, 

from highest to lowest, overcomes this challenge. By developing and defining 

appropriate spacing thresholds, most points can be assigned to their corresponding 

trees. Trees are segmented using three variables:  1) either these fixed or adaptive 

thresholds, 2) a minimum spacing rule, and 3) a horizontal profile of tree shape. 

Reducing undersegmentation is accomplished by using a small threshold, and 

oversegmentation is reduced using the shape and distribution of the points. This 

top to bottom approach is iterated until all points have been classified into their 

corresponding sets, with each set corresponding to an individual tree.  

The authors tested their algorithm in a conifer stand in the Sierra Nevada 

range of California and found that it increased the accuracy of individual tree 

detection compared to other methods. 86% of trees were identified, and 94 % of 
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the segmented trees were correct. The authors state that this method holds 

promise for use in similar, mixed and complex coniferous forests, but its 

effectiveness in other forest types, namely deciduous forests, requires further 

evaluation. This method is similar to other methods that use a CHM in that it 

identifies local maxima as the top of a tree, differing in that the new algorithm 

identifies the global maximum (highest point), segments that tree, and then 

removes the data points associated with that tree from the point cloud. Then, the 

process starts again, finding the ‘next’ global maximum and segmenting that tree, 

iterating until all points have been classified. Using untransformed LiDAR data 

avoids interpolation errors that emerge when a point cloud is transformed into a 

CHM.  

CONCLUSIONS 

LiDAR data have been used extensively to measure canopy characteristics and 

attributes, and this thesis has continued that work by using LiDAR data to identify 

individual tree location, height, and crown width within the H. J. Andrews 

Experimental Forest. The software used, TreeVaW, was originally developed for 

a much different forest type, and species and site specific parameters are 

available, problems still persist. These problems are most evident for crown width 

estimates, which were not used for analysis since they seemed unreasonably 

small. The stand type for which TreeVaW was developed consists of much less 

dense, more spread out trees, and the program seems to have issues delineating 

points for individual trees for the crown width estimates in denser stands. Also, 

the denseness of the canopy seems to limit the ability of TreeVaW to identify 

shorter trees in the understory. This is not entirely surprising since the software 
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relies on a canopy height model (CHM) for extraction of individual trees, and the 

taller trees are the most visible in the CHM.  

TreeVaW performed very well in some plots, but in many plots it 

underperformed by failing to identify all or most trees). The program seemed to 

perform better in plots lower density, and well as in plots with mostly taller trees. 

TreeVaW tended to slightly overestimate heights of taller trees, and when it did 

identify shorter trees it often underestimated the heights of those trees. Reliance 

on the CHM for tree extraction may be why these errors occur and the use of a 

Height-Scaled Crown Openness Index (HSCOI) presented by Lee and Lucas 

(2007) might solve these issues. This said, the overall percentage of trees 

identified by TreeVaW in all 133 vegetation plots (~82%) compares well to other 

published results.  
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Chapter 4- LiDAR Data Visualization and Overview of Visualization in 

Natural Resource Management 
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INTRODUCTION AND BACKGROUND 

The use of data-driven visualizations in forestry management has become 

increasingly common in the last two decades. Bergen et al (1998) assessed the use 

of data-driven simulation, dimensional accuracy and realism in a landscape 

visualization tool as a part of their research. Even then, computer-based 

simulations of landscapes were recognized as an effective tool for assessing the 

potential impact of land-use decisions and s were commonly used by decision 

makers to assess the visual impact of forest operations, such as road building and 

harvesting, and as an aid in designing mitigation strategies. Early tools for 

decision makers relied on using computers to manipulate two-dimensional 

scanned photographic or videotape images for visual assessment and mitigation 

design after harvest. This computerized image manipulation carried the 

advantages of speed, efficiency and flexibility, but with two major drawbacks. 

First, image manipulation as a method of landscape simulation was primary an 

‘artistic technique’, and therefore disconnected from project data. The second 

major drawback was that image manipulation methods lacked dimensional 

accuracy, and translating design information from a manipulated 2D image to a 

3D landscape was difficult, if not impossible.  

Bergen et al. (1998) also offered a review of the early 3D landscape 

visualization tools, and noted that the development of these methods closely 

paralleled developments in computer technology.  Early computer tools included 

the Perspective Plot software and PREVIEW, both of which were based on digital 

terrain model (DTM) representations of a landscape and displayed crude line 

drawings of terrain and vegetation. More complex, realistic and accurate 
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simulations followed with the development of the SmartForest and Vantage Point 

software, which at the time of this article represented the state-of-the-art. Both 

draw individual trees to form forest stands over a DTM. Vantage Point generated 

and displayed color images of forest landscapes up to 8000 ha, and was used in 

the evaluation of visual quality and the visual impact of forest operations. Both 

systems used measured data, which added validity and credibility to the resulting 

image. The tools solved the two drawbacks mentioned previously, by relying on 

actual data and solving the dimensional accuracy issue by allowing the user to 

interact more directly with 3D landscape data. Users could display and manipulate 

design information on a perspective image of the landscape.  

