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Recent  increases  in  computation  power  have  prompted  enormous  growth  in the  use  of simulation  models
in ecological  research.  These  models  are  valued  for their  ability  to account  for  much  of the  ecological  com-
plexity  found  in  field  studies,  but  this  ability  usually  comes  at the cost  of  losing  transparency  into  how  the
models  work.  In order  to foster  greater  understanding  of  the  functioning  of  computer  simulation  mod-
els, we  develop  an  analytical  approximation  of  the  Landscape  Age-class  Demographics  Simulator  (LADS;
Wimberly,  2002),  a representative  example  of  broad  group  of  models  that  simulate  landscape-scale  forest
dynamics  in  response  to  a series  of  recurring  disturbances  that  interact  spatially  with  existing  land-
scape  structure.  Much  of the  model  output  was produced  mathematically,  without  generating  a  series
of disturbances  (in  this  case,  fire)  or simulating  the forest  response  to each  disturbance.  The approxi-
mation  provides  a detailed  understanding  of  the  modeled  fire  regime.  Also,  it provides  equations  that
directly  specify  the  roles  of  key  input  parameters  rather  than  having  to infer  these  roles  indirectly  from
model  output  in  a sensitivity  analysis.  The  application  of analytical  methods  typically  has  been  limited
to  simple  scenarios  that  lack  feedbacks  or spatial  interactions,  but in  this  exercise,  analytical  methods

address  much  of  the  complexity  more  commonly  addressed  by  simulation:  the  modeled  landscape  is
composed  of two  provinces,  each  with  a  unique  fire frequency  and  fire-size  distribution;  stochastic  vari-
ation in  the  number  of  fires per  year  and  the  size  of  each  fire;  and  two  levels  of fire  severity  that  each
have  different  effects  on  forest  structure.  Analytical  approximation  is  not  suggested  as  an  alternative
to  simulation  models,  but  rather,  as  a complementary  approach  aimed  at improving  insight  into  model

function.

. Introduction

.1. Background and objectives

Recent increases in computation power have prompted tremen-
ous growth in the use of simulation models to expand upon
he insight gained from ecological field studies for understanding
onger-term and broader-scale landscape dynamics. For example,
andscape-scale forest simulation models have become important
ools for broad-scale, strategic management planning in forest
andscapes (Keane et al., 2004; Scheller and Mladenoff, 2007; He,

008). By generating statistical distributions of key variables, such
s the abundance and patch-size distributions of old-growth and
arly-seral forest, these models have made a great contribution
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to understanding landscape dynamics under historical disturbance
regimes and those likely to arise in response to prospective future
disturbance or management scenarios.

Although simulation models are valued for their ability to repre-
sent the complex feedbacks and spatial interactions characteristic
of ecological systems, this ability typically comes at the cost of
requiring numerous input parameters and losing transparency
into how the models work (Oreskes, 2003). Important problems
likely to arise from the lack of tractability typically associated with
increasing model complexity include (1) the potential for uncer-
tainty in parameter estimates to propagate in unpredictable ways
(DeAngelis and Mooij, 2003), (2) a mismatch between the level
of complexity in model algorithms and that needed to address
the question of interest, and (3) little understanding of the uncer-
tainty in model output by the audience of ecologists, managers,
and policy-makers interested in applying the insight gained from
modeling studies (Pielke, 2003).

The objective of this study is to develop an approach for increas-

ing transparency into the function of computer simulation models
in general, and specifically, for landscape-scale models of forest
dynamics in relation to broad-scale disturbances. To address this
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http://www.sciencedirect.com/science/journal/03043800
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bjective, we develop an analytical approximation of the Landscape
ge-class Demographics Simulator (LADS, version 2.2; Wimberly,
002). The approximation translates the model algorithms into a
ractable form (i.e., one that can be solved mathematically without
enerating a series of recurring fires or the response of vegetation
o each fire), and by doing so, it directly specifies the roles of key
nput parameters and the interactions among them.

LADS is a member of a broad group of models labeled as
andscape Fire Succession Models (Keane et al., 2004) or Forest
andscape Simulation Models (Scheller and Mladenoff, 2007; He,
008). These models simulate the response of forest vegetation
t the stand level to at least one recurring, landscape-scale dis-
urbance, with stochasticity in the initiation, spread, extent, and
everity of each disturbance event. The models are implemented
ver an area broad enough (1000s to 100,000s of km2) and a time
eriod long enough (centuries to millennia) to generate statistical
istributions of the abundance and patch sizes of forests with
ifferent attributes (e.g., age classes or stand structures). Space
nd time are represented explicitly, by deriving forest attributes
t each stand from those in the previous timestep and allowing
he disturbances to spread among stands depending on landscape
onfiguration (He, 2008).

LADS was selected because its approaches for modeling fire
pread and forest succession are similar to those applied in other
andscape-scale forest simulation models, and its complexity for
hese processes is intermediate among models. LADS models for-
st succession using a state-and-transition approach, where stands
roceed along a pre-defined series of structural stages in the
bsence of disturbance. Following fire, the series either is reset,
r stands shift to an alternate pathway, depending on fire sever-
ty (Wimberly, 2002). The ease of developing, parameterizing, and
nitializing state-and-transition models favors widespread use of
his approach in other models (Kurz et al., 2000; Keane et al.,
002, 2004). Simpler models have a single pathway reset only by
igh-severity fire (Boychuk et al., 1997), whereas more complex
odels track changes in community composition over time at the

evel of individual trees, tree species, or plant functional types (He
t al., 2005; Keane et al., 2011). LADS models fire spread using a
ellular-automata approach designed to generate burned patches
hat resemble historical fires in size and shape while limiting the

echanistic detail in the fire-spread process in order to facilitate
omputational efficiency in generating numerous fires (Wimberly,
002).

This study evaluates version 2.2 of LADS, which initially was
pplied to estimate the historical variability in the abundance of
ld-growth forests in the Oregon Coast Range (Wimberly, 2002;
onaka and Spies, 2005). The estimated variability then served as

 baseline for evaluating present landscape conditions and those
ikely to develop under alternate management scenarios (Nonaka
nd Spies, 2005; Thompson et al., 2006). A detailed description of
ADS is provided by Wimberly (2002).  A brief overview of the model
s provided below (Section 1.2), followed by an explanation of the
heory for relating fire-frequency information to the stand-age dis-
ribution of a forest landscape (Section 2) and our application of
his theory to produce an analytical approximation of the simula-
ion model (Section 3). Then the accuracy of the approximation and
ts usefulness for understanding the role of input parameters are
valuated by comparing results of the calculations to the output of
he simulation model (Section 4). Finally, the new insights and lim-
tations of the analytical approach are discussed (Section 5) along

ith the value of combining modeling approaches (Section 6).
.2. Simulation model

In previous applications of LADS to the Oregon Coast Range, the
andscape was divided into Coastal and Valley Margin provinces to
l Modelling 233 (2012) 41– 51

account for a trend of increasing fire frequency, smaller fires, and
lower fire severity with decreasing precipitation from the coast to
the margin of the Willamette Valley (Wimberly, 2002). The natural
fire rotation (NFR) of the Coastal Province (200 years) was set at
twice that of the Valley Margin (100 years; Table 1) based on tree
ring and lake sediment studies (Impara, 1997; Long et al., 1998). The
fire-size distribution of each province was  derived from historical
vegetation maps (Teensma et al., 1991).

