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2

1.1 Introduction

Automated sensor technology has revolutionized the way ecosystem scientists acquire
knowledge about our environment. Scientists are no longer limited to manually col-
lecting observations at accessible field sites and sampling at limited or irregular time
intervals. A single in-situ sensor can record measurements from isolated locations at high
temporal resolution, and relay these sensor readings to a data repository for analysis and
distribution to the broader community. Moreover, advances in sensor technology have
decreased costs and improved availability. As a result, ecologists can now deploy dense
networks of sensors to capture environmental processes at increasingly finer spatial reso-
lutions. The final product is an overall picture of the landscape, along with the complex
ecological processes at work within it, at a level of detail previously unachievable through
conventional sampling techniques.

Ecological research organizations, such as the Long Term Ecological Research (LTER)
network and National Ecological Observatory Network (NEON), have adopted these tech-
nologies to create continental-scale sensor networks. A goal of these agencies is to iden-
tify the drivers behind, and validate existing models of, ecological processes occurring
at different spatiotemporal scales using measurements gathered from instrumented sites.
However, before such a task can be undertaken, sensor data must be quality controlled
(QC’d) to remove invalid readings caused by sensor failure. This is particularly relevant
to environmental sensor data, as the in-situ nature of the sensors makes them prone
to malfunction. Such malfunctions are exhibited by biased readings, calibration errors,
signal loss, and additional failures not yet known. As model forecasts and analyses of
the collected data are the primary inputs to data-driven ecological research, and ulti-
mately influence policy decisions, it is paramount that the data undergo QC prior to its
integration.

In this dissertation, we propose a set of algorithms to automate quality control of
environmental sensor data. Data from a sensor network is treated as a multivariate
time series, with each dimension of the series corresponding to measurements taken by a
single sensor at a fixed sampling frequency. Given such a dataset, an ideal quality control
scheme should demonstrate three qualities:

• The approach must flag observations that are likely to be corrupted by sensor
failure.



3

• It should support a means of gap filling by providing a best-guess imputation of
the affected observation.

• The scheme should be generalizable to different types of sensor data, deployment
locations, and fault types.

We refer to a measurement corrupted by sensor failure as a “data anomaly” so as not to
confuse it with the more general “anomaly,” which may refer to an unusual measurement
caused by real environmental events. Related to the first two properties, a confidence
measure in the classification of an observation being “good” or a “data anomaly,” as well
as the imputation of affected values, should also be provided. The confidence measure
allows consumers of the data to determine what values are acceptable for their purposes.

Many of the approaches used by information managers to perform QC typically fall
short in one of the aforementioned objectives. For example, a common method is to
apply a series of range checks and remove measurements that fall outside of acceptable
levels (for example, air temperature measurements > 50 ℃). While fast to apply to
large volumes of data, these methods fail to detect data anomalies that may occur within
reasonable limits, nor can they distinguish values on the edge of these limits (questionable
measurements) from those in the middle (nominal measurements) [64]. After initial range
checks, a common follow-up is manual inspection of the plotted time series by a domain
expert. Experts can identify abnormal behavior of a sensor based on their knowledge
of the hardware and the phenomenon it is measuring. Unfortunately, such inspection
is infeasible as the number of sensors grows large and each sensor records at very fine
temporal resolutions. Neither range checks nor visual inspection provides a solution for
gap-filling in place of affected values.

The work described in this dissertation focuses on a machine learning approach,
wherein we learn a probabilistic model P (Xt|Xt−1,Xt−2, . . .) of the latent process gen-
erating observations at each sensor. This process model is learned directly from the
sensor data. Uncertainty in the working state of the sensor is encoded in a probability
distribution over its state P (S). A sensor model P (O|X,S) couples sensor observations
O to the process model according to the state of the sensor. In effect, we treat sensor
measurements as noisy observations of this latent process, where the degree of noise is
linked to the functioning state of the sensor; i.e., whether the sensor is working or broken.
Queries regarding the working state of the sensor (and the quality of its readings) are
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resolved through statistical inference. An advantage of the probabilistic framework is
that it provides a natural interpretation of “confidence” in the form of probability values.
The data-driven learning of the process model minimizes the amount of domain expert
knowledge required to configure this method to a new site. Moreover, by avoiding model-
ing specific ways in which a sensor can fail, the model can generalize to new malfunctions
that may arise over the course of a deployment.

Before introducing the contributions in this dissertation, we note that this work ex-
tends research completed as part of the author’s Masters thesis [16]. There, we applied
a dynamic Bayesian network (DBN) model that incorporated a learned baseline com-
ponent to make predictions about future observations for a single environmental sensor.
The baseline function b(qh, d) analyzed a historical record of observations from the sensor
to calculate a smoothed estimate of the air temperature reading at a given quarter-hour
qh and day d. To learn the baseline, we adopted techniques from time series analysis
to isolate trend effects caused by diurnal and seasonal cycles present in the data. Once
those effects were accounted for by the baseline, the residuals were modeled using a
first-order Markov process. The behavior of the (Gaussian) random walk accounted for
to temporally-localized weather events (warming periods, cooling periods, storm events,
etc.).

1.2 Contributions

In this section, we summarize our contributions to quality control for environmental
sensor data.

Our first contribution overcomes two shortcomings of the aforementioned single-sensor
model. First, the single-sensor model only considers one sensor’s observations when infer-
ring the value of the latent process. If the sensor state becomes broken, our uncertainty
about the value of the latent process will grow larger each time step, because the model
will disconnect the observation from updating its belief about the process. Consequently,
we will have no way to impute what the sensor “should” have observed beyond the base-
line value. Second, there exist many cases where we cannot learn the baseline function.
This is because training the baseline requires an existing archive of past observations,
which must contain at least one valid sensor reading from every time step in the period
of the seasonal and diurnal trends. If such a record does not exist, as in the case of short-



5

term deployments, we cannot establish a profile of regular trend effects for the sensor.
Here, “short-term” refers to a deployment with a duration shorter than a full cycle of the
process(es) it is monitoring (for example, air temperature sensors deployed for less than
a full year).

In Chapter 2, we introduce a solution that addresses both of these shortcomings by
incorporating multiple sensors at a site. Specifically, we learn a linear-Gaussian Bayesian
network that encodes a joint distribution P (X) = P (Xt−1

1 , Xt
1, . . . , X

t−1
N , Xt

N ) over a
set of processes being tracked by multiple environmental sensors in a network[18]. The
joint distribution over the process includes two components. The first is a temporal
component P (Xt|Xt−1) that specifies a transition function to capture how the set of
processes evolves from time t − 1 to time t. A second component P (Xt

i |Xj
t ⊂ Xt)

represents the set of asynchronic (within a time slice) dependencies, and reflects the
spatial relationship among the sensors. Each variable in P (X) is represented by a node in
a directed acyclic graph (DAG), and edges in the graph indicate conditional dependencies
among the variables. The structure of the linear-Gaussian network is learned via a hill-
climbing search algorithm and the BGe scoring metric [24]. A result of our approach was
that the learned process models often generalized better to new sensor observations than
models that ignored either the spatial or temporal dependencies, or models that assumed
full connectivity in the structure of P (X). The ability of the model to generalize to new
test data was noted by its superior performance in the QC task, in addition to other
metrics described in the manuscript.

While this approach performed well on data gathered from short-term deployments,
it highlighted a scaling issue associated with inference in our probabilistic QC model.
Specifically, our method for inference in the multisensor model required computational
time that grew exponentially in the number of sensors N . This ultimately limited our
analysis to networks containing fewer than 10 sensors. In order to scale to modern sensor
networks, which may consist of dozens to hundreds of sensors, we needed to explore
approximate methods for performing inference in our model.

The second significant contribution of this dissertation addresses the problem of scale
by considering three approximate algorithms for inference in our QC model. In Chapter
3, we describe the methods of Rao-Blackwellized particle filtering (RBPF), Expectation
Propagation (EP), and SearchMAP, our own greedy-based method for approximate in-
ference, as applied to our probabilistic QC model. Further, we evaluate how the inclusion
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of additional sensors (and sensor types) affects the overall performance of the QC model.
In particular, we examine the tradeoff between inaccuracies introduced by approximate
algorithms for asynchronic inference versus the increased precision of a larger process
model that incorporates observations from additional sensors. As a case study, we apply
these algorithms to a network of 27 sensors from the H.J. Andrews Experimental For-
est. The algorithms were evaluated using both raw data and injected synthetic noise to
simulate some of the more common types of data anomalies. Results in that work sug-
gest that the benefits of including more sensors in the QC model justify an approximate
approach to inference; however, we noted that diminishing returns in performance arose
after a number of sensors had been added to the model. A surprising finding was that
our greedy search method for determining the maximum aposteriori (MAP) assignment
of sensor-state variables outperformed both EP and RBPF in detecting data anomalies
in the data and imputing the affected values.

By mitigating the high computation cost of additional sensors, we have opened our
research to several new challenges. These challenges include finding more accurate repre-
sentations for the correlations among sensors in a network, transferring knowledge from
learned models of the process to new deployments, and developing methods for learning
disjoint components of the process model. We conclude with a discussion of these chal-
lenges in Chapter 4. A summary our contributions to quality control of ecological sensor
data is as follows:

1. We established an approach that leverages correlation among a network of envi-
ronmental sensors to perform real-time, simultaneous quality control for multiple
sensors.

(a) The approach included a Bayesian methodology for learning spatiotemporal
structure among correlated ecological sensors.

(b) Our results featured a case study that demonstrates the application of the QC
model to short-term deployments.

2. We performed an analysis of approximate inference methods for asynchronic infer-
ence in probabilistic QC models.

(a) We included a treatment of implementation issues regarding advanced algo-
rithms for inference in hybrid dynamic Bayesian networks.
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(b) A greedy-search method for approximate inference was introduced for the QC
domain.

(c) The experiments assessed the benefits gained from incorporating additional
sensors into a QC model versus incurred costs of approximate inference.



8

Chapter 2: Manuscript One
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2.1 Abstract

The ecological sciences have benefited greatly from recent advances in wireless sensor
technologies. These technologies allow researchers to deploy networks of automated sen-
sors, which can monitor a landscape at very fine temporal and spatial scales. However,
these networks are subject to harsh conditions, which lead to malfunctions in individual
sensors and failures in network communications. The resulting data streams often exhibit
incorrect data measurements and missing values. Identifying and correcting these is time-
consuming and error-prone. We present a method for real-time automated data quality
control (QC) that exploits the spatial and temporal correlations in the data to distinguish
sensor failures from valid observations. The model adapts to each deployment site by
learning a Bayesian network structure that captures spatial relationships between sen-
sors, and it extends the structure to a dynamic Bayesian network to incorporate temporal
correlations. This model is able to flag faulty observations and predict the true values
of the missing or corrupt readings. The performance of the model is evaluated on data
collected by the SensorScope Project. The results show that the spatiotemporal model
demonstrates clear advantages over models that include only temporal or only spatial
correlations, and that the model is capable of accurately imputing corrupted values.

2.2 Introduction

The increasing availability (coupled with decreased cost) of lightweight, automated wire-
less sensor technologies is changing the way ecosystem scientists collect and distribute
data. Portable sensor stations allow field experts to transport monitoring equipment to
sites of interest and observe ecological phenomena at a spatial granularity of their choos-
ing. These nonpermanent deployments stand in stark contrast to traditional observatory-
like environmental monitoring stations whose initial spatial layout remains unchanged
over the course of time. However, both approaches are providing researchers with an
unprecedented volume of ecological data. The resultant surge in data has potential to
transform ecology from an analytical and computational science into a data exploration
science [66].

Temporary sensor deployments, whose durations can range from a single week to
several months, represent a new challenge for data quality control. By nature of being
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in-situ environmental stations, they are prone to the same technical problems as long-
term deployments, namely damage due to extreme weather, transmission errors and loss
of signal, calibration errors, and drastic changes in environmental conditions. Further,
it is important to rapidly detect and diagnose a damaged or failing sensor so that it
can be repaired. An insufficiently fast diagnosis could result in the corruption or loss of
data from a given sensor for the duration of the deployment; consequently, techniques
involving a postmortem analysis of the data are of little or no value. However, the sheer
abundance of data provided by large sensor networks operating at fine time resolutions
makes manual analysis (visualizing the data) infeasible for both online and offline quality
control. This raises the need for efficient automated methods of data “cleaning” that can
function in an online setting and that can readily adapt to dynamic spatial distributions.

The purpose of this article is to provide an example of spatially distributed environ-
mental monitoring, motivate a need for quality control in this domain through docu-
mented examples of sensor failure, and introduce a machine learning approach to auto-
mate the data cleaning process. Though we believe our methodology is readily extendable
to additional environmental phenomena, our work here deals only with air temperature
data. We propose an adaptive quality control (QC) system that exploits both temporal
and spatial relationships among multiple environmental sensors at a site. The QC system
makes use of a dynamic Bayesian network (DBN, [14]) to correlate sensor readings within
a sampling period (time step) to readings taken from past sampling periods. Because
the set of potential faults is unbounded, it is not practical to approach this as a diagno-
sis problem where each fault is modeled separately [31]. Instead, we employ a general
fault model and focus on creating a highly accurate model of normal behavior, known
as the process model. The intuition is that if there is a discrepancy between the current
estimate of normal behavior (provided by the process model) and the observation taken
from the sensor, then the observation is labeled as anomalous. An additional benefit of
this approach is that it can impute values for the sensor readings during periods of sensor
malfunction.

This article is organized as follows. First, we will discuss the current ecological moni-
toring campaign, known as SensorScope, that produced the data studied herein. Second,
we describe the nature of the air temperature data and the data-anomaly types encoun-
tered, followed by a introduction to hybrid Bayesian networks. Third, we describe our
quality control model, including learning the process model and incorporating a general
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fault model. Finally, we present the results of the model applied to temperature data
from select SensorScope deployments as well as empirical results on synthetic data. We
conclude with a plan for future research.

2.3 The SensorScope System

The SensorScope Station, developed at the École Polytechnique Fédérale de Lausanne
(EPFL) in Switzerland, represents a significant change in traditional tools for in-situ
data collection and distribution. In place of few, expensive long-term or permanent
monitoring stations deployed sparsely over a heterogeneous spatial area, SensorScope
allows field scientists to deploy many light weight, inexpensive stations at a much higher
spatial resolution and monitor at user-specified time granularities. The portability of
these stations facilitates dynamic deployments, wherein sensors can be relocated within
a deployment to adapt to changing monitoring requirements.

Component sensors for measuring air temperature, skin (surface) temperature, wind
speed, wind direction, humidity, etc. are typically acquired from external manufacturers.
The SensorScope stations are equipped with a power supply sufficient to host a small
set of these sensors (the number dependent on each sensor’s energy requirement) oper-
ating simultaneously, as well as a radio device for communication with nearby stations.
Every deployment contains at least one General Packet Radio Service (GPRS) hub that
transmits data received from the SensorScope stations to a central server at the EPFL
via cellular signal. Once the data reaches the central server, it is converted from its
raw voltage to a value particular to the phenomenon being measured (degrees Celsius
in the case of temperatures) via a conversion formula specific to the sensor type. When
the data is requested for download or plotting via the SensorScope Web site,1 it is fil-
tered automatically by a range checker to remove extreme values associated with sensor
malfunctions.

Figure 2.1 (left) shows a 3-D visualization of the Le Genepi Glacier deployment,
which was in place from August 27 to November 5 of 2007. The glacial valley, located
approximately 60 kilometers south of the western edge of Lake Geneva, slopes downward
toward the northeast and is surrounded by mountains on all other sides. The sensors are
placed at an elevation range of 2300 meters to 2500 meters. At the time of the deployment,

1http://sensorscope.epfl.ch/index.php/SensorScope_Deployments
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Figure 2.1: The Genepi Glacier and FishNet SensorScope deployments (from Google
Earth)

the northeast corner of the glacier was the only area accessible by cellular signal; therefore,
the GPRS (labeled “Base Station 1”) was placed in this location. A total of 16 stations
were deployed over the area, whose dimensions can be roughly approximated by a 100
meter by 200 meter rectangle, to allow for a comprehensive analysis incorporating the
spatial heterogeneity of the relatively small region.

The right portion of Figure 2.1 shows a much smaller deployment of six stations along
a stream, known as the FishNet deployment. The sensors operated from from August
3 to September 4 of 2007. The topographical difference is relatively small compared
to Le Genepi (the sensors are all located at approximately 600 meters of elevation), as
the deployment was in an agricultural area bordering a forested area to the south. The
GPRS station (not shown in the figure) is located approximately 100 meters to the west
of Station 104, and the length of stream covered by the deployment is approximately 300
meters.

2.4 SensorScope Data

Each SensorScope station is capable of hosting a changing set of environmental sensors;
hence, there is not a consistent set of phenomena recorded by all stations across all de-
ployments. Rather, each station is provided only with those sensors needed to measure
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the variables of interest for a given field campaign and is then retooled between deploy-
ments. As air temperature (the temperature roughly 1.5 meters above the surface) is
of interest in nearly all campaigns to date, we shall focus our discussion primarily on
this type of data. Air temperature readings are taken from Sensirion SHT75 sensors
mounted on the SensorScope stations [63]. Figures 2.2 and 2.3 show two different sets of
data streams from the stations at the FishNet and Le Genepi deployments, respectively.
The air temperature readings from both sites were sampled at a rate of once every two
minutes. The graphs show those readings binned and averaged into 10-minute windows.
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Figure 2.2: Air temperature readings from the FishNet SensorScope deployment. Each
row represents the sensor labeled in the corresponding upper right corner. The X axis
denotes the day (vertical dashed line depicts midnight) since the deployment began, and
the Y axis denotes temperature in degrees ℃. Corresponding station names appear on
the right side of the graph next to the stream that they depict.
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Figure 2.3: Air temperature readings from one week at the Le Genepi deployment. Each
row represents the sensor labeled in the corresponding upper right corner. The X axis
denotes the day (vertical dashed line depicts midnight) since the deployment began, and
the Y axis denotes temperature in degrees ℃. Corresponding station names appear on
the right side of the graph next to the stream they depict.

Nominal air temperature data contains a regular diurnal (day to day) trend that is
dependent on the season and location of the sensor. For example, the FishNet has a more
pronounced diurnal signal because the recording period is in the late summer (August)
whereas the the Le Genepi deployment has a suppressed diurnal trend due to both the
time it was observed (October) and its Alpine location. Storm and cloud coverage events
occur at irregular intervals but may also suppress diurnal signal. The FishNet data shows
the effect of a storm in days 2 through 4. We have found the following data-anomaly
types present in the air temperature data:
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• GPRS Outage. In the case where the GRPS hub becomes inoperative, data for
the entire deployment is lost. The FishNet deployment contains many segmented
periods of sensor outages among all stations. These outages indicate a failure of
the GPRS, because they occur simultaneously across all sensor streams. The faults
are evident between days 15-16 and days 17-20.

• Sensor Outage. A sensor outage occurs when an individual sensor stream is lost.
Multiple sensor outages can overlap during a give time period; however, unlike in
a GPRS outage, the start, end, and duration of each outage is not synchronized.
There are individual sensor outages in the FishNet deployment at stations 101, 102,
and 103, spanning days 24 and 25.

• Data Anomalies. Data anomalies are characterized as observations from a given
sensor that are corrupted due to sensor malfunction. Such anomalous values are
particularly obvious at station 6 in the Le Genepi deployment (Figure 2.3), where
extremely large temperature values are recorded due to incorrect voltages generated
at the sensor. Subtler spikes in temperature occur at station 6 on day 41 (Le Genepi)
and station 101 on day 17 (FishNet). A flatline in temperature is created by the
temperature sensor reporting a 0-voltage value. The conversion algorithm maps
this value to −1 ℃ value upon storing it into a data base. An example of this error
is provided in Section 2.7.2.

Given the correlation between the sensors within a deployment, it is our goal to be
able to identify data anomalies and impute the true temperature values in the case of
both individual sensor outages and sensor malfunctions. Sensor failures that manifest
themselves as either extraordinarily hot or cold temperatures are simple to diagnose
by means of range checking [49]; however, malfunctions resulting in flatline values and
subtler spikes in temperature readings are not detected by extreme value tests. While
the values appear anomalous in the context of their immediate temporal neighbors, they
are not abnormal in the range of temperatures recorded over the full duration of the
deployment.
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2.5 Hybrid Bayesian Networks

Our probabilistic model of the air temperature domain is a conditional linear-Gaussian
network, also known as a hybrid network because it contains both continuous and discrete
variables [40, 51, 54]. For the sake of computational convenience, we will restrict our
networks so that discrete-valued variables do not have continuous-valued parents and so
that all continuous-valued variables are modeled as Gaussians.

In this section, we describe how the probability distributions for continuous-valued
variables are parameterized. We consider three cases: (a) continuous variables with
discrete parents, (b) continuous variables with continuous parents, and (c) continuous
variables with a mix of discrete and continuous parents.

2.5.1 Continuous Variables with Discrete Parents

Consider a single continuous variable, X. For every possible instantiation of values for
the discrete parents of X, X takes on a Gaussian distribution with separate values for µ
and σ2. For example, if X has a single Boolean parent, Y = y ∈ {true, false}, then the
conditional probability table (CPT) of X would contain two entries: P (X|y = true) ∼
N
(
µt, σ

2
t

)
and P (X|y = false) ∼ N

(
µf , σ

2
f

)
. In general, let Y = {Y1, Y2, ..., Yn} denote

the set of discrete parents of the continuous variable X. Further, let |Y| = |Y1| ×
|Y2| × ... × |Yn| be the total size (number of possible instantiations) of Y. Then, we
specify the CPT of X with the |Y| dimensional vector, ~µ =

〈
µ1, µ2, ..., µ|Y|

〉
. Similarly,

we specify the set of variances of X, depending on the parent configuration, as the
vector ~σ2 =

〈
σ2

1, σ
2
2, ..., σ

2
|Y|

〉
. Figure 2.4 (left) contains an example with binary discrete

variables.

2.5.2 Continuous Variables with Continuous Parents

Consider a single continuous variable, X, but now with m continuous-valued parents.
For each continuous-valued parent, Zi ∈ Z = {Z1, Z2, ..., Zm}, X has a weight, wi, such
that mean of X is calculated as:

µx = ε+
m∑
i=1

wizi, (2.1)



18

X

Y2Y1 Yi Yn-1 Yn… … yi P(Yi=y)
true p
false 1-p

Y1 Y2 …. Yn μ σ2

true true true true μ1 σ2
1

true true …. false μ2 σ2
2

… ... false false … …
false false false false μ2n σ2

2n

Y

X

Z
y P(Y=y)
true p
false 1-p

),(~ 2
zzNZ σµ

Y P(X|Y=y, Z=z)
true ~N(μ1,x+ w1,z * z, σ2

1)
false ~N(μ2,x+ w2,z * z, σ2

2)

Figure 2.4: Left: Conditional Gaussian Bayesian Network. Right: Conditional Linear-
Gaussian Bayesian Network

where zi is the value of the parent random variable, Zi, and ε is X’s “intercept term” in
the linear regression formula. An essential requirement for computational tractability is
that the variance of X is specified by a single σ2 parameter and which is not conditioned
on the parents. Note that this conditional distribution has exactly the same form as a
linear regression model.

2.5.3 Continuous Variables with a Mix of Discrete and Continuous
Parents

If a variable has a mix of continuous and discrete parents, we employ a distinct linear
Gaussian distribution for each combination of values of the discrete parents. This is
known as a Conditional Linear Gaussian (CLG) model. Let X be a continuous variable
with a set of discrete parents, Y, and continuous parents, Z. Then X has a separate
mean, variance, and set of regression weights for each possible instantiation of Y. We
specify a CLG variable by a mean vector, ~µ =

〈
µ1, µ2, ..., µ|Y|

〉
, a variance vector, ~σ2 =〈

σ2
1, σ

2
2, ..., σ

2
|Y|

〉
, and a |Y| × |Z| regression matrix:


w1,1 w1,2 ... w1,|Z|

w2,1 w2,2 ... w2,|Z|

w...,1 w...,2 ... w...,|Z|

w|Y|,1 w|Y|,2 ... w|Y|,|Z|

 . (2.2)
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Figure 2.4 (right) contains a CLG network with a continuous variable having one discrete
and one continuous parent.

2.6 Developing a Spatiotemporal Process Model

In the following sections, we describe our process model as the combination of two indi-
vidual pieces: the spatial component that represents the relationships among all sensors
within a deployment for a given time slice, and a temporal component that captures the
transition dynamics from one time period (10-minute interval) to the next. The complete
process model is represented as a Dynamic Bayesian Network [14], in which the task
of quality control is achieved by inferring the most likely state of the sensors given the
current temperature observations and those of the immediate past. The procedure for
building the complete quality control model is summarized in Table 2.6.4.