Bergen et al. (1999) concluded by stating that several obstacles remained 

before landscape simulation tools could find wider acceptance and use. The 3D 

visualization tools of the time, while offering flexibility in representing and 

altering data sets, lacked realism. Images that appeared more realistic were less 

flexible and often not based on measured data. The authors posed two remaining 

questions: 1) From a theoretical perspective, how much realism and accuracy is 

required to make value judgments? 2) Is it practical and economical to gather 

enough data to create more realistic simulations? The authors claimed that more 

complex computer systems could create more detailed images faster, approaching 

real-time manipulation of photo-realistic images representing 3D data sets, but it 

was unknown whether theory and data gathering abilities would keep pace with 

the technology.  
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McGaughey (1998) also reviewed techniques for visualizing the effects of 

forestry operations. His research compared how geometric modeling, where 

mathematical models of individual components are built and then assembled to 

create a model of a forest stand or landscape, compares with video imaging. The 

research also explores a hybrid of these two methods as well as the method of 

video draping, or overlaying an image over a DTM. These four methods were 

compared with respect to their data requirements, level of realism in final scene, 

operational complexity and data integrity. The ultimate consideration in choosing 

a method was found to be reliant on the size of the project area, overall goal of the 

visualizations, amount of detail that must be shown, and amount of available data 

describing the area. Finally, the author reviewed the available software at the 

time, noting that commercial systems can be expensive, often need a specialized 

operator to produce results, and require that typical forestry data be converted into 

a suitable format. However, public domain visualization and image-editing 

capabilities suitable to forestry visualization were available at the time for little or 

no cost.  

Since the time when SmartForest and Vantage Point were considered 

state-of-the-art, visualization tools have come a long way, and one reason for this 

is the rise in use of remote sensing capabilities such as LiDAR. Kao et al. (2005) 

point out in their research that the development of remote sensing capabilities has 

ushered in an era where large quantities of multidimensional and multivariate data 

are routinely analyzed. Most work to date, they noted, relied on statistical 

summaries (a.k.a. data aggregations) to characterize the distribution of data with a 
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small set of descriptors. These methods reduce the dimensionality of the data set, 

often making it impossible to access the primary data from the visualization, but 

making visualization straightforward. However, this approach fails when the 

distributions are nonparametric, and when they are multimodal. Kao et al. (2005) 

proposed instead allowing for exploration, query and comparison of LiDAR data 

distributions, in order to increase opportunities to query multi-valued data in new 

ways that better help scientists and other stakeholders understand the spatial 

distributions of geophysical and ecological phenomena. This, in theory, could be 

done both at single locations and across the spatial domain. The authors utilized 

so-called spatially distributed probability density functions (pdfs), created from 

multiple return LiDAR data, and noted that the major contribution of their work 

was a paradigm shift that allowed ecologists to think of and analyze data in terms 

of full distributions, not just summary statistics. The major contributions of this 

paper, as listed by the authors, were: 1) provide automated and interactive ways to 

analyze forest canopy distributions from LiDAR data, 2) make it easier for 

scientists to analyze distributions derived from LiDAR data, and 3) allow 

scientists to query distribution data for special features and then identify areas of 

the spatial field with similar distributions and discover potentially interesting 

distributions and their locations. Figure 32 shows a diagram of the visual analysis 

of distribution data made possible by this work.  
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Figure 32. A diagram representing new types of visual analysis of LiDAR data could occur because of 

research by Kao et al. (2005). 

 

Fujisaki et al. (2007) offered an update to forest visualization systems in 

their research paper describing stand assessment through LiDAR based forest 

visualization using immersive virtual environment technology. The systems 

mentioned include INFORMS, FMIS, Landscape Management System, and the 

Stand Visualization System (SVS), all of which aimed for higher perceptional 

effectiveness in forest visualization. These systems use advanced graphics 

techniques and display technologies to develop fully interactive 3D visualizations, 

referred to as immersive virtual environments (IVE). IVEs are used in many fields 

including vehicle simulations, entertainment, architectural design, medicine and 

surgery, and education, and the potential use of the technology for forest 

visualization was first noted by McGaughey and Carson (2003).  
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In their research, Fujisaki et al. (2007) set up an experiment to compare 

IVE methods to field recorded videos of immature and mature loblolly pine 

(Pinus taeda) stands in Mississippi. LiDAR data was used to create a virtual 

forest, which was then projected with an interactive room-sized stereoscopic 

display, so that participants could ‘walk’ through the forest. Other participants 

viewed only the field video recordings of the stands. Study participants’ estimates 

of stand characteristics were then compared, and significant differences were 

found in the two groups’ estimates of height class and rotation stage, even though 

estimates of stocking, tree size class, stand structure, and hardwood competition 

were similar. These results led the researchers to conclude that IVE technologies 

and visualizations in general could be potentially useful in natural resources 

management, and that further study of the economic aspects and interface 

development were required to further develop such technologies into an 

operational system.  

Stoltman et al. (2004) saw visualization of forests as a pathway for public 

participation in the forest planning process. Working within the state of 

Wisconsin, USA, these researchers noticed that visualization technology at the 

time was used solely by researchers and consultants, and not by natural resource 

managers. The authors reviewed a 3D forest visualization system, developed for 

use by the Wisconsin Department of Natural Resources, which incorporated a 

library of photographs of trees, snags, and logging debris to realistically depict 

forest management activities. The system was linked to a GIS so that available 

forest survey data could be incorporated, and was built to be as user friendly as 
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possible, for use by managers without extensive computer knowledge. The 

authors found the system to be a success, noting that computer visualization of 

forest management facilitated continued public involvement in forest 

management. The key, the authors claimed, is getting the system into the hands of 

managers. Finally, the authors state that the development of forest visualization 

parallels the development of GIS, moving from being in the hands of only a few 

computer-literate individuals to being widely used by the broad scientific and 

natural resource management community.  