The number of fires per timestep and the size of each fire are
determined using random variables (Fig. 1), which allows the area
burned per timestep to fluctuate around a fixed mean (Wimberly,
2002). Fires are simulated by first determining the average number
of fires per timestep in each province (�j; Table 1), which is done by
dividing province area by the product of its NFR and its mean fire
size (Boychuk et al., 1997). This average serves as the parameter for
a Poisson random variable used to simulate the number of fires per
timestep (Fig. 1).

Each fire is initiated in a random cell and spreads stochastically
until burning an area determined at the time of ignition (Fig. 1). The
probability of ignition is weighted to make ignitions most likely
on upper slopes and in the most flammable age classes. Suscep-
tibility to fire ignition and spread from adjacent cells follows a
U-shaped function of stand age, with the greatest susceptibility
in young stands assumed to retain dead wood from the previous
stand and in old-growths stands that have abundant fuel in all size
classes (Agee and Huff, 1987). At the time of each ignition, fire size
is drawn from a lognormal distribution (Fig. 1) with a unique mean
and standard deviation (SD) of fire size in each province (Wimberly,
2002; Table 1).

The fire-spread algorithm is a cellular-automata-based subrou-
tine designed to allow fire to spread most readily along upper
slopes and in the most susceptible age classes (Wimberly, 2002;
Fig. 1). User-defined parameters for windspeed and wind direction
also influence fire spread. Susceptibility to fire spread is calculated
as the product of susceptibility scores based on stand age, topo-
graphic position, and wind variables (Wimberly, 2002). For each of
the eight cells adjacent to a burning cell, a uniform random variable
is drawn on the interval (0, 1), and the cell burns if its susceptibility
exceeds this value (Wimberly et al., 2000). The algorithm repeats
until the area burned reaches the fire size drawn at the time of
ignition (Fig. 1).

Each fire produces a mosaic of low- and high-severity patches
where the proportion of cells that burn at high severity increases
with fire size (Wimberly, 2002). To enable greater representa-
tion of high burn severity in larger fires, fire size is divided into
three classes: small (<100 km2), medium (100–500 km2), and large
(>500 km2) (Table 1). For each burned cell, a uniform random vari-
able is drawn on the interval (0.0, 0.5) for small fires, (0.1, 0.8) for
medium fires, and (0.7, 0.95) for large fires. The cell burns at high
severity if a second uniform random variable on the interval (0, 1)
is smaller than the first (Fig. 1).

Each cell has two state variables—the time since the last
high-severity fire (AGE) and the time since the most recent fire,
regardless of severity (TFIRE)—which allow for two pathways of
forest structural development (Wimberly, 2002; Fig. 1). In one path-
way, high-severity fire converts stands to an open condition, from
which single-story stands develop in the absence of fire. In the
other pathway, low-severity fire converts stands to a semi-open
condition that develops into multi-story stands (Wimberly, 2002).
Semi-open stands are defined as those that have not burned at
high severity for at least 30 years and have experienced at least
one low-severity fire in the last 30 years (AGE > 30 and TFIRE ≤ 30).

Multi-story stands have not burned at high severity for at least
80 years and have experienced at least one low-severity fire in
the last 80 years, but not within the last 30 years (AGE > 80 and
30 < TFIRE ≤ 80) (Wimberly, 2002).
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Table  1
Input parameters for LADS, as parameterized for the Oregon Coast Range (Wimberly, 2002). To facilitate comparison to equations used in the analytical approximation, values
for  the average number of fires per timestep (�j) was calculated assuming a one-year timestep. This value may  be multiplied by 10 for a 10-year timestep, as used in LADS.

Variable Notation/Equationa Coastal Province Valley Margin

Area of the jth province (km2) Aj 14,540 8880

Natural fire rotation (years) NFRj 200 100

Mean fire size (km2) MFSj 73 22.5

SD  of fire size (km2) SDFSj 320.5 50

Parameters for the lognormal fire-size distribution �j = ln[MFS2
j
/
√

(MFS2
j

+ SDFS2
j
)] 2.786 2.223

�j =
√

ln[1 + (SDFS2
j
/MFS2

j
)] 1.735 1.335

Average number of fires initiated in the jth province (#/year); used as
the  parameter for the Poisson random variable that determines the
number of fires per timestep

�j = Aj/(NFRj × MFSj) 0.996 3.947

Minimum (Mink) and maximum (Maxk) size (km2) for fires in the kth
size class (k = 1, 2, or 3, for small, medium, and large fires, respectively)

(Min1, Max1) (0, 100) (0, 100)
(Min2, Max2) (100, 500) (100, 500)
(Min3, Max3) (500, ∞)  (500, ∞)

Lower  (lk) and upper (uk) bounds for the random variable (Uk) used to (l1, u1) (0, 0.5) (0, 0.5)
(l2, u2) (0.1, 0.8) (0.1, 0.8)
(l3, u3
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S
fi
R
s
t

2

o
o
t
s
b

F
p

determine the probability of burning at high severity for a fire in the
kth size class

a In all formulas, the subscripts j and k refer to a particular province or fire-size c

Simulations are conducted on a grid of 9-ha cells (Nonaka and
pies, 2005) with a buffer around the Coast Range that allows
res to spread into and out of the analysis area (Wimberly, 2002).
eplications are initiated by conducting a burn-in period in which
imulations are run without recording output in order to overwrite
he initial stand ages (Fig. 1).

. Theory

A  fundamental characteristic of models that simulate the effects
f recurring disturbances (in this case, fire) on the abundance

f different forest conditions (e.g., age classes or stand struc-
ures) across a landscape is the rate of burning at each level of
everity. Understanding how the model simulates these rates of
urning is key to approximating the model analytically. The rate

Assign Initial 
Stand Age

Burn-In Period
Model runs are 

conducted without 
recording output

Class ify eac 
an age class 

stru ctur 
accordin g t o

varia ble s:  AGE 

Determine f ire seve rity 
for  eac h burned  ce ll

Two un iform rando m varia ble s are dra
for ea ch bu rned  cell: Vi is drawn on the 
interval (0,1) and  Uik on the  interval (lk,
uk),  whe re lk and uk vary dependin g on 
fire -size class  (Ta ble  1). If  Vi < Uik, the 
burns at  hig h severity.  Othe rwise seve
is lo w.

Incre ment the  state 
variables , AGE  and  

TFIRE acc ordin g to fir e 
occurren ce and  fir e 

severity

ig. 1. Flow chart of the major processes conducted in the simulation model, LADS (versio
rior  to recording output. White boxes represent the series of processes conducted in eac
) (0.7, 0.95) (0.7, 0.95)

espectively.

of burning, referred to as the hazard of burning, or hazard rate,
is the age-specific probability rate of fire (Johnson and Gutsell,
1994). It is not strictly a probability (values are not constrained
between 0 and 1), but rather, a probability rate. However, on an
annual timestep, viewing the hazard rate as the annual probabil-
ity of fire for stands of a given age provides an estimate almost
identical to the probability of fire in that year (Reed, 1994). The
hazard rate should not be confused with fire hazard, as used in
fire ecology as a measure of potential fire behavior based on fuel
loading.