2.6.1 Structure Learning and the Spatial Component

As the geographical layout of stations changes with each deployment, it is desirable to
have the QA routines autonomously learn the spatial relationships for each new deploy-
ment from the observed data. To this end, we apply Bayesian network structure learning
algorithms to learn the set of conditional-independence relationships among sensors at a
given deployment. Recall that though each SensorScope station is capable of monitoring
several environmental variables according to the type and number of sensors it is hosting,
we focus our work to air temperature data for purposes of site-to-site continuity and ig-
nore other data types. Further, we assume that each set of air temperature observations
corresponding to a single 10-minute period is generated from a multivariate Gaussian
distribution, and thus a sample from a deployment containing n SensorScope stations
is generated from an n-dimensional multivariate Gaussian. Our goal then is to learn
the elements of the covariance matrix that determine how each dimension (each sensor
in a deployment) relates to the others. Our assumptions facilitate the application of a
measure known as BGe (Bayesian metric for Gaussian networks having score equivalence,
developed by Geiger and Heckerman [24]) as a scoring metric for candidate networks. We
summarize the scoring metric, but ask the interested reader to see the aforementioned
reference for further details.
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A Bayesian network over n Gaussian distributed variables has a joint distribution
equal to a n-dimensional multivariate Gaussian. The network structure is referred to as
a sparse representation of the multivariate distribution. “Sparse” in this context means
that the representative network may not directly correlate each variable with all other
variables; in graphical terms, less than n(n−1)

2 edges (the maximum amount of edges for
an acyclic graph) are sufficient to represent the covariance structure among n variables.
In general, a lesser degree of connectivity in the graph structure will decrease the time
required to perform inference in the model and reduce the number of parameters to fit
once the structure is determined.

The BGe metric assumes the existence of a prior linear Gaussian network whose
full joint distribution represents an initial estimate of the true distribution from which
the observations are drawn. This Bayesian network can either be knowledge-engineered
by domain experts with information about the deployment or constructed ad hoc in
cases where specific domain knowledge is absent. Geiger and Heckerman parameterize
the unknown generative, multivariate distribution with a mean vector, ~m, and precision
matrix, W = Σ−1. The prior joint distribution on these parameters is assumed to be a
normal-Wishart. Under these assumptions, the joint posterior distribution, given a data
set D (containing multivariate observations ~x1, ~x2, ..., ~xl, each of n dimensions), over ~m
andW can be divided into the conditional distribution P (~m|W ) and the marginal P (W ).
The conditional distribution of P (~m|W ) is given as a multivariate normal

P (~m|W ) ∼ N

(
~µl =

v~µ0 + lX̄l

v + l
, (v + l)W

)
(2.3)

where v encodes the strength of the prior in terms of an equivalent number of “prior”
observations and l is the number of “new” observations in the data set D. The posterior of
W is distributed itself as a Wishart (α+ l, Tl), where α specifies the degrees of freedom
the Wishart distribution (for this reason, α ≥ n must be satisfied). X̄l and Sl are the
sample mean and covariance of D, and ~µ0 and Σ0 are the mean vector and covariance of
the prior network structure. The matrices Tl and T0 are calculated as
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Tl = T0 + Sl +
vl

v + l

(
~µ0 − X̄l

) (
~µ0 − X̄l

)′ (2.4)

T0 = Σ0
v (α− n− 1)

v + 1
. (2.5)

T0 is the precision matrix of the of the prior marginal distribution on W (before the
observed data D is introduced), given as P (W ) ∼ Wishart (α, T0). The BGe metric
scores the likelihood of an hypothesized network structure Bs given a data set D and the
prior ξ as

P (D|Bs, ξ) =

n∏
i=1

P (Dxi,Πi |Bc
s, ξ)

P (DΠi |Bc
s, ξ)

, (2.6)

where P (Dxi,Πi |Bc
s, ξ) is the local score of the data relevant only to variable, xi, and its

parents, Πi. Specifically, we keep only those rows and columns of the T0 and Tl that
correspond to variables in xi ∪ Πi in the case of the numerator in (2.6). Similarly for
the denominator, we keep only those rows and columns in T0 and Tl corresponding to
the variables in Πi. The term Bc

s represents a fully connected Gaussian Network with
edges among all variables. Both the numerator and denominator in (2.6) are calculated
as follows:

P (D|Bs, ξ) = (2π)
−nl
2

(
v

v + l

)n
2 c (n, α)

c (n, α+ l)
|T0|

α
2 |Tl|−

α+l
2 (2.7)

c (n, α) =

[
2
nα
2 π

n(n−1)
4

n∏
i=1

Γ

(
α+ 1− i

2

)]−1

(2.8)

To score an entire network, the expression in (2.6) must be evaluated or, equivalently,
the expression in (2.7) must be evaluated for each variable in the domain and then each
resultant value multiplied together. In the case of a nonuniform prior over network
structures, an additional weighting of P (Bs|ξ) should be factored into (2.6).

Provided with a scoring metric for Linear-Gaussian Bayesian Networks, we implement
a simple hill-climbing algorithm to find a good structure for the networks. The algorithm
is initialized with a prior network structure, then it takes one of the following actions:
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(1) add an arc between variables xi and xj if no arc existed already; (2) remove an ex-
isting arc between two variables; or (3) reverse an existing arc between two variables.
All three options are undertaken with the constraint that the resulting structure must
remain acyclic. Each of the possible networks created by taking one of the these actions
is evaluated using the BGe metric, and the action resulting in the highest scoring network
is taken. The resultant network then becomes the initialization point for another appli-
cation of this hill-climbing search. The process is repeated until taking a single action
(adding, removing, or reversing an arc) creates no increase in the score, in which case an
optimum has been reached. Unfortunately, this hill-climbing methodology is subject to
local optima, and so the final network is perturbed. This perturbation is achieved by ex-
amining every existing edge in the current structure and, with some probability, removing
the edge, reversing the direction of the edge (pending no cycle is created), or making no
change. In cases where no edge exists between two variables, we consider adding an edge
(pending no introduced cycle) or taking no action. The complete algorithm halts after
performing a user-specified number of perturbations/restarts, and the the best-scoring
network is returned. We outline the aforementioned hill-climbing algorithm in Algorithm
1.

It is important to note that structure returned from this hill-climbing search may not
be unique relative to its score. The BGe metric demonstrates a property known as Score
Equivalence, which means that it scores network structures belonging to the same Markov
Equivalence Class (MEC) equally. An MEC is the set of graphs that represent the same
set of conditional independence relationships between variables. Moreover, the algorithm
described above only returns the structure of the network (i.e., the set of parent-child
arcs); it does not compute the parameter values for each variable (means, variances,
and regression weights). In Section 2.6.4, we describe how we arrive at these values by
computing the Maximum Likelihood Estimates (MLE) for each parameter directly from
the data set, D.

The BGe metric is considered a local scoring function because of its decomposition
into summing over of node child/parent configurations. Specifically, if we consider taking
the log likelihood of the probability in (2.6), we arrive at the following summation:
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Algorithm 1 Hill-climbing with BGe Metric
1: Input: An initial Bayesian Network: Binit
2: Input: Number of perturbations to perform: pturb
3:
4: CurrentScore = BGe (Binit)
5: CurrentNet = Binit
6: BestScore = BGe(Binit)
7: BestNet = Binit
8: for i = 1 to pturb do
9: LastScore = −∞

10: while CurrentScore > LastScore do
11: LastScore = CurrentScore
12: AddNet = AddArc(CurrenNet)
13: RemNet = RemoveArc(CurrentNet)
14: RevNet = ReverseArc(CurrentNet)
15: NextNet = argmaxnet [BGe(AddNet), BGe(RemNet), BGe(RevNet)]
16: if BGe(NextNet) > CurrentScore then
17: CurrentScore = BGe(NextNet)
18: CurrentNet = NextNet
19: end if
20: end while
21: if CurrentScore > BestScore then
22: BestScore = CurrentScore
23: BestNet = CurrentNet
24: end if
25: CurrentNet = Perturb(CurrentNet)
26: CurrentScore = BGe(CurrentNet)
27: end for
28: return BestNet
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logP (D|Bs, ξ) =
n∑
i=1

[logP (Dxi,Πi |Bc
s, ξ)− logP (DΠi |Bc

s, ξ)]. (2.9)

We can then compute the log likelihood equivalent of expression Equation 2.7 to compute
the terms within the summation.

logP (D|Bs, ξ) = log

[
(2π)

−nl
2

(
v

v + l

)n
2 c (n, α)

c (n, α+ l)
|T0|

α
2 |Tl|−

α+l
2

]
(2.10)

=

[
−nl

2
log (2π)

]
+

[
n

2
log

(
v

v + l

)]
(2.11)

+ [log c (n, α)− log c (n, α+ l)] +
[α

2
log |T0|

]
(2.12)

+

[
−α+ l

2
log |Tl|

]
(2.13)

Once in summation form, it becomes clear that computing the BGe score for an entire
network is only necessary for the initial prior network, Binit. Each subsequent change in
the network structure by adding, removing, or reversing an arc only requires a modifica-
tion of some factor in the score in (2.9). For example, if we add an arc from variable xi to
xj , then only the parent set of xi has changed; consequently, we only need to recompute
the ith term in (2.9). The score for the resulting network would be the original network
score minus the original ith term (the one not including xj as a parent) plus the new ith

term (the one including xj as a parent).
Figure 2.5 contains a learned structure for the FishNet deployment. The initial prior

network assumed complete independence among all six sensor stations at the site and
placed a standard Normal distribution over all sensors (mean of 0 and variance of 1.0).
The training set is constructed from observations from the SensorScope stations them-
selves. As we have no ground-truth data for the true temperature variables (Xi’s), we
consider those observations not excluded by the website range-checker or representative
of a flatline sensor failure (i.e., consecutive -1 ℃ values) to be the “true” temperature
values. The structure was learned using data from the first half of the deployment; how-
ever, the training set was limited to only those observations where all sensors reported a
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value. If a sample missed at least 1 observation (one sensor failed to report within the
10-minute window), then it was rejected.

X103

X102

X101

X105

X106

X104

Figure 2.5: Left: Top-down view of the FishNet Deployment. Right: Learned dependency
relationships among the six sensor stations at the deployment.

2.6.2 Incorporating a Temporal Model

The spatial model, learned from the methods described in the previous section, captures
much of the correlative relationship among multiple sensors within a given deployment;
however, the model suffers from some significant drawbacks. Foremost, the spatial model
ignores the transition dynamics present in ecological data – a single sample taken from
all sensors in a time step is considered independent of all temporally nearby samples
(the sample taken 10 minutes ago, 20 minutes ago, etc.). Many types of ecological data
are highly autocorrelated. In the case of air temperature, the diurnal cycle and seasonal
cycle mean that data observed 24 hours and 365 days in the past, respectively, tend to
correlate with data observed now. Because we generally do not know (or cannot observe
due to limited deployment durations) the existence of all cycles in the data a priori, we
implement only a first-order Markov relationship in the process model to insure that
all stations transition from the current observation period (10 minutes, for example) to
the next in a consistent manner. This is achieved through the introduction of a parent
lag variable for each “true” temperature variable in the spatial model. The lag variables
capture the state of the process in the last time step.

The addition of a Markovian lag changes our model from a static Bayesian network
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into a dynamic Bayesian network. Conceptually, we can now imagine our learned spatial
model being repeatedly “stamped-out” over the course of l samples in our database.
Each stamp, or layer, contains the learned Bayesian network representing the spatial
relationships in addition to a lag variable for each sensor. Figure 2.6 depicts the temporal
model appended to the learned spatial model for the FishNet deployment.

As mentioned in Section 2.6.1, the spatial component returned by our hill-climbing
search is not a unique representation of the set of conditional independencies between
the temperature variables; it belongs to a Markov Equivalence Class. However, once we
append our temporal model to each network in the MEC, the resultant models may no
longer belong to the same class. To choose the best candidate network for the spatial
model, we generate all members of this set by using an approach described by Andersson
et al. [2]. Given a directed acyclic graph (DAG), their algorithm returns an essential
graph that represents the equivalence class and has directed or undirected edges in place
of all edges in the input graph. Undirected edges represent relationships between vari-
ables that can be reversed (parent becomes the child and visa versa) without changing
the overall set of conditional independence relationships. We input our learned spatial
model to create the essential graph representing its MEC. We consider all permutations
of orientations for the undirected edges in the essential graph such that no cycles are
introduced. For each DAG generated in this fashion, we append a set of lag variables,
fit the parameters of the combined model as described in Section 2.6.4, and score the
likelihood of the training data given this new network. We choose the spatial model that
yields the highest data likelihood when combined with the temporal component.

The first-order Markovian assumption means that we need only consider the state
of the process in the previous time step and observations in the current time slice when
inferring the posterior distribution over the current state of the process. For example, to
compute the posterior of X104 at time t from the DBN in Figure 2.6, we need only the
distribution over the previous time step and any observations in the current time step

P
(
Xt

104|X1
101, X

2
101, ..., X

t−1
101 , X

1
102, X

2
102, ..., X

t−1
102 , ..., X

1
106, X

2
106, ..., X

t−1
106

)
(2.14)

= P
(
Xt

104|X
t−1
101 , X

t−1
102 , X

t−1
103 , X

t−1
104 , X

t−1
105 , X

t−1
106

)
(2.15)

Each variable in our original network now has one additional parent variable and
thus one additional parameter (weight associated with the new parent) to estimate. We
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Time t-1 Time t

Figure 2.6: Time slices are designated by the dashed rectangles. Lag variables are ap-
pended for each sensor in the deployment, representing the state of the process in the
last time slice.

can still apply our MLE technique for estimating the new parameter values; however,
the training set for this model is now a subset of the training set used for our spatial
model. This is because we now must place the additional constraint on our training data
that it consists of contiguous pairs (two consecutive 10-minute intervals) where all sensor
observations are present. We discuss how we respect this constraint in our Experiments
and Methodology section.

2.6.3 Incorporating the Sensor Model

The combined spatial and temporal model represents the transition dynamics of the
process over time, as well the correlative structure between the different sensor stations
within a deployment. However, we cannot track the progression of the process without
external observations; to this end, we incorporate a sensor model that represents the
state of the sensor at each time slice and the observation recorded at that station. We
represent the sensor state with a discrete variable, Si, for SensorScope station i that can
assume one of two values Si ∈ {working, broken}. The sensor observation is represented
as another Normally distributed variable conditioned on the state of the sensor and the
current estimate of the air temperature as given by our process model. We will denote
the observed variables as Oi where i refers to sensor i within the deployment. Figure
2.7 represents an abstract visualization of the combined spatial, temporal, and sensor
models.
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Figure 2.7: Time slices are designated by the dashed rectangles. The variables within the
dashed area an abstract representation of the learned spatial model among four sensor
variables. A sensor state variable and an observation variable are attached to each of the
four sensor variables in the current time slice.

We manually set the parameters of the sensor state variables and observation vari-
ables. Again, this manual tuning is necessary because there are no known labels for
the sensor states in any of the SensorScope datasets. For each Si, we set the P (Si =

working) = P (Si = broken) = .5 and for Oi

P (Oi|Si = working,Xi = xi) ∼ N (xi, 0.1) and (2.16)

P (Oi|Si = broken,Xi = xi) ∼ N (.0001xi, 10000.0) . (2.17)

This parameterization stems from the idea that the sensor state must be able to “explain
away” the discrepancy between the observation variable, Oi, and the current estimate
of the true air temperature, Xi. That is, if the sensor is believed to be working, then
the observation value should be equal to that of the process model’s estimate with some
small, additional variance (0.1 ℃); contrarily, if the sensor is believed to be broken, then
the observation has little do with the actual process and so is much noisier (10000.0

℃ variance). The 0-mean, large variance distribution of the broken state approximates
a uniform distribution over the possible range of observed sensor values. If we had
ground-truth labels for the sensor state in each observation, explicitly modeling each
fault with a separate distribution would not help us identify new anomaly types not
seen in the training data. However, we could estimate P (Si = working) as the ratio of
the number of working sensor observations over the total number of observations (and
P (Si = broken) = 1− P (Si = working)).
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2.6.4 Parameter Estimation

Recall that under the assumption of a linear-Gaussian model, a Normally distributed
variable, X ∼ N(µx, σ

2
x), conditioned on a Normally distributed parent, Y ∼ N(µy, σ

2
y),

has the following density function (assuming both are univariate):

P (X|Y ) =
1

σx
√

2π
exp−(x− (w1y + µx))2

2σ2
x

(2.18)

That is, P (X|Y ) ∼ N(µx + w1y, σ
2
x), where w1 is a scalar weight multiplied with an

input, y, drawn from Y ’s distribution.
Once our structure learning algorithm has provided each variable in our domain with

a set of parents (including the temporal lag variables), the MLE approach to estimating
the values of the parameters (µi, σ2

i , and wi) reduces to solving a multiple linear regression
problem [61]. Specifically, we solve

θ̂ =
(
XTX

)−1 XT ~Y , (2.19)

where θ̂ represents the mean and associated weights of the target variable (the variable
whose parameters we are currently estimating), X is a matrix containing the value of
the parents of the target variable in the data set across all samples, and ~Y is a vector
containing all the values of the target variable corresponding to the inputs in X.

2.6.5 Inference

Inference is performed in our models using the Variable Elimination (VE, [15]) algorithm
adapted for Conditional Linear Gaussian models [39, 40, 51]. There are two inference
queries made at each time step, t.

First, we wish to compute the maximum a posteriori (MAP) assignment of the discrete
sensor variables, ~St, given the set of sensor observations, ~Ot,

P
(
St1, S

t
2, ..., S

t
n|Ot1 = ot1, O

t
2 = ot2, ..., O

t
n = otn

)
. (2.20)

This requires marginalization of the the hidden “true” temperatures (continuous variables)



30

1. Begin with initial Bayesian Network structure, Binit, for the input data, D. If
no initial network is provided, Binit is a network containing no arcs and each
variable xi ∈ Binit ∼ N (0, 1.0)

2. Compute the sample mean and covariance of D, X̄l and Sl.

3. Compute the mean and covariance represented by Binit: ~µ0 and Σ0.

4. Compute T0 and TM using the values from steps (2) and (3) in equations (2.5)
and (2.4).

5. Perform hill-climbing (Algorithm 1) initialized from Binit. Call the resultant
structure Bpost.

6. Build the Markov Equivalence Set, {Bk|Bk ∈ MEC (Bpost)} and append the
temporal model to each network Bk.

7. Compute MLE parameters for each Bk ∈ MEC (Bpost) from the data, D.

8. Compute Bbest = arg maxBk
P (D|Bk).

9. Append Sensor State (Si) and Observation variables (Oi) for each sensor vari-
able (Xi) in Bbest. The parameters of these variables are manually set.

Table 2.1: The table lists the order of steps in our structure learning algorithm for
constructing a spatiotemporal process model.

at time t and t − 1. The remaining sensor-state variables (discrete) are contained in
a single potential whose distribution is represented by a table having an exponential
number of entries. Each entry corresponds to one of the 2n possible configurations of n
sensor-state variables; consequently, construction of this table occurs in time exponential
with the sensor count. The sensor counts in the deployments discussed herein were not
prohibitively large; however, for deployments containing more sensors, we could consider
approximate inference algorithms, such as Gibbs Sampling [25] or other particle filter
methods. These algorithms approach the exact solution as the number of samples or
particles used increases. While each sample can be generated in linear time, the number
of samples required to reasonably approximate the true joint posterior may be exponential
in the number of sensors. Alternatively, we could impose a prior on our spatial structures
that would encourage learning disjoint spatial models (i.e. spatial models where one or



31

more of the Xi variables is disconnected from the remainder). In this case, exact inference
would be exponential in the number of sensors in the largest subgraph.

Second, we treat the MAP assignment as new evidence for the sensor states at time
t and compute the updated estimate of the hidden “true” temperatures, ~Xt,

P
(
Xt

1, ..., X
t
n|St1 = st1, ..., S

t
n = stn, O

t
1 = ot1, ..., O

t
n = otn

)
. (2.21)

Because we now observe the sensor states, computing the posterior over the true temper-
atures becomes a query over a linear-Gaussian model. Variable Elimination takes cubic
time in the number of sensors for this query and so is tractable to perform exactly. The
posterior distribution on the true temperatures is passed forward as a message to be used
in inference at time t + 1. The joint posterior distribution over the true temperature
variables can be thought of as an α message in the forward pass of a filtering algorithm
[59]. If the MAP estimate of the sensors at time t indicates that sensor i is working
(Si = working), then we input its corresponding observation (Oi) for the true tempera-
ture’s lag variable at time t+1; otherwise, we use the corresponding α message to specify
a distribution over the lag’s value. We then repeat this two-step query procedure for time
t+ 1.

Our motivation for handling inference in this two-step process is that, in an online
setting, we must make a decision that each sensor at time t is working or broken rather
than postponing this decision and maintaining a “belief state,” that is, 79% working and
21% broken. Not only is this approximation useful for an online QC system, it also
exempts us from having to maintain an exact belief state that increases in size after each
time step. To clarify, the exact belief state at time t would be a 2nt component mixture
of n-dimensional multivariate Gaussians. Once we have determined the state of each
sensor, we need to propagate forward an α message regarding the true temperatures ~X

to time t+ 1 (computed in (2.21)). Thus, our approximation is made by considering only
the mixture component corresponding to the MAP of the Si variables at each time step.

2.7 Experiments and Methodology

Our experiments focus on the validation of our learned spatial models across varying
deployments and the efficacy of our complete DBN model as a tool for quality control.
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We address each issue in turn. We perform the former validation through a series of
hold-one-out prediction tests to determine the relative strength of multiple stations as
a predictor for an individual missing station. Second, we provide a comparative anal-
ysis of the performance of three different QC models as applied to real data from the
SensorScope project. The three models are the spatial, temporal, and spatiotemporal
models already discussed, each augmented with a sensor model as described in Section
2.6.3. The experiments reflect the weaknesses and strengths of each model, and show
preliminary justification for pursuing a spatiotemporal approach. Lastly, we evaluate the
performance of our model in terms of type I and type II error rates. This experiment is
performed via the addition of artificial noise to the original datasets in order to create
labels that can be matched against our predictions of the sensor variable.

All experiments in this section were performed with a data set spanning from the
beginning of the respective deployment to its end. Because the SensorScope stations
are not necessarily synchronized to sample at the same time, the data was binned and
averaged into 10-minute windows consistent across all stations. A training set and testing
set were created for each deployment by roughly splitting the data into halves, in which
the first half (representing the first chronological half) became the training data and the
second half became the test set. In all experiments, only training samples (10 minute
windows) where readings for all of the stations were present were used, and so often the
training sets are significantly smaller than the testing sets. For experiments containing a
temporal model, only those training samples that had a fully observed preceding sample
(the last 10-minute period) were used. Data for the experiments comes from the FishNet
and the Grand St. Bernard deployments. Grand St. Bernard was a third deployment
located in the Grand St. Bernard Pass between Switzerland and Italy (at an elevation
of 2300 meters) and was in place from September 13, 2007 to October 26, 2007. All six
sensors were used in the FishNet deployment; however, only a subset comprising 9 of
the 23 stations were used from the Grand St. Bernard (see Figure 2.8). Because we are
only including training samples where all sensor measurements are present, including all
stations from the Grand St. Bernard would exclude too many potential samples.
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Figure 2.8: Left: The portion of the Grand St. Bernard deployment on the Italian side of
the mountain pass. Right: The Swiss side of the Grand St. Bernard deployment, located
approximately 2 kilometers east of the Italian deployment. The stations circled in red
denote those stations chosen for purposes of modeling.

2.7.1 Leave-One-Out Prediction

The leave-one-out experiments are performed by withholding a sensor’s observation and
computing the posterior distribution over the hidden sensor value given all other sensor
observations and the learned spatial (Section 2.6.1) and spatiotemporal models (Section
2.6.2). We report results for the FishNet and Grand St. Bernard SensorScope deploy-
ments. In both cases, the spatial model is learned and parameterized using only the first
half of the data (approximately 1400 and 440 training samples, respectively).