Similarly, Kopytko et al. (2008) attempted to connect resource managers 

to visualizations and in doing so connect the managers with ecologists attempting 

to answer fundamental scientific questions regarding the natural world. This 

research points out the fundamental differences between how ecologists conduct 

their research and how managers make decisions. The translation of ecological 

values into management procedures is difficult, but there exists a push from the 

public to incorporate ecological values into decision making, in addition to 

traditional revenue maximization. The results of this research allowed for better 

characterization of canopy crowns, with an informatics tool to provide structure 

summaries that better enable people to look at the data and classify or cluster trees 

according to structural similarity. This said, the authors noted that new 

information technology was still needed to accomplish the ecology research goals, 

including 1) interpolation and extrapolation of missing data on geographically 

complex topographies, 2) better models and tools to develop complex situations, 
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and 3) better pattern recognition and visualization so data can be compared and 

contrasted. 

METHODS 

This section describes the methods used in this thesis research to achieve data 

visualization.  Before visualization with FUSION could begin, the software 

requires that a FUSION project be built from various sources of data. First the 

raw LiDAR data was loaded. The original LiDAR data acquisition completed by 

Watershed Science, Inc., segmented the LiDAR data into 500 mB bins, which 

separated ground returns into ‘ground bins’, and canopy or non-ground returns 

into high_bins (Spies et al., 2011). This segmentation was done because otherwise 

the size of the data file would have been exceptionally large; it also separated 

ground returns from canopy returns which simplified analysis. Thus, the full HJA 

data set did not have to be loaded, but instead only the six bins that covered the 

spatial extent of WS1. The ground and high bins are related to one another by 

number, and the following ground and high bins were used: bin_017, bin_020, 

bin_21, bin_025, bin_026 and bin_031. Using the ground bins, a bare earth model 

was created in FUSION using the ASCII raster terrain model tool, which converts 

ASCII points from the bins into a .dtm file that FUSION can read and analyze. 

The ground bins were combined into one .dtm file, labeled All_WS1.dtm. 

After the raw data and bare earth model were loaded, an image of WS1 

was acquired. This image was downloaded from the USGS seamless image 

viewer/Oregon Imagery Explorer (http://nationalmap.gov/viewer.html) This site 

has orthophotographs for the entire state of Oregon, and the online interface 
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allows a user to zoom into an area, select the extent of image desired, and 

download the image as a 4 band National Agriculture Imagery Program (NAIP) 

image. An orthophotograph is an aerial image that is geometrically corrected, or 

orthorectified, so that the scale is uniform and distances can be accurately 

measured on the image itself. After the orthoimage was loaded into FUSION, the 

vegetation plot point shapefile (created during hemispherical photograph analysis 

(Chapter 2) was loaded into FUSION as a point of interest (POI) file.  

Visualization of LiDAR Data for Plots and Transects 

Once all the required data files were loaded into FUSION, creating visualizations 

using LDV was straightforward. In the FUSION interface a user can stoke or 

select any size rectangle or circle and LiDAR Data Viewer (LDV) automatically 

loads with the selected data visualized. The sample options button in the FUSION 

user interface was utilized to create original visualizations of the LiDAR point 

cloud for each plot and wider views of entire transects in which DHPs were taken. 

Since the plot centers were loaded into FUSION as a POI file, snap sample points 

to nearest POI point was selected from the options menu. Also, since a ground 

model had been loaded, the subtract ground elevation from each return was 

selected to normalize the point cloud, and give elevation of points above the 

ground rather than above sea level. The sample shape selected was a fixed circle 

with a diameter of 18 meters (to align with the 9 meter radius plots). The set 

shape, along with the snapping to the nearest POI ensured that not only a user 

click near a plot aligned with the center of the plot, but also that the outer edge of 
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the selection was matched to the plot itself. The visualizations of each plot were 

colored by height, normalized by ground model (Figures 37-55, left).  

Visualization of TreeVaW Output Trees 

Special help for this section of the thesis came from Lee Zeman, a collaborator on 

the VISTAS project who created images of TreeVaW’s output using the visual 

programming language Processing (http://processing.org). The position and 

heights of the trees were read from TreeVaW’s output files. DBH was 

approximated from height using the allometric equations given in Garman (1995); 

crown radius was approximated from DBH using the two-term allometric 

equation given in Gill (2000). All trees were assumed to be Psuedotsuga 

menziesii. 

RESULTS 

Watershed 1 Visualizations 

Figures 33-36 are visualizations of LiDAR data created using FUSION software.  
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Figure 33. FUSION visualization of WS1 Digital Elevation Model (DEM) and LiDAR data of 19 vegetation 
plots where digital hemispherical photographs were taken.   
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Figure 34. Overhead view visualization of WS1 DEM and LiDAR data of vegetation plots. 
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Figure 35. Overhead view visualization of WS1 DEM and LiDAR data of vegetation plots with digital 
orthophotograph of vegetation in the Watershed overlaid. 
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Figure 36. Visualization of LiDAR data and DEM of vegetation plots in transect 2 (above) and transect 6 
(below). 

 

Visualizations of LiDAR Point Cloud and TreeVaW Identified Trees 

Figures 37-55 are visualizations created for each plot where digital hemispherical 

photographs were taken for LAI measurements (see Chapter 2). The image on the 

left of each figure is the visualization produced with FUSION, and the image on 
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the right is the visualization of trees identified using TreeVaW, created using 

Processing from data output by TreeVaW.  

 

Figure 37. Transect 1, plot 9. 

 

Figure 38. Transect 1, plot 10. 



 

109 
 

 

Figure 39. Transect 2, plot 5. 

 

Figure 40. Transect 2, plot 6. 

