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Although field-collected recordings typically contain multiple simultaneously vocalizing birds of

different species, acoustic species classification in this setting has received little study so far. This

work formulates the problem of classifying the set of species present in an audio recording using

the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag

generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instan-

ces representation suitable for use with MIML classifiers. The proposed representation uses a 2D

time-frequency segmentation of the audio signal, which can separate bird sounds that overlap in

time. Experiments using audio data containing 13 species collected with unattended omnidirec-

tional microphones in the H. J. Andrews Experimental Forest demonstrate that the proposed meth-

ods achieve high accuracy (96.1% true positives/negatives). Automated detection of bird species

occurrence using MIML has many potential applications, particularly in long-term monitoring of

remote sites, species distribution modeling, and conservation planning.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4707424]

PACS number(s): 43.60.Bf, 43.80.Ev, 43.60.Np, 43.60.Vx [MAH] Pages: 4640–4650

I. INTRODUCTION

Current and projected declines in biodiversity as a func-

tion of habitat loss1 and climate change2 necessitate the devel-

opment of efficient and accurate estimates of species’

diversity, habitats, and phenology. Birds have been used

widely as indicators of biodiversity because they provide criti-

cal ecosystem services, respond rapidly to change, are rela-

tively easy to detect, and may reflect changes at lower trophic

levels (e.g., insects, plants).3 Birds have thus been proposed

as “canaries in the coal mine” with respect to anthropogenic

environmental changes at both local and global scales.

Unfortunately, collection of data on trends in birds pop-

ulations has been plagued by problems of poor sample repre-

sentation in remote regions, observer bias,4 imperfect

detectability,5 and, particularly, the prohibitive costs of sam-

pling over large spatial and temporal scales at sufficiently

fine resolutions.6 These problems could be ameliorated to

some degree with the use of automated acoustic surveys.

However, the complexity of bird song, the noise present in

most habitats, and the simultaneous song that occurs in

many bird communities7,8 make automated species identifi-

cation a challenging task.

Many authors have proposed methods for acoustic bird

species classification, but more work is needed to address the

problem of identifying all species present in noisy recordings

containing multiple simultaneously vocalizing birds.9 It is

common to classify species under the assumption that there is

a single bird species present in a recording.10–12 This assump-

tion is reasonable for audio collected with hand-held direc-

tional microphones aimed at a target individual,13–15 or for

audio collected from birds in captivity,16 but not for audio

collected by unattended omnidirectional microphones.17 A

related problem is detection of one or a few specific spe-

cies17,18 (possibly amidst other sources of noise, including

other birds), or detection of birds that make a particular type

of call (e.g., tonal sounds19).

Unlike prior work in automatic bird sound detection and

classification, we consider the following problem: given an

audio recording (e.g., 10 s), predict the set of all species pres-

ent in that recording.

We formulate this problem in the multi-instance multi-

label (MIML) framework for supervised classification.20 The

main idea of MIML is that the objects to be classified are

represented as a collection of parts (referred to as a “bag-

of-instances”), and associated with multiple class labels. In

this application, the objects to be classified are recordings,

the parts are segments of the spectrogram corresponding to

syllables of bird sound described by a feature vector of

acoustic properties, and the labels are the species present.

All supervised classification algorithms require some labeled

training data to build a predictive model. A major advantage

of the MIML formulation is that the only training data

required is a list of the species present in a recording, rather

than a detailed annotation of each segment, or training

recordings containing only a single species (which is

required in most prior work).21–24 For recordings containing

multiple simultaneously vocalizing species of bird, it is less

labor intensive to construct the former type of labels.
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In order to apply MIML classification algorithms, it is

necessary to transform the data from its original representa-

tion into a suitable bag-of-instances representation. An algo-

rithm to do this is called a “bag generator.” In prior work,

MIML bag generators for images and text have been pro-

posed, but MIML has not previously been applied to audio.

We propose a MIML bag generator for audio, which makes

it possible to apply existing MIML classifiers to the species

set prediction problem.

We experimentally evaluate MIML acoustic species

classification on 548 10-s recordings containing 13 species.25

These experiments demonstrate that our methods accurately

predict the set of species present in noisy, multi-bird record-

ings collected in the field by unattended omnidirectional

microphones.

II. BACKGROUND AND RELATED WORK

In this section, we discuss segmentation, features and

classifiers used in prior work on acoustic species classifica-

tion. Then we review the multi-instance multi-label frame-

work for supervised classification.

A. Acoustic bird species classification

Brandes provides a survey of methods for acoustic bird

species classification.9 There are three main stages in most

bird species classification systems: segmentation, feature

construction, and supervised classification.

A syllable is a single short utterance by a bird, which

may be a call, or part of a song. Methods for acoustic classi-

fication of bird species can broadly be grouped into those

that classify individual syllables, and those that classify

recordings containing multiple syllables. In both cases, seg-

menting audio into distinct syllables is a crucial step. The ac-

curacy of any classifier that relies on segmentation is

sensitive to the quality of the segmentation.26

Most algorithms for segmentation operate in the time

domain, and are based on energy. It is common to compute

the energy of the signal in each frame, then consider inter-

vals with high energy to be syllables.12,22,23,27

Energy-based, time-domain segmentation is not well

suited for audio with high-noise or multiple simultaneous

birds. Energy-based segmentation accuracy degrades in

high-noise recordings (e.g., from wind, stream noise, or

motor vehicles), and also cannot differentiate other loud

non-bird sounds. Vocalizations from multiple birds may

overlap in time, making time-domain segmentation ineffec-

tive. Further work is needed to extract measurements from

syllables that overlap in time but not frequency, and in high-

noise environments.9

There has been some prior work on 2D time-frequency

segmentation, which is better suited to audio with multiple

simultaneous birds. Mellinger and Bradbury28 used 2D seg-

mentation in the form of bounding boxes for vocalizations of

marine mammals, but this algorithm requires a human to

provide a rough box first. Brandes divides the frequency

range of a recording into several automatically determined

bands, then applies a 2D energy threshold within each

band.29 We showed in earlier work that a random forest30

classifier applied to each pixel of a spectrogram achieves

higher segmentation accuracy than a 2D energy threshold on

field-collected recordings.31

After running a segmentation algorithm to identify syl-

lables, systems for bird species recognition extract acoustic

features to characterize the syllables in a way that can be

used with machine learning algorithms for classification.