Once the spatial and spatiotemporal models are trained, we process the testing data
(second half of the collected samples) in an iterative manner. In each iteration, a single
observation, representing the measurement taken at one station at one time point, is
removed. We compute a posterior prediction for the removed value using the learned
spatial model and the observations from all other stations in the case of the spatial
model, and all other stations in addition to all measurements from the previous time step
in the case of the spatiotemporal model. We compute the mean squared error (MSE)
between the predicted value for the withheld observation and its actual value in the test
set, as well as the variance in our prediction. Let t = 1, ..., T denote the time (sample)
index, i = 1, ..., n index the “true” temperature variable Xi, and xti be the value of the
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true temperature at station Xi at time t. The MSE and Variance for station Xi is then
computed as

MSEi =
1

T

T∑
t=1

(
E [P (Xi|X\Xi)]− xti

)2
. (2.22)

The variance of the posterior estimate of Xi depends only on the set of variables that
are observed (included in the set X\Xi); not on the exact value of those observations.
Thus, we need only examine V ar [P (Xi|X\Xi)] for any one of the t samples above to
determine the variance. The leave-one-out error is also measured using cumulative log
likelihood (CLL),

CLLi =
T∑
t=1

logP (Xi = xti|X\Xi), (2.23)

and is shown as the dashed horizontal line in Figures 2.9, 2.10, and 2.11. We then
perform a further computation, removing an additional variable’s observation from the
testing data. We compute the cumulative error over the training data (sum log likelihood)
in predicting our original target variable with one additional sensor’s observation missing.
Using the same notation as above, we compute this as

CLLi,j =
T∑
t=1

logP (Xi = xti|X\ {Xi, Xj}). (2.24)

Each bar in Figures 2.9, 2.10, and 2.11 corresponds to the new CLL value after the variable
Xj has been hidden. The purpose of removing a second variable Xj is to measure the
contribution of second variable in predicting the value of the first removed variable Xi.

Figure 2.9 (upper left plot) indicates that station 101 was not only the most difficult
to predict (MSE of .56 ℃), but also gained the least from the presence of other sensors.
Additionally, removing the observations of station 104 resulted in the largest increase
in error for station 101; however, even this effect was not particularly significant in
comparison to removing any of the other remaining stations. The likely reason for this
lack of correlation is due to station 101’s position on the south edge of the deployment
(Figure 2.5), near the wooded border. Station 104, its most similar station, is also located
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Figure 2.9: Redundancy Test for FishNet Spatial Model. Dashed line indicates the error
in predicting the individual missing sensor. Each bar along the X axis represents the
change in error from removing the additional sensor variable corresponding to that bar.
The Y axis is the error measured as the cumulative log likelihood over all test cases of
the true value given the predicted distribution.

in close proximity to a wooded, shady region, which may explain its role as the strongest
predictor for station 101. This example highlights the fact that our “spatial” learning is
discovering more correlation than those just based on spatial proximity as we might see
in a Kriging model [44]. Rather, our model is capturing all sources of linear correlation
between sensors at a given time step, without the use of a feature set describing each
sensor.

Stations 105 and 106 (bottom center and bottom right plots, respectively) appear to
be very highly correlated, as indicated by the dramatic increase in prediction error when
either station is held out while predicting the other. Moreover, we see that when holding
out each station (105 and 106), there is little error in reproducing the withheld observation
given the presence of the other 5 sensors (MSEs of .058 ℃ and .074 ℃, respectively). The
Sensirion SHT75 documentation reports a measuring accuracy of ±.35 ℃ in operating
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conditions of 15.21 ℃ (average temperature of the FishNet site for the testing period).
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Figure 2.10: Redundancy Test for Grand St. Bernard Spatial Model. Dashed line indi-
cates the error in predicting the individual missing sensor. Each bar along the X-axis
represents the change in error from removing the additional sensor variable corresponding
to that bar. The Y-axis is the error measured as the cumulative log likelihood over all
test cases of the true value given the predicted distribution.

Figure 2.10 conveys a similar analysis performed with nine stations selected from
the Grand St. Bernard deployment (Figure 2.8). The top row of bar plots depicts the
analysis of stations 11, 12, and 17, while the bottom row corresponds to stations 25, 29,
and 31. It is apparent from the plot that stations 17 and 29 are the most difficult to
predict from the remaining 8 sensors. This stands to reason for station 29, for though it
is located on the Italian side of the deployment with 25 and 31, it is still separated by a
steep hillside dividing the region. We could not ultimately discern the reason for station
17’s discordant behavior from the remaining sites. The Sensirion SHT75 documentation
reports a measuring accuracy of ±1.0 ℃ in operating conditions of 1.83 ℃ (average
temperature of the Grand St. Bernard site for the testing period).

It is interesting to note in Figure 2.10 that, in all cases, there exists at least one
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sensor whose removal actually seems to decrease the amount of error in predicting the
hold-out sensor’s value. This trend suggests that our learned model may have overfit
the original training data, and thus poorly generalized to the test set. In the case of air
temperature data measured over 1-2 months (especially during seasonal transitions), data
monitored at the beginning of the observation period can differ significantly from data
measured toward the end of the observation period. This compounds the difficulty of our
work, as now our underlying assumption of a single generative multivariate distribution
creating our training and testing data is no longer valid. Future work will need to focus
on time-series analysis techniques that can map the test set to our training set without
full knowledge of the trend effects that shape the generative distribution over time.
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Figure 2.11: Redundancy Test for Grand St. Bernard Spatiotemporal Model. Dashed
line indicates the error in predicting the individual missing sensor. Each bar along the
X-axis represents the change in error from removing the additional sensor or lag variable
corresponding to that bar. The Y-axis is the error measured as the cumulative log
likelihood over all test cases of the true value given the predicted distribution.

Finally, Figure 2.11 shows the hold-one-out analysis applied to a spatiotemporal model
learned from the Grand St. Bernard data. Recall that this model is simply the original
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spatial model with the relevant lag variables appended to its structure, and the parame-
ters reestimated to account for the additional set of parents. We notice that, in all cases,
the hold-one-out error decreases with the incorporation of a lag effect. Also significant is
that, with the exception of stations 17 and 29, the lag effect has the greatest predictive
power for every station. This makes intuitive sense, as air temperature is unlikely to
change significantly over the course of 10 minutes (the duration of the lag). Stations
17 and 29 suffer from the same overfitting problem in this revised model, as hiding the
Markovian variable reduces error in both cases. In fact, the large magnitude of the gain
incurred from hiding the lag variable from station 17 seems to support the theory that
the nature of the correlative effect changed drastically between the training and testing
periods. If it had not, then it is unlikely that the spatiotemporal model would have lent
the lag variable such significant weight based on the training data.

In addition to providing some intuition about the values of parameters and network
structures learned in the spatial component of our QC system, this type of hold-one-out
analysis can be used to identify redundant sensors. For purposes of quality control, two
sensors measuring the same phenomenon (or one able to near-perfectly predict the other’s
missing value) is necessary to truly validate recorded observations; however, for purposes
of capturing all the heterogeneity encompassed within a site, it may be preferable to
relocate any sensor considered redundant. This analysis can be easily generalized to hold-
two-out in order to detect clusters of 3 sensors where one sensor can accurately predict
the value of the other missing two (redundancy at this level would even be unnecessary
for QC purposes).

2.7.2 Quality Control Experiments

We begin this section by providing a comparative analysis of the spatial-only and temporal-
only models. Every model type discussed here contains the sensor state model, as de-
scribed in Section 2.6.3, appended to the structure. That is, the spatial-only model is a
learned network structure over the first half of the data collected from the deployment
with a discrete sensor-state variable and a continuous, Normally distributed observation
variable added for each sensor. The temporal-only model assumes independence between
all stations, but contains an additional lag variable for each sensor and is auto correlated
with that lag. Figure 2.12 demonstrates the performance of the spatial model as applied
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to the second half (testing set) of the Grand St. Bernard deployment data.

Figure 2.12: Quality Control performance on Grand St. Bernard using the spatial-only
model. Solid line indicates the actual temperature recorded at each station. Dashed line
indicates the posterior prediction made for that station. Red hashes at the base of each
graph indicate a value labeled as anomalous (i.e., Si = broken) by our system for that
time period. The X-axis denotes the day (vertical dashed line depicts midnight) since
the deployment began, and the Y-axis denotes temperature in degrees. Corresponding
station names appear on the right side of the graph next to the stream that they depict.

The spatial-only model is able to recognize the spiky, anomalous behavior observed in
both stations 17 and 29 between days 21 and 25. Moreover, this QC system detects the
flatline anomaly when station 17’s air temperature sensor reported 0-voltage, which is by
default converted to a reading of−1 ℃. The dashed line represents the system’s prediction
of the actual temperature value and appears to be consistent with the neighboring stations
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of sensor 17. Unfortunately, the lack of a temporal connection means that this model’s
behavior is static over time. The overall mean of each station remains constant, because
there is no transition function to allow the mean of the process model to track the true
temperature, nor is there any explicit conditioning on the seasonality or index in the
diurnal cycle. The end result is that, as the mean of the true temperature begins to
decrease to the point where it significantly differs from the learned mean in the training
data, the model labels these new values as anomalous. This begins to manifest itself at
day 35. Each time the average reading from all 9 sensors drops significantly below the
training data mean, an anomaly is raised and the model imputes the training data mean
as the correct value. The large disparity between the model’s prediction and the actual
observations between days 35 and 39 results in most of the observations therein being
misclassified as anomalous, save for daytime high values.

Figure 2.13 shows the performance of the temporal-only model on the same Grand
St. Bernard data. This model is equivalent to n disjoint Kalman Filter models [35], with
an additional discrete sensor-state variable that explains away any discrepancy between
the observation and predicted value of the air temperature. Of immediate note is that
the −1 ℃ flatline in station 17 is no longer properly flagged as anomalous. A few nominal
observations near−1 ℃ beginning on day 25 confuse the temporal model into tracking this
flatline behavior. If the transition between temperature observations over time is gradual
enough, the temporal-only model will track the temperature signal through periods of
anomalous readings caused by sensor malfunction. Without external observations from
correlated stations, the independent sensor cannot differentiate between slow changes in
the observations due to a change in the process signal (warming or cooling trends) or the
breakdown of the sensor. In cases where the observed value disagrees with the model’s
predicted value (the model loses tracking), future predictions drift toward the training
data mean. This can be seen at station 11 on day 34 when the signal is completely lost,
or station 17 on day 35 when an erratic spike followed by a drop in temperature throws
off the model.

The temporal model’s ability to track the process even as it drifts away (albeit slowly)
from the trained mean gives it an advantage over the spatial-only model. We can see this
in stations 12, 18, 20, 25, and 31, where a slow cooling effect does not disrupt the model’s
ability to track the process during the second half of the training period. Unfortunately,
the assumption of complete independence between stations means that the model cannot



41

Figure 2.13: Quality Control performance on Grand St. Bernard using the temporal-only
model. Solid line indicates the actual temperature recorded at each station. Dashed line
indicates the posterior prediction made for that station. Red hashes at the base of each
graph indicate a value labeled as anomalous (i.e., Si = broken) by our system for that
time period. The X-axis denotes the day (vertical dashed line depicts midnight) since
the deployment began, and the Y-axis denotes temperature in degrees. Corresponding
station names appear on the right side of the graph next to the stream they depict.

accurately reconstruct the true value of the temperature at stations diagnosed as broken,
as seen in stations 11, 25, 29, and 31. To this end, we turn to the spatiotemporal model.

The performance of the spatiotemporal model (Figure 2.14) appears robust to the
weaknesses in the spatial-only and temporal-only models. In particular, it is able to both
detect and reconstruct the anomalous values from flatlined senors (station 17, days 25
to 33) and missing values (station 29, days 35 to 42). Further, the model permits some
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Figure 2.14: Quality Control performance on Grand St. Bernard using the spatiotemporal
model. Solid line indicates the actual temperature recorded at each station. Dashed line
indicates the posterior prediction made for that station. Red hashes at the base of each
graph indicate a value labeled as anomalous (i.e., Si = broken) by our system for that
time period. The X-axis denotes the day (vertical dashed line depicts midnight) since
the deployment began, and the Y-axis denotes temperature in degrees. Corresponding
station names appear on the right side of the graph next to the stream they depict.

drift in the original learned distribution of the process model, as indicated by its accurate
tracking of the air temperature from days 35 through 39, with few apparent false positives.
Like the spatial and temporal models, the combined model is able to diagnose the obvious
spikes in air temperature that are also indicative of sensor malfunctions (station 17, days
35 to 41). The overall false positive rate seems minimal (save for the midday periods
on days 36-38 at station 20, where the predicted estimates are slightly higher); however,



43

without ground-truth data, we cannot determine the true type I and II error rates.
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Figure 2.15: Quality Control performance on FishNet using the spatiotemporal model.
Solid line indicates the actual temperature recorded at each station. Dashed line indicates
the posterior prediction made for that station. Red hashes at the base of each graph
indicate a value labeled as anomalous (i.e., Si = broken by our system for that time
period. The X-axis denotes the day (vertical dashed line depicts midnight) since the
deployment began, and the Y-axis denotes temperature in degrees. Corresponding station
names appear on the right side of the graph next to the stream that they depict.

Unfortunately, in cases where GPRS is lost (either due to a required reboot, or a
failure at the station) and all station signals are lost, our spatiotemporal model cannot
recreate the missing values. This is apparent in the FishNet dataset, where GPRS outages
were relatively frequent (Figure 2.15) compared to Grand St. Bernard. In cases where
no sensors are providing observations, the variance over the joint posterior of the current
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process state grows. This is because a lack of evidence about the state of the process
means that we are becoming increasingly uncertain about its current value. Eventually,
the variance will grow so large that almost any observed value will seem likely, and so
our process will begin to retrack the observations. When the sensor readings resume, the
very first observation is recognized as nonanomalous and causes the spatial and temporal
components to shift the process model to that observed value for all correlated sensors.
For example, during the outage beginning on day 18.5 and lasting until day 19.75, there
is a single observation around day 19.5 that causes the collective temperature prediction
for most stations to shift down 4 ℃. Otherwise, during these periods of prolonged GPRS
outage, the prediction will drift toward the mean for each station while variance on the
prediction grows larger.

Without knowledge of neighboring observations within a site or a sufficiently high-
order Markovian model, there is little the current model can do to correctly track the
air temperature during periods in which all sensors fail to report. One potential solution
would be to introduce a baseline calculation that represents prior knowledge about the
air temperature at a given site for each time of day and time of year. In the absence
of evidence to correct this baseline estimate, the model would default to the baseline
values. While the baseline may be inaccurate given the temporal context (warmer/cooler
than usual, storm effect, etc.), it would likely guide the process model such that it was
closer to the actual signal when observations recommenced. Formulation of this baseline
and its performance in a long-term stationary QC domain is reported in Dereszynski
and Dietterich [17]. The problem remains that, in the short-term ecological monitoring
setting, it may be difficult to estimate this baseline in the absence of a full cycle of the
observed phenomenon (one year in the case of air temperature).

2.7.3 Noise Injection Experiments

To obtain a quantitative assessment of the accuracy of our quality control methods, we
performed a series of experiments in which we injected noise into the SensorScope data.
Initially, all readings are assigned to be nonanomalous. Then any missing values or 10-
minute average of exactly -1.0 degrees ℃ are labeled as anomalous. Finally, synthetic
faults are introduced by taking each data point and, with probability η, adding a noise
value drawn from a normal distribution with zero mean and variance σ2

n. Each synthetic
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fault is labeled as anomalous.
We report the results of the noise injection experiments for both the FishNet and

Grand St. Bernard deployments. The experiments were performed using values of σ2
n

ranging from 3 ℃ to 30 ℃ in increments of 3 ℃ and values of η ranging from 5 to
50 percent in increments of 5 percent. Thus, we evaluate 100 different variations on
the testing data for each dataset, and record the results in terms of the number of
true positives (TP , number of anomalous data values classified by our system as such),
true negatives (TN , the amount of clean values that were not flagged by our system
as anomalous), false positives (FP , misclassified anomalies that were actually clean),
and false negatives (FN , values that were actually anomalous, but not detected by our
system). The results are summarized in terms of Cohen’s κ statistic (the rate of agreement
between our classifier and the true labels correcting for chance agreement [8]), precision
(the total number of true positives divided by the number of true positives plus false
positives), and recall (the total number of true positives divided by the number of true
positives plus false negatives). Cohen’s κ reflects the degree to which our algorithm
reproduces the true labels as created by our noise injection process corrected for chance
predictions [8, 68]. It is calculated as

κ =
P (O)− P (E)

1.0− P (E)
, (2.25)

P (O) =
TP + TN

FN
, (2.26)

P (E) =
TN + FP

N
× TN + FN

N
+
FP + TP

N
× FN + TP

N
, (2.27)

where P (O) is the observed probability of the classifier agreeing with the true label,
P (E) is the expected probability of chance or coincidental agreement, and N is the total
number of samples in our testing data. Regarding the latter two statistics, precision
provides a sense of how many of the values we label as anomalous are truly indicative of
sensor faults, while recall summarizes what percent of the total genuine sensor faults we
detect in the data. In this application, we are interested in achieving as much precision
as possible at high levels of recall. In other words, we want to make sure we detect most
of the sensor faults, even if this leads to some false alarms (false positives).

Let us consider what results we should expect from injecting noise. First, we would
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expect that as the magnitude of the noise (σ2
n) increases, the noise will become easier to

detect, because it will be clearly distinct from nearby values in time and space. Increasing
the amount (η) of noise should not decrease our ability to detect it; however, fewer non-
noisy values will make tracking short-term changes in the air temperature (due to storm
effects, cold/warm fronts, etc.) more difficult. For this reason, we expect that larger
values η will result in more false positives in cases where the model loses tracking and its
predictions drift away from the true air temperature. Ultimately, the best data-anomaly
detection performance will be obtained when there is a small amount of very obvious
noise in the data (small η and large σ2

n).

% Noise Injected

V
ar

ia
nc

e 
(D

eg
re

es
 C

el
si

us
)

FishNet Kappa

 

 

5 10 15 20 25 30 35 40 45 50

3

6

9

12

15

18

21

24

27

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Grand St. Bernard Kappa

% Noise Injected

V
ar

ia
nc

e 
(D

eg
re

es
 C

el
si

us
)

 

 

5 10 15 20 25 30 35 40 45 50

3

6

9

12

15

18

21

24

27

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.16: κ as a function of both noise variance (Y-axis) and percentage of data points
modified by noise (X-axis). The shade of color associated with each grid cell reflects the
degree of κ (on a scale of 0 to 1.0) for that configuration of noise level and saturation.

Figure 2.16 shows the κ rates of our model applied to the FishNet (left) and Grand
St. Bernard (right) deployments. The value of κ is displayed on a color scale, with higher
values shown in darker shades of red and lower values shown in darker shades of blue.
As expected, larger values of σ2

n resulted in better κ scores for both the FishNet and
Grand St. Bernard data sets. Data anomalies drawn from a higher variance distribution
are more evident to our classifier; consequently, there is more genuine agreement. In the
of case FishNet, κ increases from .527 to .826 as we increase σ2

n from 3 to 30, and from
.440 to .755 in the case of Grand St. Bernard (at η = 20%). Interesting to note is that
more noise in the data does not have an adverse effect on our κ scores until more than
25% to 30% noise is introduced. In fact, the κ scores for both data sets increase up to
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this point. As more anomalies are introduced into the data and correctly identified by
our algorithm, the likelihood of coincidental agreement (P (E)) decreases; however, there
appears to be a threshold at approximately 25% noise where κ begins to decrease. This
suggests a tradeoff where further abundance of anomalies in the data makes them appear
haphazard rather than systematic.

FishNet Precision
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Figure 2.17: Precision as a function of both noise variance (Y-axis) and percentage of
data points modified by noise (X-axis). The shade of color associated with each grid cell
reflects the degree of precision (on a scale of 0% to 100%) for that configuration of noise
level and saturation.

Precision results in Figure 2.17 further support our hypothesis regarding the effect of
larger values for σ2

n. The true anomalies are more disparate from the normal data, and
so the ratio of true positives to false positives increases directly with magnitude of the
noise (fewer false positives result in higher precision scores). Further, as we increase the
amount of noise in the data, any value we classify as anomalous has a higher chance of
actually being so due to a greater proportion of the data containing noise. When there
are few anomalies in the data (5% injected noise), our scores suffer due to the presence
of relatively many false positives. Consider our false positive rates (percent of all “good”
data missclassified as anomalous) shown in Figure 2.18. Though we achieve very low false
positive rates at this level of noise (average of 1.01% at FishNet and 3.08% at Grand
St. Bernard for η = 5%), there are too few synthetic anomalies in the data, causing
the false positive counts to dominate the precision scores. In addition, while some of
these false positives are “good” values misdiagnosed as anomalies by our system, it is
likely that many of these errors come from suspicious values that we did not pre-flag as
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existing anomalies due to a lack of domain expertise (for example, sensors 17 and 29 of
Grand St. Bernard on days 22 through 25 in Figure 2.12). Thus, even though our model
is catching these likely faults, each is being labeled as a false positive.

FishNet False Positive Rate
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Figure 2.18: False Positive rates as a function of both noise variance (Y-axis) and per-
centage of data points modified by noise (X-axis). The shade of color associated with each
grid cell reflects the degree of precision (on a scale of 0% to 50%) for that configuration
of noise level and saturation.

There are cases where poor performance is caused by multiple sensor streams being
affected by noisy values simultaneously. Consider the QC model applied to the noise-
injected data in Figure 2.19 (η = 50, σ2

n = 15). Beginning on day 36, a cooling trend
affects all stations in the deployment and reduces the true air temperature below 0 degrees
℃. Incidentally, station 29 flatlines at exactly -1.0 degrees ℃ during this period. As the
true signal dips below -1.0 degrees ℃, we notice that all stations begin predicting values
hovering near this boundary until the cooling trend ends around day 39. Further, instead
of recognizing the values reported from station 29 as anomalous for this period (as in
Figure 2.14), these values are the only ones labeled as nominal. This behavior occurs
because the amount and degree of injected noised in the data makes it unlikely that a set
of observations at time t will be consistent with the spatial component of the QC model,
and makes it even less likely that two sets of contiguous observations (times t and t+ 1)
will be consistent with the temporal transition component. During this period, station
29 behaves very consistently from a temporal perspective (its observations are constant
from day 34.5 to 40.5), and the variance of the injected noise is enough to bring the
observed signal from the other stations within close proximity of the flatline value. The
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end result is that station 29 becomes the standard for nominal behavior until the true
temperature deviates from the flatline by a margin larger than the magnitude of added
noise.

In the above-mentioned scenario, increased values of both η and σ2
n negatively affect

the precision score. As η increases, the likelihood of all sensors encountering noisy values
simultaneously also rises. Noisy observations drawn from a wide-variance distribution
are more likely to strongly disagree with the QC model’s predictions and, as a result, this
frequently causes the model to ignore such observations. This kind of scenario becomes
more probable in cases where there are relatively few, highly-correlated sensors that are
prone to simultaneous malfunctioning.

Recall values, displayed in Figure 2.20, are largely invariant to changing values of η.
Increasing the amount of noise in the original data has no significant effect on our ability
to find all data anomalies. This is unsurprising. As per our discussion of precision, an
abundance of anomalous values may introduce tracking problems that leads to misclassi-
fying normal values as anomalous; however, false positive values do not factor into recall
scores. An increase in the magnitude of the noise distribution directly benefits our recall
scores, which is again consistent with our hypothesis. In both data sets, we are able to
achieve greater than .70 recall once the variance of the noisy data reaches 15 ℃. For the
FishNet deployment, we can simultaneously reach a precision score of .87 while keeping
our false positive rate at 4.6%. At Grand St. Bernard, we operate at .78 precision with
a false positive rate of 7.0%. Again, Grand St. Bernard’s worse performance is partially
due to the presence of suspicious values that we did not preflag as data anomalies before
injecting noise.

Lastly, we provide an individual analysis of the effects of increasing the frequency and
magnitude of noise in each of these datasets. Figure 2.21 shows the average κ, recall, and
precision for the FishNet (left) and Grand St. Bernard (right) deployments, as a function
of only η (top) and only σ2

n (bottom). In the case of the top graphs, each value on the
vertical axis represents an averaging over all values for σ2

n; likewise, each value on the
vertical axis for the bottom graphs is an average across all values for η.

Increasing the amount (η) of anomalous values in the data resulted in a increase of
precision for both data sets. The effect seems less pronounced for the FishNet data set
(.778 to .875) compared to Grand St. Bernard (.535 to .833) as η varies from 5% to
50%. Again, this is likely attributable to the existence of many suspicious values in the
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Figure 2.19: QC results for Grand St. Bernard data with 50% added Gaussian noise with
variance of 15 ℃. Red hash marks depict a sensor diagnosis of broken for that particular
value. Corresponding station names appear on the right side of the graph next to the
stream they depict.

Grand St. Bernard dataset that were not preflagged as data anomalies. Prior to any
Gaussian noise being added, these values would appear anomalous to our model and
would be classified as data anomalies. When η is small, it is unlikely our noise injection
process will target these observations and turn them into true cases of data anomalies.
The end result is these observations become false positives. As η increases, more of these
suspicious values are rightly cast as data anomalies during noise injection. κ increases
initially with more noisy values injected into the data; however, as discussed with the
κ results, we see diminishing returns and an eventual loss in κ as η grows over 25% for
both the FishNet and Grand St. Bernard datasets.
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Figure 2.20: Recall as a function of both noise variance (Y-axis) and percentage of data
points modified by noise (X-axis). The shade of color associated with each grid cell
reflects the degree of recall (on a scale of 0% to 100%) for that configuration of noise
level and saturation.
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Figure 2.21: Left: Precision, Recall, and κ for the FishNet noise injection experiments
as function of percentage of noise (top) and degree of variance (bottom). Right: Preci-
sion, Recall, and κ for the Grand St. Bernard noise injection experiments as function of
percentage of noise (top) and degree of variance (bottom).

