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NON-SPATIAL AND SPATIAL MODELS FOR MULTI-HOST
PATHOGEN SPREAD IN COMPETING SPECIES: APPLICATIONS
TO BARLEY YELLOW DWARF VIRUS AND RINDERPEST



1 INTRODUCTION

Modeling and analyzing the combined effects of disease and population dynamics is
important in understanding the effects of mechanisms such as pathogen transmission and
direct competition between host species on the distribution and abundance of different
species in an ecological community. Although mathematical advances have been made in
this area, analysis of equilibria of basic models that combine the dynamics of disease and
two interacting species is difficult and can often be intractable. Mathematical analysis
of such models in a spatially explicit environment gives additional insight into the role
that spatial heterogeneity can have on the dynamics of communities of different species.
Motivated by my participation in the IGERT Ecosystem Informatics program and col-
laboration with several faculty and Researchers in mathematics and ecology, I explore
the interactions between and among disease, competition, and spatial heterogeneity using

mathematical modeling and analysis.

Theoretical and empirical investigations have shown that generalist pathogens or
parasites infecting multiple host species can influence species diversity and community
structure [118, 81, 24, 34, 63, 84]. Empirical studies have also demonstrated the impor-
tance of the combined effects of inter- and intra-specific competition between species and
the effects of pathogens (apparent competition) on the population dynamics of multi-host
systems [59]. Thus, the interaction between community and disease ecology can help us
understand the structure of a biological system and the reasons why species coexist with
each other [39]. In addition, understanding the population biology of diseases is impor-
tant in conservation biology [48]. Mathematical models that include competition between
multiple species in addition to a shared pathogen are difficult to analyze for the case of in-
fected coexistence and several important cases remain open. This thesis considers models
in which two species compete directly via Lotka-Volterra competition and share a directly

transmitted pathogen.
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Humans are converting and fragmenting landscapes on every continent, changing
connectivity of habitats through effects including reduced patch size, creation of novel
habitats, and altered movement rates among patches that affect a diversity of species.
Pathogen movement and epidemics can depend intimately upon landscape connectivity
patterns [136, 104], which, in turn, control epidemic propagation or fadeout [78, 129].
Importantly, models including spatial heterogeneity can make qualitatively different pre-
dictions compared to models assuming homogeneous mixing [70, 66, 79]. In addition,
many emerging pathogens infect multiple hosts, but most multi-host theory developed
to date has focused on non-spatial models [49, 81, 102, 118, 73, 17, 26, 71]. Thus, in
spite of the importance of landscape connectivity for understanding spatial spread and
persistence of disease in real communities, the body of spatially-explicit theory dealing
with multi-host pathogens remains quite small [110], [48]. As a result, the spatial dy-
namics of multispecies host-parasite assemblages are gaining increasing attention in both

mathematics and ecology.

There are many ways to incorporate space into a model of ecological systems, in-
cluding multi-patch, metapopulation, interacting particle and reaction diffusion models.
In particular, metapopulation and patch models of disease are gaining impetus with the
recognition that species live in increasingly fragmented landscapes [62, 10, 12, 11, 58, 100,
101], and that the heterogeneity of the landscape, as well as the demography and the epi-
demiology of multiple interacting species, determine spatial spread and persistence of the
disease [113]. Multi-patch models can be thought of as graphs with systems of differential
equations at each vertex. They involve explicit movement of individuals between distinct
locations [10]. It has been shown that even a simple two-patch competition model can
yield behavior different from the non-spatial model. Thus, we also focus on multi-patch

models, for dispersal of organisms.

In this thesis, we utilize tools from dynamical systems, in particular the qualitative
theory of autonomous differential equations [112], asymptotically autonomous systems,

and persistence theory [137]. We also draw upon concepts from mathematical ecology and



4

epidemiology such as models for competition between species and for the transmission of
infection in populations as well as spatial heterogeneity. At times, direct analysis of these
complex models, especially with multiple species and habitat patches is very difficult. So
we also make use of numerical analysis, bifurcation analysis and sensitivity analysis in
order to understand the qualitative behavior of a system. An outline for the remainder of

the thesis is now presented.

1.1 Outline of Thesis

In Chapter 2, background for dynamical systems is described along with a presen-
tation of basic population dynamics and epidemiological models. Here, we also present a

framework for multi-patch disease models.

In Chapter 3, a model of two competing species that share a directly transmitted
pathogen is presented. We consider two different types of disease transmission mecha-
nisms; mass action (density dependent) and frequency dependent transmission. All bound-
ary equilibria for this model are computed and a local stability analysis is performed. We
prove existence, uniqueness, and stability of the endemic coexistence equilibrium, for the
case of frequency incidence disease transmission, when death due to disease is negligi-
ble. We use the theory of asymptotically autonomous differential equations to analyze
this model. The analytic form for the endemic coexistence equilibrium for both models
remained intractable, so a simplified model is analyzed in which all the equilibria are

tractable

In Chapter 4, the full two species competition-disease model with mass action is
analyzed using persistence theory, which can be helpful when the endemic coexistence
equilibria are intractable. This follows the approach of Han and Pugliese [61] who show

persistence results for a similar model.
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In Chapters 5 and 6, two multi-host pathogen systems are considered in a spatially
explicit context. In Chapter 5, we model the transmission of a generalist pathogen within a
patch framework that incorporates the movement of vectors between discrete host patches
to investigate the effects of local host community composition and vector movement rates
on disease dynamics. We use barley and cereal yellow dwarf viruses (B/CYDV), a suite of
generalist, aphid-vectored pathogens of grasses, and their interactions with a range of host
species as our case study. We examine whether B/CYDV can persist locally or in a patch
framework across a range of host community configurations. We then determine how
pathogen-mediated interactions between perennial and annual competitors are altered at

the local and regional scale when the host populations are spatially structured.

In Chapter 6, we consider the spread of rinderpest in livestock in the United States.
Because of the potential severity of a rinderpest epidemic, it is prudent to prepare for
an unexpected outbreak in animal populations. There is no immunity to the disease
among the livestock or wildlife in the United States (US). If rinderpest were to emerge
in the US, the loss in livestock could be devastating. We predict the potential spread of
rinderpest using a two-stage model for the spread of a multi-host infectious disease among
agricultural animals in the US. The model incorporates large-scale interactions among US

counties and the small-scale dynamics of disease spread within a county.

Finally, in Chapter 7, conclusions and future directions are presented.

1.2 Resulting Publications

This thesis resulted in the following accepted and submitted publications.

1. V. A. Bokil and C. A. Manore, Coexistence of competing species with a directly
transmitted pathogen, Submitted, 2011
Also published online as Tech. Report ORST-MATH 10-05, Oregon State University,



http://hdl.handle.net/1957/18639, 2010.

. C. Manore, B. McMahon, J. Fair, J. M. Hyman, M. Brown, and M. LaBute, Disease
properties, geography, and mitigation strategies in a simulation spread of rinderpest

across the united states, Vet. Res. 42 (2011), no. 1, 55.

. S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer, and P. R. Hosseini, Spa-
tiotemporal model of barley and cereal yellow dwarf virus transmission dynamics
with seasonality and plant competition, Published online, Bull. Math. Biol., DOI
10.1007/s11538-011-9654-4.



2 MODELS IN ECOLOGY AND EPIDEMIOLOGY: A
DYNAMICAL SYSTEMS APPROACH

In this chapter, background for differential equations, dynamical systems, competi-

tion models, disease models, and multi-patch models is presented.

2.1 Ordinary Differential Equations and Dynamical Systems

Let ' = f(z) be a system of autonomous ordinary differential equations with initial
condition z(0) = xg, where f : X — R" and X is an open subset of R™. We have the

following results:

Theorem 2.1.0.1 The Fundamental Existence-Uniqueness Theorem [112] For
f € CH(X), the system 2’ = f(x) has a unique solution on a time interval [—a,a] with

a>0.

Additionally, under these conditions, the solution is continuously dependent on initial

conditions and parameters ([112], Chapter 2).

Definition 2.1.0.1 A point * in X is an equilibrium of a system of ordinary differen-

tial equations if f(z*) = 0. So, if x(0) = a* then xz(t) = ™ for all t > 0.

Definition 2.1.0.2 An equilibrium x* is locally asymptotically stable if for every
€ > 0 there exists a § > 0 such that if ||x(0) — x*|| < d then ||z(t) — z*| < € fort >0 and

if there exists a 6 > 0 such that for ||z(0) — x*|| < 0, limy_, oo 2(t) = z*.

A semiflow is a triple (X, T, ®) where X is called the state space, T is a time set,

and @ is the semiflow map. A semiflow (or dynamical system) map induced by the
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differential equations, ® : 7' x X — X has the property that ®(0,z) = z. If z € X
is the initial state of the system then ®(t,z) = ®;(z) is the state at time ¢t. Here, X
is a metric space and T is a subset of Rt = [0,00). The map ® also has the semiflow
property ®(t+s,z) = ®(s,®(t,x)) for x € X and t,s € T C RT. For ordinary differential
equations, ®(t,x) is the solution at time ¢ for initial condition z. The systems examined
in Chapters 3 and 4 are also dissipative, meaning that there exists a bounded subset U
of X such that for any v € X, ®;(u) € U for sufficiently large ¢, i.e., U is a bounded
attractor of X.

Definition 2.1.0.3 The orbit of ® through a point x € X is y(x) = {®(t,z) : t_(z) <
t < ty(x)} where the solution ®(t,x) exists for all time in the open interval (t—(x),t4(x)).

The positive orbit is y4(x) = {P(t,z) : 0 <ty (z)}.

Definition 2.1.0.4 The omega-limit set of a point x € X is defined as

w(z) = ﬂ U{@(r,x) ir > s} (2.1.1)

t>0 s>t

and consists of the limits of all sequences {®(t,,x)} where t, — oo as n — oo and the

alpha limit set as

a(z) = [ 2((—o0, ], ).

t<0

Definition 2.1.0.5 For M C X, M is forward invariant if and only if &, (M) C M
YVt > 0. M is invariant if all solutions with ®(x) € M are defined for all time t € R
and ®,(M) = M Vt € R.

Definition 2.1.0.6 A set is pre-compact in a finite-dimensional normed space if it is
bounded. More generally, a set P is pre-compact if any sequence of points in P has a

convergent subsequence [31].
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Definition 2.1.0.7 The stable subspace, E°, of a linear system ©' = Ax is Span{uy, vi|a; <
0} where \j = a;+1ib; is an eigenvalue of A and w; = uj+ivj it’s generalized eigenvector.

The unstable subspace, EY is Span{uj,vj|a; > 0}.

Theorem 2.1.0.2 Stable Manifold Theorem [112] Under the same assumptions as
for Theorem 2.1.0.1 with X containing the origin, suppose that f(0) = 0 and that the
Jacobian evaluated at that equilibrium, Df(0), has k eigenvalues with negative real part
and n—k eigenvalues with positive real part. The there exists a k-dimensional differentiable
manifold W*° tangent to the stable subspace E° of the linear system ' = Df(x¢)x at 0
such that for all t > 0, ®(S) C S and for all xg € W, lim;_,oo ®4(xg) = 0. Also, there
exists an n— k dimensional differential manifold WU tangent to the unstable subspace EV
of the linear system at 0 such that for all t < 0 then ®;(U) ¢ WY and for all zq € U,

limt_>_oo @t(xo) =0.

Theorem 2.1.0.3 Poincare-Bendixson Theorem [6] Let v, (x) be a positive orbit of
the autonomous ODE ' = f(x) with x € X C R? that remains in a closed and bounded
region U of the plane. Suppose that U contains only a finite number of equilibria. The
w-limit set takes on only one of the following:

1. w(zp) is an equilibrium, or

2. w(xg) is a periodic orbit, or

3. w(xg) contains a finite number of equilibria and a set of trajectories v; whose a- and

w-limit sets consist of one of the equilibria for each trajectory ;.

2.2 Mathematical Models for Competition between Species

Populations can be represented mathematically as either the total population or the

density of the population in a fixed area. Models look very similar from either perspective,
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only differing by a scaling of parameters and variables [86, 56]. We start initially by
assuming that populations are only affected by the per capita birth rate a, the number of
births per individual per unit time, and the per capita death rate b, the number of deaths
per individual per unit time. The intrinsic rate of growth, r = a — b, is the difference
between the birth and death rates. In this case a population is modeled by the differential

equation
dN
dt

This model assumes there is no immigration or emigration. It predicts exponential growth

— rN. (2.2.1)

or decay for all time, which implies it may not be including important factors such as

resource limitation that affect the growth rate of a population.

One way to deal with this problem is to add density-dependence to the model,
assuming that the presence of other individuals of the same species in the habitat either
decreases the birth rate, increases the death rate, or both. The mechanisms for this
decrease in the growth rate can be explained by many factors, including resource limitation

and direct interference [56]. The growth rate decreasing linearly with the population

dN N

where K is the carrying capacity of the population. This model is well-posed and forward

results in logistic growth

invariant in the region X; = {N € R|0 < N < K}.

Multiple species often live in the same habitat and it is expected that they may
interact with each other. A classic model for species interaction is the Lotka-Volterra
model which, depending on parameter values, can represent predator-prey, mutualistic, or

competitive interactions between species. The model is

n
N;
, 2.2.3
KJ) (2:2.3)

where r; is the intrinsic growth rate of species ¢ and where 1/K;; represents the effect of

dN;

:TiNz‘ 1+
=i (1432

species j on the growth rate of species . In this thesis, we will concentrate on competitive

interactions, for which the competition coefficients, 1/K;; are negative. Notice that in
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the absence of any other species, each species is governed by the logistic equation (2.2.2).
Lotka-Volterra competition for 2 or 3 species is well known and fully analyzed. The two

species Lotka-Volterra competition model,

dN1 Nl N2

NNy (1 222 2.2.4
a H ( K1 K12> (2.24)
AN, NN

Y2 Ny (1 222 225
M, ( ] (2.25)

is well-posed and forward invariant in the region X1 = {(N1, N2) € R?|0 < N; < Ky,i =
1,2}. Although individually quite tractable, the combination of competition and disease

quickly becomes complicated.

2.3 Mathematical Epidemiology

The types of disease models we consider here are compartmental Susceptible Infec-
tious Recovered (SIR) ordinary differential equations which assume each individual in a
population resides in one and only one disease state, namely susceptible, infectious, and
removed (or recovered). Individuals of a population move between these compartments
at certain transition rates. An organism in the susceptible class, denoted by S, is not
infected and is capable of contracting the disease. A member of the infectious class, I, is
infected with the disease and is able to transmit the disease to others. A member of the
removed class, R, has recovered from the disease and is immune, has permanent immunity
from some other source (e.g. vaccination), or is dead from the disease. In all cases, the
recovered class cannot transmit or contract the pathogen. Additional compartments such

as latent or vaccinated can be added as necessary.

The standard SIR disease model was developed by Ronald Ross (1915) [122] and
proposed in its current form by Kermack and McKendrick (1927) [83]. Because of this,
analysis of disease dynamics alone in one or multiple hosts is complete for the most

commonly used modes of transmission, mass action (density dependence) and frequency
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incidence. Note that most well analyzed models assume a small enough time scale that the
considered populations are assumed constant (no birth or natural death included). Some
work has been done on disease models for one or multiple species with basic population

dynamics such as exponential growth and logistic growth.

The two most common mathematical representations of disease transmission are
mass action (density-dependent) and frequency incidence. The transmission rate of a
disease is (usually) proportional to infectivity, susceptibility of non-infected individuals,
the contact rate between all individuals, the proportion of infected individuals, and the
number of susceptible individuals. Mass action assumes that the contact rate, and thus
the transmission rate, increases linearly with the number of individuals in a population
while frequency incidence assumes that the contact rate is constant. Appropriate use of

disease incidence depends upon the system one is considering [98, 16, 68].

Definition 2.3.0.8 The incidence of disease is the rate of new infections in suscepti-

bles resulting from contact with infectious individuals.

For C(N,t) the local contact rate, r the probability that the contact is with an infected
individual (often r = %), p the probability that the contact is sufficient for transmission,
S the number (or density) of susceptible organisms, I the number of infectious, and N
the total population, then the disease incidence is CrpS(t) = Cp%S . There are many
forms used for disease incidence, but the two most common are mass action or density
dependent incidence and frequency dependent incidence. Mass action assumes that the
contact rate is proportional to the global density so C(N,t) = k(IN/A), so incidence is
kpS % = vSI. Frequency dependent incidence assumes that the contact rate is constant,

so C(N,t) = c incidence is cp£ S = B+ S

Definition 2.3.0.9 The basic reproduction number, R, is the expected number of
secondary cases that occur after the introduction of one infected individual into a fully

susceptible population. If Ro < 1 then the disease will die out.
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We use the next generation method [144, 27] to compute Ry. For infected compart-
ments z; and uninfected compartments y;, then z; = Fi(z,y) — Vi(z,y) and y; = g;(z,y)
where F;(z,y) represents new infections and V;(x,y) is the net outflow of infectious com-

partment. We assume that

Fi(0,y) =0 and V;(0,y) =0
e Fi(xz,y) > 0 for nonnegative x,y;

o Vi(z,y) <0 for x; = 0;

>y Vi(z,y) > 0 for nonnegative z, y

e y' = g(0,y) has a unique asymptotically stable equilibrium (disease-free equilibrium)

Now, linearize about the disease-free equilibrium. x is decoupled from the rest of the

equations since 2;? (0,y9) = 2;2? (0,y0) = 0. So, we can approximate x by ' = (F — V)x

where I’ is the Jacobian of F and V is the Jacobian of V.