Linear predictive coding (LPC)11,24,27 and Mel-frequency

cepstral coefficients (MFCCs),32,33 are common in analysis

of speech and music and are amongst the most widely used

features to describe bird sound.12,21,34,35 Features such as

LPCs and MFCCs describe individual frames of sound; to

characterize a syllable as a whole, a common approach is to

average the frame-level features.12,21,22 Other features that

have been used to characterize syllables include spectral

peak tracking,22,36,37 analysis-by-synthesis/overlap-add,24

wavelets,23 and “descriptive parameters” such as bandwidth,

zero-crossing rate and spectral flux.12,22

The algorithms that have been applied to acoustic bird

species classification either at the syllable or interval level

(or both) all follow the standard single-instance, single-label

framework (SISL) in machine learning, i.e., they associate a

single feature vector with a single class label. SISL algo-

rithms that have been applied to bird species classification

include nearest-neighbor and distance based classi-

fiers,21,22,24,36 neural nets,11,23,27,35 self-organizing maps,23

decision trees,13 support vector machines,12 hidden Markov

models,10,15,22,29 and Gaussian mixture models.22 We elabo-

rate on the differences between SISL and MIML in the fol-

lowing section.

B. Multi-instance multi-label learning

In traditional supervised classification, we are given a

collection of training examples, each of which consists of a

feature vector and a class label. The goal is to learn from the

training examples how to assign a class label to a previously

unseen feature vector. However, in some applications, it

is natural for the objects of interest to be represented as a

collection of parts (referred to as a bag-of-instances), where

each part is described by a fixed-length feature vector.

Multi-instance learning38 incorporates such structure into the

classification model. For example, in multi-instance image

classification, an image is a bag, and the instances are features

describing pixels, patches or regions;39 in multi-instance text

classification, a document is a bag, and the instances corre-

spond to paragraphs or sub-windows of text.20,40 In this study,

a short audio recording is a bag, and the instances correspond

to 2D segments in the time-frequency domain described by a

vector of their acoustic properties (these segments roughly

correspond to syllables).

The original formulation of multi-instance learning38

concerns problems where bags have single binary labels.

Zhou41 and Foulds and Frank42 provide surveys on multi-

instance learning, mainly focussing on the binary label case.

Recently, Zhou and Zhang20 proposed multi-instance multi-

label (MIML) learning, where there a multiple classes and

bags have a set of multiple labels.
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Numerous algorithms for MIML have been proposed,

and achieve superior accuracy in image and text domains to

prior approaches that do not model the multi-instance or

multi-label aspects of a problem explicitly.39,43–45 Practical

applications include labeling anatomical structures in images

of Drosophila embryogenesis,44 and predicting tags for web

pages on a social bookmarking site.45

MIML has not previously been applied to audio, but

Mandel and Ellis46 recently applied multi-instance learning

to classify music clips. Our proposed representation is at a

different temporal scale, and is designed for bird sound

rather than music.

A major advantage of MIML is that it is often easier or

less costly to obtain labels at the bag-level. To the best of

our knowledge, Brandes29 is the only prior author to address

acoustic species classification with multiple simultaneous

species. In his work, the goal is to classify individual bird,

frog, or cricket calls; this requires training data in the form

of individually labeled calls. In contrast, because we use a

MIML formulation, we predict a set of species present rather

than the species for each vocalization. However, we only

require a list of the species in each recording (bag) for train-

ing data.

The MIML framework is formalized as follows: Sup-

pose we have a feature space X (usually X ¼ Rd), and set

of labels Y ¼ f1;…; cg. In SISL learning, the training data-

set is ðx1; y1Þ;…; ðxn; ynÞ, where xi 2 X and yi 2 Y. A SISL

classifier is a function f : X ! Y, i.e., it maps feature vec-

tors to single class labels. In MIML, the dataset is

ðX1; Y1Þ;…; ðXm; YmÞ, where Xi ¼ fxi;1;…; xi;ni
g is a bag of

ni instances (i.e., feature vectors), and Yi � Y is a set of

labels. A bag can be considered a subset of the feature space,

i.e., Xi � X . A MIML classifier is a function f : 2X ! 2Y ,

i.e., it maps sets of feature vectors (bags) to sets of labels.

III. METHODS

We formulate the species identification problem in the

MIML framework as follows: audio recordings are bags, seg-

ments in the spectrogram are instances, and the set of species

in a recording are a bag’s label set. We propose a bag genera-

tor to convert an audio recording into a bag-of-instances

representation, then use a MIML classifier to predict the set of

species present in the recording. The bag generator transforms

an audio signal into a spectrogram, applies noise reduction,

segments the spectrogram into 2D regions, then associates

each region with a feature vector. After applying the bag gen-

erator, any MIML classifier can be used.

A. Bag generator

This section describes the noise reduction, segmenta-

tion, and features in our proposed bag generator.

1. Preprocessing and noise reduction

Starting from a 10-s recording sampled at 16 kHz, we

transform it into a spectrogram by dividing the input signal into

frames of 512 samples with 50% overlap, then computing the

256-element magnitude spectrum of each frame using the fast

Fourier transform (FFT) with a Hamming window. We will

denote the elements of the spectrogram as Sðt; f Þ, where t
indexes a frame and f corresponds to frequency (note f indexes

an element of the discrete spectrum, i.e., f 2 f1; 2;…; fmaxg,
where fmax ¼ 256; it is not in units of Hz).

To reduce noise and improve the contrast of bird sound,

we first normalize Sðt; f Þ to the range ½0; 1�, then compute

S1ðt; f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðt; f Þ

p
for all elements of the spectrogram.