The lower portion of Figure 2.21 shows a definite gain in overall precision, recall,
and κ as the degree of noise in the data (σ2

n) rises from 3 ℃ to 30 ℃. Specifically, κ
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increases by approximately .3 in both data sets, recall increases by .34 in FishNet and
.36 at Grand St. Bernard, and precision increases by .06 at FishNet and .08 at Grand
St. Bernard. In regards to recall and κ, this is because as the added noise in the data
becomes more obvious (higher variance), it becomes easier for our model to detect it. The
increase in precision is less pronounced than the increase in recall and κ, which could be
caused by our QC model having too a great a sensitivity to anomalous values (too small
of a variance for the sensor observation variable when the sensor state is believed to be
working).

2.7.4 Noise Injection & Model Comparison

In this section we use our noise injection methodology to validate that learning a spatial
model provides superior performance than arbitrarily choosing a spatial structure. We
examine four spatiotemporal QC models.

• Best : QC model having the highest-scoring (best) spatial structure as returned
from the algorithm described in Algorithm 1.

• Worst : QC model having the lowest-scoring (worst) spatial structure with equal
connectivity (smallest vertex cut) to the Best model.

• Full : QC model having a spatial structure that is fully-connected (n(n−1)
2 edges

among n sensors).

• Empty : QC model having a completely disconnected spatial model. This is identical
to a temporal-only QC model.

These QC systems are compared in terms of their κ, precision, and recall scores as a
function of σ2

n as in the bottom portion of Figure 2.21. The results can be seen in Figure
2.22.

In both the FishNet and Grand St. Bernard datasets, our learned QC Model (Best
model) clearly outperforms the other 3 QC models in κ and precision. The difference in
performance is most pronounced in the FishNet deployment. Recall scores are comparable
for both FishNet and Grand St. Bernard across all levels of σ2

n and all four model types.
The Full model performs slightly better than than the Worst model in κ and precision.
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Figure 2.22: κ, Precision, and Recall for the FishNet (top) and Grand St. Bernard
(bottom) noise injection experiments. X-axis refers to the magnitude of the noise injected
(variance in degrees Celsius). The Y-axis corresponds to the κ, Precision, or Recall score.

This suggests that though there are disadvantages to assuming full spatial connectivity,
assuming a densely connected spatial model incurs less error than assuming a spatial
model with few or no connections (as in the Empty model). The performance gain of the
Best QC model over the Full model is less significant in the Grand St. Bernard dataset.
We suspect this stems from the models being trained on data observed in mid September
and tested on data from mid to late October (a seasonal transition period). Both our
learned spatial model and the fully-connected model will fit the test data poorly, because
the training data has little resemblance to the test data. Thus, neither model has a clear
advantage over the other.
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2.7.5 Discussion

The statistic of principal interest to our quality control problem is recall. If our method
can correctly identify and filter out all nonanomalous data points, then the expert can
save time by considering only those points that our model has marked as anomalous. We
want to filter out as many existing anomalies from the data prior to review by a domain
expert (in order to save time) and prior to publication of the data (in order to prevent
distribution of invalid measurements). Our noise injection experiments confirm that the
worst case for recall is when there exist low-variance anomalies in the data. This stands
to reason, for if the anomalies we need to detect fall within the range of noise for the non-
anomalous data, they will be nearly-indistinguishable from the real data. Furthermore,
if they are frequent, then when the model is fitted to the data, it will use them to define
the normal level of variation.

Nevertheless, we have demonstrated that we can obtain recall rates of .70 when the
average variance of the noise is 15 ℃ and close to .80 for values of σ2

n ≥ 20 ℃. While this
may seem unreasonable in terms of noise levels we should expect to encounter in real-
world scenarios, consider that approximately 70% of the additive noise is less than or
equal to one unit of standard deviation (≈ 3.87 ℃ for σ2

n = 15 and 4.47 ℃ for σ2
n = 20).

In addition, we are maintaining a low false positive rate (4 to 7%) for most values of
η. In cases where there are fewer complete sensor outages and the temperature data in
the training distribution more closely matches that in the testing distribution, we would
expect these values to further improve.

With respect to creating a sparse representation of the joint distribution of Sen-
sorScope stations, the applied structure learning algorithm resulted in a savings of pa-
rameters in both FishNet and Grand St. Bernard. Each variable (or station) in a linear-
Gaussian model is specified by a scalar mean and variance (2 parameters) in addition
to a weight for every parent (1 parameter for every arc in the graph). Thus, the total
number of parameters for a graphical representation of the joint distribution is 2n + k

where n is the number of variables in the model and k is the number of arcs or edges.
The full joint distribution would consist of an n-dimensional mean vector and an n × n
covariance matrix, of which n + n(n−1)

2 entries would need to be specified (a total of
2n + n(n−1)

2 parameters). The created network structure for FishNet contained 12 arcs
for a total of 12 + 2 ∗ 6 = 24 parameters. The regular full joint distribution would re-
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quired 2 ∗ 6 + 6(6−1)
2 = 27 parameters. The savings in this case was minimal; however,

the FishNet station covers a relatively small and homogeneous area compared to Grand
St. Bernard and thus we expect some measurable correlation among all the sensors at
the deployment. The Grand St. Bernard network consisted of 24 edges, so the Bayesian
network representing this model requires 2 × 9 + 24 = 42 parameters. The full joint
distribution would require 2 ∗ 9 + 9(9−1)

2 = 54 parameters to be completely specified. We
see that the savings, in terms of parameters to be estimated, grows very quickly as the
number of sensors increases, and that we can exploit spatial 1heterogeneity to provide a
more compact representation. The number of spatial structures we considered in deter-
mining the best spatial models (size of the MEC for Bpost in Table 2.6.4) for FishNet and
Grand St. Bernard were 3 and 8, respectively. This result is consistent with empirical
data obtained by experiments involving the evaluation of MEC class sizes [26].

Finally, our empirical results also show that sparseness in the spatial model represents
a form of regularization. Figure 2.22 shows that fully connected spatial models behave
worse or on par with our learned spatial models, which contain fewer arcs. As we cannot
evaluate the entire set of all spatial models for each dataset, we cannot be certain there
do not exist even sparser models that perform better. However, we have some evidence
from the Worst and Empty models’ performance in Section 2.7.4 that we cannot capture
all the necessary correlative relationships with fewer edges. The Worst spatial model for
FishNet contained 10 edges compared to 12 in the learned model, and the Worst spatial
structure for Grand St. Bernard contained 19 arcs compared to 24 in the learned model;
neither performed as well as the Best model in each dataset. The placement of the edges
in the Worst model is an additional contributing factor to its poor performance.

2.8 Related Work

A simple (though common) approach to data-anomaly detection is to provide a visual
representation of the data and allow a domain expert to manually inspect, label, and
remove anomalies. In Mourand and Bertrand-Krajewski [49], this method is improved
upon through the application of a series of logical tests to pre-screen the data. These tests
include range-checks to insure that the observations fall within reasonable domain limits,
similar checks for the signal’s gradient, and direct comparisons to redundant sensors. The
ultimate goal is to reduce the amount of work the domain expert has to do to clean the
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data, which is consistent with our approach.
Temporal methods evaluate a single observation in the context of a time segment

(sliding window) of the data stream or previous observations corresponding to similar
periods in cyclical time-series data. Reis et al. [60] use a predictor for daily hospital
visits based on multiday filters (linear, uniform, exponential) that lend varying weight
to days in the current sliding window. The motivation for such an approach is to reduce
the effect of isolated noisy events creating false positives or false negatives in the sys-
tem, as might occur with a single-observation-based classifier. In a similar vein, Wang
et al. [69] construct a periodic autoregressive model (PAR, [7]), which varies the weights
of a standard autoregressive model according to a set of user-defined periods within the
time series. A daily visitation count is predicted by the PAR model, and if it matches
the observed value, then the PAR model is updated with the observation; otherwise, the
value is flagged as anomalous, an alarm is raised, and the observation is replaced with
a uniformly smoothed value over a window containing the last several observations. A
machine-learning based approach was adopted by Wong et al. [37] wherein the logical
tests, or rules, are learned in an online setting. Past observations (taken from set lag
periods representative of current temporal context) are mined for rules stated as reason-
able values for individual, pairs, or tuples of attributes. The significance of the rules are
determined by Fisher’s Exact Test.

Spatial methods are useful in cases where there exist additional sensors distributed
over a geographic area. The intuition is that if an explicit spatial model exists that
can account for the discrepancies between observed values at different sites, then these
sensors can, in effect, be considered redundant. An example of this approach can be
found in Daly et al. [12], where each distributed sensor is held out from the remaining
set of sensors, and its recorded observation validated against an interpolated value from
the remaining set. Each station’s value in the network is given a weight associated with
confidence in its estimate. This confidence value is calculated using a set of summary
statistics based on that station’s latest observation in the context of its historical record.
Unlike our approach, there is no specific attempt to model the joint distribution between
all stations or the overall correlation between sensors in the network. Moreover, this
approach relies on a significant historical record for each station in the network in order
to compute the necessary summary statistics for that station.

Belief Networks [54] have been employed for sensor validation and fault detection in
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domains such as robotic movement, chemical reactors, and power plant monitoring [52,
46, 32]. Typically, the uncertainty in these domains is limited to the sensor’s functionality
under normal and inoperative conditions. That is, the processes in these domains function
within some specified boundaries with a behavior that can be modeled by a system of
known equations [33, 3]. Ecological domains are challenging because accurate process
models encompassing all relevant factors are typically unavailable [28]; consequently,
uncertainty must be incorporated into both the process and sensor models. Eskin [21]
handles this uncertainty with a mixture model over the true and anomalous data, which
is similar to our observation variable once we have marginalized away the sensor state.
The distribution parameters are learned iteratively over each sample in the dataset.
For each value, the change in likelihood of moving that value’s membership from the
clean to the anomalous distribution is computed; if the the likelihood increases, the
value changes membership, it becomes anomalous permanently (it cannot rejoin the clean
distribution), and the nonanomalous distribution parameters are updated. Das et al. [13]
use the probabilistic approach in the multivariate setting in which rare co-occurrences
of attribute values are not, in and of themselves, indicative of anomalous values. Here,
pairs or tuples of attributes are probabilistically scored based on their values; however,
they are normalized by likelihood of the individual values taking on those assignments
independently, as determined by the training data (to add support to low-frequency
events). An entire record (consisting of multiple attribute tuples) is then scored according
to the rarest tuple of attribute values within that record.

Perhaps most related to our own work, Hill et al. [29] apply a DBN model to ana-
lyze and diagnose anomalous wind velocity data. The authors explore individual sensor
models as well as a coupled-DBN model that attempts to model the joint distribution
of two sensors. The nature of the data-anomaly types in the data appear to be either
short-term or long-term malfunctions in which the wind speed drastically increases or de-
creases; consequently, a first-order Markov process is sufficient to determine sharp rates
of increase or decrease in wind speed. The joint distribution is modeled as a multivari-
ate Gaussian conditioned on the joint state of the respective sensors (represented as a
discrete set of state pairs). Our current approach primarily differs in the scale (number
of sensors we are trying to simultaneously monitor) and that we attempt to discover the
correlative structure between the sensors. Instead of assuming a full covariance matrix
over the joint distribution of sensors and computing the MLE parameters for that matrix,
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we apply structure learning to obtain a sparse representation of the joint distribution.

2.9 Concluding Remarks and Notes on Future Research

This article has described a new type of dynamic environmental monitoring based on
short-term wireless sensor deployments, as well as demonstrated an accompanying need
for adaptive, automated quality control. We have provided background information re-
garding the SensorScope Project and have given examples of the data collected and the
data anomalies contained therein. However, our primary contribution has been to offer
an initial means of automating QC in this domain. Our experimental results thus far
demonstrate that a Dynamic Bayesian Network approach, based on a generative model of
the deployment site, can diagnose many of the data-anomaly types present in ecological
data. Further, in all but the severest case of a complete site outage, the model is able to
reconstruct reasonable estimates of missing or corrupted data from individual sensors or
subsets of sensors. We have shown that structure learning techniques can be successfully
applied in this domain to learn a compact representation of the covariance matrix over
the generative distribution, and that this sparse matrix performs better or comparable
to a fully specified covariance structure.

Thus far we have only applied our method to detect data anomalies present in air tem-
perature sensor streams. We suspect that other environmental data types may provide
more challenges to our approach. For example, wind velocity sensors may demonstrate
significantly less temporal and spatial correlation over the relatively small geographical
areas they are deployed, or surface-temperature data may not be very spatially correlated
if the observation area displays surface heterogeneity. However, a model that examines
the correlation across these phenomenon may overcome these challenges. Other domains
that may be difficult to perform QC on exclusively (precipitation, soil moisture, solar ra-
diation) may be leveraged with other correlated phenomena to produce a truly inclusive
system for quality control.

With regards to structure learning, the BGe metric and hill-climbing search represent
only one prior-based technique for determining the underlying spatial model. In learning
a compact form of the covariance matrix, there appear to be two primary methodolo-
gies. Standard machine learning approaches focus on the discovery of some metric to
score child/parent configurations and a search algorithm over the space of DAGs that
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may penalize nonsparse representations. For example, Tsamardino et al. [67] attempt to
determine a candidate set of neighbors (the Markov Blanket) using a Max-Min Parents
heuristic for each variable in the network and then employ hill-climbing over the sub-
set. Schmidt et al. [62] similarly attempt to identify a subset of variables to consider as
a potential set of neighbors using L1-Regularization. However, both of these methods
were developed to address very large databases containing thousands of variables (gene
expression data, etc.) with relatively few samples – situations in which overfitting is a
significant concern. While ecological sensor networks may include dozens of sensors at a
deployment, it seems unlikely that the aforementioned techniques would be necessary due
to the quantity and frequency at which data is collected. The second approach focuses
on learning the covariance matrix directly rather than iteratively. While perhaps not
feasible for domains of high dimension, this method does have the advantage of perform-
ing a more global evaluation of the structure, making it more robust to local maxima
(unlike hill-climbing). The work of Yuan and Li [72] is an example of this approach,
where Lasso regression is used as part of an optimization to force off-diagonal elements
of the covariance matrix toward 0. The result is an undirected graph representing the
covariance structure and, as we are not primarily interested in developing causal models
of the sensor correlations, this would be suitable in the current domain. Also of interest
would be a way to integrate our fixed temporal model into the hill-climbing search for
an optimal spatial structure. That is, we would like the scoring function to take into
account that lag variables will be appended to each of variables in the graph in a specific
manner when evaluating candidate structures.

An additional direction for future work is to extend this model to an online learning
scheme, in which the spatial structure and parameterization is refined over time. Given
that the BGe metric requires a prior network structure as an initialization point for
search, one could conceive of an algorithm in which the network learned on incremental
batches of observations served as the prior for the next network. We could begin with a
very weak assumption on the generative distribution (total independence among sensors
with each sensor having a univariate Normal distribution over the range of plausible
domain values), and use this as our initial QC system. Those points not labeled as
anomalous by this primitive model would then be employed to train a more sophisticated
spatial model, and then the process could be repeated. On a related note, there may be
other metrics for conditional independence that merit exploration, especially if we are to
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loosen our assumption on normally distributed generative model or on a linear correlative
relationship between the variables.
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3.1 Abstract

Machine-learning approaches to automated quality control have demonstrated great po-
tential for assisting ecological scientists in cleaning data collected from environmental
sensor networks. We motivate a probabilistic approach that captures the uncertainty in
the working state of sensors and the value of the phenomenon they measure. The prob-
abilistic model contains both discrete and continuous random variables, which makes
inference intractable for modern, larger sensor networks that may have dozens or hun-
dreds of sensors. We examine the performance of three approximate methods for inference
in this domain. Two of these algorithms represent contemporary approaches to inference
in hybrid models, while the third is a greedy search-based method of our own design. We
demonstrate the results of these algorithms on synthetic datasets and a real environmen-
tal sensor data gathered from an ecological sensor network located in western Oregon.
Our results suggest that we can improve performance over networks with less sensors
that use exhaustive asynchronic inference by including additional sensors and employ-
ing approximate techniques. The greedy search algorithm achieves the best results for a
network of 27 sensors that includes measurements for air temperature, mean wind, solar
radiation, and precipitation.

3.2 Introduction

Remote sensors have become an invaluable tool for monitoring environmental phenomena
across multiple temporal and spatial scales. Advances in sensor technology have not only
decreased costs and improved availability, they have widened the scope of what auto-
mated sensors can capture. In addition to sensors for measuring standard environmental
variables (air temperature, precipitation, etc.), scientists are now deploying bioacoustic
sensors to monitor bird species, flux towers to detect changes in CO2 in both soil and
air, and image capture for species identification ([58]). Dozens to hundreds of these sen-
sors can be distributed throughout a landscape, providing an unprecedented view of the
complex ecological processes at work within it [5, 57, 9].

Ecological research organizations, such as the Long Term Ecological Research (LTER)
network and National Ecological Observatory Network (NEON), have readily adopted
these technologies to create continental-scale sensor networks. A goal of these agencies is
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to identify the drivers behind, and validate existing models of, ecological processes occur-
ring at different spatiotemporal scales using measurements gathered from instrumented
sites. However, before such a task can be undertaken, sensor data must be quality con-
trolled (QC’d) to remove invalid readings caused by sensor failure. This is particularly
relevant to environmental sensor data, as the in-situ nature of the sensors makes them
prone to malfunction. Such malfunctions are exhibited by biased readings, calibration
errors, and signal loss (to name a few). As model forecasts and analyses of the collected
data may be used to guide future ecological research, and ultimately influence policy
decisions, it is paramount that the data undergo QC prior to its integration.

Here, we consider quality control of environmental sensor data. Data from a sensor
network is treated as a multivariate time series, with each dimension of the series corre-
sponding to measurements taken by a single sensor at a fixed sampling frequency. Given
such a dataset, an ideal quality control scheme should demonstrate three qualities:

• The approach must flag observations that are likely to be corrupted by sensor
failure.

• It should support a means of gap filling by providing a best-guess imputation of
the affected observation.

• The scheme should be generalizable to different types of sensor data, deployment
locations, and fault types.

Related to the first two properties, a confidence measure in the classification of an
observation being “good” or a “data anomaly,” as well as the imputation of affected values,
should also be provided. The confidence measure allows data consumers to determine
what values are acceptable for their purposes.

Many of the approaches used by information managers to perform QC typically fall
short in one of the aforementioned objectives. For example, a common method is to
apply a series of range checks and remove measurements that fall outside of acceptable
levels (for example, air temperature measurements > 50 ℃). While fast to apply to
large volumes of data, these methods fail to detect data-anomalies that may occur within
reasonable limits, nor can they distinguish values on the edge of these limits (questionable
measurements) from those in the middle (nominal measurements) [64]. After initial range
checks, a common follow-up is manual inspection of the plotted time series by a domain



65

expert. Experts can identify abnormal behavior of a sensor based on their knowledge
of the hardware and the phenomenon it is measuring. Unfortunately, such inspection is
infeasible for dozens or hundreds of sensors recording at very fine temporal resolutions.
Neither range checks nor visual inspection provides a solution for gap-filling in place of
affected values.

In this paper, we pursue a machine learning-based approach, wherein we learn a
probabilistic model P (X) of the latent process generating observations at each sensor.
This process model is learned directly from the sensor data. Uncertainty in the working
state of the sensor is encoded in a probability distribution over its state P (S). A sensor
model P (O|X,S) couples sensor observations O to the process model according to the
state of the sensor. In effect, we treat sensor measurements as noisy observations of this
latent process, where the degree of noise is linked to the functioning state of the sensor;
i.e., whether the sensor is working or broken. Queries regarding the working state of
the sensor (and the quality of its readings) are resolved through statistical inference. An
advantage of the probabilistic framework is that it provides a natural interpretation of
“confidence” in the form of probability values. The data-driven learning of the process
model minimizes the amount of domain expert knowledge required to configure this
method to a new site. Moreover, by avoiding modeling specific ways in which a sensor
can fail, the model can generalize to new malfunctions that may arise over the course of
a deployment.

In previous work [18], we developed and tested this probabilistic approach for de-
ployments involving fewer than 10 sensors. The purpose of this paper is to address
two shortcomings of that previous work. First, the algorithms that we developed for
probabilistic inference scale exponentially in the number of sensors, which makes them
infeasible for large sensor networks. In this paper, we study methods that scale much
more practically. Second, the methods developed in the previous papers considered only
a single kind of sensor (a thermometer). In this paper, we evaluate our algorithms on
networks of heterogeneous sensors.

The remainder of the article is outlined as follows. In Section 3.3, we provide a formal
definition of our probabilistic QC model, and describe the inference queries (and their
associated costs) posed to the model. Next, we outline the three approximate inference
algorithms used in this work: Rao-Blackwellized particle filtering (RBPF), Expectation
Propagation (EP), and SearchMAP, our own greedy-based method for approximate infer-
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ence. Then, we introduce the real datasets used for our experiments, the different types
of sensor data being analyzed, and our methodology for generating synthetic records.
Section 3.6 explains the experimental set up used to analyze each of the models, includ-
ing results and relevant discussion. Lastly, we conclude with related work being done in
quality control, specifically as it relates to machine learning-based approaches.

3.3 A Probabilistic Model for Quality Control

Our quality control method employs a probabilistic approach to represent two key sources
of uncertainty in the environmental monitoring domain. The first source comes from
the processes we are trying to directly monitor through sensors (i.e., air temperature
at multiple locations, solar radiation, etc.). Even when a sensor is operating correctly,
physical limitations in the measurement device inject some inaccuracy into each recorded
value. Consequently, we assume observations from each sensor are, in the working case,
noisy observations of this latent process and, in the case where the sensor is broken,
uncorrelated noise. The second source is the operational state of sensor itself. In many
cases of sensor failure, the sensor will continue to collect and transmit observations after
the malfunction has occurred, making the value of the affected data the only indicator
of its working or broken state. In this section, we present a dynamic Bayesian network
(DBN) for modeling these two sources of these uncertainty [14]. We also provide a
description of the inference queries used in this model to reason about our uncertainty.

3.3.1 The DBN Model

We begin by considering a deployment consisting of a single environmental sensor. The
sensor provides a scalar observation of some underlying ecological process Xt at time
t, where t is a fixed time interval determined by the sensor’s sampling frequency. We
assume that the value xt of the latent process at each sampling interval is drawn from a
Gaussian distribution:

xt ∼ P (Xt) = N(xt;µx, σ
2
x) = (2πσ2

x)−
1
2 exp

(
xt − µx

)2
2σ2

x

.
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We refer to this distribution, P (X), as the process model. As stated earlier, observations
from the sensor, denoted Ot = ot, are dependent on the value of this process, as well
as the working state of the sensor St at time t. More formally, the distribution of Ot is
conditioned on both Xt and St, such that

P (Ot = ot|Xt, St) =

N(ot;Xt, σ2
w) if St = 0 (sensor is working)

N(ot; 0, σ2
b ) if St = 1 (sensor is broken),

where σ2
w is some small additional noise term when the sensor is working. We choose

σ2
b to be large, so that when the sensor is broken, P (Ot|St = broken) approximates a

Uniform distribution over all possible observation values (i.e., if the senor is broken, then
all observations are equally probable). We represent the discrete-valued sensor state St

using a Bernoulli distribution: P (St = working) = p and P (St = broken) = 1 − p. We
refer to P (O|X,S) and P (S), together, as the observation model. The advantage of this
non-specific fault model is that we do not explicitly have to enumerate different types
of sensor failure, which allows our approach to generalize to new types of sensor failure
unseen in previous sensor data.

The assumption of a fixed mean parameter for P (X) is often inappropriate for en-
vironmental data. For example, seasonal and diel trends effects can cause the observed
air temperature, soil temperature, and solar radiation (to name a few) to fluctuate over
time. To account for this, we include a temporal component into the process model, such
that Xt is conditioned on Xt−1. In this way, the state of the process model at time t− 1

can be used to influence our belief about the process at time t. This influence is defined
by a first-order Markov model, in which the mean of P (Xt) is a linear function of Xt−1

P (Xt = xt|Xt−1 = xt−1) = N(xt;µx + wxx
t−1, σ2

x).

The single-sensor model has a significant drawback—observations at the sensor pro-
vide the only source of current information about the latent process. If the sensor state
becomes broken, our uncertainty about the state of the process will grow larger each time
step, and we will have no way to impute what the sensor “should” have observed. To un-
derstand why this occurs, consider how the variance of P (Xt) grows after we marginalize
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away our uncertainty about Xt−1:∫
Xt−1

P (Xt|Xt−1)P (Xt−1)dXt−1 = N(µx + wxµxt−1 , σ2
x + w2

xσ
2
xt−1).