 

Figure 41. Transect 2, plot 7. 
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Figure 42. Transect 2, plot 8. 

 

Figure 43. Transect 2, plot 9. 

 

Figure 44. Transect 2, plot 12. 
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Figure 45. Transect 2, plot 13. 

 

Figure 46. Transect 6, plot 8. 

 

Figure 47. Transect 6, plot 9. 
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Figure 48. Transect 6, plot 10. 

 

Figure 49. Transect 6, plot 11. 

 

Figure 50. Transect 6, plot 12. 
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Figure 51. Transect 6, plot 13. 

 

Figure 52. Transect 6, plot 14. 

 

Figure 53. Transect 6, plot 15. 
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Figure 54. Transect 6, plot 16. 

 

Figure 55. Transect 6, plot 17. 

DISCUSSION 

The FUSION visualizations of LiDAR data using are presented above. These 

visualizations show the lay of the land in WS1, highlighting the steepness of the 

terrain and the denseness of the forest canopy within the vegetation stands. These 

images show why estimation of LAI has been a difficulty in the past (see Chapter 

2), and why on complex terrain with variable stand composition, visualization of 

forest structure has continued to be an issue even within this thesis.  
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The visualizations of 3D stem maps from the TreeVaW output are also 

presented. These images show the trees identified by TreeVaW in 19 vegetative 

plots in the WS1. However, since no x-y location information was available for 

the vegetation surveys, similar visualizations of the surveyed trees could not be 

completed. Although stem maps exist for some of the plots in WS1, they are not 

readily available and have not been verified recently enough to compare to 

LiDAR derived metrics and TreeVaW visualizations (Peterson, personal 

communication; Wooley, personal communication). If recent stem maps from the 

watershed’s vegetation plots could be verified a visual comparison could be made. 

One purpose visualizing the TreeVaW output is to visually examine the trees that 

TreeVaW identified. With those visualizations, it became clear that where a thick 

over story of taller trees is present, as in P11109 (Figure 37) and P11616 (Figure 

54). TreeVaw is able to identify more trees and predict their heights more 

accurately than where stand composition is complex, and understory trees are 

present in P11211 and P11212 (Figure 44).   In the field, these two plots (P11109 

and P11616) fall on areas where harvest regeneration attempts were highly 

successful. The north-facing aspect of WS1 was replanted with 1-1 seedlings (1 

year total age, 1 year development at the nursery) only once, but soil conditions 

(deep, moist) fostered early coniferous development. Transect 1, at a low 

elevation, also has sufficient belowground moisture to foster a dense stand for 

much of the year. Transect 6, located along the ridgeline, is very near the second 

original landing from the harvest event. Areas around the landing were replanted 

specially, and they have very flat slopes and deep soils. Tree growth on this plot is 
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particularly well organized, with 1-1 and 2-1 (2 years total age, 1 year 

development at the nursery) seedlings planted in row arrangement that is still 

visible today. Strong canopy coverage from these successful plantings, combined 

with purposeful row spacing, leads to the development of a healthy overstory and 

precludes the establishment of understory species, with the exception of hardy 

shrubs. Thus, we note that on these plots, TreeVaw did not identify many, if any, 

smaller trees in the understory. However, where there were gaps present in the 

taller trees, such as P11110 (Figure 38) and P11208 (Figure 42) TreeVaW was 

better able to identify the smaller trees found underneath these gaps. On P11110, 

a windthrow event, likely corresponding with the floods of 1994-1995 and the 

odd weather patterns that season, caused great instantaneous mortality leading to 

the establishment of gaps. These gaps were readily seeded by Tsuga heterophylla 

blown in from neighboring stands. On P11208, which is located on the south 

facing slope, the presence of local topography, specifically a basaltic caprock 

feature, does not allow for the contiguous establishment of deep rooted conifers, 

thus smaller trees such as Prunus emarginata, Cornus spp., and Castanopsis 

chrysophylla have established, needing less belowground resources for growth 

and structure and benefiting from the increased radiation on the south-facing 

slope (Peterson, 2012). 

Visualization in Ecosystem Monitoring and Processes 

The research presented in the introduction of this chapter explains how 

visualization of forests and trees have been used in forestry management; separate 

from this is visualization of forest stands for the purposes of understanding 
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ecosystem processes and function. Few articles in the literature have focused on 

visualization of ecological phenomena for purposes of understanding these basic 

ecological phenomena and functions. Below, I selected a short list of these 

studies.  

Krisp (2004) examined the use of 3D visualization to measure ecological 

barriers to movement for species in Finland. To build a model for visualizing the 

effects of barriers, the authors assumed that different land covers and land uses 

have a dissimilar impact on wildlife movement, and they assigned a qualitative 

value to each landscape component considered, on a species-species basis. In 

general, the values assigned were low for natural elements and high for artificial 

ones. Then, by linking the qualitative value to the landscape components in a map 

the movement limitations for species could be assessed, first using a 2D map, and 

then a 3D map that had the ability to change the perspective or view. This work of 

modeling barrier effects in 3D can help visually identify ecological corridors, 

networks or bottlenecks. This research represents early work in environmental 

phenomena visualization.  

Omasa et al. (2007) explored the use of LiDAR to produce 3D imaging 

not only for understanding canopy structure, similar to Chapter 3 of this thesis, 

but also for detecting and understanding plant responses to varying phenomena. 