Let ®(t, x) be the solution to 2’ = (F —V)x for xy > 0 where F' = 0, so there are no
new secondary infections. The ith component of ® (¢, x) is the probability that the initial
case introduced at time ¢t = 0 is in disease compartment 7 at time ¢. Then, we see that
fooo o(t,xp)dt is the expected time the initial case spends in the disease compartments.
Since when F' = 0 thenz’ = —Vz, we know ®(t,z9) = e V'wg. Then, [;° O(t,z0)dt =
V =tz where the (i,7) entry of V! represents the expected time an individual initially
introduced into disease compartment j spends in disease compartment i. The (7, ) entry
of F' is the rate at which new infections are produced in compartment 7 from an index
case in compartment j. Therefore, the expected number of secondary infections produced
by the initial case is

o0
/ Fefwscodt = FV~la.
0

This is the time spent in a disease compartment times the rate at which a member of

that compartment creates a new infection. The matrix FV ! is referred to as the next



14
generation matriz. The next generation matrix is nonnegative, so has a nonnegative
eigenvalue with greatest modulus, which has a nonnegative eigenvector. We call this

eigenvalue, p(F'V 1), or the spectral radius of FV !, the basic reproduction number (Rg)
of the system, [144, 27].

The following theorem proves that the stability of the disease free equilibrium can

be determined solely by Rg.

Theorem 2.3.0.4 (Theorem 2, [144]) Consider a disease transmission model as described
above with the accompanying five assumptions. If xq is a disease free equilibrium (DFE)

of the model, then xq is locally asymptotically stable if Rog < 1 and is unstable if Ry > 1.

2.4 Multi-patch Disease Models

The dynamics of multispecies host-parasite assemblages have recently received a
lot of attention [49, 81, 102, 118, 73, 17, 26, 71]. For the most part, these studies have
closely analyzed particular models of host-parasite dynamics. Metapopulation models
of disease are also gaining impetus as natural and human-made landscape features such
as forests, rivers, roads and crops cause many endangered species to live in fragmented
landscapes [62, 10, 12, 11, 58, 100, 101]. The heterogeneity of the landscape as well as
the demography and the epidemiology of multiple interacting species determine spatial

spread and persistence of the disease.

There are many ways to incorporate space into a model of ecological systems, in-
cluding multi-patch, metapopulation, interacting particle and reaction diffusion models.
Which model to use depends upon the biology and dispersal mechanisms of the organ-
ism(s), the structure of the environment, time and spatial scales, the data available, and
the question one is trying to answer [31]. We focus here on multi-patch, or network mod-

els, for dispersal of organisms. Multi-patch models are graphs with systems of differential



15
equations at each vertex. They involve explicit movement of individuals between distinct
locations [10]. It has been shown that even a simple two-patch competition model can
yield behavior different from the non-spatial model. Two species which could not coexist
in one patch can coexist in a two-patch system with moderate movement rates [33] . For
the case of spatio-temporal dynamics of disease spread, a multi-patch model would consist
of an SIR model on each vertex of a graph with connection between some or all of the
vertices. Multi-patch models can be viewed as a discrete approximation of diffusion or as

a model for discrete, or patchy, environments.

In a patchy environment, motivation for using a patch model is obvious. However,
a patch model can also be seen as discrete diffusion, an approximation to the continuous
reaction-diffusion model as described in [5]. Allen [5] analyzes a Lotka-Volterra two patch

model for competition between species. Consider the reaction-diffusion model
up = f(u) + Nuae, © € [0, L] (2.4.1)

where 7 is the diffusion coefficient. The boundary conditions are either Dirichlet (u(0,t) =
0 = wu(L,t)), Neumann (u;(0,t) = 0 = wug(L,t)), or Robin (uy(0,t) = —pB1u(0,1),
Uy (L,t) = Pau(L,t)). Dirichlet boundary conditions result from a population that avoids
the boundary but can enter or leave the region. Neumann boundary conditions mean that
the individuals cannot move across the boundary. Robin boundary conditions imply the

movement across the boundary is proportional to the population density.

Let’s use finite differences to approximate partial derivatives so

u(z + h,t) — 2u(z,t) + u(z — hyt)
2

Upg (2, 1) & . (2.4.2)

Let the population in patch 1 be u(t) = u(z,t) and the population in patch 2 be ug(t) =
w(z+h,t). Then, uj = f1(u1)+ £ (ug — 2us +u(x — h,t)) and uh = fo(uz) + 15 (u1 — 2uz +
u(z+2h,t)) where u(xz — h,t) and u(x+2h,t) are determined by the boundary conditions.

e For Dirichlet, u(x — h,t) = 0 = u(x + 2h, t);
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e for Neumann, u(x,t)fz(:tfh,t) — 0= u(m+2h,t)};u(m+h,t);

e and for Robin, w = —Byu(z,t) and u(ac+2h,t)h—u(ac+h,t) = Byu(z + h, t).

So we end up with three different versions of the general two patch model u; = fi(u;) +
Dj(uy, — ojuy) for j = 1,2, j # k depending on boundary conditions. See [5] for a full

analysis of this system.

The question of how disease affects patchy populations, including whether or not a
disease might drive a population to extinction, is an important one to biologists today.
Although opening “corridors” between habitat patches may be important for preserving
a species, if one does not examine the possible changes that this might make in disease
dynamics, the result may be increased chance of epidemics or even local extinction [64,
100]. In addition, competition is an important structuring factor in animal and plant
communities. Classical competition theory predicts competitive exclusion of species with
similar requirements; however recent ideas stress that species diversity may be explained
by a multitude of processes acting at different scales, and that similarities in competitive

abilities often may facilitate coexistence [19, 2].

Multi-patch models can be generalized to apply to any system with a generalist
pathogen infecting multiple hosts where spatial heterogeneity is important. They are
designed for disease transmission in multiple species in multiple patches, which can be
interpreted as regions, cities, meadows, etc. We assume that each individual patch is
homogeneous, but that different patches may have different parameters. For each of the n
patches and s species, the patch population is split into compartments labeled S;,, Fip, I,
and R;,, for p=1,2,...,nand i = 1,2,...s. The total number of species 7 in patch p is
represented by

Nip = Sip + Eip + Lip + Rip.
Movement between the patches will be represented by the constants mi)q, mg,q, mqu, mg)q

for movement of species ¢ from patch ¢ to patch p when in a given S, E, I or R com-

partment, respectively. This model assumes that movement between patches may change
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with infection, but that individuals do not move into different disease compartments while

traveling. We also assume that m;,, = 0 Vi, p.

Each species in each patch has a given birth and death rate. The birth rate is
bip(Nip) and the natural death rate (independent of disease) is dj,(N;p). We assume
that the birth and the death rates are nonnegative functions. The disease transmission
rate from species j to species i in patch p, B;jp(Njp), is assumed to be a nonnegative
non-increasing function and disease is transmitted horizontally according to either mass
action or frequency incidence. Once an individual is infected, it moves into the exposed,
or latent compartment in which it has the pathogen but is unable to transmit it to others.
After a period of time, the individual moves into the infective compartment where it is
then able to transmit the disease to other individuals. Then, depending on the disease, the
individual may move into a recovered compartment where the individual is either immune
to the disease permanently, or is temporarily immune and then moves back into the
susceptible compartment. The average rate of movement between the exposed, infective,
and recovered compartments is €, vip, and d;, respectively, with 1/€;,, 1/, and 1/6;,
being the average period of time spent in each compartment. Most epidemic models
assume that the infection periods (e.g., latent, infectious, isolation periods) are either
exponentially distributed or have fixed durations [67]. In some cases, the disease may

cause death and the death rate will be represented as a,.

This general model can of course be adapted to various cases, such as when the
latent period is so short, it can be ignored, creating an SIR model, or when the recovered

period is either very short or nonexistent resulting in an SEI or SEIS model.

In the following section, I adapt the model analyzed by [12, 10, 11] so that some or all
of the included species are competing with each other within a patch via the basic Lotka-
Volterra competition model. We then compute the basic reproduction number for this
adapted model. Competition will be represented as 1, (Sip, Eip, Lip, Rip) > 1, a function
of Sip, Fip, I;p, and Ry, or possibly just Nj,, for i = 1,2,...,s. This leads to the following

systems of ordinary differential equations:
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das;
d;p = bip(Nip)Mip — dipSip Z BijpSin~r N + o ltip + Z Mg Sia Z miapSip
(2.4.3)
dE; - Lip
dtzp = —dipEip + Zﬁijp sz + Z mzpqE@q Z mlqu’p €ipPip (2.4.4)
j=1 q=1
al;
d;p = €ipEip — diplip — (Yip + aip)Lip + Z mz‘lquiq - Z milquip (2.4.5)
q=1 q=1
dR; - -
o = Yiolip = dipRip — Sip Ry + > Mipg g = 3 migy iy (24.6)
q=1 q=1

with the initial conditions S;,(0), and Ei(0), 1ip(0), Rip(0) > 0, as well as >, (£4,(0) +

I;,(0)) > 0 for some species i.

The population of species i in each patch p changes with the sum of all four equa-
tions above and since the solutions for all of the above equations are positive, the total
population remains nonnegative for all ¢ > 0. The total population of species i in the
entire system is N; = Zzzl N;p, and the change in the total population of species ¢ can be

represented by

n

dN
Z bzp ip nzp(Szpa Ezpa Ilp7 Rzp) dipNip - aipIip (2'4'7)

We know that the population of patch p is at equilibrium if d;p , dgt”’ , dizp , d?;p =0

for each species ¢ and is at a disease-free equilibrium (DFE) if E;, + I;;, = 0 for each
species ¢. Similarly, species ¢ is at a DFE if Fj, + I;;, = 0 for each patch p. Then, the
whole system is at a DFE if F;, + I;, = 0 for all species 7 and for all patches p, implying

that each patch is at an equilibrium, hence satisfying for each patch p

dN;
dtp = bip(Nip)nip(Nip) — dipNip + Zmzqulq Zmqusz 0 (2.4.8)

q=1 q=1

We want to determine if (2.4.8) has a solution, Sj, = N; that will give us the DFE

and whether or not this solution is unique. The uniqueness of the solution depends upon
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the birth, death and the competition rates. We will assume that 7;, has Lotka-Volterra
form

S
Nip =1+ Z oijp(Sjp + Ejp + Gplip + Rjp)
j=1
where 05, is the effect of competition with species j and species ¢ in patch p and where
(jp is the reduction in biomass or fitness of infectious individuals of species j in patch p,
which decreases their ability to compete. Then (2.4.7) can be rewritten as
dN; O

S
a Z bip(Nip) [ 1+ Z oijp(Sjp + Ejp + Cplip + Rjp) | — cviplip — dipN;
p=1 J=1

Finding the disease-free equilibria (DFEs) for the full models with multiple patches
and species is often intractable. We will now analyze a system of two patches each with
two species that compete with each other and are susceptible in some form to a common
disease. In order to further simplify, we will first consider an SI model. We will explore

this using the following set of ordinary differential equations for species i in patch k:

2 2

ds; S. S.

d;k = bie Nin(1 = > ciseNj) = > BijrSin ik — dinSir, — m(ge- — > =) (249

i=1 =1 gk M
2
dl; I I
== Z BijkSikLjr — dinTix — vieliw — i, — m(T— — L) (2.4.10)
“ =1 K a7k Kig

with the initial conditions Sj4(0), Ii4(0) > 0, as well as 377, (I;»(0)) > 0 for some species
1. For this system, b;; is the constant birth rate, d;; is the natural constant death rate and
K, is the carrying capacity. For mass action, §;ji(Nji) = BijxVji to result in the above
disease transmission term where 3;;; is the transmission rate from species j to species 1
in patch k. Lastly, ayp is the death rate due to infection. In this case, we will assume that
migration is density dependent and that m , the migration rate, is assumed to be constant
and strictly positive for simplifying purposes. Also, we are assuming that competition
is constant and affects only the birth rate, with ¢;;, being the competition exerted upon
species i by species j in patch k. We will assume that the growth rate r = b—d is positive

for each species.
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2.4.1 Basic Reproduction Number

Theorem 2.4.1.1 Assuming m > 0, if the system is at equilibrium and a species is absent

in one patch, then that species is also absent in all other patches.

Proof. Sketch of proof. If, for example, S1; = 0 then by substituting S1; into the above

equation (1.9), we have that 0 = 212 hich implies that either Si9 = 0 or m = 0 and

12
assuming strong connection, or m > 0, this implies that Sj2 = 0. Similarly, if So; = 0
this implies using equation (1.11) that See = 0 and vice versa. Thus, for the DFEs, if one
species in one patch is at an equilibrium of population zero, then the other patch also has

a population zero of the same species at equilibrium. m

We use the next generation matrix method to compute R for this system. Let

X = (811,512, 921, S22, I11, T12, 11, I22) and let &£ = F(X) —V(X). Then for the infected
compartments, i i
Pr11511111 + Bia1S11121
F(X) = Br12S12112 + B122512122
B221521121 + B211521 111
| B222522122 + B212522112 |
and Ly o]
(d11 1y + 1l +andin + m(K— - K—)
—71121 —71112
diohio + y12012 + an2lh2 + m(K— - K—)
V(X) = 12 11
dorI21 + 21101 + a1 la1 + m(K21 K22)
d22f22 + vooloo + gl + m(K—22 — K—m)-
Now we will linearize F(X) to get
_5111511 0 B121511 0 |
o 0 B112512 0 B122512
B211521 0 B221.521 0
0 B212522 0 222522
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A 0
Next, we linearize V(X ) around the DFE to get V = where
0

B
’ " " -
A 11+711—|—n0;11+K—11 _K—u .
] e di2 + 712 + 12 + Ky
da1 +’Y21+0421+£ -
B = . Ko Koo |
] N daa + 22 + a2 + T

and where 0 denotes a 2 X 2 zero matrix.

Now we are ready to compute R by finding the spectral radius of FV~!. Let
['yj = di1 + 711 + a11. Then let

Tpp + 2 m L m
nT = 20— ——
Vl — mKll . K,rlﬁ and V2 — ﬁgl Kq%%
K11 e Kor Koy
V 0 -1 0 .. S 0
sothat V = | and V1= [ 1] Also, let Fj; = P SO
0 Vo 0 vy 0 Bij2Sio
F F
that F' = H 2 . So, we have that
Fy1 Fy
FV—1= Vit Fioly !
P Vit FaVy !
where
m m
2+ — Ty + — —_
Vlil = 1 ¢ K Kz and V{l = 1 - mK22 Koo
o1 - '+ — 02 — Iy + —
Kll K11 K21 K21

m m m m
for 61 = det V4 = F11F12+F11K—12+F12K—11 and 0y = det Vp = F23F22+F21K—22+F22K—21.

Now, finding the basic reproduction number is equivalent to finding the spectral radius of

the following matrix evaluated at the DFE:
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1 C D
FVl = (2.4.11)
EF F
where ) .
m ™m
L BinSi (Ths+ > 7-Bu S 77—
o o 51111 11 ( 12 K 1 S g |
= Bi1aSia = B112S1a(Thy + -
7, B112512 K11 5112 12(I'11 K11)
M1 m
—5121511(F22 + K—) 0—5121511K—
D= 22 2 o |
I —5122512 o 0—25122512@21 + K—21)_
m 1 1 m 7
—ﬁ211521(r12 + K—) 0—5211521](—
F— R 2o
- mo 2 T m
) 5212522 ioen o B212522(I'11 + e )_
and where - ) ;
™m
—5221521@22 + K—) —5221521K—
F = 1 2 22
] 9—2ﬁ222522K—21 —ﬁ222522(r21 + K—m)_

In order to generalize to multiple species (n species) and patches (p patches), let

ip = dip + Yip + ip, then V has the form diag(M, ..., M,) where

rlp+Kﬂ for i = j
[My;] = »

ij

— for ¢ # 7.
K, 7

Assuming ;; is the same for each patch, F' has the form [3;; K;]; j—1.., where [K;] =
diag(Sik)k=1..p - So, finally we see that, in general, FV 1 = [ﬁiniMjil]i’jzl__n , where

K; depends on the DFE. For our specific case with two species and two patches, then
Ro = p([Bi KiM; 1))

where

B M BraK Myt

Bor KoM oo KoMy

Although this can be difficult to compute for large models, we will compute R for the

[Bij KM '] =

BYDYV patch model during the growing season in Chapter 5.
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3 COEXISTENCE OF COMPETING SPECIES WITH A
DIRECTLY TRANSMITTED PATHOGEN

3.1 Introduction

Competitive interactions, as well as predator prey dynamics, have dominated in-
vestigations of species interactions in ecology and influence community structure via the
distribution, abundance and resource use of species in natural communities [130, 41, 54].
Classical competition theory predicts competitive exclusion of species with similar require-
ments. Understanding the mechanisms that drive the coexistence of competing species is

an important goal in community ecology [39].

Theoretical and empirical investigations have shown that generalist pathogens or
parasites infecting multiple host species can influence species diversity and community
structure [118, 81, 24, 34, 63, 84]. For example, in [48] the author argues that for most
of the 20th century, the wildebeest and buffalo herds in the Serengeti were in fact being
regulated not exclusively by predator prey interactions, but primarily by a virus called
rinderpest. Once rinderpest was controlled through vaccination, both predator and prey
populations in the area changed dramatically. In [24] and [106] a non-spatial and spatial
model, respectively, for the spread of Barley/Cereal Yellow Dwarf Viruses among multi-
ple grass hosts was analyzed, which suggests that this class of multi-host pathogens can
mediate the outcome of inter-specific competition, facilitating and maintaining invasion
by novel species. In [142], using a generic model the authors argue that it is likely that a
shared disease, parapoxvirus, in addition to competition for space and food, is the impetus
for the continued decline of the native red squirrel in the United Kingdom in the presence

of the introduced grey squirrel.