Then we apply two iterations of a whitening filter. The main

idea is to estimate the frequency profile of noise from low

energy frames, and then attenuate each row of the spectro-

gram according to this profile. The filter is:

(1) Compute a quantity similar to the energy of each frame

t, as EðtÞ ¼ 1=fmaxð Þ
Pfmax

f¼1 S1ðt; f Þ2. Sort the frames by

E. Let the noise frames N ¼ ft : frame t is one of the

lowest 20% energy framesg.
(2) For each frequency f 2 f1;…; fmaxg, compute Pðf Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

P
t2N Sðt; f Þ2

q
, where � ¼ 10�10 (we add � to

avoid dividing by 0).

(3) For all ðt; f Þ compute the noised reduced spectrogram as

S2ðt; f Þ ¼ S1ðt; f Þ=Pðf Þ.

We will refer to the spectrogram resulting from two iter-

ations of this process as Ŝðt; f Þ. Figure 1 shows a spectro-

gram before and after noise reduction.

There are some differences in how we compute Ŝðt; f Þ
for segmentation and feature construction; for segmentation,

we apply the whitening filter once, define Pðf Þ as

ð1=jNjÞ
P

t2N Sðt; f Þ, and do not apply the square root in S1.

2. Segmentation

We use 2D time-frequency segmentation to separate syl-

lables which may overlap in time. Rather than a 2D energy

FIG. 1. An example showing noise reduction in a recording wind and

stream noise.

4642 J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 Briggs et al.: Classification of multiple bird species

Downloaded 15 Jun 2012 to 128.193.8.24. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



threshold,29 we use a supervised SISL classifier to label each

pixel in a spectrogram as bird sound or noise.31 To do so, we

associate each pixel in a spectrogram with a feature vector

that describes a rectangular patch surrounding it. So for a

particular ðt; f Þ in the spectrogram, we compute its feature

vector xðt; f Þ as follows.

(1) The spectrum-bin index f .

(2) The value of the elements of the spectrogram in a rectan-

gle surrounding ðt; f Þ, i.e., Ŝði; jÞ; i 2 ½t� tw; tþ tw�;

j 2 ½f � fw; f þ fw�, where in our setup tw ¼ 6 and

fw ¼ 12 (these values are manually tuned for the sam-

pling frequency and window size used in our study).

(3) The variance of Ŝ in the same rectangle as above.

In order to train the classifier used for segmentation, we

manually annotate a collection of spectrograms as examples

of correct segmentation (Fig. 2). The mask Mðt; f Þ for spec-

trogram Ŝðt; f Þ is defined as Mðt; f Þ ¼ 0 (white) if element

ðt; f Þ is background noise and Mðt; f Þ ¼ 1 (black) if it is bird

sound. Recall that a SISL classifier (such as a random forest)

takes as training data a list of pairs ðx1; y1Þ;…; ðxn; ynÞ. We

form these pairs by selecting 500 000 points ðti; fiÞ at random

within the manually annotated spectrograms. These points

are sampled so there are 90% negative examples and 10%

positive examples. For each point we compute the feature

vector as described above, xi ¼ xðti; fiÞ. The label for each

training example is yi ¼ Mðti; fiÞ (i.e., we have a two-class

problem with labels 0 and 1). Then we train a random forest

classifier30 with 40 trees on this data (a random forest is an

ensemble of decision trees).

Given an input x, a random forest generates a probabil-

ity PðyjxÞ for the instance to belong to each class y, which is

the fraction of trees in the forest that vote for label y given

input x. We use the random forest to compute the probability

for each pixel ðt; f Þ in the spectrogram to be bird sound, i.e.,

Pðy ¼ 1jxðt; f ÞÞ. Then we smooth these probabilities by

convolving with a Gaussian kernel to obtain gðt; f Þ
¼ Pðy ¼ 1jxðt; f ÞÞ � K, where K is Gaussian kernel with

r ¼ 3 over a 17� 17 box. Finally, we obtain a predicted

segmentation mask Mðt; f Þ for a spectrogram by applying a

threshold of h ¼ 0:2 to gðt; f Þ (chosen by visual inspection

of results with varying h). Figure 3(b) shows an example of

the predicted segmentation for one recording.

The random forest classifier discussed in this section is

only used for segmentation; it is not directly involved in

FIG. 2. An example of the manual segmentation that is used to train our

supervised segmentation algorithm.

FIG. 3. (Color online) Extracting a

syllable from the segmentation

results. (a) The original spectrogram,

(b) the binary mask generated by our

segmentation algorithm. The high-

lighted segment will be further proc-

essed in this example. Note that

several other segments overlap in

time. (c) A cropped mask of the high-

lighted segment. (d) The masked and

cropped spectrogram corresponding

to the highlighted segment.
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predicting the set of species in a recording (a MIML classi-

fier does that instead). The collection of manually annotated

spectrograms used to train the segmentation algorithm is dis-

joint from recordings for which we predict sets of species,

i.e., training and testing data are separate.

3. Features

To compute features for each segment, we first crop the

mask and spectrogram to contain just that segment. Figure 3

shows how one segment is cropped. Figure 3(a) shows the

original spectrogram, and Fig. 3(b) shows the binary mask

produced by our segmentation algorithm. For the sake of

illustration, we highlight one segment. Figures 3(c) and 3(d)

show a cropped image of the mask and spectrogram based

on the highlighted segment.

The mask and spectrogram are cropped to the minimum

number of frames to contain the whole segment in time, but

not cropped at all in frequency. Note in Fig. 3(b), several

other segments overlap in time with the highlighted segment.

These overlapping segments are removed from the cropped

mask [Fig. 3(c)]. The portions of the cropped spectrogram

that are outside the mask are set to 0 [Fig. 3(d)]. The purpose

of these two changes is to eliminate any contribution in the

segment features from other segments that overlap in time,

or noise which is outside of the segment mask.