The use of the hazard rate to determine a probability density

function for stand age previously was  described by Johnson and
Gutsell (1994).  An overview of this approach is provided below to
introduce the notation used in subsequent equations and to illus-
trate the derivation of several useful functions from the hazard rate.

h cell i nto 
 and  stand -
e type
 t wo st ate 
 and  TF IRE

Determine th e nu mbe r of 
fires i nitiated in each 

province
based  on  a Poisson  
rando m varia ble  with 

parameter 

For eac h fire i gnition , 
determine
1. Loc ation , weig hted  by 
stand  age  and  slo pe po sition

2. Fire size, drawn from a 
logno rmal distribution with 
parameters μj and σj (Ta ble  1)

Fire -Sprea d Subrout ine
Each fir e spread s from the  ig nitio n 
point followin g a stocha stic, cellular -
automata-ba sed  alg orithm whe re 
suscep tibil ity to fir e spread  from 
adjacen t cells is weig hted  by stand  
age, slope  po sition, and  wind 
varia ble s. Th e alg orithm con tin ues 
until the  bu rned  area  rea che s the  
fir e size drawn at the t ime of ig nitio n. 

wn 
 
 
 
 cell 
rity 

One 
Times tep

n 2.2; Wimberly, 2002). Gray ovals represent the steps involved in model initiation,
h timestep. Variables given in the boxes are defined in Table 1 and in the text.
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In the following equations, � is a random variable represent-
ng the number of years between successive fires that burn a given
ell at high severity (regardless of the number of times it burned
t low severity in the intervening period). In all equations, t repre-
ents stand age, which is reset only by high-severity fire, and thus
s equivalent to the state variable, AGE, in LADS.

The hazard rate for high-severity fire, h�(t), is the probability
hat a cell burns at high severity on the interval (t, t + �t), provided
t has reached age t without high-severity fire:

�(t) = lim
�t→0

[P{� ∈ (t, t + �t)|� > t}] 1
�t

.

The cumulative survivorship distribution, S�(t), is the probabil-
ty of a cell reaching age t without high-severity fire:

�(t) = exp

[
−
∫ t

0

h�(u)du

]
. (1)

n Eq. (1) and in the following equations, u is a dummy  variable used
o clarify that S�(t) is a function of the upper level of integration,
, and not a function of u. The probability density function for the
ntervals between high-severity fires, f�(t) (i.e., the density function
or intervals between successive fires that burn a given cell at high
everity, regardless of the number of times if burns at low severity
n the intervening period), is the probability of a cell reaching age

 without high-severity fire, S�(t), multiplied by the probability of
xperiencing high-severity fire in the next timestep, f�(t):

�(t)�t = P{� ∈ [t, t + �t]} = S�(t)h�(t)�t

= h�(t)exp(−
∫ t

0

h�(u)du)�t.  (2)

he above functions are related by h�(t) = f�(t)/S�(t).
For a given cell, the mean interval between successive high-

everity fires, E(�), is determined by integrating the survivorship
istribution over all stand ages:

(�) =
∫ ∞

0

S�(t)dt =
∫ ∞

0

exp

[
−
∫ t

0

h�(u)du

]
dt. (3)

f the hazard of burning at high severity follows the same function of
tand age in all cells, E(�) represents the NFR for high-severity fire,
r the average number of years for a cumulative area equal to the
xtent of the landscape to be burned at high severity (Heinselman,
973).

The hazard rate for high-severity fire may  be used to determine
he probability density function for stand age under the follow-
ng assumptions: (1) trees establish promptly after fire and tree
ongevity exceeds intervals between high-severity fires, such that
tand age is equivalent to the time since the last high-severity fire;
2) only high-severity fire kills the existing forest and initiates a
ew stand; and (3) the landscape has undergone several fire rota-
ions without changes in the hazard rate for high-severity fire. The
rst two assumptions are equivalent to defining the state variable,
GE, as the number of years since the last high-severity fire and
xcluding non-fire disturbances in LADS. The third assumption is
nalogous to the use of a burn-in period prior to recording model
utput and holding all input parameters values constant over the
nalysis period (Wimberly, 2002; Nonaka and Spies, 2005).

To calculate the probability density function for stand age, it is
seful to recognize that the reciprocal of the mean interval between
igh-severity fires at each cell, 1/E(�), represents the proportion of
he landscape expected to burn at high severity each year. Because

andscape size is fixed, and by assumptions 1 and 2, a new stand ini-
iates only after another stand is killed by high-severity fire, 1/E(�)
lso represents the frequency of stand establishment, or the aver-
ge proportion of the landscape covered by new stands initiated
l Modelling 233 (2012) 41– 51

each year. The probability density function for stand age, a∞(t), is
calculated by multiplying the frequency of stand establishment,
1/E(�), by the probability of stands reaching age t without high-
severity fire, S�(t):

a∞(t)= 1
E(�)

S�(t) = 1∫ ∞
0

exp
[
−
∫ t

0
h�(u)du

]
dt

exp

[
−
∫ t

0

h�(u)du

]
.

(4)

Eq. (4) specifies the probability that the age of a random cell is
equal to t in a given year provided assumptions 1–3, above. Also,
by assumption 3, a∞(t) is an equilibrium density function in the
sense that it does not depend on the year in which it is calculated.

If the hazard rate for high-severity fire follows the same func-
tion of stand age in all cells, a∞(t) provides the proportion of the
landscape expected to support stands of each age. However, the
proportion of the landscape observed to support stands of each
age in any year will diverge from the density function except in
the unlikely scenario where landscape size is so large relative to
the variation in the number of ignitions per year and fire size that
there is no variation in annual area burned (Turner and Romme,
1994; Wimberly et al., 2000). Nevertheless, if all input parameters
are fixed and the abundance of each age class is averaged over time
within a model run or across replications, the abundance of each
age class averaged over time or across replications eventually will
converge to a∞(t).

3. Calculation

3.1. Derivation of hazard rates

The first step in approximating the proportion of the Oregon
Coast Range expected to support stands of each age, as simulated
by LADS, is to determine the rate at which stands burn at low and
high severity (i.e., the hazard rates for low- and high-severity fire)
(Fig. 2). In doing so, we have to make the simplification of excluding
influences of stand age and topographic position on susceptibility
to fire ignition and spread. Eqs. (1)–(4) apply whether or not stand
age (i.e., fuel loading or microclimatic variation as a function of
time since fire) feeds back on the annual probability of fire occur-
rence (McCarthy et al., 2001). However, in LADS, these influences
are incorporated into the fire-spread algorithm (Wimberly, 2002),
which means the proportion of cells in each age class and topo-
graphic position burned by a given fire depends on the location of
the ignition and the pattern of different age classes at the time of
the fire. Therefore, the difference between the expected age distri-
bution determined analytically without accounting for influences
of stand age and topographic position and the average simulated
abundance of each age class provides a measure of the strength of
these influences.