Empirical studies have demonstrated the importance of the combined effects of inter-

and intra-specific competition between species and the effects of pathogens (apparent com-
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petition) on the population dynamics of multi-host systems [59]. A review of empirical
studies in [43] finds strong evidence for parasite-induced extinction of one species (usu-
ally a native species replaced by an introduced exotic) induced by reservoir effects and
apparent competition. Experimental research also shows that the composition of the host
community can control pathogen dynamics [118]. Thus, the interaction between com-
munity and disease ecology can help us understand the structure of a biological system
and the reasons why species coexist with each other [39]. In addition, understanding the

population biology of diseases is important in conservation biology [48].

Although often difficult to quantify empirically, host-pathogen interactions can be
studied through mathematical models that combine elements of population dynamics and
epidemiology [24, 37, 38, 49]. Such models can give important qualitative insight into
the effects of pathogens on plant and animal populations and the factors that influence
species coexistence or exclusion in communities [17, 73, 57]. The correct choice of the type
of incidence (for example, mass action or frequency incidence transmission) that should
be used in a model depends on many factors [68, 16, 98]. These include the species that is
infected, the transmission routes of infection, and population sizes, among other things. In
[18], the authors considered the cowpox virus in coexisting populations of bank voles and
wood mice. Their analysis indicates that for each species in isolation frequency dependent
transmission is a superior descriptor. In [124, 142] the authors argue for the use of mass
action disease transmission in a SIR/SI type model to study the effects of a parapoxvirus
in competing grey/red squirrel species in the United Kingdom. Therefore, we investigate

both mass action and frequency incidence transmission in our models.

Two species models in which one or both species share a common pathogen and do
not interact competitively have been discussed in several papers [8, 73, 17, 57, 68, 35].
In many of these studies, finding conditions for the stability of the coexistence equilibria
proved to be difficult. As an alternative, numerical simulations are performed to under-
stand the behavior of the models. In particular, it was found that two host SIS models

with mass action incidence can have complicated behaviors including several infected co-
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existence equilibria and multiple attractive periodic solutions [57]. In [9, 146, 145] the
authors consider a two species model in which both species compete directly and one is
subject to a pathogen. The models assume mass action transmission of disease and in
[146] the existence of limit cycles is shown. In [145] it was found that if in the absence
of disease there is competitive exclusion between the two species, the presence of disease

can lead to stable or oscillatory coexistence of both species.

Mathematical models that include competition between multiple species in addition
to a shared pathogen are difficult to analyze for the case of infected coexistence. In [26],
the authors consider a two species model in which both species compete directly (Lotka-
Volterra competition) and both species share a common pathogen. They analyzed their
model using the notions of forces of infection and invasion criteria to determine whether
resident populations allow small invasions of other species to prosper or cause them to
decay. As with previous models, the coexistence equilibria proved impossible to fully an-
alyze. In [61] a model with Lotka-Volterra competition between two species which share
a common pathogen is considered. Mass action disease transmission is used in the model,
which in its complete generality is intractable. Both density-dependent and disease related
death rates are considered; however, unlike in [26], the birth rates are unaffected by com-
petition. The authors concentrate on deriving conditions that guarantee the persistence
of either hosts or the pathogen. Using Hopf bifurcation theory and numerical simulations,

complex behaviors of the model are demonstrated.

In [60] the authors considered an SIRS epidemic model of two competitive species us-
ing frequency dependent incidence and no disease related deaths. Under these conditions,
the authors in [60] were able to show stability conditions for all possible equilibria. In
[68] the authors considered many different models with frequency incidence disease trans-
mission. The models were shown to have the classic endemic model behavior; the disease
dies out below a threshold and approaches an endemic equilibrium above the threshold.
However, the behavior of the interior equilibrium remained intractable for the case with

density-independent death rates and density-dependent birth rates with both intra- and
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inter-specific competition.

In this paper we consider models in which two species compete directly via Lotka-
Volterra competition and share a directly transmitted pathogen (Sections 3.3 and 3.3.2).
Our models differ from other similar two species models analyzed in [68, 61, 60, 26] in the
following aspects. We consider both mass action and frequency incidence type transmis-
sion and compute basic reproduction numbers (Section 3.4.1). Similar to the mass action
model in [26], the natural mortality rates for the two species are density-independent,
while the birth rates are density-dependent with both intra- and inter-specific competi-
tion. The motivation for our choice comes from the case of the red/grey squirrel system
discussed in [124, 142]. In [142] both intraspecific crowding and interspecific competi-
tion were modeled as causing density-dependent effects on reproduction but not on adult
mortality. The authors point to two different sources as justification of this choice; docu-
mented negative correlations between squirrel density and squirrel productivity (but not
adult survival) for both species, and documented reduced red squirrel recruitment (but
no effect on adult mortality) in the presence of grey squirrels. As opposed to the models
in [26, 61] we also consider frequency incidence disease transmission, and investigate the
stability of the infected coexistence equilibrium (Section 3.5.4). In [73, 26, 17] a conjecture
was made, based on numerical simulations, that the conditions under which the infected
coexistence equilibrium is stable cause all the other equilibria to be unstable. However,
[57] provide counterexamples to this conjecture in the most general case. The infected
coexistence equilibrium for the most general mass action model has proved to be, in fact,
intractable. We are able to prove this conjecture for an ecologically relevant special case
in which the infected coexistence equilibrium is tractable (Section 3.4.4). In addition,
we show (Section 3.5.8) that for this special case the qualitative behavior of the model
with mass action disease transmission is identical to one with frequency incidence disease

transmission.
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3.2 Background

In this section, we present the SI disease model for one species with mass action
transmission (see for e.g., [17, 61]). We also present the two-species Lotka-Volterra (pure)
competition model (see for e.g., [61]). We rewrite the equilibria for these two models in a
non-standard way, in order to stress the role of the basic reproduction number Ry, and the
role of two parameters, &1, and &, whose values govern the relative importance between

intra- and inter-specific competition.

3.2.1 The Logistic Growth and Mass Action Disease Model for a Single
Species

As background, we present the SI disease model for one species with mass action

transmission. Consider the single species SI model with logistic growth,

dsS N

dl

— =pBSI —-T1 2.2
= BSI-TI, (32.2)

where the variable S denotes the density of susceptible individuals in the population, I
represents the density of infected individuals in the population, and N = S+ is the total
population density. The parameter r := a — b is the intrinsic per capita growth rate, with
a(l — N/6), and b, the per capita birth and natural death rates, respectively. We assume
that @ > b > 0 and hence r > 0. The parameter I' = . + b is a per capita net rate of loss

of infected individuals incorporating death due to disease o > 0, and natural mortality b.

The model (3.2.1)-(3.2.2) is well-posed on the domain QP = {(S,I)T|S,I > 0,0 <
0
N < K}. The carrying capacity of the species is K = " The equilibria for model
a
(3.2.1)-(3.2.2) can be written in the form EF = (0,0), EP = (K,0), and

2
BP = g,g _<1_RT“)+\/(1—RTM) +Ro-1) |, (3.2.3)
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r—«

K
where A\ = =12 and Ro = T is the basic reproduction number for the
r

,
model. The stability of the disease free equilibrium (DFE), E{J , depends on Rg. The basic
reproduction number (BRN) is defined as the average number of secondary infections that
occur when an infected individual is introduced into a completely susceptible population.

If Rg > 1, then the disease may emerge in the population, whereas if Ry < 1, then the
DFE is locally asymptotically stable [144].

3.2.2 The Logistic Growth and Frequency Incidence Disease Model for a
Single Species

We present the SI disease model for one species with frequency incidence transmis-

sion (see for e.g., [17]),

ds N I

dl I

—=p4=5-T1 2.
=S TT, (3.2.5)

where the variable S denotes the density of susceptible individuals in the population, I
represents the density of infected individuals in the population, and N = S+ 1 is the total
population density. The model (3.2.4)-(3.2.5) is well-posed on the domain Q" = {(S, 1) €
R2|S, T > 0,0 < N < K}. The carrying capacity of the species is K = %. The equilibria
for model (3.2.4)-(3.2.5) are Ef' = (0,0), Ef' = (K,0), and

where SI' = 2 | Ry + a=p ,and Rg := 5 is the basic reproduction number for the model.
2 R a T
0

Thus, Rg > 1 is a feasibility condition for the equilibrium Eg .

We have the following lemma [126].

Lemma 3.2.2.1 For the model (3.2.4)-(3.2.5), the trivial equilibrium EE is always un-
stable. If Rog < 1 then the disease-free equilibrium Ef 1s globally asymptotically stable
in the domain QP. If Rg > 1 then the infected equilibrium EL is globally asymptotically

stable in the domain QF.
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3.2.3 The Pure Competition Model for Two Species

Consider the two species model with Lotka-Volterra competition,

dN_A1 N, N,
a " K; K

) N, i=1,2, (3.2.7)

where N; is the total population density of species i, for ¢ = 1,2. The terms K1, K99 are
carrying capacities of species 1, and 2, respectively, and the terms K15, K91 are competition

parameters.

The model (3.2.7) is well-posed on the domain Q¢ = {(Ny, No)T|0 < N; < Ky5,i =
1,2}. The equilibria for model (3.2.7) are E§ = (0,0), EY = (K11,0), ES = (0, Ko3), and
the coexistence equilibrium E{ = (N, NY'), where

KuK ¢
c 11 K12 c & ..o

- NS = SLNC. 3.2.8
VT K+ Kp(6/8) 2 & ! ( )

The parameters &1, and & are defined as

fl == T 5, 52 = T T (329)

For this pure competition model, the existence (feasibility) and stability of equilibria
depend on the positivity or negativity of the parameters £ and &. We can interpret
the term 1/Kj;; as the inhibition strength of species j on species i [126]. Hence, the
parameters £ and & are a measure of the relative strengths of intra- versus inter-specific
competition. Also, note that the sign of & is determined by the growth rate of species 2
linearized around the species 1 equilibrium Elo . Similarly, the sign of & is determined by

growth rate of species 1 linearized around the equilibrium EQC .

Lemma 3.2.3.1 For the pure competition model (3.2.7), the trivial equilibrium EOC 18

always unstable. In addition, we have the following cases:

1. & > 0,& > 0: Intra-specific competition is stronger than inter-specific competition
for both species. The equilibria Elc,EQC are unstable while ESC 1s globally asymptot-

ically stable in the domain QC.
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2. & < 0,& > 0: Intra-specific competition is stronger for species 1 and inter-specific
competition is stronger for species 2. E3C s not feasible. Elc 1s globally asymptoti-

cally stable, while ES is unstable.

3. &1 > 0,& < 0: Intra-specific competition is stronger for species 2 and inter-specific
competition is stronger for species 1. E3C s not feasible. EQC 1s globally asymptoti-

cally stable, while EY is unstable.

4. & < 0,& < 0: Inter-specific competition is stronger than intra-specific competition
for both species. The coexistence equilibrium E3C 1s a saddle. There is a separatrix
that separates the domain QC into two regions. We have bistability of EIC and EQC
with stability (or instability) determined by the location of the initial conditions in
two regions of QC. If the initial conditions lie on the separatriz, then the solution

tends to E30 .
3.2.4 Asymptotically Autonomous Equations

The theory of asymptotically autonomous equations allows us to predict the even-
tual behavior of non-autonomous differential equations under certain conditions. These
properties will be used to analyze the endemic coexistence equilibrium for the frequency-
dependent incidence case in Section 3.3.2. We begin with background and theory for
asymptotically autonomous equations. Assume that f(t,z) and g(z) are continuous and
locally Lipschitz in z and that solutions exist for all forward time for (3.2.10) - (3.2.11).

This is true for all models considered in this chapter.

Definition 3.2.4.1 Let

dx
= f(t.) (3.2.10)
W o) (3.2.11)

be ordinary differential equations in R™. Then equation (3.2.10) is asymptotically au-

tonomous with limit equation (3.2.11) if f(t,x) — g(x) as t — oo locally uniformly for
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x 1 any compact subset of R™.

Let @ be an asymptotically autonomous continuous semiflow on the metric space X and

O its continuous limit-semiflow.

Theorem 3.2.4.1 ([138] Theorem 2.5): w— ®-limit sets of points (s, x) with pre-compact
(forward) orbits are non-empty, compact, and connected. Further they attract the orbits,
i.e.

d(®(t,s,z),ws(s,z)) = 0, t — 0.

They are also invariant under the limit-semiflow © so that any point y of we(s,z) lies on

an entire ©-orbit in we(s,z). (Here s is the time for the initial condition and is usually

0.)

Lemma 3.2.4.1 ([138] Lemma 3.1): Assume that the point (s,x) with s >ty and x € X
has a pre-compact ®-orbit and that w is its w-limit set. Also, let M be a ©-invariant set
such that M Nw # O but w € M and assume M Nw is an isolated compact O-invariant
subset of w. Then M has a non-empty stable and a non-empty unstable manifold in w.
i.e. There exists a u € w\ M with we(u) € M and a w € w\ M with a full © — orbit
in w whose a — O-limit set is contained in M. So, u can be chosen with its forward orbit

arbitrarily close to M and w can be chosen with its backward orbit arbitrarily close to M.

This lemma is essential in the proof for Theorem 4.1 from [138].

Theorem 3.2.4.2 ([138] Theorem 4.1): Let e be a locally asymptotically stable equilib-
rium of © and Ws(e) = {x € X : ©(t,x) — e,t — oo} its basin of attraction or stable set.

Then every pre-compact ®-orbit whose w — ®-limit set intersects Ws(e) converges to e.

Proof. Let w be an w — ®-limit set which has a point z in common with W;(e). By

Theorem 3.2.4.1, weg(x) is contained in w. However, we know weg(z) is just e so e € w.
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Since e is locally asymptotically stable, {e} is an isolated compact ©-invariant set. If
w does contain elements different from e then by Lemma 3.2.4.1, w contains a full orbit
through a different point from e whose av — O-limit set is {e}. This contradicts the local

stability of e and the conjecture is proved. m

3.3 Two Species Models with Competition and Disease Dynamics

We consider two species models which incorporate species birth functions, g;, and
disease incidence functions, Z;,7 = 1, 2, in the form

as;

7 = (N1 N2)Ni = b3S = (11, I2) S, (3.3.1a)
d;
— =Ti(I, 12)S; — Tl (3.3.1Db)

for ¢ = 1,2. The variable .S; denotes the density of susceptible individuals in the population
of species i, I; represents the density of infected individuals in the population of species
i, and N; = S; + I; is the total population density of species i. We assume that the birth
terms are density-dependent, including both intra-specific and inter-specific competition.

Assuming Lotka-Volterra competition, the birth functions for the two species are given as
N1 N
gi(N1, No) = a; (1 -2 - —2> Li=1,2. (3.3.2)

where 7; := a; — b; is the intrinsic per capita growth rate for species i, with a;(1 — N;/6;;),
and b;, the per capita birth and natural death rates, respectively, for species 7 in isolation.
We assume that a; > b; > 0 and hence r; > 0 for ¢ = 1,2. The terms I'; := «a; + b;, for

species i, are per capita net rates of loss of infected individuals incorporating death due

rifis

to disease, a;; > 0, and natural mortality b;. We define K;; := Y for i,j = 1,2. The
a;

carrying capacity for species ¢ alone is K;; and the terms 9; for ¢ # j are competition

coefficients.

The disease transmission term, given here by the disease incidence functions Z;

for species i, describes the rate at which susceptible hosts are converted into infected
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hosts by their contact with infectious material. Transmission is the driving force in the
dynamics of any infectious disease and hence the functions Z; are a very important part

of epidemiological models.

3.3.1 Mass Action (Density Dependent) Incidence

The disease incidence functions for mass action transmission are given to be
Zi(I1,I2) = Binhh + BioIo, (3.3.3)

for i = 1,2. The model (3.3.1a)-(3.3.1b) can be written as

ds N N-

L (1= =22 Ny by — (Bur11 + Br212) 51, (3.3.4)
dS: N- N-

i as | 1 — 214 Ny — bySy — (522[2 + ,821]1)82, (335)
dl;

T (Burli + Br2l2)S1 — ' Iy, (3.3.6)
dly

P (Baz Lo + B2111)S2 — o Do (3.3.7)

and makes ecological sense and is mathematically well-posed in the domain

Dt = {(Sy, S9, 1, I2) € R4Sy, 82, 11,15 > 0,0 < N; < Ky,i = 1,2}

Theorem 3.3.1.1 Assuming that the initial conditions are in D' the system (3.3.4)-

(3.3.7) has a unique solution that remains in D' for all time t > 0.

Proof. The right hand side of system (3.3.4)-(3.3.7) is continuous and continously differ-
entiable so we know that a solution exists and is unique. Next we show that the system
is invariant in D! for all positive time. First, if I; = 0 then I > 0 and similarly if Iy = 0
then I, > 0. If Ny = S1+ 11 > Kqp then N| = (S1+ 1) <0 and if Ny = Sy + I > Koo
then N} = (Sy + I2)" < 0. Lastly if S; = 0, assuming [; < K33 then S > 0 and if So =0
assuming that Iy < Kay then S} > 0. So, D! is forward invariant and no orbits beginning
in D! leave D!. Therefore a solution with initial conditions in D' exists, is unique, and

remains in D! for all time. m
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3.3.2 Frequency Dependent Incidence

We also consider a two species model in which the transmission dynamics follows
the frequency incidence approach. In this approach the intra-species and inter-species
transmission rates 3;; > 0 are constant terms for ¢,j = 1,2. This means that the contact
rate between individuals of the two species is constant. Often this is the case when
populations are very large, for example. Frequency incidence is also often used to model

transmission through vectors. We can write the disease incidence functions as

I 1

Ii(I1, Iz) = <ﬂ11ﬁ11 + 512%2) ; (3.3.8)
I I

Iy(I1, Iz) = (BQQFQQ + BZlﬁll) : (3.3.9)

The disease incidence is undefined when N; = S;+1; = 0 for at least one 7 = 1,2. However,
the function h(S;, ;) = S;1;/(S; + I;) is a Lipschitz continuous function of S; and I; in
the region S;, I; > 0. In order to address the cases where one species die out, we extend
the function as in [7] to the space S;, I; > 0 by defining h(S;, I;) = 0 when either S;, I;,

or both are zero.