It is for this reason that it is common practice to deploy multiple sensors at a site. As
the price of sensors continues to drop, we expect this practice will become even more
common. Consequently, as long as the number of simultaneously-failing sensors is small,
we can exploit redundancy and correlations among the sensors to detect anomalies and
impute corrected values.

To that end, we can extend the single-sensor model to represent the joint relationship
among N sensors at a deployment by instantiating a separate Xt

i , O
t
i , and S

t
i for each of

the i = 1, . . . , N sensors. Let Xt−1 =
{
Xt−1

1 , . . . , Xt−1
N

}
and Xt =

{
Xt

1, . . . , X
t
N

}
, then

the process model P (X) = P (Xt−1,Xt) takes on a multivariate Normal density,

P (Xt−1,Xt) = MVN(~x t; ~µX ,ΣX)

=
1

(2π)N/2|ΣX |1/2
exp

[
−1

2
(~x t − ~µX)TΣ−1

X (~x t − ~µX)T
]
.

In previous work, we described a method for learning a linear-Gaussian Bayesian
network that encodes the parameters of the process model: ~µX and ΣX [18]. Following
that approach, each variable in P (X) is represented by a node in a directed acyclic graph
(DAG), and edges in the graph indicate conditional dependencies among the variables.
Each variable Xt

i is distributed as Gaussian, with a mean that is a linear function of its
parents (the set of nodes with a directed edge pointing to Xt

i , denoted Par(X
t
i )),

P (Xi
t |Par(Xi

t)) = N(µi +
∑

j∈Par(Xi
t)

wj ∗Xj , σ
2
i ).

The joint distribution P (Xt−1,Xt) =
∏N
i=1 P (Xt

i |Par(Xt
i ))P (Xt−1

i |Par(Xt−1
i )) also fol-

lows a multivariate Normal density. The structure of the linear-Gaussian network is
learned via a hill-climbing search algorithm and the BGe scoring metric [24]. The BGe
metric combines a provided Bayesian network (posited as a prior over network struc-
tures) with a set of training data and arrives at a scoring function that evaluates candi-
date networks based on the likelihood of being generated by a posterior Normal-Wishart
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distribution. The Normal-Wishart distribution can be thought of as a distribution over
mean vectors and covariance matrices, each of which can be encoded in a linear-Gaussian
Bayesian network. A result of our approach was that the learned process models of-
ten generalized better to new sensor observations than those that used the maximum-
likelihood estimators (MLE) of P (X). The ability of the model to generalize to new test
data was noted by its superior performance in the QC task, in addition to other metrics
(we refer the reader to that work for more details of this algorithm and experimental
results).

Finally, our single-sensor observation model is replicated for each of the N sensors in
the deployment, with each sensor’s observation Oti conditioned on its respective latent
process variable Xt

i and sensor state variable Sti . The complete model is shown for two
time steps in Figure 3.1. The model is a dynamic Bayesian network, where each slice of
the network contains a conditional-linear Gaussian (CLG) structure. Note that we do not
show the internal structure among the variables in the process model, as this component
is learned separately at each deployment.
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Figure 3.1: Left: Abstract representation of two time slices of the dynamic Bayesian
network model used for quality control. Square nodes denoted Bernoulli-distributed
variables, and circular nodes denote Gaussian-distributed variables. Shaded variables
indicate the sensor observations; those variables that we can directly observe at each
time slice. Right: Two time slices of an example QC model for a network with two
sensors.

3.3.2 Inference for Quality Control

At each time slice, we are interested in the results of two probabilistic queries. The
first query determines the assignment of {working, broken} to each of the sensor state
variables that best explains the set of observations ~o t =

{
o t

1 , . . . , o
t
N

}
. We refer to this
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query as the maximum aposteriori, or MAP, query of the sensor states:

argmax
St

P (St1, . . . , S
t
N |Ot1 = ot1, . . . , O

t
N = otN ). (3.1)

If the MAP value of a sensor state variable Sti = broken, this means that the most likely
interpretation of the observation Oti = oti (under our model) is that it is a data-anomaly.
Therefor, the solution to this query meets our first requirement for a QC method: it
provides flags for those values that are indicative of sensor failure (specific to the sensor
that observed it) at each time step. This type of query is sometimes referred to as a
“MAP-marginal” query, because it requires that uncertainty about the process variables
X be marginalized away before determining the most likely configuration of sensors [38].

The second query computes our updated belief about the latent process at time t
given observations from each of the sensors up to that time:

P (Xt
1, . . . , X

t
N |Ot1 = ot1, . . . , O

t
N = otN ). (3.2)

This query serves two purposes. First, we can use it to obtain an imputation of the
missing “true” value for observations we flag as data-anomalies, along with a measure
of confidence in that imputation. We can supply additional evidence in the form of a
specific sensor-state configuration ~s t =

{
st1, . . . , s

t
N

}
(computed in 3.1) to the query

P (Xt|Ot = ~o t,St = ~s t) to yield a posterior distribution over the value of the latent
process. The mean vector of this distribution can be interpreted as a point estimate
of the current value of the latent state. Specifically, we can use µti as an estimate of
what the observation oti should have been if we believe Sti = broken, and the covariance
entry Σt

i,i measures our uncertainty in that estimate. By introducing the sensor states as
additional evidence, we insure that the imputation is consistent with decision to declare
a sensor broken in a time step. Second, recall that our process model’s belief about the
current time step is conditioned on its belief in the previous time step. Hence, we also
need the joint distribution in (3.2) to represent our past belief about P (Xt) when we
repeat queries (3.1) and (3.2) at time t+ 1.

Unfortunately, the computational cost of both queries (3.1) and (3.2) scale exponen-
tially with N , the number of sensors in the network. To provide some intuition for this
scaling cost, consider a single slice of our QC model having N = 3 sensors and ignoring



71

1O

1X

1S

2O

2X

2S

3O

3X

3S

Figure 3.2: A single-slice example of graphical model used in our QC method. This
example includes 3 sensors. Temporal arcs linking X1, X2 and X3 to themselves at times
t − 1 and t + 1 are discarded to demonstrate asynchronic (within a single time step)
inference costs.

P (X)’s temporal component, as shown in Figure 3.2. To evaluate the MAP query, we
compute

argmax
S

P (~o|S) = argmax
S1,S2,S3

∫
X1

∫
X2

∫
X3

P (S1)P (X1)P (o1|X1, S1)P (S2)P (X2|X1)

P (o2|X2, S2)P (S3)P (X3|X2)P (o3|X3, S3)dX3dX2dX1

= argmax
S1,S2

∫
X1

∫
X2

P (S1)P (X1)P (o1|X1, S1)P (S2)P (X2|X1)

P (o2|X2, S2) argmax
S3

∫
X3

P (S3)P (X3|X2)P (o3|X3, S3)dX3dX2dX1.

The result of the multiplication and integration of the terms inside the innermost
argmax is a Gaussian potential over S3 and X2; it has a Gaussian mixture density with
2 components, as shown in Figure 3.3 (left). Let us denote this potential as Φ(S3, X2).
Then, in the next step of the computation:

argmax
S

P (~o|S) = argmax
S1

∫
X1

P (S1)P (X1)P (o1|X1, S1)

argmax
S2

∫
X2

P (S2)P (X2|X1)P (o2|X2, S2)Φ(S3, X2)dX2dX1.

Now, we have the product of two Gaussian potentials inside the innermost argmax:
Φ(S2, X1)Φ(S3, X2). The result of this product Φ(X1, S2, S3) is also a mixture of Gaus-
sians, but now with 4 components, each corresponding to a configuration of {working ,
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broken} to S3 and S2. In general, after N steps in this computation, we will have an
interim potential Φ that contains a mixture of 2N Gaussians.

A similar problem arises when computing query (3.2). Here, we want to compute the
joint posterior distribution over the latent process given observations up to the current
time step. We accomplish this by marginalizing away our uncertainty about each sensor-
state variable Si.

P (X|O = ~o) =
∑
S3

∑
S2

∑
S1

P (S3)P (X3|X2)P (o3|X3, S3)P (S2)P (X2|X1)

P (o2|X2, S2)P (S1)P (X1)P (o1|X1, S1)

=
∑
S3

∑
S2

P (S3)P (X3|X2)P (o3|X3, S3)P (S2)P (X2|X1)

P (o2|X2, S2)
∑

S1P (S1)P (X1)P (o1|X1, S1)

=
∑
S3

P (S3)P (X3|X2)P (o3|X3, S3)
∑
S2

P (S2)P (X2|X1)

P (o2|X2, S2)Ψ(X1)

The conditional distribution of the latent process given the state of the sensor and its
observation P (Xi|Si, Oi = oi) is shown in Figure 3.3 (left). In the last line of the above
computation, we marginalize out the sensor state variable S1 from this distribution, which
results in a Gaussian mixture Ψ(X1), shown in Figure 3.3 (right, solid line). However,
the mixture has the same number of parameters as the original conditional distribution:

Ψ(X1) = pN(µ1, σ
2
1) + (1− p)N(µ2, σ

2
2).

Maintaining the true form of each mixture for the remainder of the computation would
result in a final Gaussian mixture Ψ(X1, X2, X3) that would have 23 = 8 components.
When computing the state of the latent process at t+ 1,

P (Xt+1|O1:t+1) = P (Xt|O1:t)P (Xt+1|Xt)P (Xt+1|Ot+1),

note that we are multiplying a 2N -component mixture of Gaussians from t (term 1) with a
new 2N mixture of Gaussians computed at t+1 (term 3). The result is a 22N -component
Gaussian mixture. More generally, we see that query (3.2) scales exponentially with time



73

and the number of sensors, requiring 2Nt to compute exactly at time t.
An alternative to maintaining an exponentially increasing Gaussian mixture is to

approximate the query by collapsing this mixture into a single component whenever we
marginalize away a sensor-state variable (Figure 3.3, right, dashed line). This collapsing
is done so as to obtain the best representation of a 2-component mixture of Gaussians
with a single component, as measured by KL-divergence [41]. The equations for the
collapsed mean and variance are calculated as

µc =
K∑
k=1

pkµk (3.3)

σ2
c =

K∑
k=1

pkσ
2
k +

K∑
k=1

pk(µk − µ)2, (3.4)

where K is the number of components (here, K = 2), and pk, µk, and σ2
k are the weight,

mean, and variance, respectively, of the kth component.
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Figure 3.3: Left: The conditional distribution on P (X|S,O = o). Right: After marginal-
izing our uncertainty about the sensor state, the exact distribution is a mixture of Gaus-
sians (solid black line). We can collapse this Gaussian onto a single component (red
dashed line) to reduce the number of parameters needed to represent this distribution.

Lerner and Parr showed that the exponential cost (in the number of discrete variables)
of exact inference is inherent to any network having a CLG structure, even structures that
are typically amenable to inference (i.e., polytrees) [43]. For the junction tree algorithm,
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any strongly rooted junction tree will contain all discrete variables within a single clique
[39]. In the variable elimination setting, computing an exact posterior marginal is done
by enforcing an ordering in which we marginalize away continuous (Gaussian) variables
before discrete ones [15, 42]. However, if P (X) contains two or more disjoint subgraphs,
then this cost can be reduced to time exponential in the size of (number of nodes in) the
largest subgraph.

In the previous work where we learned a model for multiple sensors, we handled these
inference tasks in the following way. At each time step t, we computed query (3.1) as
described above—by effectively enumerating all 2N components of a piecewise Gaussian,
and taking the component with the highest probability value:

argmax
~s

P (S1 = s1, S2 = s2, . . . , SN = sN |O1 = o1, O2 = o2, . . . , ON = oN ) .

Then, we treated this MAP estimate as new evidence for the sensor states at time t and
computed the updated estimate of the hidden “true” temperatures, X,

P (X1, X2, . . . , XN |S1 = s1, S2 = s2, . . . , SN = sN , O1 = o1, O2 = o2, . . . , ON = oN ) .

Our motivation for handling inference in this two-step process was that, in an online
setting, we must make a decision that each sensor at time t is working or broken rather
than postponing this decision and maintaining a “belief state”, i.e. 79% working and 21%

broken. Not only was this approximation useful for an online QC system, it also exempted
us from having to maintain an exact belief state that doubles in size after each time step.
Once we determined the state of each sensor, we propagated forward P (Xt|~s t, ~o t) as our
belief about Xt to time t + 1. Thus, our approximation was made by considering only
the mixture component corresponding to the MAP of the Si variables at each time step.
However, by peforming exact inference for the MAP query, our approach was limited to
only relatively small deployments (10 or fewer sensors).

3.4 Methods

In this section, we describe three algorithms for approximate inference in the hybrid DBN
model: Rao-Blackwellized particle filtering (RPBF), expectation propagation (EP), and
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a greedy search approach to MAP inference. We focus on how each of these algorithms
can be adapted to solve the inference task described in Section 3.3, and we show how to
implement them for our probabilistic QC model. We begin our discussion of RBPF by
providing a basic review of particle filtering and importance sampling, then describe the
proposal distribution used in our QC model and the overall RBPF algorithm. Next, we
provide a brief review of message-passing algorithms and then describe how expectation
propagation can extend this framework to CLG models. Finally, we introduce a relatively
simple (though effective) greedy search method that biases its search toward fewer sensors
being broken at a given time step.

3.4.1 Rao-Blackwellized Particle Filtering

Rao-Blackwellized particle filtering is a stochastic, MCMC-based approach to approxi-
mate inference. The goal is to estimate some complicated posterior using a finite set of
particles, where each particle is a fixed instantiation to some or all of the latent variables
in the probabilistic model. For example, suppose we wanted to estimate P (St|Ot = ~o)
within a single time slice. One approach might be to draw K particles from P (St|Ot = ~o)

(a discrete distribution over 2N possible values), ~s k,t ∼ P (St|Ot = ~o), k = 1, . . . ,K. We
could then compute the posterior using an empirical estimate

P̂ (St|Ot = ~o) ≈ 1

K

K∑
k=1

δ(~s k,t),

where δ(~s k,t) is the Dirac delta function located at ~s k,t. The expression on the right is
equivalent to the average of K multinomial distributions, each of which has point mass
at exactly one value: ~s k,t. Of course, if we actually had the posterior P (St|Ot = ~o) from
which to draw particles, we would not need an empirical estimate to approximate it.
Moreover, representing the exact posterior as a distribution that can be sampled is often
itself an intractable problem. Instead, RBPF relies on importance sampling [38], where a
proposal distribution Q(St|Ot = ~o) is substituted for the actual posterior. There are only
2 conditions for this proposal distribution: first, that it is computationally inexpensive
to sample from (draw particles), and second, that it have positive mass (or density)
wherever the true posterior has positive mass (or density), i.e., P (~s k,t|Ot = ~o) > 0 ⇒
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Q(~s k,t|Ot = ~o) > 0. Each particle k drawn from the proposal distribution is weighted
by

wk =
P (St = ~s k,t|Ot = ~o)

Q(St = ~s k,t|Ot = ~o)
.

If a particle’s weight is large (numerator > denominator), then the particle was less likely
to come from the proposal, but more likely under the true posterior; thus, we want the
particle to “count” more when we estimate the posterior. If the weight is small (numerator
< denominator), then we want to discount the impact of each such particle in estimating
the posterior, because it is not as likely to have come from the true distribution. After
the weights are normalized, denoted w̃k, the empirical estimate of the posterior is

P̂ (St|Ot = ~o) ≈ 1

K

K∑
k=1

w̃kδ(~s
k,t).

Rao-Blackwellized particle filtering addresses a weakness of standard particle filter-
ing methods in that, for high-dimensional posteriors, many particles are often required
to provide a reasonable estimate of the true posterior. RPBF leverages cases where
the structure of a probabilistic model (set of conditional dependencies) is such that, if
a subset of the latent variables were fixed (i.e., their values were sampled), we could
analytically marginalize our uncertainty about the remaining latent variables, tractably
[19, 50]. Thus, we need only sample from a lower dimensional space spanned by a subset
of the latent variables, which ideally requires far fewer particles than the full latent space.
In a CLG-setting, this typically means fixing the values of the discrete variables, because
inference over strictly Gaussian variables is computationally less expensive (the cost is
cubic in the number of Gaussian variables). For our case, the posterior within a sin-
gle time slice P (S,X|O = ~o) is a 2N -component mixture of N -dimensional multivariate
Gaussians. It follows that, for even modest N , we would need a generous number of par-
ticles to accurately capture the mixing weights, means, and covariances of each mixture
component. However, we note that if we fixed the values of S, then the model reduces
to a N -dimensional Kalman filter, where exact inference scales polynomially (Θ(N3)) in
the number of sensors [35, 71].

In designing our proposal distribution for the QC model, we prefer that it take into
account recent observations from all of the sensors at time t, so as to not generate
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many particles inconsistent with the evidence (such particles would eventually be given
low weight anyway). The most obvious candidate is the distribution suggested above,
P (St|Ot = ~o t); unfortunately, this joint distribution is expensive to compute and requires
2N probability values to represent. Instead, we approximate this posterior by removing
the asynchronic edges among all process variables X (edges among variables Xt

i and
Xt
j : ∀i, j ∈ 1...N). The intuition is that our proposal distribution is assuming that all

N processes and their observations are independent of one another. Let P ′(·) denote
probability distributions associated with the proposal distribution, and let P (·) refer to
the original distributions defined for the true model. At t = 0, the proposal distribution
is calculated as

Q0(S0|O0 = ~o 0) =
N∏
i=1

∫
X0
i

P ′(O0
i = o0

i |S0
i , X

0
i )P ′(S0

i )P ′(X0
i )dX0

i

=

N∏
i=1

P ′(O0
i = o0

i |S0
i )P ′(S0

i ) (3.5)

We begin at t = 0 by drawing K particles from Q0 : ~s 1,t, . . . , ~s K,t ∼ Q0. Let sk,ti
denote the sampled value ∈ {working, broken} of the sensor state variable Si at time
t associated with particle k. We draw the value of each sensor state sk,0i independently
from its respective P ′(S0

i |O0
i = o0

i ) to avoid representing the full joint Q0. Next, we
compute the importance weight for each particle:

w0
k =

P (O0 = ~o 0|S0 = ~s k,0)
∏N
i=1 P (S0

i = sk,0i )

Q0(S0 = ~s k,0|O0 = ~o 0)
, (3.6)

where P (O0 = ~o 0|S0 = ~s k,0) is the probability of the observation ~o 0 under the multi-
variate Gaussian (MVG)

P (O0|S0 = ~s k,0) =

∫
X0

1 ,...,X
0
N

P (X0)

N∏
i=1

P (O0
i |S0

i = sk,0i , X0
i )dX0

1 . . . dX
0
N .

For each particle drawn at time t, we store the associated sufficient statistics of
the N -dimensional MVG over the process variables, Xk,t = P (Xk,t|~s k,t). Thus, each
particle contains a score, a configuration over the sensor-state variables, and the mean and
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covariance matrix of the process distribution for that configuration: (w0
k, ~s

k,0, µ0
k,Σ

0
k).

Each particle will use its MVG at time t as the forward message to time t + 1 in our
filtering algorithm. Lastly, we normalize all of the particle weights to create a discrete
distribution over our original K particles,

w̃0
k =

w0
k∑K

j=1w
0
j

,

and then draw a new set of K particles from the resultant distribution. This resampling
has the effect of discarding particles that are inconsistent with the evidence seen thus
far. For example, one particle may sample a value Sk,ti = working for an air temperature
sensor observing 50℃. P ′(Sti = working|Oti = 50) would be very small, but it could still
be possible to draw a sample corresponding to this state with many particles. The process
model for this particle will then update its belief to say that the true air temperature is
50℃. The particle carries this belief about the latent process Xk,t to t + 1. It is likely
evidence at time t + 1 will also be inconsistent with this belief, and so the particle will
be weighted lower and lower in each subsequent time step. Hence, it is best to replace
these particles with more-representative particles.

The algorithm for RBPF in subsequent time steps is similar. At time t, each particle
from t − 1 draws a new value for St from the proposal distribution Qt. The general
form of our chosen proposal distribution is also similar to the one at t = 0. We remove
all asynchronic arcs among the process variables at time t; however, we maintain 1-
to-1 temporal dependencies Xt−1

i → Xt
i . Autocorrelation among each process variable

does not significantly increase our burden of computation; in fact, we are now effectively
maintaining N independent Kalman filters. Each particle then draws its value of the
sensor-state variables at t:

~s k,t ∼ Qt(St|O0:t = ~o 0:t,S0:t−1 = ~s k,0:t−1),
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where Qt(St|O0:t = ~o 0:t,S0:t−1 = ~s k,0:t−1) =

N∏
i=1

∫
Xt
i ,X

t−1
i

P ′(Oti = oti|Sti , Xt
i )P

′(Sti )P
′(Xt

i |Xt−1
i )P ′(Xk,t−1

i )dXt−1
i dXt

i

=
N∏
i=1

P ′(Sti |Oti = oti)P
′(Sti ). (3.7)

The term P ′(Xk,t−1
i ) refers to the belief about process variable i associated with particle

k at time t− 1 under the proposal distribution, and it is akin to a forward α message in
standard HMM filtering. It is a multivariate Gaussian parameterized by µt−1

k and Σt−1
k ,

which are functions of S0:t−1 and O0:t−1 (though this is not explicitly shown above).
As before, we draw the value of each sensor state sk,ti independently from its respective
P ′(Sti |Oti = oti) to avoid representing the full joint Qt. Figure 3.4 shows the graphical
models of the true and proposal distributions for an example QC model having 3 sensors.
The observation model in the proposal distribution is identical to observation model in the
true distribution; that is, P ′(Oti |Xt

i , S
t
i ) = P (Oti |Xt

i , S
t
i ) and P ′(Sti ) = P (Sti ). However,

because our proposal only allows Xt
i to be conditioned on itself at t−1, P ′(Xt

i |Par(Xt
i ))

will have greater variance than P (Xt
i |Par(Xt

i )), suggesting that the proposal will have
more diffuse belief regarding values of the latent process than the true model.

Rather than compute a new weight for the partial particle trajectories ~s k,0:t, we can
use sequential importance sampling to update particle k’s weight from t − 1 [20]. The
updated weights are computed

wtk = wt−1
k

P (Ot = ~o t|O0:t−1 = ~o 0:t−1,St = ~s k,0:t)
∏N
i=1 P (Sti = sk,ti )

Qt(St = ~s k,t|O0:t = ~o 0:t,S0:t−1 = ~s k,0:t−1)
, (3.8)

where P (Ot = ~o t|O0:t−1 = ~o 0:t−1,St = ~s k,0:t) is the probability of the observation ~o t

under the MVG

P (Ot = ~o t|O0:t−1 = ~o 0:t−1,St = ~s k,0:t) =

∫
Xt,Xt−1

P (Xt|Xt−1)P (Xk,t−1)

N∏
i=1

P (Oti |Sti = sk,ti , Xt
i )dX

t−1dXt (3.9)
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Figure 3.4: Left: The graphical model of the true QC model. Solid edges denote tem-
poral conditional dependencies among the process variables Xt−1 and Xt. Dashed edges
indicate asynchronic conditional dependencies among the process variables. Right: The
corresponding proposal distribution for the 3-sensor QC model. Note that the only tem-
poral edges that have been retained in the proposal are those from variables Xt−1

i to Xt
i ,

and that all asynchronic edges among the process variables have been removed.

As in equation 3.7, P (Xk,t−1) refers to the belief about joint process at time t − 1

under the true distribution, given the previous configuration of the sensor-state variables
associated with particle k, ~s k,0:t−1. At any time step, we can obtain an approximate
MAP estimate of the sensor states from time 0 to t. We do this by taking the particle k
that has the highest numerator value in equation (3.8) at time t, and using its sampled
values of the senor-state variables, ~s k,0:t. Similarly, we can obtain an imputation of the
true observation in cases where we believe a sensor is broken by examining the mean and
variance of Xk

t . Somewhat less intuitive is that the MAP particle may change from time
t to time t + 1, as one particle becomes more likely with the new evidence. The new
MAP particle k′ may have different values of the sensor-state variables in times 0 : t, in
effect changing our belief about already-diagnosed sensor observations.

3.4.2 Expectation Propagation

Like belief propagation (BP), expectation propagation (EP) is a deterministic, message-
passing algorithm for approximate inference in probabilistic models. Message-passing
algorithms perform inference using localized messages sent among the variables in a
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factor-graph representation of the probabilistic model [54]. There are two types of mes-
sages used in this scheme: messages from a variable to its adjacent factors φXj→fj , and
messages from factors to adjacent variables φfj→Xi . Here, we define a factor and variable
to be adjacent if they share a common edge in the factor graph.