The overall hazard rate (regardless of fire severity) is repre-
sented by h(j)(t), where the index, j, indicates there is a unique
function for each province. The overall hazard rate in each province
can be determined by multiplying the average number of fires per
year in the province, �j (Table 1), by the probability that a random
cell in that province is burned by each fire:

h(j)(t) = �j × P{bi = 1}, (5)

where bi has a value of 1 if the ith cell is burned by a given fire, and
0 otherwise.

When the hazard rate is independent of stand age, the prob-

ability that a random cell is burned by a single fire of known
size can be determined by conditioning on the size of the fire:
P {bi = 1|X  = x} = x/Aj (Boychuk et al., 1997), where X represents fire
size, and Aj represents the area of the jth province (Table 1). For
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Fig. 2. The steps involved toward approximating the expected abundance of stands
in  each age class and of two  stand-structure types recently affected by low-severity
fi
W

a
d
o
s

P

h

w
u
w
s
N
a

a
b
a

h

w
a

v
s
r
i

The probability density function for stand age in each province,
re, as determined by the stochastic, spatial simulation model, LADS (version 2.2;
imberly, 2002).

 series of recurring fires, where fire size is drawn from a known
ensity function, fj(x), conditioning on fire size enables calculation
f the probability that a given cell is burned per ignition without
imulating the size of each fire:

{bi = 1} =
∫ ∞

0

P{bi = 1
∣∣X}fj(x)dx =

∫ ∞

0

x

Aj
fj(x)dx. (6)

Therefore, Eq. (5) can be solved as

(j)(t) = �j × P{bi = 1} = �j ×
∫ ∞

0

x

Aj
fj(x)dx = �j × MFSj

Aj
= 1

NFRj
,

here MFSj and NFRj, are the user-defined mean fire size and nat-
ral fire rotation, respectively, of the jth province (Table 1). Thus,
hen the annual probability of fire occurrence is independent of

tand age or location, the hazard rate is simply the reciprocal of the
FR, even with contagious fire spread and stochastic variation in
nnual area burned around a fixed mean.

To determine the hazard rate for high-severity fire, h(j)
� (t), the

verage number of fires per year in each province, �j, is multiplied
y the joint probability that a random cell is burned by each fire
nd it burns at high severity:

(j)
� (t) = �j × P{bi = 1, ω = 1}, (7)

here ωi has a value of 1 if the ith cell is burned at high severity
nd 0 otherwise.

In LADS, fire severity is determined based on a uniform random
ariable, Uik, drawn cell-by-cell on a different interval for each fire-

ize class (Table 1). Values of Uik are compared to a second uniform
andom variable, Vi, drawn on the interval (0, 1) for each cell. The
th cell burns at high severity if Vi < Uik (Fig. 1). Therefore, given that
l Modelling 233 (2012) 41– 51 45

the ith cell is burned by a fire in the kth size class, the probability
that it burns at high severity is provided by:

p{ωi = 1} = P{Vi < Uik} = E(Uik).

Because Uik and Vi are drawn independently for each cell, the
proportion of the cells burned by fires in the kth size class expected
to experience high-severity fire, gk, is provided by the expected
value of the uniform random variable, Uik.

The joint probability that a random cell is burned (bi = 1) and fire
severity is high (ωi = 1) is determined by multiplying the probability
that the ith cell is burned by a fire in each size class by the proportion
of cells burned by a fire of that class expected to experience high-
severity fire, and then summing across m = 3 classes:

P{bi = 1, ωi = 1} =
m∑

k=1

(
gk

∫ Maxk

Mink

x

Aj
fj(x)dx

)
= g1

∫ 100

0

x

Aj
fj(x)dx

+ g2

∫ 500

100

x

Aj
fj(x)dx + g3

∫ ∞

500

x

Aj
fj(x)dx. (8)

In the above equation, Mink and Maxk are the user-defined min-
imum and maximum area burned by fires of the kth size class
(Table 1). These values are defined such that Min1 = 0, Maxk = Mink+1,
and Maxm = ∞.

Because fire size is drawn from a lognormal distribution, the
density function for fire size, fj(x), is given by,

fj(x) = 1

x�j

√
2�

exp

[
−1

2

{
(ln(x) − �j)

2

�2
j

}]
,

where parameters, �j and �j, are given in Table 1. Thus, each inte-
gral in Eq. (8) can be solved as

gk

∫ Maxk

Mink

x

Aj
fj(x)dx = gk

[
1
Aj

exp
(

�j + 1
2

�2
j

)
× (Zk − Yk)

]
,

where

Zk = ˚

(
ln(Maxk)−(�j + �2

j
)

�j

)
, Yk = ˚

(
ln(Mink)−(�j + �2

j
)

�j

)
,

and ˚(x) represents the value of the standard normal distribution
at x. The values, Zk and Yk, represent the proportion of the total
area burned over a long simulation that is expected to be burned
by fires smaller than the upper and lower bound, respectively, of
the kth size class.

Assuming the annual probability of fire occurrence and fire
severity are independent of stand age, the hazard rate for low-
severity fire is calculated as the difference between the overall
hazard of burning and the hazard rate for high-severity fire: h(j)

L (t) =
h(j)(t) − h(j)

� (t). This relationship is verified by modifying Eqs. (7) and
(8) to determine the joint probability that a cell is burned and fire
severity is low (P {bi = 1, ωi = 0}), and replacing gk with the propor-
tion of cells expected to experience low-severity fire for a fire in
the kth size class (1 − gk).

3.2. Stand-age distribution
a(j)
∞(t), is determined by Eq. (4) using the hazard rate for high-

severity fire (Eqs. (7) and (8)). Then, the expected abundance of each
age class across the entire Coast Range is calculated by weighting
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he density function for stand age in each province by the propor-
ion of the total landscape represented by that province:

∞(t) = A1∑n
j=1Aj

a(1)
∞ (t) + · · · + An∑n

j=1Aj

a(n)
∞ (t), (9)

here n is the number of provinces. Eq. (9) is provided in gen-
ral form for application to any number of provinces. For the two
rovinces of the Coast Range, Eq. (9) is reduced to

∞(t) = AC

AC + AV
aC

∞(t) + AV

AC + AV
aV

∞(t),

here AC and AV represent the area, and aC∞(t) and aV∞(t) are the
ensity functions for stand age in the Coastal and Valley Margin
rovinces, respectively.

.3. Effects of low-severity fire

The probability density function for stand age, a∞(t), is used
long with the hazard rate for low-severity fire, h(j)

L (t), to determine
he proportion of each province expected to support semi-open
nd multi-story stand structures recently affected by low-severity
re (Wimberly, 2002; Fig. 2). The probability that a stand has not
urned at low severity over a certain range of ages is determined
y evaluating the survivorship distribution over the specified age
ange in a manner analogous to Eq. (1),  but replacing the hazard rate
or high-severity fire (h�(t)) with the hazard rate for low-severity
re (hL(t)). This gives

L(t) = exp

[
−
∫ t

0

hL(u)du

]
.