The authors reviewed the development of LiDAR systems and their application 

from the leaf to canopy level remote sensing. Plant properties explored with 3D 

LiDAR imaging included canopy height, canopy structure, carbon stock, and 

species distribution, and plant responses (change in growth and shape) were also 
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assessed. Canopy height, an important variable needed to estimate the 3D 

properties of trees, was historically underestimated in LiDAR metrics because of 

low likelihood of pulses with a density of <1 pulse m-2 hitting the highest point 

on any given tree. More recently, high pulse densities have been used more often 

to solve this underestimation problem. Ground-based LiDAR provides a more 

precise 3D image of individual trees, with resolutions ranging from .05 -10 cm. 

Tree heights can be measured from these ground based systems, but if tree tops 

are blocked by other trees, estimating tree height can be difficult. A way around 

this problem is to take ground based LiDAR measurements in multiple locations 

around a tree of interest, and images from the different locations can be co-

registered and merged.  

Landscape Visualization 

While visualization of forest processes has been scarce, visualizations of 

landscape phenomena have been more common. Paar (2005) examined the role of 

landscape visualization software for landscape and environmental planning in 

Germany. The author questioned hundreds of private consultancies and public 

authorities about the current and future use of 3D landscape visualizations in 

environmental decision making. Overall, the respondents had great expectations 

about where 3D visualizations would take landscape planning, with 91% of 

respondents believing that 3D visualizations would bring additional benefits to 

landscape planning. Many of the issues confronted by the respondents were based 

on software problems. Respondents who use visualization software mentioned 

technical problems, including insufficient representation of plants and habitats, 
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and slow rendering. The group representing ‘non-users’ of software mentioned 

the high cost of existing software as a barrier to use. Respondents from both 

groups mentioned training and usability of available software as a difficulty. The 

results of Paar’s surveys show that the application of visualizations facilitates 

improved communication between experts and laypersons, and the author 

concludes that new technological developments within computer graphics will 

continue to aid landscape planners and environmental managers with use of 3D 

landscape visualization tools, but that innovative, new 3D landscape visualization 

tools are needed to continue this trend.  

 Wang et al. (2006) described 3D visualizations of forest landscapes as 

“quantitative ecological information-based techniques that can be used to 

visualize forest structure, dynamics, landscape transformations and regional 

plans.”  The authors posited that the use of existing public data sets to create 

visualizations can replace time consuming and expensive stand-level surveys. The 

authors utilized the Forest Inventory and Analysis d (http://www.fia.fs.fed.us) and 

several other existing vegetation databases to visualize a section of the 

Chequamegon National Forest in Wisconsin. The authors created visualizations 

from the individual stand to the landscape level, using two software packages: 

Tree Professional 5 and Visual Nature Studio 2.01, and concluded that public data 

sets are suitable and useful for visualizing the dynamics of forests and landscapes. 

This research shows that large pools of data are available, but they may be un- or 

under-utilized by researchers and decision makers. 
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Sherren et al (2011) examined lessons learned from visualizations of the 

landscape and in habitat assessment in the current trend of tree decline in 

Australia. The authors presented photo-realistic visualizations of landscapes to 

stakeholders representing the results of modeling of different future scenarios of 

tree decline. The visualizations represent likely outcomes of the ‘status quo’ 

compared to alternative tree planting remediation efforts in an attempt to show the 

consequences of each on landscape aesthetics and biodiversity. Through the 

visualizations the authors found that the current trend of tree decline is contrary to 

stakeholders’ values concerning the region’s social and ecological well-being. 

The authors showed that the visualizations could be used to create 

interdisciplinary collaboration and engage stakeholder involvement in forest 

management.    

CONCLUSIONS 

This chapter outlined the importance of visualizing forest and landscapes in the 

natural resource management and ecosystem research. Visualization of forest 

landscapes and structure for resource management has become common in recent 

years, but visualization of forest processes and function is just beginning. The 

data intensive nature of the work requires novel visualization tools to understand 

many and massive current data sets. Visualization also stands as a key 

communication tool in keeping decision makers, stakeholders and the general 

public connected and informed in decision making. The visualizations presented 

in this chapter suggest how LiDAR data might be used to visualize forest 

structure and represent actual trees. The use of remote sensing technologies such 



 

121 
 

as LiDAR greatly reduces the time, resources, and personnel needed to create 

visualizations for use in both natural resource management and ecosystem 

research. 
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Chapter 5- Conclusions and Future Research 
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This chapter summarizes conclusions already mentioned in Chapters 2-4, and 

looks forward to research directions for this field. The objectives of the thesis 

frame the following conclusions: 

Thesis Objective 1:  Determine accurate LAI estimates for a subset of 

permanent vegetation plots in WS1 using digital hemispherical photography 

(DHP) 

Hemispherical photographs taken in 19 vegetation plots in WS1 were analyzed 

three different ways using SLIM software: 1) limiting the ‘scope’, or angle of 

view, to estimate for the plot only, 2) using a wider scope to estimate the 

immediate area around the plot, and 3) using the average LAI values for DHPs in 

four cardinal directions around the center of the plot. The three resulting estimates 

were not statistically correlated, which may be caused by either 1) the hillslope 

affecting the two wider measures of LAI, or 2) how light was measured in the 

DHPs for the software analysis.  

 Issues encountered in these LAI estimates are similar to previous work in 

WS1. The steepness of the terrain and the high vegetation density make accurate 

estimation of LAI very difficult.  