With these assumptions, the two-species competition model with frequency inci-

dence disease transmission is:

dd—il =a (1 - % - %) Ny —b151 — (511]1\—[—11 + ,812]{[_22> St (3.3.10a)
% = a (1 - %Z - %) Ny — b5 — (ﬁm% + 521]{[—11> Sa, (3.3.10b)
% = (511% + 512%) Sy — T 14, (3.3.10c)
% = <522]1\.[—22 + Ba1 ]j\.f_11> Sy — Il (3.3.10d)

The model (3.3.10a)-(3.3.10d) makes ecological sense and is mathematically well-posed in
the domain D! = {(S1, Sa, I1, Is) € RSy, S, 11,15 > 0,0 < N; < Ky;,i = 1,2}. The total
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population size N; = S; 4 I; of species i satisfy the differential equations,

dN1 Nl N2

— = l1——— — | Ny —oql 3.3.11
i 1 < Kil K12> 1 — aqly, ( a)
dNQ N2 Nl

— = 1——— — | Ny — anl .3.11b
a ) < Ky Ko 2 — (ol (3.3 )

Theorem 3.3.2.1 Assuming that the initial conditions are in D' the system (3.3.10a)-

(3.3.10d) has a unique solution that remains in D for all time t > 0.

Proof. Similar to the proof of Theorem 3.3.1.1 since the difference between the two

models is only in disease incidence. m

3.4 Computation of Equilibria and Linear Stability Analysis for Mass
Action

We will denote equilibrial susceptible densities for species ¢ by S; and similarly
I; for the infected equilibrial densities of species 7, for ¢ = 1,2. Below we present the
equilibria for model (3.3.1a)-(3.3.1b), and their linear stability analysis. An equilibrium

E. is represented using the notation F, = (gf, gg, ff, fg)
The trivial equilibrium Ej of model (3.3.1a)-(3.3.1b) is
Ep= (89 =0,89=0,10=0,10 = 0). (3.4.1)

The eigenvalues of the Jacobian of this model evaluated at Fy, i.e., J(Ey), are r; and —T';
for ¢ = 1,2. Thus, by assumption at least two of the eigenvalues are always positive, and

hence the equilibrium Ej is always unstable.

There are three disease free equilibria Ey, Fo and F3. These are given as Fp =

(S = Ki1,80 = 0,1} = 0,1} = 0), By = (S2 = 0,82 = Ko, 12 = 0,12 = 0), and
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B3 = (83,83, = 0,13 = 0), with

- K1 K - -
3 ol ,g:ég, (3.4.2)

o1 = Ko + K11(61/&2) 2

and the parameters &; and &, are defined in (3.2.9). We will refer to F4, Eo as the disease

free one-host equilibria, since one of the species survives in an uninfected state reaching
carrying capacity, while the other species dies out. The equilibrium FE3 is called the disease

free coexistence equilibrium (DFE).
3.4.1 The Coexistence DFE
As a DFE, the coexistence equilibrium is biologically feasible when g—; > 0.

Theorem 3.4.1.1 The basic reproduction number (BRN) for model (3.3.1a)-(3.3.1b) with

coexisting species 1s

Ri1 + Rae i VvV (Ri1 — Ra2)? + 4R12Ra1

RE =
2 2

(3.4.3)

where, fori,7 =1,2
BiiSi |

r;’

Rij = (3.4.4)

The basic reproduction number for species j in isolation is R{) = Rjj, for j = 1,2. The

condition Rg < 1 leads to the inequality

Ri1+ Rog + Ri1aRo1 — R11Ra2 < 1. (3.4.5)

Proof. We will use the next generation matrix method [144], which has become a standard
tool to determine the stability of the coexistence DFE, E3. Let X = (S1, 59, 11, I2)”. Then

we can rewrite system (3.3.1a)-(3.3.1b) in the form

dX
- = F(X) - V(X), (3.4.6)

where F(X) represents the vector function that includes the new infectious cases and

V(X) contains all other dynamics due to death and recovery. We compute the Jacobian
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of F and V and evaluate these at the coexistence DFE, F3 = (é%, SE’, 0,0). Let F and V

be the matrices defined by

F= {82 (Eg)} LV = [gzj (Eg)} , (3.4.7)

where 3 < 4,5 < 4 and z; is the jth component of the vector X defined in (5.5.3).

Computing these matrices we have

S B8
F= /811 A1 /812 A1 ’ (348)
B21S5 2253
and V = diag(T';). The BRN R§ for model (3.3.1a)-(3.3.1b) with coexisting species is

given as

RS = p(FV1), (3.4.9)
where p(A) is the spectral radius of the matrix A. We have

ﬁné{’ 512§§

pyt=| T T2 | (3.4.10)
B2155  B2253
T T»

Thus, using the definition (3.4.4) it is easily shown that the spectral radius of the matrix
FV~1is given by the formula (3.4.3).

Assuming RS < 1 in (3.4.3) we can now easily derive

ﬁll 33 /822 33 /812/821 511522 13 &
= = - 5383 <1 3.4.11
Fl Sl + FQ SQ + ( FlFQ FlFQ ) 1~2 < ) ( )

which is equivalent to the inequality (3.4.5).

Theorem 3.4.1.2 The coexistence DFE, Fj is feasible and stable if and only if the con-

ditions & > 0, & > 0 and ROC < 1 are satisfied.
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Proof. The Jacobian of the system (3.3.1a)-(3.3.1b) evaluated at the DFE E3 = (,S:i)’, ég’, ff’ =

0, fg’ = 0) is the block triangular matrix

A *
J(E3) = , (3.4.12)
0 F-V
where the matrix A is the Jacobian matrix of the system (3.2.7) evaluated at ESC =
(N NS) = (5:%,5:%) (see section 3.2.3), and the matrices F' and V are as defined in
(3.4.7) (the * indicates a nonzero entry). Since the Jacobian J(Es3) is block triangular,

its eigenvalues are the eigenvalues of the matrices A and F — V.

From [21], B = (N, NY) is globally asymptotically stable if and only if & > 0
and & > 0. Thus, the eigenvalues of the matrix A are negative if and only if & > 0 and
&9 > 0, which are also feasibility conditions for E3. From the next generation approach,
the eigenvalues of the matrix F' — V are negative if and only if RS = p(FV 1) < 1 [144].

]
3.4.2 The Disease Free One-Host Equilibrium

When &; /&2 < 0 the coexistence DFE is infeasible. We have the following two cases.

1. Assume & < 0 and & > 0. In this case the disease free one-host equilibrium

Ey = (K11,0,0,0) is feasible and stable if in addition the condition
SUPL (3.4.13)

is satisfied, where R(l) is the basic reproduction number for species 1 alone. This
result follows from conditions on stability of E{ (see Section 3.2.3) and conditions

on stability of EP (see Section 3.2.1).

2. Assume & > 0 and & < 0. In this case the one-host DFE Ey = (0, K22,0,0) is
feasible and stable if in addition the condition

K222

RE = T

<1 (3.4.14)
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is satisfied, where R(Q) is the basic reproduction number for species 1 alone. As in

case 1, this result follows from conditions on stability of ES" and EP.

3.4.3 Infected One-Host Equilibria

There are two types of infected one-host equilibria. In these one of the species
survives while the other species dies out. The first type of infected one-host equilibria are

given as

- r. - . I} -
Eiaa = (Sf = 5_111’33 =0, [} = =2 1} = ) ; (3.4.15)

RN
where I} ,, are roots of the quadratic polynomial Py(z) = 2% + 2Ty (1 — 02 1> x +

r? (1 — R(l)), with the parameter \; defined as \; := n—an Solving for the roots, the
™

infected component of species 1 in the one-host equilibria Ey, 45 is

1% = ¥y 40,40, (3.4.16)
1 b

where |

RIA R\
X4a,4b=—<1— % 1>i\/(1— % 1) + (Ry—1). (3.4.17)

Lemma 3.4.3.1 The infected one-host equilibrium FE,, with ff“ is biologically feasible if

and only if R(l) > 1, whereas the equilibrium Ey, with ffb s always infeasible.
Proof. Case 1: Let R(l) > 1, then x4q > 0, and x4 < 0. Thus, Ey, is feasible and Eyy, is
biologically infeasible.

Case 2: Let 0 < R} < 1. In this case we note that the first term of X444 in (3.4.17) can

RIN R} Ry
_(1_ %1>__(1_70>_a21710<@ (3.4.18)

be rewritten as

as the rates «y and ry are both positive. Thus, in this case as well y4 < 0, and Ey is

biologically infeasible. If R} = 1, then x4, = 0, and the equilibrium Ey, reduces to the
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disease free one-host equilibrium E7, whereas, if 0 < R(l) < 1 then x4, < 0 and Ey, is also

biologically infeasible. m

We will now refer to the equilibrium Fjy, as simply Ej.

Lemma 3.4.3.2 Let R(l) > 1. If ay > 0, then ]\Aff1 = S:f(l + X4a) < Ki11. If a1 = 0 then
Ni =K.

Proof. The condition R} > 1 guarantees the feasibility of the equilibrium Ej. By

assumption «q > 0, and hence A\; < 1. We then have

A A2
1— X\ <R(1](1—)\1) <R} (1— 51) qul (3.4.19)
(Rp)“A1 ) A
RN\
— ( > (R —1) (Rg - % 1) (3.4.21)
1
A
s \/ +(Ry—1) < R$ — Rg ! (3.4.22)

r I\ I\
= L (RO 1) + \/(1 _ Ry 1) + (R —1) p < K11, (3.4.23)
P11 2 2

since from (3.4.13) R} = (K11811)/T1. From (3.4.15) and (3.4.16) we finally have

= 41+ x4a) < K11. (3.4.24)

If @1 = 0 (as in Section 3.4.4), then \; = 1 and N = K11. Hence, we can see
that the total population of the infected one-host equilibrium is less than (or equal to)
the carrying capacity for species 1 in the case that the disease related mortality a3 > 0

(Oél = 0) |

Theorem 3.4.3.1 Assume oy > 0. If Ré > 1 and K9 < ]\}f, then the infected one-host

equilibrium for species 1, Ey, is feasible and stable.



41

Proof. From Lemma 3.4.3.2 we know that the condition R(l) > 1 guarantees the feasibility

of E4.

The Jacobian for the (species 1) infected one-host equilibrium FEj, with the order

changed to Ey = (S}, I}, S5, I3) for convenience, is

P x
T(Ey) = , (3.4.25)
0 @
where
[ T4 A T4 ~
p_|® (1—%> —b1 = Bull @ (1—%> — B S}
i Bl Bi11St—T4
i 4 A 4
az (1—59\[711> — by — B I} a2< —%)
Q= .
i Bor I —I'y

Since J(E4) is block triangular we need only consider the eigenvalues of P and Q.
We notice that the upper left block matrix, P, is the same as the Jacobian for species
1 alone with the disease, i.e., the Jacobian of the system (3.2.1)-(3.2.2) evaluated at the
equilibrium Eéj (with the parameters and variables appropriately defined); see Section
3.2.1. Based on stability results of model (3.2.1)-(3.2.2) (see [21]), the eigenvalues of P

are negative if and only if R(l) > 1.

We next consider the bottom right block matrix, @, and use the trace determinant
theorem to arrive at conditions for stability. With some algebraic manipulations the trace

and determinant of the matrix ) can be written as

S )
Tr[Q] =ro < - %) — (B It +T9), (3.4.26)

- ) )
det[Q] = —72 (1 - %) (Bar I} + Tg) + Bor I as. (3.4.27)

If Koy < ]\}f, then (1 - IJ(V_i) < 0 and hence Tr(Q) < 0 and det(Q)) > 0, as all the

parameters are positive. Thus, if R} > 1 and Ky < ]\Aff1 then the infected one host

equilibrium FE}j is stable. m
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Remark 3.4.3.1 The condition Ko < ]\Aff1 is not necessary for the stability of E4. Neces-
sary conditions for stability of E4 are obtained by the application of the Trace-determinant

theorem. From (3.4.27), det(Q) > 0 gives us the condition

N . .
9 (1 — K—1> (521[% + FQ) — ,321[%@2 < 0. (3.4.28)
21
We can similarly define
. . r, - . I
Esqsp = (sf = 0,55 = 6_222’ P =0,13%% = ZT?) : (3.4.29)

RN
where I} ., are roots of the quadratic polynomial Ps(z) = z? + 2T’ (1 — % 2) x +

ro — «
I3 (1 - Rg), with Ay := 2 2 The infected component of species 2 in the one-host
T2

= 55’)(5@,51,, with X545, defined similarly to (3.4.17) as

- (1 - R(??) + \/(1 - RiM)Q +(RZ-1)], (3.4.30)

As for the case with species 1, only the root IZ, is positive and the equilibrium Es, is

equilibria Es, s, is 1,

conditionally feasible, whereas the root IZ, is always negative and thus the equilibrium

Esy, is always infeasible. We will refer to Es, as simply Ej in the future.

By similar arguments we can prove

Theorem 3.4.3.2 Assume ay > 0. If R% > 1 and K19 < N25 then the infected one-host
equilibrium Es, = Fs5 is biologically feasible and stable. The equilibrium Es, is always

infeasible.

Proof. The proof is similar to the proof of Theorem 3.4.3.1 m

3.4.4 Analysis of the Infected Coexistence Equilibrium of the Competition
and Disease Model Under Additional Assumptions

As discussed in [26] the infected coexistence equilibria are difficult to analyze. It

is possible to have multiple such equilibria present in the model with mass action disease
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transmission. We will consider a special case in which the infected coexistence equilibrium

is given by an analytical formula making analysis possible.

In this section, we derive an analytical expression for the infected coexistence equi-
librium of the two species model (3.3.1a)-(3.3.1b) under additional assumptions. Con-
sequently we are able to perform a full stability analysis. This allows us to prove the
conjecture made in [73] and [17] based on numerical simulations about the behavior of
the infected coexistence equilibrium of population models that are combined with mass
action disease models. This conjecture states that if all other equilibria are unstable then
the infected coexistence equilibrium is stable and, conversely, that if any of the other

equilibria are stable then the infected coexistence equilibrium is unstable.

Here we make the following additional assumptions on the model (3.3.1a)-(3.3.1b)

described in Section 3.3.

(A1) «; =0, so that there is no increased death rate as a result of the disease.

(AQ) a = a1 = ay, b= b1 = bg, 0= 911 = (922, and ,8 = /Bij for all i,j = 1,2. As before, let
r := a — b be the intrinsic growth rate for both the species. Also, K = K11 = Koy =

%, so the carrying capacity is the same for both species.

(A3) 612 # 021 (in order to retain a difference between the species).

As before, we define K;; := riij. These simplifications are not only didactic but result
in a model that can represent actual ecological systems. For example, if two species are
limited by different resources then they may have very similar intra-specific competition
but quite different inter-specific competition while still being susceptible to a generalist

pathogen or parasite [25].

First, we compute the possible equilibria, in the form E, = ( Al, Ag,ff,ff), for the

competing two species SI model with mass action disease transmission, (3.3.1a)-(3.3.1b)
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under the additional assumptions (A1), (A2) and (A3). We then use the Jacobian of our
simplified model to establish stability conditions for all the equilibria. Finally we prove

that the conjecture of [73] and of [17] holds.

The Jacobian for this simplified system computed at an equilibrium
E. = (8¢,85,1¢,1%) is

T(B) = A(Ee) B(E)
(Ee) = : (3.4.31)
C(Ee) D(E)

where, the 2 x 2 matrices A, B, C, and D evaluated at an equilibrium F, are defined as

A(E,) = AlEe) = b - I(E.) Arz(Ee) , (3.4.32)
Boi(E.) B(E.) — b—1I(E.)

B(E.) = AEe) =6 Sl Ara(Ee) = B :916 , (3.4.33)
By (E.) — BS2  B(E.)— BSS

I(E.) 0
C(E.) = : (3.4.34)
0 I(E)
and A A
D(E,) = e —b Bt (3.4.35)

8Ss  BS5—b

with the definitions

—aNe¢ L
A(E,) == a@ L+ g1(N§, N5), (3.4.36)
_aN¢
Ap(B,) = 2L (3.4.37)
012
—aNe¢ L
B(E.) := a9 2 + go(Nf, N§), (3.4.38)
—aN¢
By (Ee) = 0212. (3.4.39)

For ¢+ = 1,2, we have NZ = S, + I,. From (3.3.3) we have the disease incidence function,

I(E.) = B(I¢ + I5), (3.4.40)
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(Z; = ), and for i = 1,2, the birth functions g; as defined in (3.3.2) (with 6 = 011 = 623)

evaluated at E. are given as

91(Ee) = a ( —5 0—12> : (3.4.41a)

92(Ee) = a ( Shraie 0—21> : (3.4.41D)

3.4.5 Trivial and Disease Free Equilibria

As in the non simplified model, the trivial equilibrium Ey = (0,0,0,0) is always

unstable for positive parameters.

The disease free one-host equilibria Ey = (K,0,0,0) is stable if conditions

(C1) Ro =1L <1, and

(02) 51 < 07

hold. In the symmetric case, the other disease free one-host equilibrium FEy = (0,0, K, 0)

is stable if condition (C1) holds and if the condition
(CS) §2 <0,

holds.