The probability of experiencing at least one low-severity fire
ver a range of ages is determined by evaluating 1 − SL(t) over the
pecified age range.

The proportion of each province expected to support stands in
he semi-open stand-structure class of Wimberly (2002; AGE > 30
nd TFIRE ≤ 30) is calculated by multiplying the expected abun-
ance of stands of each age (t > 30), by the probability of
xperiencing at least one low-severity fire in the previous 30 years,
nd summing across ages:

roportion semi-open =
∞∑

t=31

[
a(j)

∞ (t)

{
1 − exp

(
−
∫ t

t−30

h(j)
L

(u)du

)}]
. (10)

The proportion of each province expected to support multi-story
tands (Wimberly, 2002; AGE > 80 and 30 < TFIRE ≤ 80) is deter-
ined by finding the proportion of stands of each age (t > 80)

xpected to have experienced at least one low-severity fire in the
ast 80 years, but not within the last 30 years:

roportion multi-story

=
∑∞

t=81

⎡
⎢⎢⎣

a(j)
∞(t)

{
1 − exp

(
−
∫ t−30

t−80

h(j)
L (u)du

)}
{

exp

(
−
∫ t

t−30

h(j)
L (u)du

)}
⎤
⎥⎥⎦ . (11)

Previous publications using LADS have not reported the aver-
ge abundance of the semi-open and multi-story stands. Therefore,
e conducted a 50,000-year simulation of LADS following a 1000-

ear burn-in period, using input parameters according to previous
tudies of the historical range of variability in landscape structure

f the Oregon Coast Range (Wimberly, 2002; Nonaka and Spies,
005). Then, the analytically determined abundance of semi-open
nd multi-story stands was compared to that averaged over time
n the simulation.
l Modelling 233 (2012) 41– 51

4.  Results

4.1. Stand-age distribution

After assuming the annual probability of a cell burning is inde-
pendent of the timing or severity of previous fires and cell location
within a province, Eq. (6) illustrates that the overall hazard rate
(regardless of severity) is the reciprocal of the user-defined overall
NFR for each province: 0.005 and 0.01 for the Coastal and Valley
Margin provinces, respectively (Table 2). The above assumption
leads to a probability density function for the intervals between
successive fires at any cell, f�(t), that is exponential in form (Eq.
(2)).

For fires of the kth size class, the proportion of burned cells that
is expected to experience high-severity fire is g1 = 0.25, g2 = 0.45,
and g3 = 0.825, for small, medium, and large fires, respectively.
Thus, by Eq. (8),  for each fire initiated in the Coastal Province,
the joint probability that a random cell in that province is burned
and fire severity is high is 2.77 × 10−3. For fires initiated in the
Valley Margin the joint probability is 8.45 × 10−4 (Table 2). Mul-
tiplying the above values by the average number of fires initiated
per year in each province (�j; Table 1) provides the hazard rate for

high-severity fire: h(C)
� (t) = 2.76 × 10−3 and h(V)

� (t) = 3.34 × 10−3

in the Coastal and Valley Margin provinces, respectively (Eq. (7);
Table 2).

The above hazard rates entered into Eqs. (4) and (9) provide an
analytically-determined percentage of the Coast Range expected to
support each of seven age classes within 1.1% of the abundance of
each age class averaged over time within model runs and across
replications of the simulation model (Table 3). The analytically-
determined expected abundance of all but three classes (Mature,
Mid  Old Growth, and Late Old Growth) is within 0.5% of their aver-
age abundance determined by simulation.

Under the assumption that the annual probability of a cell burn-
ing at high severity is independent of the time since the previous
fire, the NFR for high-severity fire (362 years in the Coastal Province
and 300 years in the Valley Margin) is the reciprocal of the hazard
rate for high-severity fire (Eq. (3)). Also, under this assumption,
the probability density functions for the intervals between succes-
sive high-severity fires (Eq. (2)) and for stand age (Eq. (4)) in each
province both are exponential in form.

4.2. Abundance of stand structures

The approximation provides proportions of each province
expected to support stands recently affected by low-severity fire
that closely match those averaged over a 50,000-year simulation
(Table 4). The analytically determined percentages of the Coastal
and Valley Margin provinces expected to support semi-open stands
(6.0 and 16.4%, respectively) are within 1% of that averaged over
the simulation (6.9 and 15.6%, respectively). Likewise, for multi-
story stands, the analytically determined expected abundance in
the Coastal and Valley Margin provinces (7.9 and 17.8%, respec-
tively) both are within 1.5% of that averaged over the simulation
(8.9 and 16.3%, respectively; Table 4).

The hazard rate for low-severity fire (h(C)
L (t) = 2.24 × 10−3 and

h(V)
L = 6.66 × 10−3 in the Coastal and Valley Margin provinces,

respectively; Table 2) was  found by subtracting the hazard rate
for high-severity fire from the overall hazard or burning. Under the
assumptions that the hazard rate for low-severity fire in a given cell

is independent of the time since the most recent fire or its severity,
the NFR for low-severity fire (447 years in the Coastal Province and
150 years in the Valley Margin; Table 2) is the reciprocal of this
hazard rate (Eq. (3)).
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Table  2
Calculations used to approximate the equilibrium age distribution produced by LADS, as parameterized for the Oregon Coast Range in studies of Wimberly (2002) and Nonaka
and  Spies (2005).  Variables not defined below are input parameters defined in Table 1.

Variable Equationa Coastal Province Valley Margin

Average proportion of cells that
experience high-severity fire
for  fires in the kth size class

gk = (lk + uk)/2 g1 = 0.250 g2 = 0.450 g3 = 0.825 g1 = 0.250 g2 = 0.450 g3 = 0.825

For  each fire initiated in the jth
province, the joint
probability that the ith cell is
burned (bi = 1) and fire
severity is high (ωi = 1)

P{bi = 1, ωi = 1} =
m∑

k=1

⎛
⎝gk

Maxk∫
Mink

x
Aj

fj(x)dx

⎞
⎠

m is the number of fire-size classes

2.77 × 10−3 8.45 × 10−4

Proportion of total area burned
that is expected to be burned
by fires smaller than the
upper bound of the kth size
classa

Zk = ˚

(
ln(Maxk )−(�j+�2

j
)

�j

)
Z1 = 0.246 Z2 = 0.596 Z3 = 1.000 Z1 = 0.674 Z2 = 0.951 Z3 = 1.000

Proportion of the total area
burned that is expected to be
burned by fires smaller than
the lower bound of the kth
size classb

Yk = ˚

(
ln(Mink )−(�j+�2

j
)

�j

)
Y1 = 0.000Y2 = 0.246Y3 = 0.596 Y1 = 0.000Y2 = 0.674Y3 = 0.951

Proportion of total area burned
expected to be burned by
fires in the kth size class

Qk = Zk − Yk Q1 = 0.246Q2 = 0.349Q3 = 0.404 Q1 = 0.674Q2 = 0.277Q3 = 0.049

Overall hazard of burning h(j)(t) = 1/NFRj 0.005 0.010

Hazard  rate for high-severity
fire

h(j)
� (t) = �j × P

{
bi = 1, ωi = 1

}
2.76 × 10−3 3.34 × 10−3

Hazard rate for low-severity
fire

h(j)
L

(t) = h(j)(t) − h(j)
� (t) 2.24 × 10−3 6.66 × 10−3

Natural fire rotation for
high-severity fire

NFRH
j

= 1/h(j)
� (t) 362 300

Natural  fire rotation for
low-severity fire

NFRL
j

= 1/h(j)
L

(t) 447 150

Probability density function for
stand age of the jth province

aj
∞(t) = h(j)

� (t) × exp(−
∫ t

0
h(j)

� (u)du)

Overall probability function for
stand age (n represents the

a∞(t) = A1∑n

j=1
Aj

a1
∞(t) + · · · + An∑n

j=1
Aj

an
∞(t) See Table 3

class, 
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number of provinces)

a In all equations, subscripts, i, j, and k, refer to a given cell, province, or fire-size 

b Ф(x) represents the value of the standard normal distribution at x.