Thesis Objective 2:  Use estimates of LAI obtained from DHP to build a 

LiDAR based model of LAI for all 133 permanent vegetation plots 

Using the estimates of LAI for the plots obtained from DHP, we developed a 

LiDAR based model to estimate LAI using the LiDAR metric surface volume, 

and used this to estimate LAI for all 133 vegetation plots in the watershed. The 

resulting LAI values also revealed a strong relationship when compared to 
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Cover*Height for each plot (R
2
 = 0.5467, p < 2.2e-16). The use of LiDAR to 

estimate LAI for the watershed thus seems promising. The development of a 

LiDAR only model to estimate LAI is a possible solution to estimating LAI in 

steep, densely vegetated watershed, since LiDAR seems to adequately measure 

complex terrain.  

Thesis Objective 3: Calibrate the LiDAR based model for LAI to create LAI 

maps for the entire watershed. 

The LiDAR model for LAI could not be calibrated to create LAI maps for the 

watershed as a whole. A reason for this is the LiDAR derived volume metric used 

is not directly related to LAI, but rather to leaf area, which is mechanistically 

different because LAI incorporates ground area and is a dimensionless value 

(Richardson, personal communication). Because of this, TreeVaW software was 

used to estimate the total number of trees in the watershed, which could then be 

used with allometric relationships as an alternative for estimating LAI for the 

entire watershed. Future research will need to validate the number of trees in the 

watershed either through field measurements or another remotely sensed metric. 

Thesis Objective 4:  Test the ability of software programs to extract and 

identify individual trees from LiDAR data in all 133 permanent vegetation 

plots in WS1 

The TreeVaW software program was used to extract and identify individual trees 

within all 133 vegetation plots in the watershed. Overall, TreeVaW identified 

over 82% of trees when compared to vegetation surveys completed in the plots. 

TreeVaW performed better in plots with lower tree density and those with taller 
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trees. TreeVaW was also used to identify all trees in the watershed, and identified 

nearly 77,300 trees. Since no comprehensive tree counts have been taken in the 

watershed the estimate of total trees could not be validated. However, the 

vegetation plots represent the entire range of slope, aspect, and elevation present 

in the watershed, it is reasonable to assume that the estimate of total trees would 

be comparable to the 82% of trees identified in the vegetation plots.  

Thesis Objective 5: Create novel visualizations of LiDAR data and individual 

trees in the vegetation plots. 

Visualizations were created from the LiDAR point cloud data using the FUSION 

and LiDAR Data Viewer (LDV) software. The output of individual trees from 

TreeVaW was also used to create 3D stem maps (stand visualizations) using the 

programming language Processing (http://processing.org). The latter 

visualizations clearly displayed gaps in the canopy of the plots where TreeVaW 

was better able to identify shorter trees, and also showed where the canopy was 

dense and limited TreeVaW’s ability to identify understory trees.  

Future Research Directions 

This thesis research has answered some questions about LAI, LiDAR data and 

tree extraction, but has also made apparent potential directions for future research. 

First, a comprehensive look at why ground based measurements of LAI based on 

hemispherical photographs differ from LiDAR based methods is in order. The 

importance of LAI in ecosystems studies has been demonstrated by other prior 

research, but difficulties remain in obtaining accurate estimates LAI in densely 

vegetated, steep terrain. The use of LiDAR is promising for estimating LAI. 
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Incorporating slope correction into digital hemispherical photograph analysis and 

developing a site-specific model for correcting LiDAR estimates could make LAI 

estimates more accurate. 

Secondly, a comprehensive examination of why TreeVaW performed very 

well in some vegetation plots but poorly in others is needed. The initial analysis 

showed that TreeVaW performed better in plots with lower tree density and taller 

trees. However, comparing the aspect, slope, or elevation of the plots may provide 

insight into what factors affected TreeVaW’s identification of individual trees. 

Since the forest type in Texas, where TreeVaW was developed, differs 

considerably from the Pacific Northwest Cascades, changes to algorithms and the 

software itself may provide more accurate identification of trees. This could 

especially improve the estimates of crown width which were unusable for this 

research.  

Thirdly, the visualizations of individual trees presented in this thesis could 

assist researchers in canopy gap research. These visualizations give the researcher 

the ability to “see” the size and shape of the gaps in the canopy, which could then 

be compared to remotely sensed metrics and topographic and climatic 

measurement. This gives the researcher the chance to assess variability on a 

subplot scale, without having to break the data down to the subplot scale. 

Finally, further empirical data needs to be gathered to validate the 

estimations of LAI, number of trees, and tree heights at the individual tree scale.  

Current field measurements of LAI are inconsistent, and repeated sampling of the 

same geographic locations under a variety of seasons and meteorological 
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conditions could help determine which measures are most accurate under which 

conditions. The number of trees in the entire watershed also needs to be calculated 

to assess TreeVaW’s accuracy on the watershed scale, perhaps from derived 

metrics other than the LiDAR data (local “peaks” in height at a sub-crown 

diameter scale). Finally, validation of tree heights from the ground needs to be 

conducted specifically on WS1; although some validations exist for the LiDAR 

data on the H.J. Andrews at large, these measurements were taken from the tallest 

trees (old growth) and may not be applicable to those on WS1.  

The ability to accurately map individual trees and measure LAI on a 

watershed scale is increasingly important in both forest ecosystem research and 

management. This thesis combines ground and remotely sensed methods to 

measure LAI and utilizes current state-of-the-art software to identify individual 

and visualize individual trees. This research represents an interdisciplinary 

approach to solving complex environmental questions, and contributes novel 

analysis to the field. Moving forward, the combination of visualization, remote 

sensing analysis and software programming can move us closer to understanding 

environmental phenomena and processes from an ecological and management 

perspective. 
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APPENDIX A: LiDAR Calculated LAI, Surface Volume and Cover*Height 

Value for All Permanent Vegetation Plots.  