In a single iteration of the algorithm, each variable sends a message to its adjacent
factors that reflects the current belief about that variable,

φXi→fj =
∏

fn∈fac(Xi),fn 6=fj

φfn→Xi , (3.10)

where fac(Xi) is the set of all factors that are adjacent to the variable Xi. Each factor
also sends a message to its adjacent variables,

φfj→Xi =
∑

Xn∈dom(fj),Xn 6=Xi

fj(Xn)
∏

Xm∈dom(fj),Xm 6=Xi

φXm→fj , (3.11)

where dom(fj) is the set of variables spanned by factor fj (all variables adjacent to fj
in the factor graph). The message from factor fj to variable Xi is calculated by taking
the product of all incoming messages from the neighbors of fj , and then marginalizing
away all variables Xn ∈ dom(fj) except for Xi. The expression fj(Xn) is used instead of
P (Xn) because, strictly speaking, the factor may represent a potential over the variable
Xn rather than a proper probability distribution. In effect, the factor fj collects all
incoming messages regarding the belief about its adjacent variables, and then prepares a
message for each of those variables Xi ∈ dom(fj) by reducing the scope of that message
to only Xi through marginalization.

A message-passaging schedule determines the ordering in which factors and variables
calculate/propagate their messages, with each message being updated in a single iteration
of message passing. The BP algorithm ends when both sets of messages converge or after
a fixed number of iterations. For tree-structure graphs, BP is known to converge to the
exact solution; however, for more general graphical structures, BP may converges to an
approximation of the true posterior, or it may not converge at all. The posterior marginal
P ′(Xi) at the variableXi is then calculated by taking the product of all incoming messages
to that variable

P ′(Xi) =
∏

fn∈fac(Xi)

φfn→Xi .
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Figure 3.5: A factor-graph representation of a two-sensor model for 1 time slice. Factor
nodes are denoted by diamonds, continuous variables by circles, and discrete variables
by squares.

Figure 3.5 shows a factor graph for a two-sensor QC model for one time slice. We note
that there is a separate factor for each conditional distribution P (Y |X)in the original
directed graphical model, and a separate factor for each prior distribution P (X). Consider
the message φf2→X1 :

φf2→X1 =
∑
S1

f2(O1 = o1|X1, S1)
∏

Xm∈{O1,S1}

φXm→f2

=
∑
S1

f2(O1 = o1|X1, S1)φO1→f2φS1→f2

=
∑
S1

f2(O1 = o1|X1, S1)P (S1),

where φS1→f2 = P (S1) and φO1→f2 = 1.0.
There are two issues worth noting regarding φf2→X1 . First, it is not a proper distri-

bution, and thus has no moment form (explicit mean and variance). This is because it is
a conditional linear-Gaussian conditioned on X1, and P (X1) is not factored in until the
message φX1→f4 is computed. Alternatively, we could make this a proper distribution by
enforcing a messsage schedule where X1 first passes a message to f2. The second issues
is that this message will not become any less compact after marginalizing away S1. In
order to maintain exactness of inference, we must keep the parameters of the conditional
distribution P (O1|X1, S1) for both S1 = working and S1 = broken. Here, this means
maintaining the means, variances, and weights of P (O1|X1, S1) and the probability values
of P (S1 = working) and P (S1 = broken). After φX1→f4 is computed, we can marginalize
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away S1; however, the result will still be a mixture of Gaussians (a proper density, but
having no fewer parameters). In general, messages among the process variables and their
corresponding factors have size exponential in the number of sensors N .

Expectation propagation, developed by Minka [47], offers a solution to the second issue
by inserting an intermediate projection step after marginalization occurs in the messages
computed in (3.11). The projection step comes from assumed density filtering (ADF)
[45], wherein the goal is to identify the best approximation within a specific family of
distributions (here, the exponential family) to the true posterior distribution (a mixture
of Gaussians). Best, in this case, means optimizing to achieve the minimal KL-divergence
between the approximated posterior and true posterior. For approximating a mixture of
Gaussians with a single Gaussian, Lauritzen shows that the best approximation can be
computed using the collapsed Gaussian described in Equations (3.3, 3.4).

Our application of EP to the inference task in (3.2) is motivated by its similarity to
Minka’s “clutter problem” [48]. In the clutter problem, the goal is to estimate the mean
parameter µ of a target Gaussian distribution using observations from that Gaussian
intermixed with unrelated clutter. In our case, the target Gaussian is the process model,
and we have observations from this Gaussian in the form of readings from working sen-
sors that are similarly interspersed with clutter generated by broken sensors. Before we
introduce our application of EP, we note that we can generalize the scope of individual
variable nodes to clique nodes in a factor graph, where a clique represents a set of vari-
ables. In the factor graph representation of our QC model (shown in Figure 3.6), we use
N + 1 such cliques at each time slice, where clique ψ0 = Xt and cliques ψi =

{
Sti , O

t
i

}
for i = 1, . . . , N . The factors fi, i = 1, . . . , N correspond to the conditional distributions
P (Oti |Sti , Xt

i )P (Sti ) = P (Sti , O
t
i |Xt

i ) and f0 corresponds to the prior distribution on the
process P (X0) if t = 0; otherwise, f0 = P (Xt|Xt−1).

In Minka’s work, the observations are distributed x1, . . . , xn ∼ (1 − w)N(x;µ, σ2
a) +

wN(x; 0, σ2
b ), where σ

2
a and σ2

b are known. We can place a Gaussian prior P(θ) ∼ N(0, σ2)

on µ, and then model the joint distribution P (x, θ) = P (θ)
∏N
i=1 P (xi|θ) using an assumed

density filter. The ADF resembles a Kalman filter where we begin with our prior P (θ),
and then update it using a single observation x1. The resultant true posterior P ′(θ) is
a Gaussian mixture, which we then project onto an approximating distribution (a single
Gaussian). The process then repeats for x2, . . . , xn. Of course, the final posterior on θ
depends on the order in which we processed the observations. The EP algorithm attempts
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to remove this dependency on the observation ordering. In EP, the approximation occurs
in the update xi sends to P (θ) so that P ′(θ) can be computed exactly, rather than treating
the update exactly and approximating the resultant posterior. This difference may appear
subtle, but it facilitates the iterative updating of the posterior used in message-passing
algorithms.

1f

1 1,t tS O 2 2,t tS O ,t t
N NS O

tX

2f Nf
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Figure 3.6: A factor-graph representation of the QC model for 1 time slice used in our
EP algorithm. Factor nodes are denoted by diamonds. Rounded-edge rectangles denote
cliques of variables.

The application of EP to the QC model proceeds as follow. We first compute the
apriori belief about the process model P (Xt) by sending a message from f0 to Xt

φf0→ψ0 =

∫
Xt−1

f0(Xt|Xt−1)φψα→f0dX
t−1

=

∫
Xt−1

f0(Xt|Xt−1)φfα→ψαdX
t−1

=

∫
Xt−1

f0(Xt|Xt−1)fα(Xt−1)dXt−1

= P (Xt).

This message is our belief about the current process before we have seen any observations
at time t; that is, we have only propagatedXt−1 through the transition model P (Xt|Xt−1)

captured in the factor f0. The factor fα represents the prior distribution P (Xt−1), and
we discuss how to calculate it in Section 3.4.2.1. Under our message-passing schedule,
the next message is sent from ψ0 to one of the factors fi (i ∈ 1, . . . , N), where it is
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combined with the observation oti, and then returned in order to update the joint process
distribution P (Xt).

φfi→ψi =

∫
Xt\Xt

i

fi(S
t
i , O

t
i |Xt

i )φψ0→fidX
t \Xt

i

=

∫
Xt\Xt

i

fi(S
t
i , O

t
i |Xt

i )P (Xt)dXt \Xt
i

= P (Sti , O
t
i |Xt

i )P (Xt
i )

= P (Sti , O
t
i , X

t
i ). (3.12)

The form of this message is a table of multivariate Gaussians, where each Gaussian
is 2D (having a domain of Xt

i and O
t
i), and there is a separate table entry for each value

for Sti . A message is then sent back from ψi that incorporates the observation Oti = oti at
that clique. By observing Oti , we now have a table containing two univariate Gaussian
distributions over Xt

i . The ADF approximation is then applied to the return message

φfi→ψ0 =
ADF (

∑
Sti
P (Sti , O

t
i = oti, X

t
i ))

φψ0→fi

= P ′(Xt
i ),

which results in a single Gaussian distribution for P ′(Xt
i ) rather than the true posterior—

a mixture of two Gaussians. Figure 3.7 shows a visualization of this message-passing
procedure for a single sensor clique. Note that the Gaussian for Sti = broken in step 2.)

is identical to the initial P (Xt
i ) sent from the process clique in step 1.). This is because,

when the sensor is broken, observations are disconnected from the process model, so
that they provide no information to update the belief about Xt

i . The posterior P ′(Xt
i )

is combined with the process model P ′(Xt
1, . . . , X

t
N ) = P (Xt

1, . . . , X
t
N )P ′(Xt

i ), resulting
in an updated belief about Xt

1, . . . , X
t
i−1, X

t
i+1, . . . , X

t
N due to the covariance structure

captured in P (Xt). A new message is then generated and sent to clique ψ2, and the
process is repeated until the last message φfN→ψ0 is absorbed by the process model.

One iteration of EP is equivalent to performing asynchronic inference using an as-
sumed density filter. That is, our final distribution on P (Xt) and the sensor states
P (St|Ot) will be influenced by the order in which messages were sent/received from the
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Figure 3.7: 1.) The process clique sends a message to ψi regarding its belief about the
process variable Xt

i . The sensor clique ψi updates this belief with the observation Oti =
12.8 ℃. 2.) The joint distribution P (Xt

i , S
t
i , O

t
i = 12.8) is represented by 2 separate

Gaussians, one for the case where Sti = working (solid black line) and one for Sti = broken
(dashed red line). The weights for the working and broken Guassian mixtures are .65
and .35, respectively. After marginalization, the true posterior is a mixture of Gaussians
(dotted blue line). In 3.), this mixture is approximated by a collapsed distribution (dashed
blue line).

sensors; i.e., the order in which we processed our observations. To reduce this effect, EP
uses multiple iterations. Subsequent iterations are similar to the first; however, before a
clique/factor generates a new message, it must “forget” the message it received from the
intended recipient in the previous iteration. For example, in the second iteration, the
message φf1→ψ0 is calculated

φfi→ψi =

∫
Xt\Xt

i

fi(S
t
i , O

t
i |Xt

i )
φψ0→fi
φfi→ψ0

dXt \Xt
i

=

∫
Xt\Xt

i

P (Sti , O
t
i |Xt

i )
P (Xt)

P ′(Xt
i )
dXt \Xt

i

= P (Sti , O
t
i |Xt

i )P (Xt
i )

= P (Sti , O
t
i , X

t
i ),

where P ′(Xt
1) is the message φf1→ψ0 in the previous iteration of message passing. To

provide some intuition about this new message, consider that

P (Xt)

P ′(Xt
i )

=
∏

fj∈fac(ψ0),fj 6=fi

φfj→ψ0 .
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In other words, we are creating an “old posterior” over the process variables by forget-
ting the update given by the observation Oti = oti in the first iteration; however, this
posterior still reflects observations Ot1 = ot1, . . . , O

t
i−1 = oti−1, O

t
i+1 = oti+1, . . . , O

t
N = otN .

Moreover, our belief in the previous iteration regarding whether each observation otj 6=i
came from a working or broken sensor was influenced by P ′(Xt

i ), and those beliefs remain
unchanged until they are revisited in the second iteration of message-passing. For this
reason, the “forgetting” step is not complete; we retain the context P ′(Xt

i ) provided for
the other other N − 1 observations.

To get a new belief state at the sensor clique ψi, we divide out the message received
from the process clique ψ0 in the previous iteration:

P (ψi) =
P (Sti , O

t
i = oti|Xt

i )P (Xt
i )

P ′(Xt
i )

.

The message from the sensor clique ψi to the process clique ψ0 is then calculated as
before.

φfi→ψ0 =
ADF (

∑
Sti
P (Sti , O

t
i = oti, X

t
i ))

φψ0→fi
(3.13)

= P ′(Xt
i ).

A known artifact of the EP algorithm arises in our application of it to the QC problem;
namely, division of a Gaussian density by another Gaussian density may result in a Gaus-
sian having a negative variance. In our case, this occurs when we create new messages
from the sensor cliques to the process clique (3.13). To understand why this occurs,
consider first that division among two exponential family distributions of the same type
is performed by taking the difference of their canonical (exponential) forms. For Gaus-
sians, the canonical form of the covariance matrix is the precision matrix Σ−1. Hence,
the resultant variance of the Gaussian P (C) = P (A)

P (B) is Σ−1
C = Σ−1

A −Σ−1
B , and so ΣC < 0

whenever B has smaller variance than A. Translating to our case, if an observation makes
the model less certain about the value of the latent process than the prior belief on the
process

V ar

ADF
∑

Sti

P (Sti , O
t
i = oti, X

t
i )

 > V ar(φψ0→fi),
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then we obtain a negative variance; however, it does not necessarily mean the algorithm is
behaving incorrectly. When we multiply this negative-variance Gaussian onto the process
model, we increase the process model’s uncertainty (increase its variance) regarding Xt

i .
Multiplication of two exponential family distributions can be handled by addition of their
canonical forms: P (C) = P (A)P (B)⇒ Σ−1

C = Σ−1
A +Σ−1

B . If Σ−1
B < 0, then Σ−1

A becomes
smaller, and consequently, ΣA gets larger. More intuitively, observations about which the
model is uncertain increase the variance in the estimate of the true process. Still, this
can cause numerical instability issues later when we try to compute an old posterior by
forgetting the last message sent from fi to ψ0. To avoid these issues, we set the mean
and variance of φfi→ψ0 to 0.0 and 106 whenever the variance of this message is < 0 (i.e.,
the message can be uninformative, but it cannot increase the variance of P (Xt

i )).
We consider three different message-passing schedules in our implementation of EP.

Before initiating message-passing in a new time slice t, we first sort the sensor cliques
ψ1, . . . , ψN according to their initial belief about the working/broken status of their
sensor-state variables. This is done by propagating the apriori state of the process
P (Xt|~o 0:t−1) to each of the sensor cliques through the message φfi→ψi in Equation
(3.12). Note that we are only sending the process to each sensor; we are not yet up-
dating the process based on the observations oti at each of the cliques. We then calculate
the “confidence” ci at each clique

ci =
∣∣P (Sti = working|Oti = oti, Xi)− P (Sti = broken|Oti = oti, Xi)

∣∣ ,
and sort the cliques based on their confidence scores. The sorted ordering is used for the
remainder of message-passing at time t; the confidences are not re-computed between
iterations of message passing. We consider three message-passing schedules: low-to-
high, where messages are exchanged between cliques in increasing order of confidence
(messages are first exchanged with cliques uncertain about the state of the sensor); high-
to-low, where messages are exchanged in decreasing order of confidence; and no preference,
where the message passing schedule is given by the ordering of sensors in the QC model
ψ1, ψ2, . . . , ψN .
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3.4.2.1 MAP Inference using EP

Thus far, we have not discussed how we compute the MAP sensor state configuration
using EP within a time slice. Here, we describe a few approaches to this computation.
Later, we provide an analysis of these approaches in Section 3.6.

• Marginal MAP : We perform EP as described above until convergence in the message
parameters or up to a maximum of five iterations. The final value of each sensor
state variable Sti is then computed as

argmax
sti

P (Sti , O
t
1 = oti, X

t
i )

for the sensor clique ψi.

• Iterative MAP : We perform EP as described above until convergence in the message
parameters or up to a maximum of five iterations. Then, based on the message-
passing schedule, we fix the value of the first sensor-state variable in the schedule Sti
according to its MAP marginal value and propagate a new message φfi→ψ0 to the
process clique. This message reflects the fixed value of the sensor-state variable in
clique ψi, and thus requires no collapsing approximation. The process distribution
is updated with this message, and we repeat this for the second sensor clique in
the message-passing schedule ψj . We continue in this fashion until all sensor-state
variables are fixed.

• Max-Product MAP : This variant does not actually use EP, but rather estimates
the MAP using the max-product form of belief propagation. This is achieved by
replacing the summation term in equation 3.11 with argmaxsti . We do not need to
perform the ADF approximation, because now we are only using one component of
the Gaussian mixture (the one associated with the most likely sensor state), and
so can pass messages exactly.

The forward alpha message over the process variables P (Xt) sent to time t + 1 is
dependent on how the MAP sensor configuration is calculated. For both Marginal MAP
and Iterative MAP, the calibrated belief P (Xt) is sent to time t + 1 after EP has con-
verged (or reached max iterations); none of the sensor-state variables are fixed when this



90

distribution is computed. For Max-Product MAP, we send the process variable distri-
bution corresponding to the MAP configuration of sensors, which is determined after
message-passing has terminated.

3.4.3 SearchMAP

In anomaly-detection domains, anomalies are often assumed to be much less common than
normal observations. This carries over into QC for ecological sensors, where we typically
assume the sensors are working more often than they are broken. Our third approach to
approximate inference builds on this assumption, and uses a greedy hillclimbing search
to explore scenarios of increasing numbers of sensor failures. The algorithm, SearchMAP,
begins by assuming that observations at time t are associated with every sensor Sti =

working. It then determines if the observation ~o t would be any more likely if just one
of the sensor-state variables was flipped, Stj = broken. This is accomplished by searching
over all such configurations of the sensor states where one sensor is broken. If so, the
search procedure repeats, this time checking if ~o t would be any more likely if Stj and one
additional sensor were set to broken, and so on. Like EP, SearchMAP is a deterministic
algorithm for approximate probabilistic inference.

At each time step, the algorithm begins by first computing the likelihood of the most
recent observation Ot = ~o t under the all-working configuration of sensors,

maxScore = P (ot1, . . . , o
t
N |St1 = working, . . . , StN = working)

N∏
i=1

P (Si = working).

The first term is equivalent to the probability of the observations under the MVG com-
puted by fixing all of the sensor-state variables and integrating away the process variables
Xt. This MVG is calculated as

∫
Xt

P (Xt
1, . . . , X

t
N )

N∏
i=1

P (Oti |Sti = working,Xt
i )dX

t.

We save the score of this initial configuration as maxScore and the configuration itself
as maxConfig =

{
St1 = working, . . . , StN = working

}
. Next, we consider all configura-

tions where just one of the sensor-state variables is broken, and compare each of their
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likelihoods to maxScore. Each configuration’s likelihood is calculated as

scorei = P (ot1, . . . , o
t
N |Sti = broken, Stj 6=i = working)P (Sj = broken)∏

j∈1,...,N,j 6=i
P (Sj = working),

where P (ot1, . . . , o
t
N |Sti = broken, Stj 6=i = working) =

∫
Xt

P (Xt
1, . . . , X

t
N )P (Oti |Sti = broken,Xt

i )
N∏

j∈1,...,N,j 6=i
P (Oti |Sti = working,Xt

i )dX
t.

If none of the new configurations yields an improvement to maxScore, then the algo-
rithm terminates and returns the original configuration (all sensors working) and score.
Otherwise, we choose the configuration j that increases the likelihood the most, set
maxScore = scorej , maxConfig to the associated sensor configuration, and repeat the
search. In the second iteration of the search, the algorithm considers scenarios where at
most 2 of any of the sensor-state variables are broken. After 3 or more iterations of the
search, the algorithm may consider “backward steps”, where it flips the broken state of
sensor assigned in previous iterations of the search back to working ; however, it cannot
undo the flip made in the immediate previous step of the algorithm, as we already know
that this would yield a lower score than the current configuration. Figure 3.8 shows a
visualization of the algorithm applied to a 3-sensor QC model. The value of the process
model passed forward to time t+ 1 is given as P (Xt|St = maxConfig,Ot = ~o t).

At each iteration, the algorithm must evaluate O(N) potential configurations. Each
evaluation requires time roughly cubic in the number of sensors. Because the algorithm
is allowed to take backsteps (undoing previously broken sensors), the search may poten-
tially explore every configuration in the worst case. Hence, the algorithm has worst-case
runtime O(2NN3). However, our empirical results indicate that the algorithm often
reaches a local maxima and terminates using much fewer evaluations. Further, one could
remove the backstep operator at the cost of accuracy, in which case the algorithm will
only explore order O(N2) possible states.
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Figure 3.8: 1.) The search begins by exploring all hypotheses where one sensor is broken.
We use bit strings to represent the status of the sensor-state variables, where 0 in the
ith bit denotes Sti = working and 1 indicates Sti = broken. Breaking sensor St1 results
in the best likelihood among all current hypotheses. 2.) The algorithm now explores
breaking one additional sensor: sensors St2 or St3. The likelihood is further improved
by setting sensor St3’s state to broken. 3.) In the final iteration, the model explores
undoing the step it made at iteration 1.), and breaking the last remaining working sensor.
The first change yields a configuration the model has already explored, and setting St2
to broken yields no further improvement. Thus, the best configuration remains ~s t =
{broken,working, broken}.

3.5 Data

Our work is motivated by the need to automate data QC for environmental sensor net-
works. To that end, we evaluate the inference algorithms in Section 3.4 using data col-
lected from a sensor network located in the H.J. Andrews Experimental Forest1, a Long
Term Ecological Research (LTER) site located in the western Cascade Range of Oregon.
The site is instrumented with hundreds of heterogeneous sensors distributed in a variety

1http://andrewsforest.oregonstate.edu/
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of micro-climates. We focus on data collected from four meteorological benchmark sensor
towers known as Primary, Central, Upper Lookout, and Vanilla Leaf. Figure 3.9 displays
the Andrews LTER site and the 4 benchmark stations used in our experiments.

(1)

(2)
(3)

(4)

Figure 3.9: The H.J. Andrews Experimental Forest: (1) Central Met. station (elevation:
1005m), (2) Upper Lookout Met. station (elevation: 1280m), (3) Primary Met. station
(elevation: 430m), (4) Vanilla Leaf Met. station (elevation: 1273m).

We focus on a set of 27 sensors distributed among these meteorological stations. For
each tower, we examine 4 air temperature sensors located at approximately 1.5, 2.5, 3.5

and 4.5m of height above the ground. Additionally, we examine a single solar radiation
sensor and anemometer (mean wind speed) sensor on each of the towers. Lastly, we in-
clude one precipitation gauge from the Central met. station and two precipitation gauges
from the Upper Lookout tower. These towers and sensors were specifically chosen because
they have been in place from 1996 to present, have collected data at regular sampling
frequencies, and the site manager was able to provide us annotations regarding mainte-
nance and calibration of the sensors. In addition to having access to the raw observations
from each of these sensors, we also have labels provided by a domain expert indicating
the quality of the sensor’s observation (“clean” observations coming from working sensors,
and “suspect” values coming from broken sensors).

For the air temperature and solar radiation sensors, the measurements are recorded
every 15 minutes. For the precipitation data, samples are collected at 5 minute inter-
vals; however, we sum every 3 consecutive, non-overlapping readings to create 15-minute
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cumulative measurements using the GLITCH system [10]. For the wind-speed data,
samples represent hour-long averages. We linearly interpolate the hour-long readings to
“upsample” the data to the 15-minute sampling frequency. The linear interpolation is
handled in the usual way, where each quarter-hour measurement is calculated

yh+qh =
yh+1 − yh

4
∗ (qh) + yh.

yh+qh denotes the mean wind at hour h and quarter-hour qh, and yh+1 denotes the
average wind measurement in the next hour interval. Figure 3.10 is a time series plot of
readings collected from 7 sensors on the Central met. tower over a 30-day period.

1. 

2. 

3. 3. 

Figure 3.10: Observations from 7 sensors located on the Central benchmark meteorologi-
cal tower, including 4 air temperature thermometers, a solar radiation sensor, anemome-
ter, and precipitation gauge. This plot contains a few examples of data-anomalies caused
by real sensor failures. (1.) A logger attached to the temperature thermometers malfunc-
tions, causing it to record −53.5 ℃ for all 4 air temperature sensors; (2.) The 3.5m air
temperature thermometer records erratic spikes in the temperature; (3.) The anemome-
ter located on the top of the tower freezes due to cold temperatures, and consequently,
observers zero mean wind speed.



95

3.5.1 Synthetic Dataset

The domain expert may have difficulty distinguishing among observations at the 15-
minute frequency, and so will label “buffer” segments before and after a period where a
sensor is considered broken to insure no suspect data is released to the public. As a result,
the ground-truth labeling is biased toward over-labeling “suspect” observations. Because
our model operates at the 15-minute scale, a direct comparison to the ground truth will
penalize our model for failing to diagnose observations in these buffers as data-anomalies.
To avoid this penalization, we create a synthetic data set that contains injected data-
anomalies so that we have an exact ground truth at the same temporal scale as our QC
model. We analyze our performance on both synthetic and real data sets.