.3. Effects of input parameters

The expected abundance of each age class is highly sensitive to
hanges in the overall NFR (i.e., the NFR of the province regardless
f fire severity) (Fig. 3a) due to a linear relationship between the
verall NFR and the NFR for high-severity fire, as explained below.

he mean number of fires per year in each province (�j) has an
nverse linear relationship with the overall NFR of the province,
iven by �j = Aj/(NFRj × MFSj) (Table 1). Also, the mean number of
res per year is the only term in the equation for the hazard rate

able 3
omparison of the equilibrium age-class distribution for the Oregon Coast Range
roduced by LADS to that produced by an analytical approximation using the same
re-regime parameters.

Age class Age range Percentage of landscape

Simulationa Approximation

Very open 0–10 2.7 2.9
Patchy open 11–20 2.7 2.9
Young 21–80 15.3 15.4
Mature 81–200 23.0 23.6
Early old growth 201–450 28.3 28.8
Mid  old growth 451–800 16.2 16.9
Late old growth >800 10.5 9.4

a From Appendix A of Nonaka and Spies (2005).  Values were averaged over time
ithin each of 200, 1000-year replications, then these values were averaged across

eplications.
respectively.

for high-severity fire affected by a change in the overall NFR, and
the hazard rate for high-severity fire scales linearly with this value
(Eq. (7)). Thus, the NFR for high-severity fire in each province also
scales linearly with the overall NFR of the province.

For a given mean and SD of fire size, the slope of the linear rela-
tionship between the overall NFR and the NFR for high-severity fire
is determined by the proportion of cells expected to burn at high
severity for a fire in each size class, gk (Table 2). The area burned
each year, as determined by the number of fires and the size of each
fire, is unrelated to gk. However, changing gk affects the mean area
expected to burn at high and low severity each year. For example,
reducing values of gk by 10% causes the area within the 14,540-
km2 Coastal Province expected to burn at high severity each year
to decrease from 4017 ha to 3617 ha, which leads to greater abun-
dance of the oldest age class and lower abundance of the youngest
classes (Fig. 3b).

Adjusting each parameter of the fire-size distribution individu-
ally by as much as ±50% from its baseline value has little influence
on the expected abundance of each age class (Fig. 3c and d). Param-
eters of the fire-size distribution do not affect the expected area
burned per year: when the mean fire size of a province is increased
or decreased, the expected number of fires per year in that province
adjusts according to the relationship, �j = Aj/(NFRj × MFSj) (Table 1),

to compensate for the larger or smaller fires and thereby maintain
the same mean annual area burned. Parameters of the fire-size dis-
tribution affect the expected age distribution only through their
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Mature (81–200 yrs)Young (21 –80 yrs)Open (0–20 yrs)

Late Old Growth (> 800 yrs)Mid Old Growth (451 –800 yrs)Early Old Growth (201 –450 yrs)

Age Class

Fig. 3. The proportion of the Oregon Coast Range expected to support stands of six age classes over a range of values of (a) the overall NFR, (b) the proportion of burned cells
that  burn at high-severity for a fire of the kth size class, gk , (c) the mean fire size (MFSj), and (d) the SD of fire size (SDFSj) of each province. Each parameter was adjusted in 10%
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ncrements to ±50% of its baseline value (the asterisk on the x-axis represents the ba
nd  Spies (2005), as listed in Table 3, but the two  youngest classes were combine
eyond a 20% increase in gk , the value of g3 was held constant at 0.99.

ffect on the proportion of the total area burned per year that is
urned by fires in each size class (Qk, Table 2), which influences the
robability that a cell will be burned at high severity for each fire ini-
iated in its province (Eq. (8)). However, it takes a very large change
n the mean or SD of fire size to produce a substantial change in
his value. For example, decreasing the mean fire size of the Coastal

rovince by 50% from its baseline value causes the expected propor-
ion of the total area burned by large fires (>500 km2) to decrease
rom its baseline value of 0.404 (Table 2) to 0.331. As a result,
he area expected to burn at high severity each year within the

able 4
quations used to calculate the expected proportion of the landscape covered by the se
ariables are defined in Table 2 and u is used as a dummy  variable to clarify that the haz
he  analytically determined abundance of each stand structure in the Coastal and Valley M
bundance averaged over a 50,000-year simulation provided in parentheses.

Stand-structure class Equation 

Semi-opena

AGE > 30
TFIRE ≤ 30

∞∑
t=31

[
a(j)

∞ (t)

{
1 − exp

(
−
∫ t

t−30
h(j)

L
(u)du

)}
Multi-storya

AGE > 80
30 < TFIRE ≤ 80

∞∑
t=31

⎡
⎢⎢⎣

a(j)
∞ (t)

{
1 − exp

(
−
∫ t−30

t−80

h(j)
L

(u)du

)
{

exp

(
−
∫ t

t−30

h(j)
L

(u)du

)}
a AGE and TFIRE represent the time since the last high-severity fire and the time since 

emi-open and multi-open stand-structure classes.
 value for each parameter, as defined in Table 1). Age classes follow those of Nonaka
 to narrow class width and similarity in response to changes in input parameters.

14,540-km2 Coastal Province decreases by only 26 ha, with little
effect on the expected abundance of each age class (Fig. 3c).

5. Discussion

5.1. New insight from the approximation
Analytical approximation of the computer simulation model,
LADS (version 2.2; Wimberly, 2002), produces the abundance of
seven age classes and two stand structures equivalent to that

mi-open and multi-story stand-structure classes, as defined by Wimberly (2002).
ard rate for moderate-severity fire, h(j)

M
(t) is a function of the limits of integration.

argin provinces is provided in the third and fourth columns, respectively, with the

Coastal Province Valley Margin

]
6.0
(6.9)

16.4
(15.6)}⎤

⎥⎥⎦ 7.9
(8.9)

17.8
(16.3)

the last fire of any severity, respectively, as used by Wimberly (2002) to define the
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veraged over time and across replications of the simulation model
Tables 3 and 4). The approximation provides a detailed under-
tanding of the modeled fire regime without simulating a series
f recurring fires or the forest response to each fire. It illustrates
hat in the Coastal Province, cells burn at high severity at a mean
nterval of 362 years and at low severity at a mean interval of 447
ears (Table 2). Also, in the Coastal Province, only 2% of fires are of
he large size class, where the proportion of fires in the kth size class
s given by, ˚[{ln(Maxk) − �j}/�j] − ˚[{ln(Mink) − �j}/�j]. How-
ver, this small percentage of fires that exceed 500 km2 in extent
ccounts for 40% of the total area burned over a long simulation (Q3;
able 2). In the Valley Margin, cells burn at high and low severity at
ean intervals of 300 and 150 years, respectively (Table 2), where

6% of the fires are of the small size class (≤100 km2) and these
res account for account for 67% of the area burned over time (Q1;
able 2).