The disease free coexistence equilibrium for the simplified model is F5 = (5%, 5%, 0,0)

with

%3 KK AS, _ &g

— SLgs
Sy = Koa + K(61/5) 5 Sy, (3.4.42)

where the parameters £ and & defined in (3.2.9) reduce to

1 1 1 1
- — = — 3.4.43
51 K K217 62 K K12 ( )
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The DFE Ej3 is feasible when &; /€2 > 0. The Jacobian (3.4.31) evaluated at E3 is of the

form
A(E3) B(E3
J(E3) = (Ea) B(Es) : (3.4.44)
0 D(Es)
where the 2 x 2 matrices A, B, and D defined in (3.4.32), (3.4.33), and (3.4.35), respectively

are all evaluated at the equilibrium FEj.

Lemma 3.4.5.1 Assume that £ /&2 > 0, so that the disease free coexistence equilibrium

FEs5 is feasible. In this case

det [A](E3) = r2 53¢, (3.4.45)
Tr[A](E3) = —T—ﬁ (1 + %) : (3.4.46)

Thus, Tr[A](Es) is always negative, whereas det [A](E3) > 0 if and only if & > 0 and (by

assumption) & > 0.

Proof. Evaluating (3.4.32), and (3.4.36)-(3.4.41b) at E3 we have

Te[A](E3) = 2r — 2a (S% +S§> _a (sg + Sf’) . (3.4.47)

0 01y Oy

Substituting (3.4.42) in the above we get

a2 2 1 (2 1
Te[A|(E3) = 1S3 <S—§ - <§ + K—Ql) - <? + K—m)> , (3.4.48)

which can be simplified as

Tr[A)(Es) = S} (Mﬂ(fszu + ;g}){ - IS{K(2K + K)>

B (51K21(2K12 + K))
§a K K19 Ko '

(3.4.49)

This can be rewritten in the form

Tr[A](Es) = ;i;j {51 (Kﬁm - 2> - @Kﬁm} : (3.4.50)
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Using the definitions of &, and &s, from (3.4.43), we obtain

33
_ ISt

Ty [A] (Eg) = K§2

(&1 + &a). (3.4.51)

Next, consider the determinant of A evaluated at the equilibrium FEs,

det[A](E3) = AB — A19Bo; — b(A + B) + b* (3.4.52)
= (AB — A;3By; — b*) — b(A+ B — 2b) (3.4.53)
= O — b(Tr[A](E3)), (3.4.54)

where the terms A, Ayo, B, Ba; defined in (3.4.36)-(3.4.39), are all evaluated at E3. The

term © can be simplified as

© =AB — A;3By; — V? (3.4.55)

283+ 83) S8 S8

(2 — b2 — 2 1 2) | P14 P2

(a )-a 0 021 012
. e (3.4.56)

L2 |28 sy asisy]
0091 001 92
Since ,SE)’ = ({1/§g)§f’, we have
5 1 a\% 1 &1

O = a(Tr[A|(E3)) — r? + 24%(53)? —+<—) — 42>, 3.4.57
( [ ]( 3)) ( 1) 0021 52 0012 52 0 ( )

Substituting (3.4.57) in (3.4.54), using the definitions of &1, &, from (3.4.43), and (77?),

respectively, and simplifying we have

“ 2
det[A](E3) = r*(S5})? < 52%12 - %) (3.4.58)
= r2(8)% (%) (3.4.59)
= 1253, (3.4.60)

by using (3.4.42). m
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Since the Jacobian J(E3) is block upper triangular, its eigenvalues are the same as

those of matrices A(FE3) and D(E3). The matrix A(Es) is the Jacobian of the two species
model with pure competition, (3.2.7) evaluated at (N, N§') (see Section 3.2.3) under the
assumptions (A2) and (A3). From Lemma 3.4.5.1, the eigenvalues of A(E3) are negative

if and only if the conditions

(C4) & >0, and

(C5) & >0,

hold. The matrix D(E3) on the other hand is related to the disease parameters and its
eigenvalues are A\ = —b and \j = 5(5% + 5%) — b. The eigenvalue A} is always negative

and A3 is negative under the condition
(C6) RY =

So, the DFE Ej is feasible and stable if and only if the conditions (C4), (C5) and (C6)
hold.

We note that this result is a special case of Theorem 3.4.1.2 derived from the stability
results of the pure competition model [21]. The condition (C6) is the analogue of the

inequality (3.4.5) for this special case.
3.4.6 The Infected One-Host Equilibrium

There are two infected one-host equilibria. These are Ey = (5%,0, ff, 0) and E5 =

(0,55’,0,[;’), where for i = 1,2

St =83 = % (3.4.61)
~ 0 b ~

p_r_2_ _1)94 4.62
1TL T F (Ro — 1)S, (3.4.62)
5 rd b

=" 5= (Ro- 1)S5. (3.4.63)



49

K
and Ry = Ré = Rg = —B is the same for both species. The Jacobian (3.4.31) evaluated

b
atE4,
J(Ey) =
i 2K —aK 2K —aK
1-22) - 8K 1-22) = .
a( 9) p 019 a( 9) b 0
K K
0 all1—-22) - BK 0 al1- =
( 921) v ( 921)
BK —b 0 0 b
0 BK —b 0 —b

has eigenvalues \] = —K 3, \3 = b(1 —Ry), \j = —r, and A\] = rK&;. We can see that \;

and A3 are always negative. Thus, the stability (and feasibility) conditions for Fy are

K
(C?) R():TB > 1,

which guarantees that A3 < 0 and condition (C2) which guarantees that A} < 0. For the

symmetric case, Ej5 is feasible and stable if conditions (C7) and (C3) hold.
3.4.7 The Infected Coexistence Equilibrium

Lastly, we consider the infected coexistence equilibrium FEg. We can prove alge-

braically or by using a software like MAPLE that Fg = (é?, ,S:S, I 9, I;ﬁ), with

- b

b= (3.4.64)
3 (1 + 5)

6 — S1ds, (3.4.65)
2

, (3.4.66)
&1 1 &1
v (1 - 5_2) (E - K12§2)
I8 = %f?. (3.4.67)

Before we look at local stability for Fg we prove two results.



Lemma 3.4.7.1 The equilibrium value I;6 can be rewritten as

I$ = (R§ — 1)SP,

(2

fori=1,2, with
c_ B &
RE =2 (S8 +53).

Proof. From equations (3.4.64), (3.4.66) and (3.4.42), we have

ff:§§{§ <1+§—;>§§_1}

Similarly, we can show that I;ﬁ = (R§ — 1),5:3. ]

Lemma 3.4.7.2 The total population size Nf = 5?, fori=1,2.

50

(3.4.68)

(3.4.69)

(3.4.70)

(3.4.71)

(3.4.72)

Proof. From Lemma 3.4.7.1 and equations (3.4.69), (3.4.64), and (3.4.42), we have

NS = 6416 = SSRS
b . .
b g <1+5—1> _ g
Bl+g)b &2
Similarly, we can show that Ng = 5% . n
The characteristic polynomial of 7 (Eg) is given as

Py(z) = (z +n)(z + €)(a” + 612 + 62),

where

(3.4.73)

(3.4.74)

(3.4.75)
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where for ¢ = 1,2, ]\}16 = 5? + I;G. The terms A, B, Aj5 and By as defined in (3.4.36)-

(3.4.39) are all evaluated at the infected coexistence equilibria Es. Then, the eigenvalues

of the Jacobian J(Es) are

N = n= b B+ I3). (34.50)

S = —e=—b— BIS +I§) + B(SE + 55), (3.4.81)

N4 = % (—51 + /0% - 452) : (3.4.82)

Lemma 3.4.7.3 The condition that \§ < 0 is equivalent to R§ > 1

Proof. From (3.4.65), (3.4.67) and Lemma 3.4.7.1 we have

A <0
= —b— B+ I§) + B(SE + S8) <0

na e D
S6—T6+85— 15 <2

p
<o b
= (1+§—;)(Sf—lf)< 3
ROy b P
— (2 RO)(1+§2)6(1+§—;)<5
— R§ >1.

Thus, ROC > 1 is both a feasibility and stability condition for the infected coexistence

equilibrium Eg. =

Lemma 3.4.7.4 The eigenvalues A and NS are roots of the polynomial equation

z? — Tr[A](E3)z + det[A](E3) = 0. (3.4.83)

Proof. From Lemma 3.4.7.2, we have Nf = 513 = ]\}f’ (as I;?’ = 0 for E3), for i = 1,2.

Thus, from (3.4.78) and (3.4.79) and the definitions of the functions A, B, A2, and Bg;
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in (3.4.36)-(3.4.39), we have

0 = —(A(Eg) + B(E3)) + 20, (3.4.84)

0y = —Alg(Eg)Bgl (Eg) + A(Eg)B(Eg) — b(A(Eg) + B(Eg)) + b2, (3485)
From the definition of the matrix A in (3.4.32), we observe that

(51 = —TI"[.A](E;J,) (3.4.86)

(52 = det[A](Eg) (3.4.87)

From equation (3.4.82), it is clear that the eigenvalues \§ and \§ are roots of the polynomial

equation (3.4.83). =m

Theorem 3.4.7.1 Assume that &1 /& > 0 so that the infected coexistence equilibrium Eg
is feasible. Then Eg is stable if and only if & > 0,& > 0, and ROC > 1. In this case all

the other equilibria, i.e., Ey, E1, Eo, F3, Ey and E5 are either infeasible and/or unstable.

Proof. It is easy to see that \$ given in (3.4.80) is negative for all Iie+ 1y, > 0. Thus,
since the infected coexistence equilibrium Fjg is feasible by assumption (£1/&2 > 0) we

have A} < 0. As a result of Lemma 3.4.7.3, the first condition for stability of Eg is
(C8) R§ > 1

Since flﬁ = (R§ — 1)5?, the condition (C8) is also a feasibility condition for Eg. From
Lemma 3.4.5.1, Lemma 3.4.7.4, and the Trace-Determinant theorem [6], we see that the

eigenvalues \§ and \§ are negative if and only if the conditions (C4) and (C5) are satisfied.

When conditions (C4), (C5) and (C8) are satisfied, all the other equilibria, i.e., Ey-
E5 are either infeasible or unstable based on the linear stability analysis presented above

for each of these equilibria. m
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3.4.8 Bifurcations

Considering the parameters &1, and &2, defined in (3.4.43), as bifurcation parameters
we can make the following observations. If £ = 0 and/or & = 0 then Rg = KTB = Ro.
If & =0 and & > 0 then F3 = F; and Eg = E4. Similarly, if & > 0 and & = 0 then
FE3 = Ey and Eg = E5. If both & = 0 and & = 0 then the sum of the state variables

4.5

35

Number Susceptible Species 2

25

5 6 7 8 9 10
Number Susceptible Species 1

FIGURE 3.1: Phase planes for susceptible compartment when & > 0 and & > 0.

behaves as one species with logistic growth. In this case, the equilibrium Fj5 is any solution
(§1,§2,0,O) on the line S; + S5 = K. Similarly, Eg becomes any solution (gl,gg,fl,fg)
on the plane 5’1 + 5’2 = %, fl + fg = %(Ro —1). Notice that in both cases, since there is
no additional death due to disease, N; + Ny = K. Based on these observations, we have

the following results:

Corollary 3.4.8.1 Assume & =0 and & > 0. Then,
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FIGURE 3.2: Phase planes for infected compartment when & > 0 and & > 0.

1. If Rg =Ry < 1, the equilibrium E3 = E7 exists in a neutral state.

2. If Rg =Ry > 1, the equilibrium Eg = E4 exists in a neutral state.

Proof. In the first case, the eigenvalues for E3 are )\:1” =—r, )\%73 =0,and X} =K —-b=
b(Ry — 1). We can see that if ROC = Rop < 1 then A} < 0 and Ej is neutral. In fact,
FE3 exchanges stability with Fy as it moves through the half plane & = 0, & > 0 when
Ro < 1.

In the second case, the eigenvalues for Eg are \6 = —r, )\g =0, N8 = —Kg, and
2§ = b(1 — Rp). We can see that if RS = R > 1 then \§ < 0, hence Fg is neutral. In
fact, Eg exchanges stability with Fy as it moves through the half plane & = 0, & > 0
when Rg > 1. See Figures 3.1 - 3.6. =

Corollary 3.4.8.2 Assume & > 0 and & = 0. Then,
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FIGURE 3.3: Phase planes for susceptible compartment when & = 0 and & > 0.

1. If Rg =Ry < 1, the equilibrium E3 = Ey exists in a neutral state.

2. If Rg =Ry > 1, the equilibrium Eg = E5 exists in a neutral state.

Proof. The proof omitted as it is similar to the proof of Corollary 1. m

Corollary 3.4.8.3 Assume & =0 and & = 0. Then,

1. If Rg =Ro < 1, the equilibrium Ej3 exists in a neutral state.

2. If Rg =TRo > 1, the equilibrium FEg exists in a neutral state.

Proof. In the first case the eigenvalues of E3 are A\ = —r, A3 = 0, A3 = —b, and
A3 = b(Ro — 1). We can see if RE = Ry < 1 then FEj is neutral. In fact, as E5 moves
along the line & = & from &1, & > 0 through £;1,& = 0 into &1,& < 0, it progresses from

stable to neutral to stable.
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FIGURE 3.4: Phase planes for infected compartment when & = 0 and & > 0.

In the second case the eigenvalues of Eg are )\? = —r, )\g = 0, )\g = —0K, and
A = b(1 —Rg). We can see if R§ = Rg > 1 then Eg is neutral. Similarly to Fs, as Fg
moves along the line £&; = & through &;1,& = 0 it also progresses from stable to neutral

to stable. m

3.4.9 Hopf Bifurcations

Another simplified case, similar to the one in Section 3.4.4, except that 511 = P =
B, B1a = Po1 = P2, and a1 = ay = «, for which we did not compute the interior equilib-
ria, displays interesting behavior. We present here a bifurcation diagram for the interior
equilibria of this special case using MatCont software [47]. We find complicated behavior,
including two Hopf bifurcations (H), two saddle-node bifurcations (LP), and a branch-
ing point bifurcation (BP) point for the simplified model with inter-species transmission

different from intra-species transmission and the addition of death due to disease. See
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FIGURE 3.5: Phase planes for susceptible compartment when & < 0 and & > 0.

Figures 3.7-3.10 for the bifurcation diagrams. This shows that even a relatively simple
version of the full model displays complicated behavior. In fact, when .98 < 615 < 1.01

there are three internal equilibria for the model.

3.5 Computation of Equilibria and Linear Stability Analysis for Fre-
quency Incidence

Below we present the equilibria for model (3.3.10a)-(3.3.10d), and their linear sta-
bility analysis. We will denote equilibrial susceptible densities for species ¢ by S; and
similarly I; for the infected equilibrial densities of species i, for i = 1,2. An equilibrium

L. is represented using the notation F., = (gf, ,§2€, ff, fg)
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FIGURE 3.6: Phase planes for infected compartment when & < 0 and & > 0.
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FIGURE 3.7: Bifurcation diagram for Sy with bifurcation parameter 615 and with param-
etersa=2,b=1,0=0.25,00=1,a=1, =06, and §3 =0.1.
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FIGURE 3.8: Bifurcation diagram for I with bifurcation parameter 615 and with param-
etersa=2,b=1,0=0.25,00=1,a=1, =06, and §y =0.1.
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FIGURE 3.9: Bifurcation diagram for S; with bifurcation parameter 615 and with param-
etersa=2,b=1,0=0.25,00=1,a=1, =06, and fy =0.1.
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FIGURE 3.10: Bifurcation diagram for I; with bifurcation parameter 615 and with pa-
rameters a =2, b=1,0=0.25,00 =1, a=1, =6, and 5 =0.1.

3.5.1 Disease Free Coexistence Equilibrium

The disease free equilibrium (DFE) is F3 = (5{’,5%,]}3 = O,IAZQ3 = 0), defined as in
equation 3.4.2. The expressions for the susceptible components emphasize the dependence

of the DFE on the parameters £; and &s.

Theorem 3.5.1.1 The basic reproduction number (BRN) for model (3.3.1a)-(3.3.1b) with
coexisting species and frequency incidence is

Ri1 + Rao n V(Ri1 — Ra2)? + 4R12Ra1
2 2 ’

RS =

(3.5.1)

where, fori,j =1,2
Rij = Bij%l;

(3.5.2)

The basic reproduction number for species j in isolation is R{) = Rjj, for j = 1,2. The
coexistence DFE, E1, is feasible and stable if and only if the conditions & > 0, & > 0 and

RS < 1 are satisfied.
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Proof. A very similar analysis to that in Theorem 3.4.1.1 will result in the value of ROC
for the frequency incidence case. The Jacobians of F and V, called F' and V, respectively,
for frequency incidence are evaluated at the coexistence DFE, E3 = (5{’,53,0,0). We
then have .
B P

11A 12 53

F(E3) = S3
B P2
Sl

The BRN R for model (3.3.10a)-(3.3.10d) with coexisting species is given as
RS = p(FV ™Y, (3.5.4)

where p(A) is the spectral radius of the matrix A. m

Theorem 3.5.1.2 The coexistence DFE, Es, is feasible and stable if and only if the con-
ditions & > 0, & > 0 and Rg < 1 are satisfied with ROC as defined in Theorem 3.4.1.1.