To construct the synthetic data, we first find 10 non-overlapping folds of clean-only
data (observations containing no “suspect” values among all 27 sensors in a single time
slice) from the original dataset. We searched the dataset from 1997–2008 for the 10
longest contiguous blocks of clean data F1, F2, . . . , F10. Contiguous data are required to
train the Markov component of our process model. The length of the segments (number
of quarter hours) was set to the length of the smallest contiguous block: 2000 observations
(approximately 21 consecutive days). For those blocks that contained more than 2000

observations, we selected a sub-block of contiguous 2000 observations, with a preference
toward spanning parts of the calendar year not covered by the other segments. Next, for
each fold of clean data Fi, we constructed a noise-injected fold F ′i that contains potentially
three different injected anomaly types:

• Type 1, Spike anomaly : Gaussian noise N(0, σ2
Oj

) is added to the observation otj ,
where σ2

Oj
is the sample variance of the clean observations from sensor i in the

current fold Fi.

• Type 2, Bias anomaly : The current observation otj is multiplied by 1.35 to represent
a biased sensor observation (for example, a broken sun shield on a thermometer
might cause air temperature readings to be 35% higher than normal).

• Type 3, Flatline anomaly : The current observation otj is set to the sensor’s obser-
vation in the previous time step, ot−1

j .

• None: The original clean observation otj is used.
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These synthetic anomaly types are not meant to represent all possible failure cases for
sensors at the H.J. Andrews, but rather a subset of the errors described to us by the
site managers. The above noise was injected following a geometric duration distribution
applied independently to each sensor. We imagine this distribution behaving as a first-
order Markov process with parameterization shown in Figure 3.1. For example, if the
observations oti was injected with a Type 2 (bias) fault, then there is a 95% chance that
ot+1
i will have a Type 2 fault, and a 5% probability it will return to normal.

P(Typet+1|Typet)
Type Nonet+1 Spiket+1 Biast+1 Flatlinet+1

Nonet .970 .010 .010 .010
Spiket .200 .700 .050 .050
Biast .050 .025 .950 .025

Flatlinet .050 .025 .025 .950

Table 3.1: The table displays the probability of a given anomaly-type being injected given
the anomaly type in the previous time step.

The final product is a dataset consisting of 10 folds of clean data, F1, . . . , F10, and
their noise-injected equivalent folds F ′1, . . . , F ′10.

3.6 Experiments

In this section, we evaluate the performance of the three approximate inference algo-
rithms (as well as some minor variants on these algorithms) described in Section 3.4 in
our probabilistic QC model. One of our goals is to measure the benefits (in terms of ac-
curacy in the QC task) gained through the inclusion of additional sensors into the model.
In Section 3.6.2, we assess this gain by first constructing a series of increasingly large
networks, and then applying each of the three algorithms to these networks. Next, we
examine the results of the three algorithms on a full network of 27 sensors. This analysis
is performed on both synthetic and real data sets. We discuss some results of our analysis
and provide some insight into the behavior of each algorithm.
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3.6.1 Learning Process Models

Many of our experiments involve, as a preliminary step, learning a linear-Gaussian net-
work structure to represent the process distribution P (Xt,Xt−1). In Section 3.3.1, we
provide a brief description of how this learning occurs, but refer the reader to previous
work [18] for a fuller explanation. Here, we provide specific details on the parameters
used to learn each process model, and list some minor variations on the previous work
that were made for this article.

Previously, structure learning was applied to learn the asynchronic (spatial) compo-
nent of the process model P (Xt); that is, each variable Xt

i could only consider other vari-
ables at time t as candidate parent variables, such that Par(Xt

i ) =
{
Xt
j |Xt

j ∈ Xt \Xt
i

}
.

The learned asynchronic process model belongs to a Markov equivalence class (MEC),
which is a set of directed graphical models that all represent the same set of conditional
dependencies. Thus, to determine the complete process model P (Xt,Xt−1), we iterated
over all members of that class. In each iteration, we added Xt−1

i to each respective vari-
able’s set of parents (i.e., conditioned each Xt

i on itself in the previous time step) and
scored the likelihood of a hold-out dataset on the full process model. The member of
the MEC that achieved the highest likelihood was chosen, temporal links added to each
variable, and parameters fit using maximum likelihood on the training set.

In this work, we extend the hillclimbing search to consider synchronic (temporal)
dependencies in addition to asynchronic dependencies. We also allow for temporal edges
between different sensor types (for example, the temperature process at time t can be
conditioned on solar radiation at t− 1). The extension is done by performing the afore-
mentioned hillclimbing structure search over

{
Xt,Xt−1

}
with a set of edge constraints.

The edge constraints specify those directed edges that cannot be considered in the hill-
climbing steps that either add a new edge, or reverse an existing edge, between two
variables. Specifically, we enforce that any temporal edge points forward in time or,
more formally, that any edge between a variable Xt−1

i and Xt
j is such that Xt

j |X
t−1
i .

Though the resultant structure also belongs to a MEC, we do not need to consider any
other members of that MEC, because we do not append additional variables or edges (all
variables were included in the initial structure learning). Parameters of the learned pro-
cess model are again fit using maximum likelihood on the training set. The hillclimbing
structure search is performed using 500 random restarts, and each variable is allowed a
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maximum of |Xt| parents.

3.6.2 Evaluating the Benefit of Additional Sensors

We believe that the incorporation of additional sensors should lead to an overall better QC
model. With more sensors, the model becomes robust to the failure of any single sensor,
as it will be able to leverage correlated observations from the remaining working sensors
in the network. Furthermore, the process component of the QC model can represent
a richer set of interdependencies among the phenomena being measured by the sensor
network, because more of those sensors can be included in the model. Consequently, we
expect higher accuracy in identifying when sensor failures occur. However, we believe
that approximating the asynchronic inference with the methods described in Section 3.4
may negatively impact the accuracy of our model. In this section, we explore the trade-
off between the advantages gained by adding more sensors versus the cost (in accuracy)
incurred by approximating inference.

To measure this trade-off, we learn 20 process models P (Xt,Xt−1), each covering a
different number of sensors from 1, 2, . . . , 20. We then apply our approximate algorithms
to these models and analyze their performance as a function of the size of the sensor
network. Let us denote the number of sensors in the kth process model as Nk. To
determine which Nk of the 27 sensors are to be included in the process model, we first
pick a target sensor X . The target sensor is the same for all values of Nk; i.e., we use the
same target sensor across all network sizes. Our evaluation of the inference algorithms
will be with respect to this sensor. Next, we search among the 26 remaining sensors for
the single sensor that provides the most information about X , and then add it to the
process model. More specifically, we are searching for the sensor that has the highest
mutual information with X :

argmax
Xi∈X\X

I(X ;Xi) = argmax
Xi

H(X )−H(X|Xi)

= argmax
Xi

H(X ) +H(Xi)−H(X , Xi). (3.14)

Here, the mutual information between X and Xi is evaluated using the observations oi
and oX from those sensors in the datasets containing no data-anomalies, F1, . . . , F10. The



99

entropy for a single sensor or set of sensors is calculated

H(Xi) =
1

2
ln
[
(2π exp)Ndet(Σ̂)

]
,

where Σ̂ is the sample variance of the observations from a single sensor Xi,

ōi =
1

M

M−1∑
m=0

omi , Σ̂ =
1

M

M−1∑
m=0

(omi − ōi)2.

If H is being calculated for a set of variables H(Xi ⊂ X), then Σ̂ corresponds to the
sample covariance of the multivariate Gaussian P (Xi):

Σ̂ =
1

M

M−1∑
m=0

(~o m
i − ōi)(~o

m
i − ōi)

T .

For Nk = 1, the process model contains
{
X t,X t−1

}
. For Nk = 2, the process model con-

tains
{
X t,X t−1

}
∪
{
Xt

1′ , X
t−1
1′
}
, where X1′ denotes the result of the argmax in Equation

(3.14). To construct a network of larger size Nk, we repeat the search in Equation (3.14);
however, we condition the target sensor X on those sensors that were added when con-
structing the preceding, smaller networks: X1′ , X2′ , . . . , Xk−1′ . This implies that the
network covering Nk sensors will cover the same set of sensors as the network having size
Nk − 1, plus one additional sensor. The general form of this search is given as

argmax
Xi∈X\{X ,X1′ ,...,Xk−1′}

I(X|X1′ , . . . , Xk−1′ ;Xi) =

argmax
Xi∈X\{X ,X1′ ,...,Xk−1′}

H(X1′ , . . . , Xk−1′ , Xi)−H(X , X1′ , . . . , Xk−1′ , Xi). (3.15)

For each network size Nk = 1, . . . , 20, we train 10 process models using a combination
of the clean-only data folds F1, . . . , F10 described in Section 3.5. Let us denote the learned
QC model GfNk as the model having a process component P (Xt,Xt−1) spanning 2Nk

sensors (Nk sensors at times t and t− 1) and trained on fold set Ff , where Ff = F \Ff ;
i.e., Ff is the concatenation of observations from all training folds except the fold Ff .
The QC model GfNk is then evaluated using the noise-injected version of the hold-out fold,
F ′f . We average the results of that evaluation across all 10 training folds/evaluation fold
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combinations for a fixed network size Nk.
The metrics used for evaluations include accuracy, precision, recall, and mean-squared

error (MSE). Accuracy, precision, and recall are a function of the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN) described below.

• True Positive (TP): An anomalous observation oti that the QC model correctly
infers came from a broken sensor (sti = broken).

• False Positive (FP): A clean observation oti that the QC model erroneously infers
came from a broken sensor (sti = broken).

• True Negative (TN): A clean observation oti that the QC model correctly infers
came from a working sensor (sti = working).

• False Negative (FN): An anomalous observation oti that the QC model erroneously
infers came from a working sensor (sti = working).

Accuracy is computed (TP +TN)/(TP +FP +TN+FN), and it is the probability that
the QC model’s classification of any given observation is correct. Precision, calculated
TP/(TP+FP ), measures the probability that any observation labeled as a data-anomaly
is actually an anomalous value. The recall metric, calculated as TP/(TP +FN), reflects
the percentage of all actual data-anomalies present in the dataset that are labeled as such
by our method. Accuracy, precision, and recall are all rates measured on a [0, 1.0] scale,
where 1.0 is perfect performance. To calculate the MSE for sensor Xi in model GfNk , we
measure the expected difference between the predicted value of Xt

i given observations
from F ′f , and the value of the observation oti found in the clean version of the hold-out
fold, Ff . Specifically, we calculate

MSE =
1

T

T−1∑
t=0

(E
[
P (Xt

i |~o 0:t, ~s 0:t
MAP )

]
− oti)2,

where ~s 0:t
MAP is the most-likely sensor configuration up to time t as computed by one of

inference algorithms described in Section 3.4.
Figure 3.11 displays the results of our analysis for three different variations on the EP

algorithm discussed in Section 3.4.2.1. Specifically, we examine the Max-product version
that is equivalent to belief propagation (BPMAP-low), and the iterative MAP version
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Figure 3.11: Performance as a function of Nk for three variants of the EP algorithm.
The performance is evaluated in terms of accuracy (top left), precision (top right), recall
(bottom left), and mean-squared error (bottom right). 95% confidence intervals are
shown in addition to the metric score. The solid circle-line denotes the Max-product
version of EP (BMMAP-low) with a low-to-high message-passing schedule, the dashed
triangle-line denotes the iterative MAP algorithm with a high-to-low schedule, and dotted
diamond-line denotes the iterative MAP algorithm with a low-to-high message passing
schedule.

of EP (EPMAP-high and EPMAP-low). These algorithms are implemented using two
different message-passing schedules. The “-low” suffix indicates a low-to-high schedule
and “-high” indicates a high-to-low schedule. Results are not shown for the marginal
MAP version of EP for the sake of clarity, and because they were near-equal to iterative
MAP version. The target sensor X is the 1.5m air temperature sensor located at the
Central meteorological station.

In general, all three inference algorithms show improvement in all metrics as the
number of sensors increases from 1 to 10. The rate of improvement for each new sensor
added lessens around 6 to 7 sensors, and eventually levels-off between 11 and 15 sensors.
The accuracy and recall scores dip slightly in the interval of 11 to 15. For the first 10
values of Nk, the order in which sensors were added was nearly identical for all 10 trained
models. At Nk = 11, the 2.5m or 3.5m Vanilla Leaf air temperature sensor were each
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added in 3 of the models, with the other 4 models choosing a different unique sensor (see
Figure 3.12). This may cause the results of the inference analysis to demonstrate more
variation, because the process model structure is different for each of the GfNk=11 QC
models. At Nk = 15, the accuracy, precision, and recall scores begin to improve as the
models again become more homogeneous in terms of what sensors are included. Because
some training folds contain instances of semi-rare events (for example, storms that cause
rainfall, cloud coverage, and high winds), sensors that register these events (precipitation
gauges, solar radiation sensors, and anemometers) may appear more informative than in
the folds that do not contain such events. This could lead some models to incorporate
these sensors during training, and then suffer a performance hit when the rare events do
not occur in the corresponding test fold.

TheMax-Product MAP (BPMAP-low) version outperformed both iterative versions of
EP, EPMAP-low and EPMAP-high, in terms of accuracy, precision, and MSE. BPMAP’s
superior performance suggests that approximate message-passing does not work well in
this domain, or that perhaps our constraint on messages having non-negative variance
may be too restrictive. The former hypothesis is further supported by evidence that the
“-low” confidence message-passing schedule works significantly better than the “-high”
schedule. Recall that in the “low-to-high” schedule, we first fix the value of the sensor-
state variable, Sti , that we are the most uncertain about. The collapsed Gaussian will
look the least like either of its components when cases of high uncertainty occur, because
the mixing weights of the Gaussian components will be closer to equal. In these cases, we
achieve better results by picking one of the two Gaussian components in the mixture of
Gaussians than by approximating the message with a collapsed Gaussian, as in Equation
(3.13).

Recall scores appear approximately the same for all three EP variants for all numbers
of sensors, though the confidence interval for these estimates are large. One reason for
this may be that the synthetic anomalies follow a Markov process. If the QC algorithm
classifies the first observation corrupted by noise as coming from a working sensor, then
it will update the process model to reconcile the difference between P (Xt

i ) and oti. This
reconciliation is demonstrated by the process model “tracking” the anomalous observa-
tions for a period of time. For the bias anomaly type, observations r time-steps ahead of
the first bias-injected value have a .95r chance of being similarly corrupted. If the model
misclassifies the initial biased observation, then it will likely misclassify the remaining
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Figure 3.12: Each histogram above indicates how many of the 10 trained models (Y axis)
chose one of above sensors (X axis) to add as the N th

k sensor for a model of size Nk. A
separate histogram is shown for Nk = 10, 11, . . . , 15. Prefixes “cent”, “uplo”, “pri”, and
“van” correspond to the station names: Central, Primary, Upper Lookout, and Vanilla
Leaf, respectively. Suffixes “m”, “SR”, and “meanwind” correspond to sensor types: air
temperature (thermometer), solar radiation, and anemometer. For example, for the 10th

sensor added for models of size Nk = 10, 7 of the 10 learned models chose the Vanilla Leaf
solar radiation sensor (van-SR), 1 added the 1.5m Upper Lookout thermometer, 1 added
the Vanilla Leaf 2.5m thermometer, and 1 added the Primary station’s solar radiation
sensor. Sensors not added by any of models between Nk = 10 and Nk = 15 (because
they were either already included by all models or not selected by our greedy search) are
not shown.

observations as coming from a working sensor. The result is that either the model cor-
rectly classifies the initial observation as a data-anomaly and then correctly labels the
subsequent observations (higher TP count), or the QC model accepts the initial obser-
vation as working and labels the proceeding observations as non-anomalies (higher FN
count).

In Figure 3.13, we compare the performance of the three approximate algorithms
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Figure 3.13: Performance as a function of Nk for the Max-product (BPMAP-low), Rao-
blackwellized particle filter (rpbf-resample), and SearchMAP (SearchMAP) algorithms.
The performance is evaluated in terms of accuracy (top left), precision (top right), recall
(bottom left), and mean-squared error (bottom right). 95% confidence intervals are shown
in addition to the metric score. The solid circle-line denotes the SearchMAP method, the
dashed triangle-line denotes RBPF, and dotted diamond-line denotes the Max-product
method (BPMAP-low) with a low-to-high message schedule.

described in Section 3.4. We have chosenMax-product to represent the EP-style approach,
as it performed the best of the EP variants. Despite its simplicity, The SearchMAP
method achieves the highest values of accuracy, precision, and MSE across almost all
values of Nk. At Nk = 20, SearchMAP achieves a precision of .93, recall of .57, and mean-
squared error of .52 ℃. The behavior of Rao-Blackwellized particle filter (rbpf-resample)
appears counterintuitive, as its overall performance actually decreases as a function of
the sensor count. After Nk = 5, rbpf-resample’s precision begins to decrease, as does its
recall after Nk = 12. This is because we had to reduce the number of particles used as
Nk grew in order to maintain a reasonable computational time for the inference query
at each time t. The number of particles used for a network size Nk was 3250 − 100Nk.
However, we believe that had we held the number of particles fixed for all values of Nk,
we would still expect to see a decrease in performance for sufficiently large Nk. The
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space we need to sample (all possible configurations of Nk sensor-state variables) grows
exponentially with Nk, and so we would expect our performance to suffer as the space
grows and the particle count does not. While the computational cost grows linearly in
the number of particles, the cost to score each particle under a process model of size Nk

grows polynomially in Nk. We may be able to reduce the cost of scoring each particle by
assuming a simpler proposal distribution (one that does not use a Kalman filter model);
however, any computational benefit may be offset by the need to draw more particles.

Figure 3.14: Performance as a function of Nk for the inference algorithms SearchMAP,
maxMAP, and jointMAP. The performance is evaluated in terms in accuracy (top left),
precision (top right), recall (bottom left), and mean-squared error (bottom right). 95%
confidence intervals are shown in addition to the metric score. The solid circle-line denotes
the SearchMAP method, the dashed triangle-line denotesmaxMAP, and dotted diamond-
line denotes the jointMAP algorithm.

We also compared our approximate algorithms to the exhaustive asynchronic algo-
rithm used in our previous work and described in Section 3.3.2. This comparison was
done to evaluate the performance difference of using approximate inference on a larger
process model versus an exact (within a time slice) approach for computing the MAP
on a smaller model. Figure 3.14 displays the results of this comparison using the ap-
proximate method that performed best, SearchMAP, and the method from our previous
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work, maxMAP (described in Section 3.3.2). In addition, we include a third algorithm,
jointMAP, which is a slight variation on maxMAP. Within a time slice, jointMAP com-
putes Equation (3.1) identically to maxMAP (by exhaustively searching all 2Nk sensor
configurations and selecting the most probable configuration), however its solution to
Equation (3.2) uses a collapsed Gaussian over all 2Nk components instead of the highest-
weighted component. In effect, jointMAP performs Gaussian summation over the 2NK

components, and then collapses the resultant mixture onto a single Gaussian [1].
The maxMAP and jointMAP algorithms are only evaluated on networks of up to

size Nk = 9, as the exponential cost grows intractable to compute for sizes Nk ≥ 10.
For a single sensor Nk = 1, the results of maxMAP is equal to SearchMAP, because
both algorithms are behaving identically. Beyond Nk = 9, the improvements in accuracy,
precision, recall, and MSE attained by SearchMAP are fairly small, though not completely
negligible. The rapid onset of diminishing returns is, in part, due to the redundancy in
air temperature sensors at the H.J. Andrews. The 1.5m air temperature sensor at the
Central met. station has 3 air temperature sensors located a few meters higher on the
station, which record observations nearly identical to its own. In all 10 training sets,
the 2.5m and 4.5m thermometers at Central met. were added at Nk = 2 and Nk = 3,
respectively. Thus, models only having a few sensors can do very well due to the high
mutual information of these sensors with the target variable.

Within the range 2 ≤ Nk ≤ 9, the greatest performance difference between SearchMAP
and the other two algorithms is in precision and MSE. Somewhat surprisingly, the
SearchMAP algorithm performs as well, if not better than, either exhaustive algorithm.
We suspect this is because the SearchMAP algorithm is biased toward configurations
of sensor-state variables that include fewer broken sensors. This bias manifests it-
self in a non-intuitive way. Consider the case where there are 2 correlated air tem-
perature sensors that produce observations ot1 and ot2. Further, suppose that the ob-
servations appear unusual compared to their measurements in the previous time step{
ot−1

1 , ot−1
2

}
. The exhaustive search algorithms (maxMAP and jointMAP) will eval-

uate all 4 configurations of working/broken and select the configuration that maxi-
mizes the likelihood of the observations. In this case, the all-broken configuration is
the most likely, because the QC model has no apriori preference toward any specific
configuration of sensor-states. SearchMAP will consider three configurations at first:
{working, working} , {broken,working} , and, {working, broken}, and only evaluate the



107

4th configuration {broken, broken} if the 2nd or 3rd configuration is more likely than the
all-working configuration. Because setting only one of the sensors states to broken does
not explain the observations any better than assuming both are working, SearchMAP
chooses the all-working configuration. If the observations were actually valid (not data-
anomalies), then the exhaustive algorithms would continue to misclassify subsequent
observations as anomalies until the variance of the process model grows sufficiently large
to explain the most recent observations.

Figure 3.15: Time series plot showing the results of the SearchMAP algorithm using
model Gf=0

Nk
evaluated on test fold F ′0. The plot shows 21 days of quarter-hourly mea-

surements from the 1.5m thermometer located at the Central station. Each plot contains
results for a different number of included sensors: Nk = 1, 3, 6, 12, and 20. In each plot,
the black line corresponds to the noise-injected observations measured at the sensor. The
red line indicates the imputation of the true value by the QC model. Tall red-hashes at
the base of each plot indicate true positives, and short blue-hashes indicate false positives.

Figure 3.15 shows the results of the SearchMAP algorithm applied our synthetic
dataset using networks of increasing size from Nk = 1 to Nk = 20. At Nk = 1, the
process model is an AR1 (autoregressive, order-one [7]) model. It detects many of the
true anomalous readings (true positives shown as large, red vertical hashes) as the larger
network structures; however, it generates more false positives (short, blue vertical hashes)
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and poorly imputes the “correct” value of the observation in cases where the sensor is
broken. The poor imputation is especially evident on day 11, where the model’s imputa-
tion is just the value of the last observation it believed to come from a working sensor
(≈ 15 ℃), plus a small drift. At Nk = 3 and Nk = 6, the model has sufficient informa-
tion to correctly classify steep changes in temperature (midnight betweens days 9 and
10, sunrise on days 12 and 13) as non-anomalous. It also successfully classifies the air
temperature on day 11 as coming from a broken sensor, though it cannot yet correctly
impute the shape of diurnal trend in air temperature. Instead, it classifies the flat line
observations beginning 1/3 into day 11 as non-anomalous and does not register that the
sensor is broken until a spike occurs approximately halfway through day 11. The addition
of 6 more sensors (Nk = 12) allows the model to detect the injected noise on day 11 and
correctly impute the affected values. Unfortunately, influence from one of new sensors
convinces the QC model that the air temperature on day 10 is rising too quickly, and so
it erroneously marks this period as anomalous, which incurs some false positives. This is
resolved when the model has access to Nk = 20 sensors, at which point it produces very
few false positives, except for a small period after day 15.

3.6.3 Complete Model: Synthetic Data

In an application setting, the goal of our methodology is to perform simultaneous quality
control for all sensors in a given sensor network as opposed to a single target sensor. As
such, we are interested in the performance of the model across all sensors. To evaluate
this, we learned 10 separate process models P (Xt,Xt−1), with each model trained a
different combination of data folds as described in Section 3.6.2. We then evaluated
performance using the same metrics from the previous section, for all of the sensors. The
models, GfNk=27 for f = 1, . . . , 10, span all 27 sensors, and so no mutual information
criteria was required to decide which sensors to add. Evaluation for each model was
performed in same way as in Section 3.6.2: by testing on the noise-injected equivalent
of the hold-out data for the QC model GfNk=27, referred to as F ′f . Results were then
averaged across all 10 test folds.

Figure 3.16 (top) displays the precision and recall scores for 4 air temperature ther-
mometers at the Primary station, as well as that station’s solar radiation sensor, anemome-
ter, and one of two precipitation gauges at the Upper Lookout site. We compared the per-
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Figure 3.16: Top left: average recall scores on the synthetic data for 6 of 27 sensors
included in the full QC model, plotted with 95% confidence intervals. Top right: average
precision scores for the same sensors, dataset, and QC model. Bottom: ROC curve for 4
of the 27 sensors included in the full QC model.

formance of four different algorithms on the full QC model: EPMAP-low (Iterative MAP
with a low-to-high schedule), RBPF (with resampling and 1000 particles), SearchMAP
(our greedy hillclimbing inference algorithm), and BPMAP-low (Max-Product MAP with
a low-to-high schedule). The SearchMAP algorithm achieved the highest precision scores
across all types of sensors, though there is significant overlap in confidence intervals with
BPMAP-low for the solar radiation, wind speed, and precipitation sensors. While pre-
cision scores were high for the air temperature thermometers (> .90), performance was
generally poor for the other sensor types. We alluded to one possible cause for this in the
previous section, in that there is much less redundancy for non-air-temperature sensor
types at the HJ Andrews. Though each meteorological station is equipped with 4 ther-
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mometers 1-meter apart on a tower, they typically only contain one of the other sensor
types. A second reason may be that our process model cannot accurately capture the
relationships among air temperature, solar radiation, precipitation, and mean wind using
only linear functions of the raw observations. Recall scores were nearly-equal among
all four inference algorithms applied to the full QC model; however, RBPF appeared
to score better on the non-air-temperature sensors. On the solar radiation sensor and
anemometers, it achieved ≈ .20 recall compared to ≈ .10 from the other 3 algorithms.