We use the following notation in describing the segment

features: Let Mcðt; f Þ be the cropped, binary mask for a seg-

ment and let Ŝcðt; f Þ be the cropped, noise-reduced spectro-

gram. Note that t ranges from 1 to the duration of the

segment in frames, T.

Three types of features describe a segment: mask descrip-

tors, profile statistics, and histogram of gradients (HOG).47

We depart from more commonly used audio features such as

MFCCs because we are using 2D segmentation. The shape of

the segment alone provides a lot of useful information, which

the mask-based features capture. The profile statistics are sim-

ilar to features that have previously been used for bioacoustics

in noisy environments based on 2D segmentation.28

a. Mask descriptors. The first set of features that we

compute for a segment are based on only the mask (i.e., not

the contents of the spectrogram), and describe the shape of

the segment. These features are

(1) min-frequency¼minff : Mcðt; f Þ ¼ 1g.
(2) max-frequency¼maxff : Mcðt; f Þ ¼ 1g.
(3) bandwidth¼max-frequency � min-frequency.
(4) duration¼T.

(5) area¼
P

t f Mcðt; f Þ.
(6) perimeter¼ 1

2
� (# of pixels in Mc such that at least one

pixel in the surrounding 3� 3 box is 1 and at least one

pixel is 0).

(7) non-compactness¼ perimeter2/area.
(8) rectangularity¼ area/(bandwidth � duration).

b. Profile statistics. The next set of features that

describe segments are based on statistical properties of the

time and frequency profiles of the segment. To compute the

time or frequency profile, we sum the columns or rows of

the spectrogram. The time profile is ptðtÞ ¼
P

f Ŝcðt; f Þ and

the frequency profile is pf ðf Þ ¼
P

t Ŝcðt; f Þ. We normalize

the profiles to sum to 1, so they can be interpreted as proba-

bility mass functions. The normalized profile densities are p̂t

and p̂f . Two features measure the uniformity of these den-

sities according the Gini index.48

(1) freq-gini¼ 1�
P

f p̂f ðf Þ2.

(2) time-gini¼ 1�
P

t p̂tðtÞ2.

We obtain several more features by computing the kth

central moments of the time and frequency profiles. How-

ever, because each segment may have a different duration,

we compute these features in a re-scaled coordinate system

where time goes from 0 to 1 over the duration of the seg-

ment, and frequency goes from 0 to 1.

(1) freq-mean¼ lf ¼
Pfmax

f¼1 p̂f ðf Þ f=fmaxð Þ.
(2) freq-variance¼

Pfmax

f¼1 p̂f ðf Þðlf � f=fmaxÞ2.

(3) freq-skewness¼
Pfmax

f¼1 p̂f ðf Þðlf � f=fmaxÞ3.

(4) freq-kurtosis¼
Pfmax

f¼1 p̂f ðf Þðlf � f=fmaxÞ4.

(5) time-mean¼ lt ¼
PT

t¼1 p̂tðtÞ t=Tð Þ.
(6) time-variance¼

PT
t¼1 p̂tðtÞðlt � t=TÞ2.

(7) time-skewness¼
PT

t¼1 p̂tðtÞðlt � t=TÞ3.

(8) time-kurtosis¼
PT

t¼1 p̂tðtÞðlt � t=TÞ4.

In the same relative coordinate system, we compute the

maxima of the time and frequency profiles.

(1) freq-max¼ arg max p̂f fð Þ
� �

=fmax.

(2) time-max¼ arg max p̂f tð Þ
� �

=T.

We also include the mean and standard deviation of the

spectrogram within the masked region.

(1) mask-mean¼ ltf ¼ 1=areað Þ
P

tf Ŝcðt; f Þ.

(2) mask-stddev¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=areað Þ

P
tf ðltf � Ŝcðt; f ÞÞ2

q
.

c. Histogram of gradients. To further characterize the

shape and texture of each segment, we include a HOG fea-

ture similar to the work of Dalal and Triggs.47 As input, we

take the cropped spectrogram and mask for a segment

Ŝcðt; f Þ and Mcðt; f Þ. First, the spectrogram is blurred by

convolving with a 7� 7 Gaussian kernel G with r2 ¼ 4

to obtain Sbðt; f Þ ¼ Ŝcðt; f Þ � G. The gradients at a point

ðt; f Þ are computed by convolving a Sobel kernel with with

Sb, i.e., d=dxð ÞSbðt; f Þ ¼ Sbðt; f Þ � Dx and d=dyð ÞSbðt; f Þ
¼ Sbðt; f Þ � Dy, where

Dx ¼
�1 0 1
�2 0 2
�1 0 1

 !

and Dy ¼ DT
x . Then, for each pixel of the spectrogram that is

in the mask [i.e., Mcðt; f Þ ¼ 1], we compute rSbðt; f Þ
¼ ð d=dxð ÞSbðt; f Þ; d=dyð ÞSbðt; f ÞÞ. Only pixels such that

jjrSbðt; f Þjj2 � 0:01 contribute to the histogram. The histo-

gram consists of 16 bins evenly spaced over the range of

angles ½0; 2p�. The feature vector for a segment consists

of the normalized count, for each bin, of the number of

gradients belonging to that bin. Hence we obtain a 16 dimen-

sional HOG feature for each segment.
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d. Feature rescaling. All of the features described

above are concatenated to form a single feature vector

describing each segment. These features differ widely in the

range of values they can have. This property of the features

can bias distance-based classifiers such as MIML-kNN to

place more weight on features with larger magnitudes. To

prevent this bias, we rescale each feature independently to

the range [0,1].

B. MIML classifiers

Using our bag generator, we experimentally evaluate

three MIML algorithms: MIMLSVM,20 MIMLRBF,49 and MIML-

kNN.50 These algorithms reduce the MIML problem to a

single-instance multi-label problem by associating each bag

with a bag-level feature, which aggregates information from

the instances in the bag. Hence the MIML dataset

fðXi; YiÞgm
i¼1 is transformed into a single-instance multi-label

dataset fðzi; YiÞgm
i¼1 where zi 2 Rd is the bag-level feature

for bag i. Each algorithm constructs a different bag-level

feature, but all use some form of bag-level distance measure.