Proof. The Jacobian of the system (3.3.10a)-(3.3.10d) evaluated at the DFE E3 =
(,S:i)’, 5%, ff’ =0, fg’ = 0) is the block triangular matrix
A(E3) *
J(E3) = ; (3.5.5)
0  F(E3)—V(E3)
where the matrix A(FEj3) is the Jacobian matrix of the system (3.2.7) evaluated at E§ =
(NEY NS = (5%,55’) (see section 3.2.3), and the matrices F' and V are as defined in
(3.5.3) (the * indicates a nonzero entry). Since the Jacobian J(Es3) is block triangular,

its eigenvalues are the eigenvalues of the matrices A(FE3) and F(Es3) — V(E3).

From Section 3.2.3, E30 = (Nlc ,NQC ) is globally asymptotically stable if and only
if & > 0 and & > 0. Thus, the eigenvalues of the matrix A are negative if and only if
&1 > 0 and & > 0, which are also feasibility conditions for E3. From the next generation
approach, the eigenvalues of the matrix F/(F3) — V(E3) are negative if and only if RS =
p(FV™1) <1[144]. =
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3.5.2 The Disease Free One-Host Equilibria

When &; /&2 < 0 the coexistence DFE is infeasible. We have the following two cases.

1. Assume & < 0 and & > 0. In this case the disease free one-host equilibrium
Ey = (,S? = KH,S:% = 0,[12 = 0,[;2 = 0) is feasible and stable if in addition the
condition

~ bPn

1
= — 1 0.
Ry="Tp < (3.5.6)

is satisfied, where R(l) is the basic reproduction number for species 1 alone. This
result follows from conditions on stability of E{ (see Section 3.2.3) and conditions

on stability of EY" (see Section 3.2.1).

2. Assume & > 0 and & < 0. In this case the one-host DFE EFy = (5% = 0,53 =
Koo, f12 =0, 1';2 = 0) is feasible and stable if in addition the condition RZ = ’BF—Qj <1
is satisfied, where R(Q) is the basic reproduction number for species 1 alone. As in

case 1, this result follows from conditions on stability of ES" and EX.

3.5.3 Infected One-Host Equilibria

There are two infected one-host equilibria in which one of the species survives while
the other species dies out. See the note in Section 3.3.2 about using Lipschitz continuity
to extend the transmission functions to incorporate the extinction of one or more species.

The first infected one-host equilibrium is

o Kn a(Rg—1)\ ¢ : | oy 7
Ey=(S{ = R (1 TTARL ,83 = 0,1} = (Ry — 1)51, I3 = 0), (3.5.7)
We can similarly define
2 5 K22 C!Q(R2 — 1) . A 2
Es = (5] =0,85 = 1- 0 I} =013 = (R§—1)S3 3.5.8
=57 =0.53 =22 (1- 2R D) o0 B3-S (59)
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a1(R —1)
——— | < Ky1. [ =0
rlR(l) 1. If aq

then ]\}f = K. If 7?,(1) > 1 and K91 < ]\}f, then the infected one-host equilibrium for

Theorem 3.5.3.1 Assume o1 > 0, then ]\}f = Ky (1 -
species 1, Ey, is feasible and stable.

Proof. The condition R} > 1 guarantees the feasibility of the equilibrium E,. In addition,
it can be seen by inspection that if a3 = 0 then ]\}f = Kj; and that if ey > 0 then
N{l < K.

The Jacobian for the (species 1) infected one-host equilibrium Ej, with the order

changed to Ey = (St, I}, S5, I3) for convenience, is

J(Ey) = o : (3.5.9)
0 @

where * indicates a non-zero entry and

i G414 2N Sir
(1_W>_b1 s +5(111v4>2 “ (1_?11) ol +ﬁ(n aE
P = . . M
i m st M ’
i s = iy g (V5)2
r N4 5 N4
(1—5)—52—&1]714 a2( —gll>
Q= - !
I _
I Ba1 N Iy

Since J(F4) is block triangular we need only consider the eigenvalues of P and Q.
We notice that the upper left block matrix, P, is the same as the Jacobian for species
1 alone with the disease, i.e., the Jacobian of the system (3.2.4)-(3.2.5) evaluated at the
equilibrium EI" (with the parameters and variables appropriately defined); see Section
3.2.2. Based on stability results of model (3.2.4)-(3.2.5) (see [21]), the eigenvalues of P

are negative if and only if R} > 1.

We next consider the bottom right block matrix, ), and use the trace determinant

theorem to arrive at conditions for stability. With some algebraic manipulations the trace
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and determinant of the matrix ) can be written as

N I
Tr[Q] =72 Lo /%1Nq—%rg , (3.5.10)
1
N4 T4 T4
det[@] = —r2 ( - K—;> (B ]\}14 +1'2) + Ba1 ]\}140@ (3.5.11)
1 1

If Kop < ]\}f, then (1 — IJ(V_i) < 0 and hence Tr(Q) < 0 and det(Q) > 0, as all the

parameters are positive. Thus, if R} > 1 and Ky < ]\Aff1 then the infected one host

equilibrium FEy is stable. m

Remark 3.5.3.1 The condition Ko < ]\}f is not necessary for the stability of Fy. Neces-
sary conditions for stability of E4 are obtained by the application of the Trace-determinant

theorem. From (3.5.11), det(Q) > 0 gives us the condition

R P |
ra | 1 (Bo1—= +T2) — far—-an <0. (3.5.12)
Ko N} N}

In fact, simulations indicate that there are situations for which K91 > Nfl and F, appears

to be stable regardless.

By similar arguments we can prove

Theorem 3.5.3.2 Assume ag > 0. If R(Q) > 1 and K19 < ]\}25 then the infected one-host

equilibrium Es is biologically feasible and stable.

3.5.4 Infected Coexistence Equilibrium for Frequency Incidence

In this section we examine the infected coexistence (endemic) equilibrium of the
system (3.3.10a)-(3.3.10d) with frequency incidence disease transmission in (3.3.8)-(3.3.9).
We assume that feasibility conditions are met and both species are present (see Theorem

3.5.5.1 and Theorem 3.5.5.2). Although the actual value of this equilibrium is algebraically
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intractable, we use methods similar to [102] to analyze the existence and stability of the
endemic equilibrium. However, unlike the simpler case in [102], the complete analysis of

this equilibrium requires results from the theory of asympotically autonomous systems

[138].

Assuming that Ny, Ny > 0, we will express the model (3.3.1a)-(3.3.1b) in terms of
the proportion of infected individuals and the total population size N; = S; +1I;,j = 1, 2.

Let i1 = 1{[—11, ip = 1{[—22 Then, model (3.3.10a)-(3.3.10d) can be rewritten as

di . . . . . N1 N
—L = (1 —i1)(Burir + Brgiz — aniy) —ayiy (1 — 4 — 22, (3.5.13a)
dt 011 012
di ‘ . . . . Ny, N
= (1 —i2)(Baziz + Bai1 — aziz) — agiz (1 — =22, (3.5.13b)
dt B2 O
dN7 N1 Ny )
—=a Ny |(1l————") —b;Ny — N 3.5.13
I a1iNVy ( o 012> 14V1 — 111 4Vy, ( c)
dN- Y N
—2 = CLQNQ 1— —2 — —1 - b2N2 - OéQiQNQ. (3513d)
dt O 021

The model (3.5.13a)-(3.5.13d) makes ecological sense and is mathematically well-posed in
the domain D? = {(i1,i2, N1, Na) € R0 < i1,i2 < 1,0 < N; < Ky, = 1,2}. Unlike
[102], in which density-dependent death rates (but no inter-species competition) were
considered, the equations (3.5.13a)-(3.5.13d) do not decouple when rewritten in terms of

proportions of infected individuals.

3.5.5 Ultimate Bounds for the Total Population Size

In this section we derive ultimate bounds for the total population size, defined by
equations (3.5.13c)-(3.5.13d), under which the presence of both species is guaranteed for

all time.

We can rewrite equations (3.5.13¢)-(3.5.13d) as a pair of non-autonomous Lotka-
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Volterra equations in the form

dN1 a1l as

— =N ¥(t) — —N; — —N. .5.14
I 1 (7“1( ) 0 o 2) ) (3.5.14a)
dN2 ag ai

— = N. S(t) — —=Ny — —N 3.5.14b
i 2 (7”2( ) Oy 2 Oor 1> ) ( )

where the functions r{!(t) = 7, — ogix(t), k =1,2. We make the assumption

(Ul) ry =1 —ar >0, k=1,2.

The functions i (t), k = 1,2 are continuous and bounded above and below on 0 <t < oo,
with inf{ig(t) : 0 <t < oo} > 0 and sup{ir(t) : 0 <t < oo} <1 for k = 1,2. Thus, the
functions r,?‘(t) are continuous and bounded above and below with 0 < rp — o = 7, <

inf{r(t): 0 <t < oo} and 0 <sup{ri(t) : 0 <t <oo} <ryfor k=1,2.

We next make the following definitions for i, 7 = 1, 2:

Kij = 7% = Kij (1 — ai /ry), (3.5.15a)
a;
- N; N; .
N; Nj .
mUWJW):nN;Cf-K;—B5>,Z¢} (3.5.15¢)

The functions h;, and p; are lower and upper bounds for the derivatives in (3.5.14a) and
(3.5.14b). We also define the modified parameters & = 1/K;; — 1/Kji, i # j. Based on
the analysis in Section 3.3.2, for &1, & > 0 the solution to dgi = hi(N;, Nj), 1,5 =1,2,i #

j with positive initial conditions stays positive for all time and converges globally in

{(Ny, N2) € R?|0 < N; < Ky, = 1,2} to the asymptotically stable equilibrium (]\}{, ]\}é)
Nl K11 K

“ £~1 .
= — Nl =2XN! 3.5.16
! Ko + K11(&1/&2) 2 ! ( )

3

Similarly, if &;,& > 0, the solution to dgi = pi(N;,Nj),i,j = 1,2,i # j with positive

initial conditions remains positive for all time and converges globally in {(N7, No) € R?|0 <

N; < Ky;,1 = 1,2} to the asymptotically stable equilibrium (N{‘ = Nf = ,S:i)’, Ng = ]\}5’ =
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5%), with 5?,2 = 1,2 as defined in (3.4.2). Sufficient conditions for £1,6,61,& > 0 to
hold are Assumption (U1) and the following additional assumptions
(UQ) KQl > KH,

(U?)) Klg > KQQ,

which we will now make.

Using results on nonautonomous Lotka-Volterra models in [1] we state the following

two results.

Theorem 3.5.5.1 If the assumptions (U1), (U2) and (U3) hold, then there exists a so-
lution (N7, N3) of (3.5.14a) and (3.5.14b) (or equivalently (3.5.13c)-(3.5.13d)) for which

the optimal bounds

Kis— Ko\ ¢ Kis— Ko\
0< (2722 ) N g < [ 227222 ) Nu 3.5.17
(Ku—Kgg) P 1( ) n <K12_K22> ! ( )
Kot — K11\ . Kop — K11\
0< [22L M) N o) < [ 2L ML Nu 3.5.18
(Kgl—KH) 2= 2( ) — \ K21 — Ky 2 ( )

hold for all 0 <t < oo.
Proof. The proof follows from Theorem 2 in [1] and some algebraic manipulations. We
note that the assumptions (U2) and (U3) imply

Ko1 > Koy > K11 > K1, (3.5.19)

Ko > f(m > Koo > f(gg. (3.5.20)

Theorem 3.5.5.2 If the assumptions (U1), (U2) and (U3) hold, and if (N{,N3), and
(N2,N2) are any two solutions of (3.5.14a) and (3.5.14b) such that Nf(t*) > 0, and
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Né‘j(t*) > 0 for somet* >0, k= 1,2, then we have

1 2 L
N;(t) = N;(t) =0, for j=1,2, ast — oo. (3.5.21)

Thus, if (N{*,N5*) is any solution of (3.5.14a) and (3.5.14b) with N*(t*) > 0,k = 1,2

for some t* > 0 and € > 0 is arbitrary, then, from Theorem 3.5.5.1, we have that

Ky — K . Ky — K .
0< =22 )N —e< N () < | =22—2 | Nt ¢, (3.5.22)
Klg—KQQ K12_K22
Ko — K11\ ¢ Ko — K11\
0<|="———|N —e< N*1t) < | =———— | N¥ +¢, 3.5.23
(KQ]_—K]_1> 2 2 ( ) (K21_K11> 2 ( )

hold for sufficiently large t.

Proof. The proof follows from Theorem 1 and Theorem 2 in [1], and some algebraic

manipulations. m
3.5.6 Existence and Uniqueness of an Endemic Equilibrium
Under the assumptions (U1l), (U2) and (U3), we have the following result.

Theorem 3.5.6.1 For frequency incidence, a unique endemic equilibrium exists for the
SI model with competition, (3.5.13a)-(3.5.13b), if and only if (a) Rj; > 1 for either j =1
orj=2or (b) Rjj <1 for both j =1,2 and (1 — R11)(1 — Ra2) < R12Roa1-

Proof. We note that conditions (a) and (b) are equivalent to R§ > 1 for RS defined in

(3.4.3) and (3.4.4).

We begin by setting (3.5.13c) and (3.5.13d) equal to zero, so that we can examine
i1 and iy on the cross-section of space where the N;’s are at the equilibrium, (]\71, ]\72), or

where N =0 and N} = 0, so that

Ni(i1,i9) = N¥ + Hy(iy,49), (3.5.24a)

No(iy,ig) = N¥ + Hy(iy,d9), (3.5.24b)
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for (iy,iz) € D = [0,1] x [0,1], and N¥* = ,S:f’,z = 1,2 are as defined in (3.4.2). The

functions H; and Ho are defined as

o arir K2 oiaKom Koy Ko\ '
o _ _ _ 3.5.25
(i 2) ( r1 r9 ) <K21 Ku) ’ ( 2)
o ata Ko i1 K Kiu Ko\ ™'
H = — — . 3.5.25b
2(i1,32) ( r9 r1 ) (Ku K22) ( )
We then substitute Ny and Ny into equations (3.5.13a), and (3.5.13b) resulting in the
equations
diq . . . ) . .
— = —4)(bunr 1202 — a1t1) — 11(b1 + aq1), .5.26a
R N CIURY. ) — i1 (b + i) (3.5.262)
2 = (1 — 22)(,82222 + 52121 - 04212) — Zg(bg + 04222). (3.5.26b)
dt

The model (3.5.26a)-(3.5.26b) is different from the one that is derived in [102]; however
similar techniques can be used to analyze it, which we now consider. Setting (3.5.26a)
and (3.5.26b) equal to zero, we obtain the isoclines for i; and iy in the plane where N;

and N, are at equilibrium as

i1[by + arip — (1 —i1)(B11 — aq)]

ig = fi(i1) = 0= )50 : (3.5.27a)
i1 = falia) = 22 am(l_ _(122_) ﬁfl)(ﬁ 22— 02)] (3.5.27h)

We note that the domain D = [0, 1] x [0, 1] is invariant for the sytem (3.5.26a) and
(3.5.26b), since if i, = 0 then dix/dt > 0 and if i, = 1 then dix/dt < 0, for k = 1,2, in
D, = D\ {0,0}. The isoclines always intersect at the origin. The function f; has an

asymptote at i1 = 1, and f5 has an asymptote at io = 1 and

dfi b1 + a1 — P

41 ="t =1 3.5.28

dil 11=0 /812 ( )
and

dfs by + g — P2

&2 — 272 e 3.5.29

dlg i2=0 /821 ( )
Also,

d? 2(b
T _ 20k + o) >0, k,j=1,2, k#3j, 0<ip<l, (3.5.30)

diz  Brj(l —ip)?
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which implies that the nullclines i; = fi(ix),k,j = 1,2, k # j are concave up on 0 < i, <

1.
Sufficiency part of proof: We break this part up into four cases:

Case (1): Assume that Rq; > 1 and Rgg > 1. Then, we can see from (3.4.3) and (3.4.4)
that 5; > I'; = b; + «y, for ¢ = 1,2. Using this in equations (3.5.28) and (3.5.29), we find
that

dfr,
— 0 3.5.31
diy lin=0 <5 ( )

which implies that there is one point of intersection in D (see Figure 3.11).

1

VM Y AVERAVERVER VIR NARNARNA ‘ =
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FIGURE 3.11: Isoclines for the case where both Rq1, Reo > 1. Disease related parameters
are ,811 = 27, ﬂgg = 32, ,812 = 1.1, ﬂgl = 11, o] = 1, a9y — .5, b1 = 1, and bg = 2.

Case (2): Assume R1; < 1 and Rgz > 1. Then %\h:o > 0 and %]Q:o < 0, so that f;

and fy again intersect uniquely in D (see Figure 3.12).

Case (3): Assume Rj; > 1 and Rgo < 1. Changing roles in Case (2), we again have that

f1 and fo intersect uniquely in D.
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FIGURE 3.12: Isoclines for the case where Ri; < 1 and Roy > 1. Disease related
parameters are 11 = 1.8, fo0 = 3.2, f12 = 1.1, fo1 = 1.1, a1 = 1, ag = .5, by = 1, and
by = 2.

Case (4): Lastly, we consider the case where R1; < 1 and Ros < 1, and (1-Rq11)(1-Ra2) <

R12R21. This implies that %]ikzo > 0 for £ = 1,2. In order for the nullclines to cross in

D, we must also have

1
T (3.5.32)

d22 {’L'Q:O

This is equivalent to (1 — R11)(1 — Ra2) < R12R21, which holds by assumption for Case

df
diy

4 (see Figure 3.13).

Necessary part of proof: Assume that there exists a unique endemic equilibrium but

that conditions (a) and (b) of Theorem 3.5.6.1 do not hold. So, Rj; < 1 for j = 1,2

and (1 —R1)(1 — Raa) > R1aRor. This implies that §[;, o > 0 for k = 1,2. However,

the condition ;%hl:o < % no longer holds, hence the nullclines do not intersect
io

in the interior of D, which contradicts the assumption of existence of a unique endemic

equilibrium (see Figure 3.14). =
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3.5.7 Stability of the Endemic Equilibrium

=

Let us denote the unique endemic equilibrium as Eg = (i%f, ig, N, (i9,15), Na(i%,15)).