 

Plot 
LiDAR 

LAI Volume Cover*Height 

P11101 4.56 2851.99 1304.86 

P11102 7.21 3881.91 1810.46 

P11103 9.36 4716.75 2108.04 

P11104 6.47 3592.73 1688.23 

P11105 9.66 4832.69 2129.69 

P11107 5.87 3361.66 1499.25 

P11109 8.32 4313.06 1970.07 

P11110 6.12 3457.18 1552.28 

P11111 9.59 4804.17 2191.74 

P11112 15.97 7283.14 3269.34 

P11201 0.64 1327.74 537.41 

P11203 1.77 1765.31 1634.25 

P11205 6.18 3481.56 1851.11 

P11206 7.48 3984.75 1709.26 

P11207 7.50 3992.86 1723.01 

P11208 6.99 3793.14 1841.66 

P11209 7.79 4104.92 1857.40 

P11210 7.85 4130.72 2321.76 

P11211 10.17 5029.63 1482.66 

P11212 6.70 3682.82 1928.78 

P11213 8.58 4412.35 1883.05 

P11214 7.61 4036.64 1684.53 

P11215 6.84 3737.21 1876.32 

P11216 7.85 4130.42 1558.30 

P11217 6.43 3579.44 1976.15 

P11218 8.51 4384.02 1930.42 

P11301 8.34 4317.79 2036.53 

P11302 8.56 4406.24 1626.86 

P11303 6.27 3513.99 1466.32 

P11304 5.39 3173.55 1449.60 

P11305 5.11 3066.43 538.83 

P11306 0.77 1377.15 1142.32 

P11307 4.06 2656.61 581.40 

P11308 0.78 1384.11 733.49 

P11309 2.48 2042.33 698.31 

P11310 1.58 1695.09 1465.79 

P11311 5.54 3231.37 1546.48 



 

143 
 

P11312 5.42 3186.17 2147.66 

P11313 9.49 4766.61 2150.88 

P11314 9.68 4840.79 2302.55 

P11315 10.32 5089.58 2250.21 

P11316 10.07 4990.19 2096.08 

P11317 9.33 4703.48 1867.13 

P11318 7.63 4044.01 1925.33 

P11319 8.13 4237.20 1758.08 

P11320 7.51 3996.70 1773.62 

P11321 7.22 3883.21 1712.32 

P11322 6.91 3764.93 1683.36 

P11323 6.71 3687.65 2254.25 

P11324 9.59 4804.72 1925.11 

P11401 7.79 4107.68 1777.88 

P11402 6.90 3759.48 1529.96 

P11403 5.75 3312.53 1835.90 

P11404 7.26 3901.58 2125.42 

P11405 9.25 4674.50 2039.21 

P11406 8.71 4464.90 1576.06 

P11407 6.39 3561.29 1550.84 

P11408 5.60 3255.33 1406.38 

P11409 4.74 2921.07 1916.22 

P11410 8.04 4203.01 932.02 

P11411 2.60 2090.99 1478.81 

P11412 5.31 3140.85 1913.67 

P11413 8.26 4286.63 1944.52 

P11414 8.18 4257.79 1471.17 

P11415 6.03 3422.51 1840.87 

P11416 8.32 4312.89 328.52 

P11419 3.26 2347.27 1210.87 

P11420 4.10 2672.14 836.08 

P11421 1.96 1840.46 1686.62 

P11422 6.56 3628.07 1923.78 

P11423 7.80 4108.20 879.63 

P11424 2.02 1864.88 1185.66 

P11425 3.55 2458.25 977.30 

P11426 3.10 2283.98 1814.15 

P11501 7.73 4081.92 1913.26 

P11502 5.20 3100.67 1496.04 

P11503 5.74 3308.71 1510.65 

P11504 8.47 4368.29 1993.34 
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P11505 3.64 2492.18 1026.51 

P11506 5.98 3403.64 1602.89 

P11507 9.12 4623.31 1846.26 

P11508 8.47 4369.43 1971.16 

P11509 7.30 3913.96 1814.08 

P11510 6.11 3451.69 1615.55 

P11511 6.43 3576.48 1558.77 

P11512 8.44 4359.61 1985.29 

P11513 7.83 4122.42 1843.08 

P11514 8.39 4337.04 1967.35 

P11515 7.82 4118.74 1889.00 

P11516 2.00 1858.20 835.13 

P11517 1.95 1836.35 875.49 

P11518 4.59 2861.19 1377.29 

P11520 5.45 3196.52 1430.11 

P11521 0.28 1189.14 402.75 

P11522 2.56 2073.50 898.35 

P11523 1.97 1844.66 768.83 

P11524 7.14 3853.28 1799.12 

P11525 5.29 3133.00 1467.19 

P11526 5.44 3192.00 1376.24 

P11527 6.16 3471.17 1542.90 

P11601 6.21 3493.93 1572.30 

P11602 5.48 3209.01 1543.77 

P11603 5.75 3313.64 1522.65 

P11604 5.74 3309.35 1576.71 

P11605 6.92 3767.20 1740.94 

P11606 5.81 3337.78 1526.60 

P11607 8.04 4203.94 1907.45 

P11608 8.05 4208.02 1907.70 

P11609 7.64 4046.03 1864.89 

P11610 7.91 4153.80 1915.59 

P11611 9.33 4704.49 2150.82 

P11612 8.60 4419.24 1994.95 

P11613 9.13 4625.23 2067.91 

P11614 9.31 4697.41 2135.11 

P11615 8.29 4299.38 1872.71 

P11616 9.25 4674.68 2048.82 

P11617 7.80 4109.04 1936.86 

P11618 8.90 4538.78 2073.92 

P11619 6.77 3709.65 1752.57 
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P11620 10.10 5002.62 2233.84 