The maximal and average Hausdorff distances between

two bags X ¼ fa1;…; ang and X0 ¼ fb1;…; bng are defined

as

Dmax
H ðX;X0Þ ¼ maxfmax

a2X
min
b2X0
jja� bjj;max

b2X0
min
a2X
jjb� ajjg;

Davg
H ðX;X0Þ ¼

X
a2X

min
b2X0
jja� bjj

 

þ
X
b2X0

min
a2X
jjb� ajj

!�
ðjXj þ jX0jÞ:

MIMLSVM applies k-medoids clustering to the training

dataset of bags using Dmax
H . This clustering produces k medoid

bags M1;…;Mk. For each bag ðXi; YiÞ, a bag-level feature is

computed as zi ¼ ðDmax
H ðXi;M1Þ;…;Dmax

H ðXi;MkÞÞ. The

resulting multi-label classification problem is solved using the

MLSVM algorithm, which consists of building one support

vector machine (SVM) for each class.

MIMLRBF runs k-medoids clustering once for each class

using Davg
H on the set of bags including that class as a label

(the parameter k is different for each class). Concatenating

the medoids obtained in each clustering, there are q medoid

bags, B1;…;Bq. Then each bag Xi is associated with a

feature zi ¼ ð1;KðXi;B1Þ;…; KðXi;BqÞÞ, where KðX;X0Þ
¼ exp �Davg

H ðX;X02=2r2Þð Þ. The resulting multi-label classi-

fication problem is solved using one linear model per class,

trained by minimizing sum squared error.

MIML-kNN also assigns bag-level features, but does so

using an approach inspired by nearest-neighbors rather than

clustering. For each training bag Xi, MIML-kNN finds its k
nearest neighbors, and k0 citers (other bags that consider Xi

to be one of their k0 nearest neighbors), using Davg
H . Then

each bag Xi is associated with a bag-level feature vector

zi ¼ ðt1;…; tcÞ, where tj is the number of bags in the neigh-

bors and citers of Xi that include class j in their label set. The

resulting multi-label problem is solved using the same

approach as MIMLRBF.

IV. EXPERIMENTS

We apply the proposed methods to field-collected audio

from the H. J. Andrews (HJA) Experimental Forest. These

experiments demonstrate that our methods accurately predict

the set of species present in an unattended acoustic monitor-

ing scenario.

A. Data collection and labeling

To collect audio in HJA, we use 13 Wildlife Acoustics

Song Meter SM1 recording devices. These devices have two

omnidirectional microphones enclosed in wind shields pro-

truding from a weather resistant enclosure that houses bat-

teries, a computer, and 32 Gb flash-memory for data storage.

The audio is recorded at 16 kHz. The result of applying

the FFT is a spectrogram with frequencies from 0–8 kHz.

This range is sufficient to capture most bird sounds in HJA.

For example, the Hermit Warbler is one of the highest

pitched species in HJA, and is generally below 8 kHz.51 It is

possible that some bird sounds are omitted due to this sam-

pling frequency, but the proposed methods still work well

for the species that we identified.

In order to train and evaluate algorithms to predict

which species of birds are present in a recording, it is neces-

sary to have some labeled examples. We have months of

audio in total, so it would not be feasible to manually label

all of it. Accordingly, we focus on a representative sample of

548 10-s recordings from six sites, all within the range

of 5:00 am to 5:20 am (birds are highly active at this time of

day), on 5/31/2009. Many of the recordings include multiple

bird species vocalizing simultaneously. We manually identi-

fied the set of species that are present in each 10-s recording.

There are 13 bird species in the recordings examined

(Table I). Each recording contains between 1 and 5 species.

There are 2.144 species per recording on average.

For the purpose of MIML experiments, we assume that

recordings that do not contain any bird sounds can be

detected during segmentation, hence we only include record-

ings that contain at least 1 species vocalizing. We evaluated

segmentation on recordings that do not contain bird sound in

prior work.31

TABLE I. The number of ten-second recordings containing each species in

our labeled dataset.

Code Name #

PSFL Pacific-slope Flycatcher (Empidonax difficilis) 165

HAFL Hammond’s Flycatcher (Empidonax hammondii) 103

OSFL Olive-sided Flycatcher (Contopus cooperi) 90

HETH Hermit Thrush (Catharus guttatus) 15

VATH Varied Thrush (Ixoreus naevius) 89

SWTH Swainson’s Thrush (Catharus ustulatus) 79

GCKI Golden-crowned Kinglet (Regulus satrapa) 197

PAWR Pacific Wren (Troglodytes pacificus) 109

RBNU Red-breasted Nuthatch (Sitta canadensis) 82

DEJU Dark-eyed Junco (Junco hyemalis) 20

CBCH Chestnut-backed Chickadee (Poecile rufescens) 117

HEWA Hermit Warbler (Setophaga occidentalis) 63

WETA Western Tanager (Piranga ludoviciana) 46
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Note that a small fraction of the recordings contain only

a single species (but still multiple syllables). Two out of the

13 species have recordings of this kind. It is not necessary

for MIML to have multiple labels associated with every bag

in the training set. Bags with a single label provide less am-

biguous information, and should therefore be expected to

improve accuracy.

There are 10 232 instances (audio segments) in our data-

set. It is considerably more laborious to label the instances

than the 548 bags. For the purpose of comparison to SISL

methods, we have manually labeled 4998 of these instances.

Of the remaining 5234 unlabeled instances, a substantial

fraction are segmentation errors or noise, or faint sounds that

are very difficult for a human to identify. These instance

labels are only used for evaluation of SISL; they are not

used by the MIML algorithms.

In addition to the 548 10-s recordings that we labeled

with species sets, we also manually segmented 625 disjoint

15-s recordings that are used as examples to train the segmen-

tation algorithm. These recordings are selected from 13 sites,

over a period from 5/2/2009 to 7/4/2009, with some examples

from each hour of the day. Within these 625 examples, 334

contain some bird sound, and 291 contain only noise.