Although LADS was parameterized to account for the spatial
ariation in the fire regime determined in an empirical fire-history
tudy, none of the above values are provided in the simulation
utput to help validate the parameterization. The empirical study
ound evidence of at least two episodes of widespread, high-
everity fire in the 16th century and another similar episode in the
9th century (Impara, 1997). Less extensive episodes with a mixed
attern of burn severity occurred more frequently than the high-
everity episodes, but they were limited primarily to drier areas
ear the Willamette Valley.

The analytically determined values (Table 2) quantify how the
ifferences in input parameters (Table 1) translate into different
re regimes between the two provinces. In particular, because fire
ize is modeled with a lognormal distribution and the probability
f burning at high severity increases with fire size, relative differ-
nces in the frequency of low- and high-severity fire are determined
y the parameters of the fire-size distribution. The mean and SD
f fire size in the Coastal Province are large enough that for each
gnition, the joint probability that a random cell is burned and fire
everity is high (P {bi = 1, ωi = 1} = 2.77× 10−3 ; Eq. (8),  Table 2) is
reater than the joint probability that the cell is burned and fire
everity is low (P {bi = 1, ωi = 1} = 2.25 × 10−3). The latter probabil-
ty was calculated following Eq. (8),  but the proportion of burned
ells expected to experience high-severity fire (gk) was  replaced
ith the proportion expected to burn at low severity (1 − gk). Thus,

he NFR for low-severity fire is longer than that for high-severity
re in the Coastal Province (Table 2), but the converse is true in the
alley Margin due to the smaller mean and SD of fire size.

After determining the hazard rates for high- and low-severity
re, it was possible to calculate the expected abundance of each
ge class (Eq. (9); Table 3). In addition, the limits of integration
n Eqs. (10) and (11) can be adjusted to determine the expected
bundance of any stand-structure type defined by the two  state
ariables tracked for each cell in LADS (Table 4).

A primary benefit of the approximation is that it produces a
eries of equations that directly specify the roles of key input
arameters (see Section 5.2). Also, the ability to calculate the
xpected abundance of each age class and stand-structure type
ithout simulating a series of recurring fires or the spread and

ffects of each fire is highly valuable. The fire-spread algorithm of
andscape-scale models of fire and forest dynamics usually is the

ost difficult algorithm to develop, the most time-consuming part
f running the model, and it may  be difficult to evaluate relative to
mpirical data.

.2. Direct evaluation of parameter effects
The specification of the roles of key input parameters ana-
ytically differs from sensitivity analyses commonly applied to
imulation models because equations directly illustrate the effect
l Modelling 233 (2012) 41– 51 49

of the parameters rather than having to infer these effects indi-
rectly from model output. Direct specification of parameter effects
has the advantages that it can quickly be applied over a broad range
of parameter values, it is not dependent on the number of model
replications or simulation length, and it provides equations that
aid in identifying scaling relationships among the parameters. For
example, with all other input parameters fixed, the NFRs for low-
and high-severity fire both scale linearly with the overall NFR of
each province (Table 2).

The benefit of evaluating the effects of input parameters ana-
lytically is shown by the illustration of the reasons why changing
parameters of the fire-size distribution has minimal effect on the
expected abundance of each age class (Fig. 3c and d). Changing the
mean or SD of fire size affects the expected age distribution only by
changing the proportion of the total area burned that is expected to
be burned by fires in each size class, Qk, and its corresponding effect
on the hazard rate for high-severity fire (Eq. (8),  Table 2). However,
these effects are minimal even after increasing or decreasing the
mean or SD of fire size by as much as 50% from their baseline values
(Fig. 3c and d).

Changing the mean or SD of fire size does affect the year-to-
year variation in area burned, however, and this increased variance
could be misinterpreted as an effect on the average abundance of
each age class if it was  evaluated using a sensitivity analysis with
too few replications. For example, if mean fire size is increased,
the expected number of fires per year (�j) decreases according to
the relationship, �j = Aj/(NFRj × MFSj), in order to maintain the same
mean annual area burned (Aj/NFRj). However, with a larger mean
fire size, this area will be burned by a smaller number of fires that
are larger, on average, than under the baseline scenario. As a result,
variation in annual area burned will increase relative to the baseline
scenario, and it would take a longer model run or a larger number
of replications to reach a stable mean abundance of each age class
equivalent to that determined analytically.

5.3. Feedback of stand age on fire occurrence

LADS was  designed with the intention that susceptibility of
each cell to fire ignition and spread from adjacent cells follows a
U-shaped function of stand age (Agee and Huff, 1987; Wimberly,
2002). Despite this intention, the age distributions produced ana-
lytically without accounting for the feedback of stand age on fire
susceptibility was nearly identical to that produced by simulation
(Table 3), which suggests this feedback has little or no influence on
the average abundance of each age class over time. The reason for
limited effect of this feedback lies primarily in the independence
of the random variables that determine the area burned in each
timestep from the forest conditions existing at that time. The num-
ber of fires per timestep in each province is modeled as a Poisson
random variable, and the size of each fire is drawn from a lognor-
mal  distribution at the time of each ignition. Both random variables
are independent of existing forest conditions.

The drawing of annual area burned independent of the exist-
ing forest conditions is consistent with a system where fire size is
driven primarily by weather, and time since the previous fire has
little or no feedback on fire occurrence (Bessie and Johnson, 1995).
For example, a large number of fires could occur and large fire sizes
could be drawn in a year when most of the landscape is in the least
fire-prone age classes. Thus, fires could extinguish in the middle of
a patch of highly susceptible vegetation or spread across a patch in
the least susceptible condition depending on the fire size drawn at
the time of ignition. The drawing of the number of fires per year and

the size of each fire independent of existing landscape condition
may  be appropriate for the Oregon Coast Range, where some of the
largest documented fires were driven by strong foehn winds that
likely overrode variation in fuel loading associated with stand age
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Dague, 1934). However, this approach to determining annual area
urned could be highly inaccurate in drier regions prone to more
requent fire, where spatial variation in fuel loading as a function
f time since the previous fire is more likely to constrain fire extent
Collins et al., 2009).

Understanding how the independence of variables affecting
nnual area burned from existing forest conditions may  over-
ide the feedback of stand age on fire susceptibility is essential
efore applying a model to regions with different relative strengths
f weather and fuels in limiting fire extent (Meyn et al., 2007).
ther widely used models, including LANDIS (He et al., 2005) and
ANDSUM (Keane et al., 2006), also draw fire size from a known
istribution at the time of ignition independent of the abundance
f different forest conditions that year, which may  weaken the
eedback of time since fire on susceptibility to subsequent fire.