P11621 8.77 4486.22 2025.14 

P11622 10.47 5145.32 2291.59 

P11623 7.85 4127.45 1865.50 

P11624 6.43 3576.04 1655.44 

P11625 5.76 3317.49 1557.57 

P11626 4.70 2907.34 1341.70 
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APPENDIX B: TreeVaW Tree Identification Results for all 133 Permanent 

Vegetation Plots 

 

PLOT 
Observed 
Trees 

Predicted 
Trees % Trees Id'ed 

   

Plots in which DHPs were 
taken 

P11108 28 12 42.86% 

P11109 23 17 73.91% 

P11110 23 18 78.26% 

P11205 17 17 100.00% 

P11206 17 15 88.24% 

P11207 15 18 120.00% 

P11208 12 14 116.67% 

P11209 25 11 44.00% 

P11211 38 15 39.47% 

P11212 46 22 47.83% 

P11213 28 17 60.71% 

P11608 24 17 70.83% 

P11609 15 12 80.00% 

P11610 18 14 77.78% 

P11611 19 14 73.68% 

P11612 21 17 80.95% 

P11613 30 15 50.00% 

P11614 19 15 78.95% 

P11615 25 20 80.00% 

P11616 21 14 66.67% 

P11617 13 14 107.69% 

   
All other WS1 plots   

P11102 35 15 42.86% 

P11103 43 13 30.23% 

P11104 16 19 118.75% 

P11105 14 14 100.00% 

P11107 23 13 56.52% 

P11111 46 11 23.91% 

P11112 80 8 10.00% 

P11201 18 48 266.67% 

P11202 5 30 600.00% 

P11203 11 29 263.64% 

P11210 18 21 116.67% 

P11214 54 15 27.78% 

P11215 45 15 33.33% 
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P11216 27 14 51.85% 

P11217 62 14 22.58% 

P11218 52 12 23.08% 

P11301 36 16 44.44% 

P11302 18 16 88.89% 

P11303 44 21 47.73% 

P11304 29 20 68.97% 

P11305 34 21 61.76% 

P11306 4 31 775.00% 

P11307 17 24 141.18% 

P11308 6 54 900.00% 

P11309 18 35 194.44% 

P11310 11 39 354.55% 

P11311 7 33 471.43% 

P11312 5 28 560.00% 

P11313 30 14 46.67% 

P11314 44 14 31.82% 

P11315 22 14 63.64% 

P11316 40 16 40.00% 

P11317 46 18 39.13% 

P11318 36 17 47.22% 

P11319 20 15 75.00% 

P11320 24 17 70.83% 

P11321 35 23 65.71% 

P11322 36 19 52.78% 

P11323 64 12 18.75% 

P11324 44 10 22.73% 

P11401 27 15 55.56% 

P11402 16 19 118.75% 

P11403 8 15 187.50% 

P11404 14 15 107.14% 

P11405 21 12 57.14% 

P11406 13 10 76.92% 

P11407 23 14 60.87% 

P11408 9 42 466.67% 

P11409 20 37 185.00% 

P11410 16 15 93.75% 

P11411 15 46 306.67% 

P11412 49 21 42.86% 

P11413 47 12 25.53% 

P11414 23 11 47.83% 
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P11415 16 14 87.50% 

P11416 15 11 73.33% 

P11417 11 68 618.18% 

P11418 14 29 207.14% 

P11419 20 29 145.00% 

P11420 28 30 107.14% 

P11421 22 46 209.09% 

P11422 16 16 100.00% 

P11423 34 14 41.18% 

P11424 28 55 196.43% 

P11425 24 31 129.17% 

P11426 13 30 230.77% 

P11427 43 26 60.47% 

P11501 30 14 46.67% 

P11502 22 20 90.91% 

P11503 37 19 51.35% 

P11504 36 14 38.89% 

P11505 12 26 216.67% 

P11506 11 18 163.64% 

P11507 18 9 50.00% 

P11508 23 12 52.17% 

P11509 18 13 72.22% 

P11510 32 19 59.38% 

P11511 8 34 425.00% 

P11512 15 16 106.67% 

P11513 24 13 54.17% 

P11514 17 16 94.12% 

P11515 23 14 60.87% 

P11516 11 34 309.09% 

P11517 3 53 1766.67% 

P11518 28 25 89.29% 

P11519 4 71 1775.00% 

P11520 9 29 322.22% 

P11521 8 64 800.00% 

P11522 22 39 177.27% 

P11523 21 40 190.48% 

P11524 32 14 43.75% 

P11525 16 18 112.50% 

P11526 22 23 104.55% 

P11527 70 16 22.86% 

P11601 24 21 87.50% 
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P11602 13 26 200.00% 

P11603 28 24 85.71% 

P11604 29 14 48.28% 

P11605 34 15 44.12% 

P11606 19 22 115.79% 

P11607 22 22 100.00% 

P11618 16 14 87.50% 

P11619 17 24 141.18% 

P11620 26 10 38.46% 

P11621 35 16 45.71% 

P11622 30 14 46.67% 

P11623 27 17 62.96% 

P11624 51 19 37.25% 

P11625 84 15 17.86% 

P11626 99 25 25.25% 

TOTAL 3407 2810 82.48% 

 

 

 