Then, we have the following result.

Theorem 3.5.7.1 Consider the frequency incidence SI model with Lotka-Volterra com-
petition (3.5.26a)-(3.5.26b). If R < 1 then the disease free equilibrium (ZA{’ = O,i:;’ =0)
is globally asymptotically stable in the region D = [0,1] x [0,1] and if RS > 1 then
the infected coexistence (endemic) equilibrium (i%f,ig) is globally asymptotically stable in

D, =D\ {0,0}.

Proof. Suppose ROC < 1. Then by Theorem 3.5.6.1 there is no infected coexistence
equilibrium. The only equilibrium for (3.5.26a)-(3.5.26b) is the origin (which corresponds
to the disease-free equilibrium (0, 0, SE”, 5%) for (3.5.13a)-(3.5.13d)) and is locally asymp-
totically stable in D by [144]. The Poincare-Bendixson Trichotomy states that a positive
orbit of the system that remains in a closed and bounded region of the plane with only
a finite number of equilibria will have an omega limit set that takes on only one of three
forms, namely, an equilibrium, a periodic orbit, or a finite number of equilibria, and a set
of trajectories whose a- and w- limit sets consist of one of these equilibria for each trajec-
tory [6]. Since the solutions of our system are indeed bounded and the only equilibrium in
the region D = [0, 1] x [0, 1] for (3.5.26a)-(3.5.26b) is the origin, which is stable, there are
no periodic solutions in the region and the origin is globally stable for (3.5.26a)-(3.5.26b).
This implies that the disease-free equilibrium (z:rl)’ = O,ig’ = 0) for (3.5.26a)-(3.5.26b) is
globally stable in D.

Next suppose Rg > 1. Then by Theorem 3.5.6.1 there is a unique infected coexis-
tence equilibrium, (iA?,iAg), for (3.5.26a)-(3.5.26b). We will first show that no solution of

(3.5.26a)-(3.5.26b) in the invariant region Dy will approach the origin. The Jacobian for
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(3.5.26a) and (3.5.26b) evaluated at the origin is

B11 — (oq +b1) P12
Ba1 Bz — (o2 + ba)

J(0,0) =

which has eigenvalues

AN = <[(B11 —T1) 4+ (Ba2 = T2) £ /[(Bin —T1) — (B2 — [2)]2 +4B21 812, (3.5.33)

N —

where I'; = a; + b;. Since ROC > 1 then we know atleast one of 517 — 'y and Poo — I'y
are positive or both are negative and (811 — I'1) (S22 — I'2) < B12/521, both cases for which
A% > 0. Now, if A > 0 as well then the origin is a repellor. If, on the other hand, \§ < 0

then the eigenvector of \§ is

| | g8 = (B2 —T2) (5530
i) 1

Since A§ < 0 then we can see that 1 < 0 also and the stable manifold of the origin does

not lie in D4. Hence, none of the solutions in Dy approach the DFE.

Lastly, we need to show that no periodic solutions exist inside Dy. We can see
by examining the phase plane of the proportions system (3.5.26a) and (3.5.26b) that the
region, A, enclosed by the nullclines of ¢; and 75 but to the left of and below the endemic
equilibrium is invariant. Along the i; nullcline in A, dia/dt > 0 and along the is nullcline
in A, diy/dt > 0, which proves that the region A is invariant. The region to the right of and
above the endemic equilibrium, B, enclosed by the nullclines is also invariant with dis /dt <
0 along the i1 nullcline and diy/dt < 0 along the iy nullcline. So, any solution trajectory
that tries to orbit around the endemic equilibrium will be ‘trapped’ in either region A or
region B and will approach the endemic equilibrium. Thus, no periodic solutions exist.
Since the solutions are bounded, we can use the Poincare-Bendixson Trichotomy to deduce
that all solution trajectories approach the infected coexistence equilibrium, and therefore

it is globally asymptotically stable in the region D,. m

We note that the stability of the infected coexistence equilibrium of the proportions

model (3.5.26a)-(3.5.26b) in D need not guarantee the stability of the infected coexistence
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of the model (3.5.13a)-(3.5.13d) in D? = {(i1,42, N1, N2) € R0 < 1,45 < 1,0 < N; <
K;;,i = 1,2}. However, if a; = 0 for ¢ = 1,2 then the conditions under which the
coexistence equilibrium (N7, Ny), for the system of equations (3.5.13¢) and (3.5.13d), is
globally stable in the N1 — Ns plane do not depend on 47 and 79. Therefore, if these stability
conditions are met (namely & > 0,&, > 0) then we can extend Theorem 3.5.7.1 to prove
global asymptotic stability of the DFE and the endemic equilibrium of the model (3.5.13a)-

(3.5.13d) in the domain D? using the theory of asymptotically autonomous equations.

Theorem 3.5.7.2 Assume that a; =0 for i = 1,2 and & > 0,& > 0. Then, if ROC <1
the disease free equilibrium E3 = (ZA:{’ = O,ig’ =0, ]\}13 = 5%,]\}5’ = ég’) 15 globally asymptot-
ically stable in D2 = {(i1, i, N1, No) € RY0 < i1,y < 1,0 < N; < Kii,i = 1,2} and if
ROC > 1 the infected coexistence equilibrium Eg = (iA?, iAg, Nf, ]\}26) 15 globally asymptotically
stable with initial conditions in the region Di = {(i1,i2, N1, No) € R0 < i1, < 1,0 <
N; < Kji,1=1,2}.

Proof. Consider the non-autonomous system with equations (3.5.13a) - (3.5.13b) rewrit-

ten as:
di . . . , Ni(t)  No(t
— % = (1—i1)(Buris + Brain) — ayiy (1 — 1(t) _ Na(?) , (3.5.35a)
dt 011 012
di , , , ‘ No(t)  Ni(t
—2 = (1 — i3)(Bazia + Pari1) — aziz (1 — () _ Mit) ; (3.5.35b)
dt 022 021
in which N;(¢) is a solution of
dNy N1 N
— =N (1————) —bN 3.5.36
0t a1iVy ( ™ 012> 14Vq, ( a)
dN> Ny Ny
T2 Ny (1= 22— L) — by, 5.36b
pr asNo ( Bon 921) 2 N9 (3.5.36b)
We can write system (3.5.35a) - (3.5.35b) as
' = f(x,t) (3.5.37)

where z is the vector (i1,i2)”, and the components of f are the right hand sides in (3.5.35a)

- (3.5.35b). The equilibrium of system (3.5.36a) - (3.5.36b) can be found independently
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of i1 and io. Under the assumption & > 0,& > 0, the coexistence equilibrium (Nf =
5%, NQG = ,SE)’) of this system is locally (and globally) asymptotically stable independently
of i1 and 45 in its basin of attraction, 15_2F Hence, N;(t) — ]\}f ast — oo in 15_% fori=1,2.

We then substitute ]\}16 into system (3.5.37) to get

di e . _ NI N3
— = (1 —i1)(Buair + Prain) —ariy [ 1— 7+ — 2], (3.5.38a)
dt 011 Oz
di e . _ Ni N}
—2 = (1 —i2)(Bazia + Barin) —ania [ 1 — 52 — L] (3.5.38b)
dt 022 On

Therefore, system (3.5.37) is an asymptotically autonomous system and has limit equa-

tions given by ((3.5.38a)-(3.5.38b)) which we can rewrite as
2 = h(x) (3.5.39)
in the region DA?%

We now consider two cases. For the first case we assume that ROC < 1. By Theorem
3.5.7.1, when Ny = ]\}13 and Ny = ]\}23 are at the (globally stable) coexistence equilibrium,
the disease free equilibrium for system (3.5.38a)-(3.5.38b) is unique and globally asymp-
totically stable in the region D. Therefore, by Theorem 4.1 from [138], the disease free

equilibrium for system (3.5.37) is also globally stable in the region DA?F

For case two, assuming ROC > 1 we consider the endemic equilibrium corresponding
to (i%f, zg) Again, by Theorem 3.5.7.1 (which holds true when oy = 0,k = 1,2), when Ny
and N are at the (globally stable) coexistence equilibrium ]\}f = é?, ]\}26 = 5%, the endemic
equilibrium for system (3.5.39) is unique and globally stable in D . Therefore, by Theorem
4.1 from [138] , the endemic equilibrium for system (3.5.37) is globally asymptotically

stable in the region Di. ]
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3.5.8 Analysis of the Infected Coexistence Equilibrium Under Additional As-
sumptions

We will consider a special case in which the infected coexistence equilibrium is
given by an analytical formula. In this section, we derive an analytical expression for the
infected coexistence equilibrium of the two species model under additional assumptions.
Consequently we are able to perform a full stability analysis. We finish by comparing the
results of this special case with frequency incidence transmission with the results for the

special case with mass action [21].

We add the following additional assumptions to the model (3.3.10a)-(3.3.10d) de-

scribed in Section 3.3.2.

(A1) a; =0, so that there is no increased death rate as a result of the disease.

(AQ) a = a1 = ay, b= b1 = bg, 0= 911 = (922, and ,8 = /Bij for all i,j = 1,2. As before, let
r := a — b be the intrinsic growth rate for both the species. Also, K = K11 = Koy =

%, so the carrying capacity is the same for both species.

(A3) 612 # 021 (in order to retain a difference between the species).

0
As before, we define K;; := ra”.

First, we compute the possible equilibria, in the form E, = (gf, ,§2€, ff, ff), for the
competing two species SI model with frequency incidence disease transmission, (3.3.10a)-
(3.3.10d) under the additional assumptions (A1), (A2) and (A3). We then use the Jacobian
of our simplified model to establish stability conditions for all the equilibria. Finally we

compare our results to previous results for a mass action model.

The Jacobian for this simplified system computed at an equilibrium
E. = (8¢,85,1¢,1%) is

J(E.) = , (3.5.40)
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where, the 2 x 2 matrices A, B, C, and D evaluated at an equilibrium F, are defined as

gefe gefe
A(E.) —b—I(E.) + B Nle; A (E.) + ﬁNle =
A(E,) = P 2 Gere | (3.5.41)
BS51% BSSIS
By (E.) ) B(E.) —b—ZI(E.)+ 5
Ny N
B¢ | BSTIL 5S¢ BSis
A(Ee) - % + 5A—121 Alg(Ee) — — L + —5 Al 22
Nl Ne N2€ Ne
B(E.) = ﬁge ﬁéef e /35% Bglee ) (3.5.42)
1
Bu(E.) — =2 + = 25— B(E.) - =2+ =2
Ny N¢ N3 N§
Tg - Bl o
C(Ee) = oo ! 2 e | (3.5.43)
B g, B
Ne¢ Ng
and A o ) o
By S S sk
— | M Rl N5 N5
D(E,) 885 _ S pSy_, _ pSil; (3.5.44)
Ne  N¢ Ny Ng
with the definitions
—aN¢ A s
A(Ee) = —5—= + g1(NT, N5), (3.5.45)
_aN¢
App(Ee) = L, (3.5.46)
12
—aN¢ A A
B(Ee) i= —5== + 2N}, ), (3.5.47)
_aN¢
Boy(E,) = —222 (3.5.48)
021
For ¢ = 1,2, we have Nf = gf + I;-e. We have the disease incidence function,
kI
I(E.) = B(Nle + E) (3.5.49)

(Zy = Iy), and for i = 1,2, the birth functions g; as defined in (3.3.2) (with 6 = 617 = 622)

evaluated at E, are given as

N¢  N¢
a(E.) =a (1 - 71 — 0—;> : (3.5.50a)

N¢ Nt
@(E) =a (1 - 72 — 0—211> : (3.5.50b)
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The disease free coexistence equilibrium for the simplified model is F3 = (é%, ég’, 0,0),

the same as in Section 3.4.4. Lemma 3.4.5.1 holds for the frequency incidence case as well.

Since the Jacobian J(FE3) is block upper triangular, its eigenvalues are the same as
those of matrices A(FE3) and D(E,). The matrix A(Es) is the Jacobian of the two species
model with pure competition, (3.2.7) evaluated at (N, NS') (see Section 3.2.3) under the
assumptions (A2) and (A3). From Lemma 3.2.3.1, the eigenvalues of A(E3) are negative

if and only if the conditions

(C4) & >0, and

(05) 52 > 07

hold. The matrix D(F3) on the other hand is related to the disease parameters and its

53 '3
eigenvalues are A} = —b and \3 = 3 (i—} + i—}) —b. The eigenvalue A} is always negative

and )3 is negative under the condition

2
(C6) RY = Tﬁ <1.
So, the DFE Ej is feasible and stable if and only if the conditions (C4), (C5) and (C6)

hold.

We note that this result is a special case of Theorem 3.5.1.2 derived from the stability
results of the pure competition model. The condition (C6) is the analogue of the inequality

(3.4.5) for this special case.

3.5.9 The Infected Coexistence Equilibrium

Lastly, we consider the infected coexistence equilibrium Fg. We only consider Ejg
since the disease free one-host equilibria (Eq,FE>) and infected one-host equilibria (Ey, E5)

can be analyzed in the full system and easily extended to our simplifying assumptions.
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We can prove algebraically or by using software like MAPLE that Eg = (é?, ,S:S, flﬁ,fg),

with
6 _ ST
1 RQC’
6 _ 5_15?6
2 52 1
16 =R — 159,
1 4

Note that the total population size ]\}f = ,S:Zl, fori=1,2.
The characteristic polynomial of 7 (Eg) is given as

Pr(z) = (z +n)(z + €)(a? + d12 + 62),

where
i
77:b+/8( A16+TQ6)7
1 Ny
I 56 g6
e=b+B(—L +2) - (= + 22
NP Ny NP Ny

51 = —(A(E2) + B(Ey)) + 2b,

(3.5.51)

(3.5.52)

(3.5.53)

(3.5.54)

(3.5.55)

(3.5.56)

(3.5.57)

(3.5.58)

(3.5.59)

8y = —A12(B2) Bo1(E2) + A(E») B(Ez) — b(A(E») + B(Ez)) + b7,

where for ¢ = 1,2, ]\}f = 5? + I;6. The terms A, B, Aj2 and Bs; as defined in (3.5.45)-
(3.5.48) are all evaluated at the infected coexistence equilibrium Eg. Then, the eigenvalues

of the Jacobian J(Es) are

0 K1
N§  N§
I S§ S8
M= —e=—b= B+ 2)+ B+ 2, (3.5.61)
Nl N2 Nl N2

1
Ny = 3 <—51 + /0% — 452> : (3.5.62)



Lemma 3.5.9.1 The condition that \§ < 0 is equivalent to R§ > 1

Proof. From (3.5.51), (3.5.53) and using that

and

we have

§6 88 1
N6 N§ Rf

1 RG-1

N6 N§  RY
A <0
16 6 g6
< —b—ﬁ( A16+T2)+ﬁ(71+
N} NJ N}
36 _f6 36 _f6 b
S h 5% L b

NS N6 NS N§ B

—
c c
7?’0 7?’0 0
2—Rg<1
R R
— R§ >1.

36
53

) <0
NG

1 RS —1 2
2(—— g ><Ffrom (C6)
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Thus, ROC > 1 is both a feasibility and stability condition for the infected coexistence

equilibrium Fg. =

Lemma 3.4.7.4 holds for the frequency incidence case as well.

Theorem 3.5.9.1 Assume that &1 /& > 0 so that the infected coexistence equilibrium Eg

is feasible. Then Fg is stable if and only if & > 0,&5 > 0, and R§ > 1.

Proof. It is easy to see that A} given in (3.5.60) is negative for all ff + f26 > 0. Thus,

since the infected coexistence equilibrium Fjg is feasible by assumption (£1/&2 > 0) we

have A\; < 0. As a result of Lemma 3.5.9.1, the first condition for stability of Ejg is
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(C8) R§ >1

Since flﬁ = (R§ — 1)5?, the condition (C8) is also a feasibility condition for Eg. From
Lemma 3.2.3.1, Lemma 3.4.7.4, and the Trace-Determinant theorem [6], we see that the
eigenvalues A3 and A4 are negative if and only if the conditions (C4) and (C5) are satisfied.

In this case all the other equilibria, i.e. F, Fy, E3, E4, and Es, are either infeasible

and/or unstable.

3.6 Conclusion and Discussion

The effects of a shared disease on the outcome of competition between two species
has been investigated by several authors in the ecological and mathematical ecology com-
munities. Although many papers propose and analyze mathematical models of Lotka-
Volterra competition between two species that share a common (generalist) pathogen,
some important cases are difficult to analyze. In particular, it has been difficult to find
existence and stability conditions of the infected coexistence equilibrium for these models.
In this chapter, we consider a competition model with density independent death rates and

a shared disease that spreads by either mass action or frequency incidence transmission.

For models with frequency incidence disease transmission, we prove the existence,
uniqueness and global stability of the infected coexistence equilibrium under the assump-
tion that coexistence of the species is feasible using the theory of asymptotically au-
tonomous systems. As is the case for most models with frequency incidence disease trans-
mission, the stability of the coexistence equilibrium depends on the basic reproduction
number (BRN) being greater than one. Thus, the frequency incidence disease model ex-
hibits the classic endemic model behavior; the disease dies out below a threshold and

approaches an endemic equilibrium above the threshold.