.4. Exponential age distributions

Under a system where time since fire has no effect on the annual
robability of fire occurrence (i.e., an age-independent hazard rate),
he probability density functions for the fire-interval distribution
nd stand age both are exponential in form (Johnson and Gutsell,
994). For the reasons stated in Section 5.3,  the assumption that
tand age has no feedback on the annual probability of fire occur-
ence appears reasonable for the Oregon Coast Range. Under this
ssumption, the hazard rate for high-severity fire in each province
s the reciprocal of the NFR for high-severity fire: h(j)

� = 1/E(j)(t)
Eq. (3)). Also, the density function for the intervals between suc-
essive high-severity fires for cells in each province f (j)

� (t) (Eq. (2)),
s equivalent to the density function for stand age, a(j)

∞(t) (Eq. (4)),
n the respective province, and both are exponential in form. How-
ver, if time since fire more strongly affected the probability of a cell
urning, the equilibrium age distribution would not be equivalent
o the fire-interval distribution, and neither would be exponential
McCarthy et al., 2001).

Although the approximation of LADS produces an exponential
ge distribution for each province, the distribution of stand ages
ound in any year of the simulation fluctuates around this dis-
ribution (Wimberly et al., 2000). The degree of fluctuation is a
unction of the extent of the province relative to variation in annual
rea burned, as driven by variation in the number of fires per year
nd the size of each fire. Given the high SD of fire size (Table 1),
he observed area burned per year fluctuates widely around the
xpected value, which allows the age distribution found in any
ear of the simulation to vary widely around a∞(t). The degree of
ariation also increases when considering a subset of a province
Wimberly et al., 2000). However, if province area (Aj) was  extended
ndefinitely, the average number of fires per year would increase
ccording to the relationship, �j = Aj/(NFRj × MFSj) (Table 1). Thus,
y the law of large numbers (Ross, 2002), with increasing num-
ers of fires per year, the mean size of the fires in any year of the
imulation would approach MFSj. Also, the area burned in any sim-
lation year would approach the expected annual area burned, and
he observed age distribution would approach the equilibrium age
istribution. Averaging across a large number of replications would
ave a similar effect.

Despite an exponential form for the equilibrium age distribu-
ion of each province, the expected age distribution of the entire
oast Range is not exponential. Calculating the density function for
tand age for a spatial mixture of fire regimes in the two provinces,
ach with different hazard rates for high-severity fire, requires first

alculating the density function for stand age in each province, and
hen averaging these functions weighted by province area (Eq. (9)).
his calculation is not equivalent to calculating an average haz-
rd rate for the two provinces, and then using this hazard rate to
l Modelling 233 (2012) 41– 51

determine the expected abundance of each age class (McCarthy
and Cary, 2002). Similarly, under a temporally varying fire regime,
where the expected area burned per year is not fixed, the prob-
ability density function for stand age in any year would not be
exponential, even if the annual probability of fire was independent
of stand age (Boychuk et al., 1997).

5.5. Limitations of the approximation

It is important to note that the approximation does not pro-
vide statistical distributions for the abundance of forest age classes
or stand structures, and it provides no information on patch sizes
or spatial patterns of the different forest structures. In addition,
although the simplification of assuming that time since fire does
not feedback on the annual probability of fire occurrence has lit-
tle or no effect on the abundance of each age class and stand
structure averaged over time and across simulation replicates, the
approximation does not address whether the feedbacks of stand
age incorporated into the fire-spread algorithm of LADS (Wimberly,
2002) lead to fine-scale spatial variation in the distribution of age
classes and stand structures distinct from that produced under a
scenario where stand age is not incorporated into the fire-spread
algorithm.

Another aspect of LADS not addressed analytically is the effects
of fire that spread across province boundaries. Because fire size
is drawn at the time of ignition using fire-size parameters for the
province where it is ignited, the spread of fires across province
boundaries could lead to heterogeneity in the fire-size distribution
for each province. Differences in the fire-size distribution between
cells located near a province boundary and those further from the
boundary are potentially important because the probability of a
cell being burned at high severity is related to the size of the fire
in which it burns. However, the effect of fires spreading across
province boundaries on the expected age distribution of the Oregon
Coast Range may  be minor because each province is a single poly-
gon and there is relatively little common boundary between them.
If the landscape were a finer-scale mosaic of smaller zones with dif-
ferent fire-regime parameters, failure to account for the effects of
fire spread among zones could lead to greater divergence between
age distributions determined analytically and by simulation. How-
ever, in the case where most fires spread among zones, drawing fire
size at the time of ignition based on parameters of the zone where
the fire was initiated may  poorly represent the fire-spread process.

6. Conclusions

Analytical approximation of the simulation model, LADS pro-
vides a detailed understanding of the modeled fire regime and
clarifies the effects of key input parameters. Also, once the hazard
rates for high- and low-severity fire are determined (Table 2), the
expected abundance of each age class (Table 3) and different stand
structures (Table 4) can be calculated directly, without generating a
series of recurring fires. The development of an analytical approxi-
mation for LADS illustrates that analytical methods can account for
much of the complexity more commonly addressed by simulation.
In this case, they were applied to a system with (1) two provinces,
each with a unique fire-interval and fire-size distribution, (2) varia-
tion in annual area burned driven by stochasticity in the number of
fires per year and the size of each fire, (3) two fire severities that lead
to two  pathways of forest succession, and (4) greater representation
of high-severity fire with increasing fire size.
Numerous other models use a series of random variables to
determine the area burned each year and the size of each fire,
and a rule-based approach associated with a state-and-transition
succession model is used to model the effects of fire on forest
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uccession (Kurz et al., 2000; Keane et al., 2004; Scheller and
ladenoff, 2007; He, 2008). Thus, it is likely that methods simi-

ar to those developed in this study can be applied to gain greater
nderstanding into the functioning of other landscape-scale forest
imulation models.

For models that incorporate several spatially interactive pro-
esses (e.g., fire spread and seed dispersal) or employ more complex
eedbacks of forest conditions on fire spread or severity, it may  be
ifficult to approximate all of the model algorithms analytically. In
hese cases, comparing the simulation output to results of an ana-
ytical approximation that accounts for as much model behavior as
ossible provides a basis for interpreting the strengths and identify-

ng thresholds in the processes that cannot be derived analytically
Ives et al., 1998).

As simulation models become increasingly complex and are
ncreasingly applied to novel scenarios (e.g., changing fire regimes
nder a warming climate), it becomes increasingly important to
etter understand how these models work. Analytical approxima-
ion is not suggested as a substitute for simulation models, but
ather, as a complementary approach aimed at providing greater
nsight into model function. Increasing the transparency of these

odels may  clarify the degree of uncertainty in model output that
an be attributed to input parameter values that were estimated. In
ddition, analytical approximation may  help in identifying thresh-
lds and scaling relationships among parameters, and determining
hether the number of model replications is sufficient before eval-
ating output.
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