The bottom portion of Figure 3.16 shows the receiver operating characteristic (ROC)
curves for 4 different sensors and the SearchMAP algorithm. To generate this curve, we
computed posterior marginals at each of the sensor state variables in the following way.
First, SearchMAP is used to compute the MAP sensor-state configuration at time t as
described in Section 3.4.3; let us denote the computed MAP configuration at time t as
~s t
MAP . Next, to compute the marginal at each sensor-state variable Sti , we remove Sti ’s
MAP value from ~s t

MAP and compute the posterior P (Sti |~o t, ~s t
MAP \sti).We then generate

the ROC curves in the usual way, by varying a classification threshold ζ, such that we
declare Sti = broken if P (Sti = broken|~o t, ~s t

MAP \ sti) > ζ. Intuitively, we can think of
adjusting ζ as a post-hoc approach to tuning the variance parameters of the observation
model (σ2

w and σ2
b ) and/or the prior probability on the working state of the sensor (p) to

optimize classification performance.
Given the high precision scores shown in the top part of Figure 3.16, it is unsurprising

we can trade-off this precision for higher recall. In the case of air temperature sensors, we
can achieve .70 recall at 3.8% false positive rate (FPR, calculated as FP/(FP +TN)) on
the synthetic noise data. What is more surprising is that our initial evaluation of precision
and recall suggests the model does worse on precipitation sensors than anemometers.
For values of recall (true positive rate, TPR) < .10, the ROC curve indicates that our
classification is more accurate on the wind data than precipitation data; however, for
recall rates > .1, performance on the precipiation sensor exceeds the windspeed sensor.
In fact, the area under the curve (AUC) for the precipitation data is .05 greater than
that of the windspeed sensor.



111

3.6.4 Complete Model: Real Data

We applied the same four inference algorithms from Section 3.6.3 to raw sensor observa-
tions collected from the H.J. Andrews. Here, we used only one QC model that included
the 27 sensors from the H.J. Andrews network and averaged the results across 10 separate
test sets. The process model was trained using clean-only data over a two-year period.
The final training dataset consisted of approximately 31000 observations, as we could
only use consecutive 15-minute periods that contained no data-anomalies in any of the
27 sensors. The model was then evaluated on 10 test sets, each of which contained a
unique record of 14016 quarter-hour observations. The full test set corresponded to four
years of sensor readings taken from the H.J. Andrews, exclusive of the 2 years selected
for training. The results of our analysis are shown for a subset of those sensors in Figure
3.17.

Precision results for all four selected inference algorithms are low (≈ .41 or below);
however, in the analysis of raw data, the generally poor precision results are unsurprising.
Unlike in the synthetic dataset, the distribution over data-anomalies in the 10 test sets
is significantly non-uniform. Many of the datasets contain very few examples of actual
anomalous values. For example, 4 of the 10 test sets contain 0 anomalous observations
from the 1.5m Primary met. station thermometer, 3 of the 10 have < 10 such values,
and the other 3 have 64, 125, and 1331 anomalies. The average false positive rate of
the SearchMAP algorithm for this particular sensor over the dataset is .0017± .0014, or
approximately 24 false-positives per test set. Thus, for 4 of the 10 test sets, we will achieve
0 precision because the algorithm identifies at least one observation as a data-anomaly
when none are actually present. For the 3 data sets where the true anomaly count is less
than 10, we will achieve precision scores < .5. It follows, then, that the average precision
across the entire test set will be low. The SearchMAP algorithm does score higher in
precision than EP, RBPF, or BP on average; however, it shows significant overlap with
the other algorithms in its 95% confidence intervals. For the same reason our precision
scores appear dismal on real data, the inference algorithms score high recall, on average,
across the test folds. If a given test set has zero instances of data-anomalies for a specific
sensor, then the recall rate on that set is 1.0. Still, all four algorithms successfully detect
most data-anomalies present in the real data, with recall scores approximately equal
(within 95% confidence bounds).
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Figure 3.17: Top left: average recall scores on actual data shown for 6 of 27 sensors
included in the full QC model, plotted with 95% confidence intervals over 10 test datasets.
Top right: average precision scores for the same sensors, dataset, and QC model. Bottom:
ROC curve for 4 of the 27 sensors included in the full QC model.

The ROC curve in Figure 3.17 (bottom) displays the recall rates of the SearchMAP
algorithm as a function of its FPR on the real dataset. As noted above, because precision
scores are not particularly meaningful on the real test sets, characterizing the recall trade-
off in terms of FPR is more appropriate for site managers. In effect, the FPR indicates
what percentage of the data would have to be manually inspected to remove all false
positives from a reduced set of observations flagged by our QC method as anomalous.
For example, if the manager wanted to remove at least 50% of anomalous preciptiation
gauge readings from the Upper Lookout station, this could be done while achieving a
10% FPR. Across our 10 test sets, there were an average of 545 anomalous observations
per test set at the Upper Lookout out precipitation gauge, which means that our QC
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algorithm would classify .1 ∗ 14016 + .5 ∗ 545 ≈ 1674 measurements as data-anomalies.
The site manager would then have to manually inspect only this subset of values (≈ 12%

of a test set) to remove all false positives. In some caes, the ROC curve peaks in recall
(true positive rate) below 1.0 for all levels of FPR. This occurs because there are some
observations labeled by the domain expert as anomalies that SearchMAP assigns very-low
probability to coming from broken sensors. This early-peaking is particularly noticeable
for the solar radiation sensor (pri-SR). For this sensor, the cumulative number of data-
anomalies across all test fold is only 164, of which 82 come from the first test fold. These
82 anomalies manifest as small positive values of solar radiation being measured at night
time. While the domain expert can be certain these sensors should measure no solar
radiation at night, the QC model cannot signficantly distinguish values of 0 from small
positive valies (i.e., 0.1). We note that this a limitation of linear-Gaussian representation
among the process variables, and not any of the inference algorithms.

Figure 3.18: Results for the SearchMAP algorithm applied to the full QC model plotted
for 7 sensors located on the Central benchmark meteorological tower, including 4 air tem-
perature thermometers, a solar radiation sensor, anemometer, and precipitation gauge.
The red line denotes the imputation of the sensor’s value, and red hashes at the base of
each plot indicate observations the model classified as coming from broken sensors.
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In Figure 3.18, we display the results of the SearchMAP algorithm applied to the same
segment of real data shown in Figure 3.10 with the 27-sensor model. The model/algorithm
correctly flag the series of erratic sensor measurements from the 3.5m Central thermome-
ter, in addition to the logger malfunction on day 51 affecting all four temperature sensors.
A series of false positives occur in the 2.5m thermometer on day 58, as the air temperature
at that sensors measures slightly higher than the QC model’s estimate. The model raises
only a few false positives for the anemometer, but fails to diagnose the frozen sensor on
days 33 and 53. There are also some scatted false positives for the precipitation gauge,
which are associated with large spikes in measured precipitation.

3.7 Related Work

Over the last several years, machine learning-based solutions to environmental sensor
QC have increased in popularity. We describe some recent works that similarly employ
probabilistic approaches to model uncertainty in the QC task. Osborne et al. [53] place
a Gaussian process (GP) prior on the latent value of the process being tracked by a
hydrological sensor. For a single sensor, the GP approach is similar to our own in that
the prior distribution over the value of the latent process for t time steps follows a
t−dimensional multivariate Normal distribution, with each dimension corresponding to
a time slice. However, in the GP framework, the covariance matrix of the MVN is
parameterized by a mean function µ and covariance function K. The general form of
these functions allows for non-linear relationships in the temporal dependency structure,
while our model requires the mean of P (xt) to be a linear function of xt−1. Consequently,
the authors can represent a more complex temporal relationship for a single sensor. Unlike
in our model, the GP model has no spatial component that correlates observations from
multiple sensors at the same time slice. Instead, the authors use a sliding window of
fixed length over past observations, and then leverage the past sensor measurement to
infer the value of the next observation. A consequence is that, if the window length is
shorter than the longest consecutive period of breakage for a sensor, the GP will have
little information to make a prediction.

Hill et al. [30] explore variations on the DBN representation to perform automated
QC of meteorological data. Specifically, they compare a generic Kalman filter, a robust
Kalman filter model where P (O|X) is modeled as a 2N -component mixture of Gaussians
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(as in Figure 3.3), and a switching linear dynamical system (SLDS) similar to our own
model. In the case of the SLDS model, the authors do not explicitly factor the sensor-state
variables or process variables; instead, at each time slice, there is a single 2N -state discrete
variable for the sensor state, and a N -dimensional MVG for the distribution of the latent
process. For a sensor network containing 8 sensors, they achieve the best results with the
SLDS model and RBPF for inference with 50000 particles. The authors note that their
RBPF algorithm would require exponentially more particles for larger sensor networks to
achieve consistent levels of performance. A static Bayesian network is used by Wang et al.
[70] that incorporates spatial and temporal dependencies. For each sensor in the network,
the authors instantiate an AR-d process, which models the current observation at the
sensor as a linear function of its past d observations. Conditional dependencies among the
sensors are only modeled at the most recent time step. There is no distinct sensor-state
or observation variable for each sensor, and so the AR structure and use of Gaussian-only
variables makes inference in this formulation efficient. Anomaly detection is performed by
comparing the likelihood of observations from individual sensors using that sensor’s AR
model, Lyt = L(yt|θBy), to a null hypothesis that all observations are valid. Similarly,
the full set of sensor observations are evaluated with the previously described full model.
Given a set of observations from a all of the sensors, the model classifies it belonging to
one of 6 event types (individual, composite, group, etc.) determined by the independent
and joint model likelihoods.

Relevant to the inference challenges posed by probabilistic QC models, Barber et al.
address the issue of learning and detecting weather regimes that affect the correlation
dynamics in wind sensors (measuring velocity) at multiple sites [4]. The authors employ
a conditional linear-Gaussian HMM; however, the latent component of the model is the
“regime” responsible generating observations at each of the wind sensors. This is anal-
ogous to our work where we have 2N regimes with pre-specified dynamics (each broken
sensor disconnects an observation from the process), whereas the authors are learning
the regimes directly from the data. They handle inference in a means similar to the
maxMAP algorithm described in Section 3.3.2, but instead preserve the c most likely
components in the forward message instead of the single most likely component.

The MUSCLES system, developed by Yi et al. [36], uses a multivariate-autoregressive
model that adapts to changes in dynamics as the multivariate time series evolves. Anomaly
detection is performed by comparing a held-out observation with the value imputed by
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the model, given observations for the other N − 1 signals for order-t time steps and the
t − 1 observations at the held-out signal. It follows that performing QC is relatively
inexpensive (computationally), as the problem has been reduced to multiple-linear re-
gression. The model adapts to changes in the relationship among the signals over time
by incorporating a decay rate parameter that assigns low weight to regression weights
associated with older observations.

In work by Platt et al. [56], the authors use a variational inference technique known
as mean-field inference [34] to apply QC to a web service. In this domain, there are 105

observations associated potentially 104 fault cases at every time step. In their graphical
model of the web service domain, they approximate the posterior probability distribution
over a set of fault rates ~F given observations ~V , which correspond to success/failures no-
tices of client-server transactions. The form of this approximation makes the fault rates
for different failure cases independent, such that the posterior approximation Q(~F |~V )

is the product of series of beta distributions, which each correspond to a fault rate pa-
rameter. Designing a good approximation to the true posterior is non-trivial in many
applications, as well the requisite minimization of its KL divergence to the true distribu-
tion; still, variational methods remain a potential avenue to consider in future work.

3.8 Conclusions & Future Work

In this article, we have considered three inference algorithms that address the exponen-
tial scaling cost associated with inference in our probabilistic QC model. In addition, we
have presented a review of these algorithms and described practical issues of implement-
ing each algorithm in the QC model. We analyzed the trade-off between the benefits
of including additional sensors and the inaccuracies introduced by approximating asyn-
chronic inference. Our results suggest that, though we can improve performance in the
QC task by including additional sensors, diminishing returns have a significant role in
determining the overall benefit of these sensors. One hypothesis is that the degree to
which diminishing returns manifest is partly a function of the sensor redundancy at the
domain site. Further, we have introduced a greedy-search technique for performing asyn-
chronic inference. Results on both synthetic and real sensor data support suggest that
our algorithm achieves superior precision and similar recall to two state-of-the-art algo-
rithms. Lastly, we demonstrated the performance of our model across different types of
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environmental sensor data, including air temperature, solar radiation, mean wind speed,
and precipitation.

This work has opened up a host of potential avenues for future research. First, we
have only discussed filtering techniques for performing real-time QC. If were we willing to
delay classification of an observation at time t until time t+k, we could perform fixed-lag
smoothing to obtain a more-informed estimate of the true working status of the sensors.
Two of the algorithm we discussed, RBPF and EP, have known extensions that allow
them to compute the smoothed estimate of the latent state [22, 27]. It is unclear the best
way to extend the SearchMAP algorithm, though a naïve approach would be to extend
the search domain to the joint sensor-state configuration over multiple time slices.

In our experiments, we noted that the results for precipitation, wind, and solar ra-
diation sensors were generally worse than those for air temperature sensors. In the case
of wind speed and precipitation, we suspect this is because the relationship among the
other environmental sensors is nonlinear and the Gaussian assumption is wrong. Precipi-
tation, for example, is strictly non-negative and heavily biased toward having 0 counts. A
correction within the probabilistic framework would be to learn the nonlinear dynamics
among these variable types and/or use more appropriate distributions for precipitation,
mean wind speed, and solar radiation (such as a Gamma distribution). Similar to the
work by Barber et al. [4], we may wish to learn multiple operating regimes that explain
different spatiotemporal correlation dynamics in the data. For example, we could in-
stantiate a latent variable that tracks the presence of storm systems, which may increase
precipitation and wind, while lowering solar radiation and air temperature.

As noted in Section 3.7, we have not yet explored how variational methods for infer-
ence would handle in this domain. The presence of diminishing returns suggest that, for
some sensors, only a subset of the other sensors in the network provide useful information
for predicting their value. This may suggest that mean-field methods or other variational
approaches (such as the Boyen-Koller algorithm [6]) could achieve decent results in both
of our defined inference tasks. However, the challenge remains to discover a “good” fac-
torization. There exists work in this area for discovering the degree of “separability” in
DBN models that may be useful for learning such a factorization [23, 55] as it applies
to the BK algorithm. We could also consider a belief-propagation approach, where mes-
sages correspond to localized beliefs at large clusters of correlated sensors. Obviously, a
single Gaussian (as in our application of EP) would be too simple of an approximation of
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that message form. We could, however, consider a non-parametric message form, like the
one described in Sudderth et al. [65]. In order to evaluate how practical this approach
would be, we would need to evaluate how well a mixture of multivariate Gaussians could
model the joint distribution over the sensor-states and associated latent processes within
a cluster of sensors.
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Chapter 4: Conclusion
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4.1 Conclusion

In the first manuscript, we described a Bayesian approach to learning a graphical structure
that represented the spatial correlations among a set of environmental sensors. The
structure was then expanded to include temporal dependencies to create a QC system
based on the resulting spatiotemporal process model.. We applied our full QC algorithm
to data collected from deployments that were part of the SenorScope project at the
École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. The spatiotemporal
model performed best in the QC task compared to process models that ignored either
temporal or spatial correlation or that assumed a fully-connected spatial component.
Most importantly, our approach addressed one of the key shortcomings of our initial
single-sensor QC system: in cases where a single sensor malfunctioned for an extended
period, we were able to detect the broken state of the sensor and impute reasonable
estimates for the affected values. This was achievable without the use of a baseline
function or an extensive record of observations at each deployment. In addition, we
demonstrated how the model could provide some insight into redundancy of the network;
i.e., to determine which sensors were the most accurate predictors (most informative) for
a held-out sensor. The inference algorithm in this work performed an exhaustive search
for the most likely sensor state configuration out of a set of 2N possible configurations.
This limited our approach to networks of 10 or fewer sensors. However, this obstacle laid
the groundwork for our next contribution.

Our second manuscript addressed the problem of scaling our QC approach to larger
networks containing dozens of sensors. Specifically, we analyzed three approximate al-
gorithms that each avoid enumerating all possible configurations to compute the most
likely sensor state-state configuration within at a time step (asynchronic inference). We
provided a review of each of these inference techniques, and described their application
to our general probabilistic QC model. Our results demonstrated that, by incorporating
observations from additional sensors into the QC model, we could increase the precision of
the model in identifying anomalous values present in the data. Furthermore, the costs in-
curred by approximating asynchronic inference with these algorithms were outweighed by
increases in performance from incorporating observations from additional sensors. How-
ever, diminishing returns were a factor in these gains, which suggests that there may be
a practical limit to the increased performance achieved by the inclusion of more sensors.
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We also established that, in the QC domain, our greedy-search algorithm SearchMAP
outperformed both Rao-Blackwellized particle filtering and variants on the Expectation
Propagation algorithms in terms of precision and mean-squared error. These results were
consistent on both a synthetic dataset containing noise-injected data anomalies and the
raw sensor data collected from the H.J. Andrews Experimental Forest.

The joint contributions from both of these works represent significant steps toward
a site-adaptive, data-driven tool for quality control of environmental sensor data. Our
research demonstrates that we can learn from existing data to build models of the latent
processes tracked by these sensor networks. We can, in turn, apply these models to
gap-fill measurements corrupted by broken sensors, and perform real-time automated
QC. Further, we can scale these models to networks that include dozens of sensors that
monitor different types of environmental variables (air temperature, precipitation, wind,
etc.). While we are encouraged by the progress we have achieved in this dissertation,
there are many challenging research questions that still must be solved to obtain an ideal
QC system. In the next section, we explore some open questions that our work has raised
and suggest some areas for future research.

4.2 Future Work

We consider two main directions for future research. For each direction, we explore some
unresolved aspects of our research and provide some discussion of initial ideas and related
work.

4.2.1 Learning and Representation

The current representation of the latent state P (X,S) follows a switching linear dynam-
ical system model. The switching component, represented by the sensor-state variables
S, allows the QC model to ignore observations it believes are data anomalies so that they
do not influence its belief about the process. However, the the process model itself is
a Kalman filter that captures only one regime, or instance of spatiotemporal dynamics.
Can we introduce latent factors that allow for multiple operating regimes (spatiotempo-
ral models), and more importantly, can we learn the parameters of these regimes in an
unsupervised setting?
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In our experiments in Chapter 3, we noted that the results for precipitation, wind, and
solar radiation sensors were generally worse than those for air temperature sensors. In the
case of wind speed and precipitation, we suspect this is because the relationship among
the other environmental sensors is nonlinear and the Gaussian assumption is wrong.
Precipitation, for example, is strictly non-negative and heavily biased toward having 0
counts. There are two potential research directions that may address this inconsistency.

First, we can explore if the non-linear relationships can be sufficiently modeled us-
ing piecewise linearity conditioned on a latent factor. A single spatiotemporal model
cannot represent the behavior of each regime and, as a result, the learned model (itself
a multivariate Gaussian) will have a larger variance over each process’s value (this is
similar to how we approximate a Gaussian mixture with a single Gaussian). However, if
we introduce a latent discrete factor to “switch” between the regimes, we can learn the
parameters of multiple process models – one for each regime type. Work by Barber et
al. does just this [4], and applies the resultant model to forecasting estimates of wind
data. Relevant to one of our domains, colleagues at Oregon State University believe
that the air circulation at the HJA also exhibits multiple regimes (temperature inversion,
cold air drainage, etc.)[11]. Not only would a QC model that explicitly represents these
regimes be expected to perform better at detecting/imputing anomalies, the parameters
of these learned regimes could be of scientific value to ecologists.

Second, we could employ a process model that does not make a linear or Gaussian as-
sumption and/or use more appropriate distributions for precipitation, mean wind speed,
and solar radiation (such as a Gamma distribution). Regarding non-linear process mod-
els, some examples exist in the form of extended and unscented Kalman filters. However,
these models are applied in domains where the process dynamics are nonlinear but known
apriori, so they do not have to be estimated. In our setting, we assume the process dy-
namics to be unknown and estimate them from data. Currently, it is not clear how
we would estimate the spatiotemporal structure without the linear-Gaussian constraint.
Still, the inference techniques described in Chapter 4 do not explicitly rely on a Gaussian
or linear relationship among the variables. EP can be generalized to any exponential
family distribution that can be represented with a small set of moments; RBPF only
requires that we can generate a valid proposal that can be efficiently sampled; and the
SearchMAP algorithm requires that we can score observations against P (Ot|S0:t) for a
fixed value of S0:t.
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Once we have learned a process model at a new site, can its structure be leveraged to
speed up learning at new sites? We suspect that many sensor networks share common-
alities in the microclimates they cover, the spatial layout of the sensors, and the types
of environmental data they measure. This is especially true of top-down monitoring or-
ganizations like NEON, where the policy is to apply a unified suite of sensors at each
network location. One approach may be to build a catalogue of learned process models,
along with descriptions of the site where they were deployed, and then match a new site
to one of the existing ones based on a site-similarity metric. This would require a way
of measuring similarities between sights, and a way to exploit knowledg from existing
structures in the catalog during structure learning. We can do this for linear Gaussian
network structures (as described in Chapter 2), because the BGe metric allows the stip-
ulation of a prior distribution in the form of a process model. An opportunity for future
research is to determine a method that generalizes to non-linear or non-Gaussian process
models.

Lastly, it would be interesting to perform an analysis similar to that in Chapter 4,
in which we extend the Markov order of the process model and hold the number of
sensors included in the network N fixed. In this way, we could determine the optimal
auto-regressive order for the different types of environmental variables in our QC model.
It may be the case that some variable types have delayed effects; for example, solar
radiation at time t may affect temperature at time step t + k. We note that, for each
order added to the model, we are essentially adding another N sensors to the QC model,
and so the cost may quickly grow prohibitive even with our approximate algorithms. Still,
such an experiment could help answer the question, “is it better to include 2N sensors
in a network or to model an AR(2) process for N sensors?” The answer may suggest an
inflection point where, as a result of diminishing returns, the QC model would be achieve
better performance by extending the Markovian lags rather than by adding more sensors.

4.2.2 Inference

Up to this point, we have framed the QC task as requiring real-time inference, which has
justified our use of filtering methods to compute argmaxStP (St|O0:t). We hypothesize
that we could achieve better performance if we waited until time t + k to compute
the smoothed MAP estimate argmaxStP (St|O0:t+k). Is there a sufficiently large value
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of k such that diminishing returns have a result analogous to increasing N? What
other inference algorithms might we consider that handle a non-linear, non-Gaussian
representation of the latent process?

Relating to the first extension, if were we willing to delay classification of an ob-
servation at time t until time t + k, we could perform fixed-lag smoothing to obtain a
more-informed estimate of the true working status of the sensors. The additional infor-
mation would come from having sensor observations from the future (t + 1 to t + k), in
addition to past observations (0 to t). Two of the algorithm we discussed, RBPF and EP,
have known extensions that allow them to compute the smoothed estimate of the latent
state [22, 27]. It is unclear how to extend the SearchMAP algorithm, though a naïve
approach would be to extend the search domain to the joint sensor-state configuration
over multiple time slices.

We have not yet explored how well variational methods for inference would work
in this domain. Results from experiments both Chapters 3 and 4 show that, for some
sensors, only a subset of the other sensors in the network provide useful information for
predicting their value. This may suggest that mean-field methods or other variational
approaches (such as the Boyen-Koller (BK) algorithm [6]) could achieve decent results in
both of our defined inference tasks. However, the challenge remains to discover a “good”
factorization. There exists work in this area for discovering the degree of “separability” in
DBN models that may be useful for learning such a factorization [23, 55] as it applies to
the BK algorithm. We could also consider a belief-propagation approach, where messages
correspond to localized beliefs at large clusters of correlated sensors. Obviously, a single
Gaussian (as in our application of EP) would be too simple of an approximation of that
message form. We could, however, consider a non-parametric message form, like the one
described in Sudderth et al. [65]. In order to evaluate how practical this approach would
be, we would need to evaluate how well a mixture of multivariate Gaussians could model
the joint distribution over the sensor states and the associated latent processes within a
cluster of sensors.
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