It is not crucial that the training recordings be 10 or 15 s.

We can provide some intuition for the choice of duration.

Increasing the duration of the recordings used for training the

segmentation algorithm reduces the number of syllables in the

training data that are cut off by the boundary of the recording.

However, as the duration of recordings used for MIML is

increased, it becomes more likely for a bag to include all of

the species at the recording site. In the extreme, a bag is

labeled with every species, in which case no learning is possi-

ble because the labels are completely ambiguous.

All of the data collection sites are within 1 km of a

stream. Hence, all recordings contain some stream noise, as

well as wind or insects in some cases.

B. Evaluation

1. Cross-validation

We use five-fold cross-validation to evaluate each MIML

algorithm on the collection of 548 species-labeled recordings.

The recordings/bags are randomly partitioned into five disjoint

sets (each set contains some examples from every species).

For each fold, four of the sets are used as training data for the

MIML algorithms, and the remaining set is used for testing.

Test performance is aggregated over the five folds.

Because we use data from six sites over a 20-min inter-

val of time, it is likely that the MIML classifier is trained

and tested on vocalizations from the same individual birds.

We expect that prediction accuracy would decrease in an

experiment where the classifier is applied to individuals that

do not appear in the training set.

2. Accuracy measures

Several measures common in multi-label and MIML

experiments characterize the accuracy of each algorithm,

namely, Hamming loss, rank loss, one-error, coverage,39 and

micro-AUC.52 A MIML classifier outputs a set of classes, but

many implementations first output a score for each class, which

is compared to a threshold to obtain the set. Several of the ac-

curacy measures use these scores. We denote the score for

class j given by a MIML classifier f on input bag X as fjðXÞ.
The set of predicted labels which is obtained from the scores is

denoted f ðXÞ. Also let I½	� denote the indicator function. Recall

that the number of classes (species) is c, and the number of

bags is n. The accuracy measures are defined as follows.

Hamming loss does not rely on the scores for each class,

but instead directly evaluates the predicted set. It is the num-

ber of false positives and false negatives, averaged over the

number of classes and bags,

1

nc

Xn

i¼1

Xc

j¼1

I½j 2 f ðXiÞ; j 62 Yi� þ I½j 62 f ðXiÞ; j 2 Yi�:

Rank loss captures the number of label pairs that are

incorrectly ordered by the scores of the MIML classifier (i.e.,

classes that are in the true label set should receive higher

scores than classes that are not). Let �Y denote the comple-

ment of Y. Rank loss is defined as

1

n

Xn

i¼1

1

jYijj �Yij
X

j2Yi;k2 �Yi

I½fjðXiÞ 
 fkðXiÞ�:

One-error is the fraction of bags for which the top scor-

ing label is not in the true label set,

1

n

Xn

i¼1

I½ðarg max
j2y

fjðXiÞÞ 62 Yi�:

The scores for all classes can be ranked, so that rank 1 is

the most likely to be present (highest score), rank 2 is the

next most likely, and rank c is the least likely. We denote the

rank of class j given input bag X as rankðX; jÞ. Coverage

measures the how far down the ranking one must go to get

all of the true labels,

1

n

Xn

i¼1

max
j2Yi

frankðXi; jÞ � 1g:

MIMLSVM, MIMLRBF, and MIML-kNN output signed

scores for each class, with a positive score indicating a class

is present, and a negative score indicating it is absent. To

compute Hamming loss, we use a threshold of 0. However,

varying this threshold can be used to control the tradeoff

between predicting species which are not present (i.e., false

positives), or failing to detect species which are present (i.e.,

false negatives). The receiver operating characteristic (ROC)

curve captures this tradeoff. Let the predicted label set for a

bag Xi using a threshold t be f ðXi; tÞ. Define true/false posi-

tives/negatives as

TP¼
X

i¼1;…;n;j2Yi

I½j2 f ðXi; tÞ�; FP¼
X

i¼1;…;n;j2 �Yi

I½j2 f ðXi; tÞ�;

TN¼
X

i¼1;…;n;j2 �Yi

I½j 62 f ðXi; tÞ�; FN¼
X

i¼1;…;n;j2Yi

I½j 62 f ðXi; tÞ�:
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The true positive rate is TPR ¼ TP=ðTPþ FNÞ and the

false positive rate is FPR ¼ FP=ðFPþ TNÞ. Each point on

the ROC curve (Fig. 1) corresponds to a pair ðTPR;FPRÞ for

one threshold. The area under this ROC curve is called

micro-AUC (in contrast with macro-AUC, which is the aver-

age AUC of the separate ROC curves for each class).53

3. Parameter tuning

Each MIML algorithm has several parameters that can

be tuned to improve accuracy. We evaluate each algorithm

over all combinations of parameter values in a range, and

report results corresponding to the parameter setting of each

algorithm that minimizes Hamming loss. The parameters

and ranges are as follows.

(1) For MIMLSVM, the parameters are ðC; c; rÞ. The parame-

ter C controls SVM regularization. The SVM uses a

Gaussian kernel kðx; yÞ ¼ expð�cjjx� yjj2Þ. The param-

eter k for k-medoids clustering is set to nr, where n is the

number of bags. We evaluate all combinations of

ðC; c; rÞ 2 f10�2; 10�1; 100; 101g2 � f0:2; 0:4; 0:6; 0:8g.
(2) For MIMLRBF, the parameters are ðr; lÞ. k-medoids

clustering repeats once for each class; in the clustering for

class i, k is set to �ir, where �i is the number of

bags including label i. MIMLRBF constructs bag-level

features by applying a function KðX; X0Þ ¼ exp �Davg
H ðX;ð

X0Þ2=2r2Þ. The parameter r in this expression is set

to l times the average Hausdroff distance between

clusters.49 We evaluate all combinations of ðr; lÞ
2 f10�2; 10�1; 100; 101g2

.

(3) For MIML-kNN, we vary the number of neighbors k and

the number of citers k0 over ðk; k0Þ 2 5; 10; 20; 30f g2
.

V. RESULTS

Table II lists the accuracy measures for each MIML

algorithm. To better interpret these results, we discuss the

ranges of values the accuracy measures can take, and com-

pare to values for baseline classifiers.

Hamming loss, rank loss, and one-error have values in

the range ½0; 1� with 0 corresponding to perfect prediction.

Let the average number of labels per bag be m ¼ 1=nð ÞPn
i¼1 jYij. Then the best possible coverage is m�1, and the

worst possible coverage is c� 1 (for our dataset, this gives

the range ½1:144; 12�). However, in order to achieve the

worst possible values for these measures, it is necessary to

make predictions that are worse than random.

To obtain a baseline for Hamming loss, consider a non-

informative classifier that always predicts the empty set. The

Hamming loss is m=c ¼ 0:1649, because each label in the

true label set is a false-negative. The other measures are based

on class ranks, so consider a non-informative classifier that

outputs uniformly random scores for each class, or equiva-

lently, ranks classes in a random order. The probability that

the top-scoring class will be one of the jYij labels for bag i is

jYij=c, so the expected one-error is 1� 1=nð Þ
Pn

i¼1 jYij=cð Þ
¼ 1� m=cð Þ ¼ 0:8351. Because PðfjðXiÞ 
 fkðXiÞÞ ¼ 1

2
, the

expected rank loss is 1
2
. The AUC for a random classifier is 1

2

as well.54 We approximate the expected coverage for a non-

informative classifier by averaging the coverage for 10 000

random orders.

We also compute the rank loss, one-error, and coverage

for a classifier that ignores its input, and outputs the ranking

from most frequent class to least frequent, which is a stron-

ger baseline than random ranking (Table II).

All of the MIML classifiers are closer to perfect predic-

tion than to non-informative or frequency order baselines.

For example, the Hamming loss for MIML-kNN is 4.23 times

lower than non-informative. With a rank loss of 0.019,

MIML-kNN is 26.31 times less likely to incorrectly rank a

present/absent species pair than a random classifier. A one-

error of 0.034 means that if we only predict the highest scor-

ing species in each recording, it will truly be present 96.6%

of the time. MIML-kNN achieves a Hamming loss of 0.039,

which is equivalent to a true positive/negative rate of 96.1%

(the fraction of true positive/negatives is 1�Hamming loss).

To give a concrete view of the predictions, we show results

for 20 randomly selected recordings using MIML-kNN in

Table III.

Recent work5 has highlighted the importance of

accounting for imperfect detectability of species in wildlife

surveys. Due to the massive amount of survey time enabled

by continuous recordings, our proposed methods can help to

reduce false negatives typical of manual bird surveys. The

ROC curves (Fig. 4) show that we can set a threshold which

achieves a low false positive rate, while still retaining a rela-

tively high true positive rate, thus meeting critical assump-

tions for occupancy analysis.

A. Comparison to SISL

It is difficult to make a direct comparison between

MIML and SISL, because MIML and SISL algorithms make

different types of predictions, and are evaluated according to

TABLE II. Accuracy measures for MIML classifiers and baselines (— indicates the result cannot be calculated).

Algorithm Hamming loss # Rank loss # One-error # Coverage # Micro-AUC "

MIMLSVM 0.054 0.033 0.067 1.844 0.966

MIML-kNN 0.039 0.019 0.036 1.589 0.962

MIMLRBF 0.049 0.022 0.034 1.632 0.978

Non-informative 0.165 0.5 0.8351 8.068 0.5

Frequency order — 0.318 0.698 5.901 —

SISL random forest 0.125 0.050 0.084 2.201 0.949

SISL random forest filtered 0.049 0.023 0.022 1.708 0.974
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different performance measures. We compare to a model

based on a random forest SISL classifier because the random

forest achieves high accuracy in many domains, and has

only one parameter (the number of trees), to which it is not

very sensitive. Using the 4998 labeled instances in the data-

set, we train a SISL random forest with 100 trees. We use

the same folds for five-fold cross validation as the MIML

algorithms. For each fold, the labeled instances in four of the

sets are used to train a random forest, then the instances in

the remaining set are used to compute MIML performance

measures.

We need to compute bag-level outputs to evaluate the

random forest using MIML performance measures. To do

so, we compute the probabilities for every instance in a bag

to belong to each class, then define the bag-level score for

each class as the maximum instance probability for that

class, i.e., the bag-level score for class j given input bag X is

fjðXÞ ¼ maxx2X PðjjxÞ. This formulation of the bag-level

model is similar to MIML algorithms including M3MIML,55

D-MIMLSVM,39 and TMIML.56 We compute the Hamming loss

for the random forest using a threshold of 0.5 on the bag-

level scores. The other performance measures are computed

directly from the scores.

This SISL-trained model is worse in every performance

measure than the MIML algorithms (Table II; SISL random

forest). The bag-level scores are computed using all of the

instances in the bag, including the unlabeled instances which

are more likely to correspond to noise that is mislabeled as

bird sound in the segmentation stage. Such instances bias the

bag-level scores to generate many false positives (with a

threshold of 0.5 there are 740 false positives and 148 false

negatives). We can improve the results for the random forest

by filtering out all of the unlabeled instances so they do not

influence the bag-level scores (Table II; SISL random forest

filtered). The MIML algorithms in this study do not require

this filtering to produce accurate results because they do not

depend on instance-level predictions (this is not true of all

MIML algorithms). However filtering would improve the

performance of the MIML algorithms.

Even when we give the SISL model the advantages of

having instance labels, and of filtering out the unlabeled

instances, the best MIML results are better than the filtered

SISL results in all measures except for one-error. This result

suggests that it is non-trivial to incorporate instance labels

into a bag-level model.

VI. CONCLUSION AND FUTURE WORK

We formulate the problem of detecting the set of bird

species present in an audio recording using the MIML

framework, and propose a method to transform an audio re-

cording into a representation suitable for using with MIML

algorithms. Using data collected in the field with omnidirec-

tional microphones, we showed that the proposed methods

achieve high accuracy.

This work is a step toward automatic unattended acous-

tic surveys of bird populations. In future work, we seek to

classify all bird sounds in a much larger collection of audio

(over 4 TB), representing two years of recordings in the

field. This will effectively generate a presence/absence popu-

lation survey at the sites where we have deployed recording

devices. In contrast with manual surveys, automated acoustic

surveys can provide high temporal resolution over the long

term. For example, it would not be reasonable for a person

to count birds once per minute, 24 h a day, for three months,

but we aim to obtain similar results with acoustic surveys.

Such data is likely to provide new insights into bird behav-

ior, and their interaction with the environment.57

MIML classifiers can only predict labels that appear in

their training data, and cannot detect when something does

not belong to one of the training classes. Hence it is not clear

how to handle unexpected sounds. Due to the high-noise

environment, and birds vocalizing far from the microphone,

it is often difficult for a human labeler to determine all of the

species present in a recording. Consequently, some of the

segments/instances may come from species that are not pres-

ent in the training label set. Furthermore, some of the instan-

ces are segmentation errors capturing noise rather than bird

TABLE III. Example predictions with MIML-kNN.

Ground truth Predicted labels

PAWR, PSFL GCKI, PAWR, PSFL

VATH, SWTH VATH, HEWA, SWTH

OSFL, CBCH GCKI, OSFL, CBCH

CBCH GCKI, CBCH

HAFL HAFL

VATH, HEWA VATH, HEWA

GCKI, PSFL, RBNU, DEJU GCKI, PSFL

GCKI, PAWR, PSFL GCKI

GCKI, OSFL GCKI, OSFL

GCKI, PAWR, PSFL GCKI, PAWR, PSFL

SWTH SWTH

VATH, HEWA, SWTH VATH, HEWA, SWTH

GCKI, OSFL, HETH GCKI

GCKI, OSFL GCKI, OSFL

GCKI, PAWR, PSFL GCKI, PAWR

SWTH

GCKI, PAWR, PSFL GCKI, PSFL

GCKI, PSFL, OSFL GCKI, PSFL

HAFL HAFL

CBCH, SWTH CBCH, SWTH

FIG. 4. (Color online) ROC curves for each algorithm.
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sound. Further work is needed on classes not present in the

training data, incomplete label sets, and noise instances.

One may wish to predict the species of each individual

segment/instance, rather than just the set of species in a re-

cording. If individually labeled segments are available for

training data, this is the standard SISL supervised classifica-

tion problem. However, we instead focus on the situation

where it is difficult or expensive to obtain such labels. Learn-

ing to predict instance labels from MIML training data is a

different problem, known as instance annotation, which has

received little study so far. One might also wonder if the ac-

curacy of MIML predictions could be improved by including

individually labeled instances in the training data (e.g.,

recordings containing only a single species and syllable).

This problem of mixed-granularity training has also received

little study. In prior work on MIML, this issue has been

handled by using an unmodified MIML algorithm with a bag

containing a single instance.58

Although we focus on birds, MIML may also be appli-

cable to analysis of other bioacoustic signals from animals

including grasshoppers,14 crickets, frogs,29 and marine mam-

mals,28 and computational acoustic scene analysis in general.

Aside from its ecological applications, this work broadens

the scope of MIML domains from text and images to include

audio.
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22P. Somervuo, A. Härmä, and S. Fagerlund, “Parametric representations of

bird sounds for automatic species recognition,” IEEE Trans. Audio, Speed,

Lang. Process. 14, 2252–2263 (2006).
23A. Selin, J. Turunen, and J. Tanttu, “Wavelets in recognition of bird

sounds,” J. Adv. Signal Process. 2007, 1–9 (2007).
24Z. Chen and R. C. Maher, “Semi-automatic classification of bird vocaliza-

tions using spectral peak tracks,” J. Acoust. Soc. Am. 120, 2974–2984

(2006).
25See supplementary material at http://dx.doi.org/10.1121/1.4707424 for

sample audio recordings and spectrograms.
26S. Fagerlund, “Automatic recognition of bird species by their sounds,”

Ph.D. thesis, Helsinki University of Technology, Helsinki, 2004.
27C. Juang and T. Chen, “Birdsong recognition using prediction-based recur-

rent neural fuzzy networks,” Neurocomputing 71, 121–130 (2007).
28D. Mellinger and J. W. Bradbury, “Acoustic measurement of marine mam-

mal sounds in noisy environments,” in Proceedings of the International
Conference on Underwater Acoustical Measurements: Technologies and
Results (2007), pp. 273–280.

29T. Brandes, “Feature vector selection and use with hidden Markov models

to identify frequency-modulated bioacoustic signals amidst noise,” IEEE

Trans. Audio, Speech, Lang. Process. 16, 1173–1180 (2008).
30L. Breiman, “Random forests,” Mach. Learn. 45, 5–32 (2001).
31L. Neal, F. Briggs, R. Raich, and X. Fern, “Time-frequency segmentation of

bird song in noisy acoustic environments,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (2011).

32S. B. Davis and P. Mermelstein, “Comparison of parametric representa-

tions for monosyllabic word recognition in continuously spoken

sentences,” in Proceedings of the IEEE Conference on Acoustics, Speech
and Signal Processing (1980), Vol. 28, pp. 357–366.

33J. Volkmann, S. S. Stevens, and E. B. Newman, “A scale for the measure-

ment of the psychological magnitude pitch,” J. Acoust. Soc. Am. 8,

208–208 (1937).
34C. Kwan, G. Mei, X. Zhao, Z. Ren, R. Xu, V. Stanford, C. Rochet,

J. Aube, and K. Ho, “Bird classification algorithms: Theory and experi-

mental results,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (2004), Vol. 5, pp. 289–292.

35J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang, “Sensor network for the

monitoring of ecosystem: Bird species recognition,” in 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information
(2008), pp. 293–298.
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