83

The infected coexistence equilibrium for the model with mass action disease trans-
mission is intractable. Hence, we simplify the model by assuming that the two species
are similar enough to have the same intra-specific competition rates and to transmit the
disease to each other at the same rates. We also assume that the pathogen does not cause
death in its hosts, as with the common cold in humans, for example. Under these con-
straints, we derive all the existence and stability conditions for the equilibria of the mass
action disease model. We prove that a conjecture made in [73, 26, 17] about the infected
coexistence equilibrium holds for our simplified model. In particular, we show that the
conditions under which infected coexistence is stable guarantee that all other equilibria are
unstable and vice versa. In addition, we also show that under the simplifying assumptions,
the qualitative behavior of the model with mass action disease transmission is identical to

the model with frequency incidence disease transmission.

In the case of mass action disease transmission we show in [21] that, if the death
rate due to disease is positive, then disease can reduce the total equilibrium density for
each species in isolation [21]. This in turn affects competitive ability indirectly (apparent
competition), and is another indication that in the presence of disease, the competitive
outcome can change. We hypothesize that one of the driving forces behind the possible
switch of competitive outcomes and the difficulty of analysis of the full model is death due
to disease. This force may be magnified by differing rates of transmission between and
within species. In our simplified mass action model there is negligible death due to disease
and no significant difference between transmission rates. Analysis of this simplified model
is tractable and we determine that the presence of disease does not change the competitive

outcome of the disease free case.
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4 PERSISTENCE OF DISEASE IN TWO COMPETING SPECIES

4.1 Introduction

A question often asked when analyzing models for population dynamics and/or
disease spread is whether or not coexistence of multiple interacting species, or coexistence
of host species along with a pathogen is possible, or whether a population will persist under
certain scenarios. For some cases, this can be accomplished by analyzing the equilibria of
a model and the conditions for stability of those equilibria. More generally, though, we
can ask if the variables or particular subgroups of the variables of a model are bounded
strictly away from zero so that even if exact equilibrial values are unknown, we can predict
persistence of variables in the system with some certainty. Here, we determine conditions
for the persistence of both the pathogen and the species represented in our model. The
persistence of disease in multi-host systems is important because both invasivity of a
pathogen, the ability to invade a new system, and endemicity of a pathogen, the ability
to persist in a system, can depend upon variation in host composition and environment.
Additionally, emerging diseases can play an important role in the success of invasive species

and can facilitate either coexistence or competitive exclusion.

We consider the particular case of two competing species susceptible to a common
generalist pathogen or parasite that is spread directly by mass action transmission. Per-
sistence theory is useful in this case because the interior equilibria for the full model for
competition and a directly transmitted pathogen is intractable. Hence, it is difficult to
prove stability of any interior equilibria. We can, however, prove that particular compo-
nents of the system are eventually bounded below by a number strictly greater than zero.
Often, showing a population is strongly uniformly persistent involves showing that the
boundary of the system, where at least one component is zero, is a repeller for the dynam-

ical system modeling the population(s). A nice exposition of population persistence can
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be found in [137]. Using this theory long term coexistence and/or pathogen persistence
can be proved even if explicit formulae for equilibria are unavailable. In this chapter, we
use persistence theory to obtain conditions under which a directly transmitted pathogen

affecting two host species will always persist and under which both species will coexist.

The authors of [30] explore the acyclicity boundary flow approach to determining
persistence in the context of dynamical systems. In [148] and [52], the Lyapunov method
of determining persistence in addition to analysis of the boundary flow and acyclicity are
analyzed. Thieme [139] proves several important theorems about persistence and applies
the theory to an epidemic model, determining conditions for persistence of the host and
the pathogen. The authors of [45] use persistence theory to analyze a model for HIV while
in [46] the authors prove coexistence of vertically and horizontally transmitted pathogen
strains using persistence theory. All of these papers focused on coexistence of competing

species or persistence of disease in a one species model.

Han and Pugliese [61] examined a model similar to ours with competition between
two species that share a common pathogen. They proved conditions under which both
species and the pathogen persist. Their model has density-dependent birth terms and
competition in the death terms. Our model, on the other had, includes density-dependence

and competition in the birth term while assuming a constant death rate.

4.2 Background

Let X be a metric space with metric d and let X7 U Xy = X, X1 N Xy = (). Let ®
be a continuous semiflow on X with ®(¢,z) = ®4(x). Recall that d(z,Y’) = infyey d(x,y)

where z € R" and Y C R".

Definition 4.2.0.1 A compact invariant set M CY C X is an isolated compact invari-

ant set in Y if there exists an open subset U C X such that there is no invariant set M
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with M C M CUNY except M itself. A neighborhood V' of M is called an isolating
netghborhood of M in X if every compact invariant set K C 'V is a subset of M ; in this

case, M 1is isolated.

Define

0y = | J w(z) with Y = {z € X5 : ®y(x) € X»,Vt > 0}. (4.2.1)
€Yo
If Q5 has a finite covering, 2o € M = UL | M), C Y, then M is isolated in Y if the sets

M, are pairwise disjoint subsets which are isolated compact invariant sets in Y. Often,
assumptions about an isolated covering are made to show a kind of “hyperbolicity” so that
invariant sets aren’t accumulating on the boundary resulting in the possibility of cycles
that begin on the interior but move arbitrarily close to the boundary with time [148]. In

fact, hyperbolic equilibria are isolated [137].

Definition 4.2.0.2 A set M C Y is chained in Y to a not necessarily different set
N CY (denoted M +— N ) if there exists somey €Y,y ¢ MUN and a full orbit through

y in Y whose w-limit set is contained in N and whose a-limit set is contained in M.

In this chapter, we will use the idea of chained sets in the context of equilibria for a system
of ordinary differential equations (ODEs) in Y. In that context, an equilibrium x* € Y is
chained to an equilibrium y* € Y if there exists a solution trajectory z(t) defined for all
t € R with all its values in Y such that z(t) — 2* as t - —oo and z(t) — y* as t — o0

and there is some ¢ such that x(t) # y*, x(t) # «* [46].

Definition 4.2.0.3 A finite covering M C Y with m elements is cyclic in Y if, after
possible renumbering, My — Ms — ... — My — My for k € {1,...,m}. The finite

covering M is acyclic if it is not cyclic.

Definition 4.2.0.4 For Y, C Xo, Y5 is called a weak repeller for X, if

limsupd(@t(xl),Yg) > 0, Vo € Xy.

t—o0
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It is a uniform weak repeller if there exists € > 0 such that

limsup d(®y(z1),Ya) > €, V1 € X7.

t—o00

One practical way to test whether or not a set Y5 is a weak repeller of X is to examine
its stable manifold, W*(Y3); if W*(Y2) N X1 = () then Y5 is a weak repeller [45, 52, 127].
Alternatively, a set Y5 is a weak repeller for X if there is no € X; such that w(z) C Ys
[52]. In the context of population dynamics and disease, in general, if the per-capita
growth rate of the applicable variable linearized around Ys with initial conditions in X4

is positive, then Y3 is a weak repeller [31].

Definition 4.2.0.5 Y5 is a strong repeller for X, if
lim inf d(q)t(.’ﬂl), 3/2) >0, Vr1 € Xy
t—o0
and is a uniform strong repeller if there exists € > 0 such that

lim inf d(‘I’t(xl),Yg) > €, Vo1 € Xq.
t—o0
If X5, or the boundary with respect to a particular variable or variables, is a uniform
strong repeller for X; as defined appropriately, then the variable (or variables) are said
to be uniformly strongly persistent. Thieme [139] uses the following two theorems to

prove strong uniform persistence under certain conditions.

Theorem 4.2.0.2 (Theorem 1.3 [139]): Let X be a locally compact metric space with
metric d and let X be the union of two disjoint sets X1 and X9 with Xo compact. Let ®
be a continuous semiflow on Xi. Then if Xo is a uniform weak repeller for Xy it is also

a uniform strong repeller for Xi.

Theorem 4.2.0.3 (Theorem 4.4 [139]): Let X be a locally compact metric space. Let X
be an open set that is forward invariant under the continuous semiflow ® on X. Assume
that Qg as defined in equation (4.2.1) has an isolated acyclic covering M = UJ*_ | My, with

each My a weak repeller for X1. Then Xs is a uniform weak repeller for Xi.
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The following theorem is used to show that a set is a uniform strong repeller.

Theorem 4.2.0.4 (Theorem 4.5 [139]): Let X be locally compact and let X; be forward
invariant under the continuous semiflow ® on X and Xo be compact in X. Assume that
Qo as defined in (4.2.1) has an acyclic isolated covering M = UJ'_, My, with each M), a

weak repeller for X1. Then Xso is a uniform strong repeller for X;.

Proof. By Theorem 4.2.0.3, we know that Xs is a uniform weak repeller for X;. Hence

by Theorem 4.2.0.2, X5 is a uniform strong repeller for X;. m

The following theorem is used (by way of contradiction) to show a set is a uniform

strong repeller when the assumptions of Theorem 4.2.0.4 are not met.

Theorem 4.2.0.5 (Proposition 4.3 [139]): Let X be locally compact, Xo compact in X,
and X; forward invariant as in Theorem 4.2.0.4. Let {x,} be a sequence of elements in
Xy with limsup,_, . d(®¢(x,), X2) = 0,n — oco. Let M = UJ'_{ My, be an isolated covering

of Qg such that w(x,) L My, for all n,k. Then M is cyclic.

4.3 Classic Example

Consider the three species Lotka-Volterra competition model

dx
d—tl = 1 f1(z1, 72, 23) (4.3.1)
dx
d—tQ = 3 fo(x1, 72, 23) (4.3.2)
dx
d—t3 = CCgfg(CCl,CCQ,.’Eg) (433)

with f; € C'. We assume that each species alone exhibits logistic type growth so that

ng; < 0 for i # j and there exists a carrying capacity, K;, such that when z; = K; and
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xj =0 for i # j then f; =0 and g—ﬁ < 0. This model makes ecological and mathematical

sense on the domain X = {(z1,2z2,23) : 0 < x; < K;,i = 1,2,3}.

Let Xo = {(z1,22,23)]z1 = Oor g = 0 or 3 = 0} and let X; = X \ Xy. The
boundary, Xs, is forward invariant with respect to the flow, as is X;. We assume that
out-competes x3, rz out-competes xa, and f3(z7,x5,0) > 0. Then, there are exactly five
boundary equilibria in Xo: Ey = (0,0,0), E; = (K1,0,0), Ey = (0, K3,0), E5 = (0,0, K3),
and E* = (z7,25,0). Now suppose that all the equilibria are hyperbolic, hence isolated,
i.e., one can find a neighborhood of each of the equilibria within which no other invariant
set lies. The equilibrium Ej is a weak repeller of X7 since each species grows exponentially
when close enough to zero. In the x1 — x3 plane, E* is a global attractor. On the z; line,
Ej is an attractor for j = 1,2, 3, in the x3 — 23 plane E3 is an attractor and on the x1 —x3
plane FE; is an attractor. So none of the boundary equilibria are chained to themselves.
Since Ey is a universal repeller there is no cycle containing Fy. Since E* is the global
attractor in the x1 — xo plane and both E; and Es are unstable, there is no cycle in the

r1 — o9 plane nor is there a cycle containing the equilibria on the x1 — x9 plane. Hence,

M ={Ey} U{E1} U{E2} U{E3} U{E*} is acyclic.

The per-capita growth rate of x3 near E*, f3(E*) is positive, hence E* is a weak
repeller for X;. Near Eq, xo will have a positive per-capita growth rate (by global stability
of E* in x1 — x9 plane) and near Fs, x3 will have a positive per-capita growth rate since
x3 out-competes s, so both Fy and Es are weak repellers of X;. Near F3, we know that
1 has a positive per-capita growth rate since it out-competes x3. Hence, the boundary
equilibria form an isolated acyclic covering for Q9 as defined in (4.2.1) and each of them
is a weak repeller for X;. Therefore, X5 is a uniform strong repeller for X; by Theorem

4.2.0.4. This means that all three species coexist and are strongly uniformly persistent.

Now, consider the case where E* does not exist and where x1 out-competes x3, x3

out-competes o, and x out-competes z;. For example, consider the May-Leonard model
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[97]
d
% =x1(1 — 1 — axy — Brs)
dx
d—t2 =x9(1 — fx; — x9 — x3)
dx
d—; =x3(1 — azxy — fxg — x3)

where 0 < 8 <1 < a and a + B > 2. The only equilibria in X are Ey, E1, Eo, and
Ej3, all of which are still weak repellers for X; and are still isolated. However they do
not form an acyclic covering because there is a heteroclinic cycle By — Fos +— E3 — FEj.
In this case, Xy is not a uniform strong repeller for X;. In fact, limsup, ,., z;(t) = 1
and liminf; , z;(t) = 0. The interior equilibrium is unstable in this case, so for any
strictly interior initial conditions zg, the orbit will cycle out toward the heteroclinic cycle
connecting Fi, Fs, and E3 (see Figures 4.1 and 4.2). In fact the w-limit set, w(zg) is
Ey U E>U Es, [131].
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FIGURE 4.1: Orbit for May-Leonard competition with o = 0.7, 8 = 1.4 and the x axis is
1, y-axis is xo and z-axis is 3.
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FIGURE 4.2: Time series for x; from Figure 4.1. Notice that the time spent very close
to zero gets longer as time increases.

4.4 Competition and Disease Model with Mass Action Incidence

We will now consider the general model in Chapter 2 with Lotka-Volterra competi-
tion and mass action transmission of disease between two species in the context of strong
uniform persistence. For ease of computation in the proofs, the model (3.3.4)-(3.3.7) can

be re-written in terms of infected proportions i; and total populations Ng, k = 1,2, as

) N N.
% — <,811(1 — il)Nl — T <1 — K—lll — K—122> - (bl + 041) + Oéli1> il + 512(1 — il)igNQ
(4.4.1)
di N- N
% = (522(1 — i) Ng — 19 ( - K—; — K—;l) — (b2 + ag) + a2i2> io + Po1(1 —d2)i1 Ny
(4.4.2)
dN7 Ny N .
— = 1—-—— — | - N 4.4.3
dt <r1 ( K K12> a121> ' ( :
dNy No Ny .
— = 1—-———| - No. 4.4.4
dt <T2 ( Koo K21> ‘)‘2’2) 2 (4.4.4)
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where i, = I /Ny for k = 1,2. This system is well defined and ecologically relevant on

the space X = {(i1, N1,i2,N2) : 0 <4 < 1,0 < N < Ky, 1 = 1,2},

When 41,72 = 0, equations (4.4.3)-(4.4.4) reduce to the two species Lotka-Volterra
competition model. The disease free equilibria are Fy = (0,0,0,0), F; = (0, K11,0,0),

Ey = (0,0,0,K5), and E3 = (0,K7,0,K3) where K;; = r;if;;/a; and K} are defined
K11 K9 Ko &1

9 2 —

Ko + K11(&1/&2) &2
disease free equilibria can be determined by the parameters { = 1/K1; — 1/Ks and

€ = 1/Kas — 1/K12 as defined in (3.2.9) and seen in Section 3.4, and by R}, R3, and ROC

in equation (3.2.8) as K} =

K7. Stability of the resulting

as in equations (3.4.13), (3.4.14), and (3.4.3). The sign of &; is determined directly by the
per-capita growth rate of species 2 near (linearized around) the equilibrium F; and the
sign of & is determined by the per-capita growth rate of species 1 linearized around the

equilibrium Fj.

We re-frame the conditions for stability of the infected one host equilibria in terms
of the proportions model (4.4.1)-(4.4.4). The infected one host equilibrium for species 2

is B5 = (Q7,0,45, N5) where Q7 is the smallest root (only root in the interval (0,1)) of

T N I
o 7% — <512 <N2* - —2) + 7 <1 — 2 > + F1) Z + P2 (N2* - _2> =0, (44.5)
B2 K B22

N; = Kol — OQZQ), and 45 is the smallest root (only root in the interval (0, 1)) of
sz 9 s RE -1
— 7" - 14+ =) 2+ ———=0. 4.4.6
Rzt Pz S (4.46)

Because competition affects only the birth rates in our model, equations (4.4.1)-(4.4.2),
(4.4.5), and (4.4.6) are different from those in [61] for which competition affects the death
rate only. Equations (4.4.1)-(4.4.2) replace the terms —(b; — a;7;N;/K;) in [61] with
—ri(1 — N;/K;; — N;j/K;j) for i # j. Equation (4.4.5) adds the term, not present in the
Han-Pugliese model [61], r1(1 — N5/K12) to the Z coefficient. Finally, equation (4.4.6)
differs by adding the term ag/re to the Z coefficient. We note that the equilibrium
Es = (Q1,0,i5, N3) corresponds to Fs in (3.4.29) so #5N§ = I = I (see Lemma 4.4.0.2).
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The Jacobian of the system at equilibrium E5 = (Q7,0,45, N3) is

A B
T(Es) = (4.4.7)
C D
where
5 [Pl —QDNG Qi+ Bl - Q)i ’ (4.4.8)
0 0
- Koy L2 ,821( Q)Ql ’ (4.4.9)
0 N3
N* % kAT * * T *
e —r1(1 - K—fg) —I'1 +201Q7 — B12i3 N3 B1a(1 — Q7)Q7 + K_LQ:L (4.4.10)
0 Tl(l—;(v—fg)_alQT
and where

. N . %N - .
522(1 — 21;)]\[5 — ?”2(1 — K—222) - FQ + 204113 /822(1 - ’L;)’L; + %23

*

% N. -k *
—a2N2 7”2(]_ — K—222) — 21y — [g—;NE )
4.4.11

The eigenvalues of the Jacobian of (4.4.1)-(4.4.4) evaluated at Es5 are the same as those
for the matrices A and D. The eigenvalues of D are negative if R% > 1 since it is the
same as the Jacobian for species 2 alone with the pathogen. The eigenvalues of A are
A =7r1(1—Nj/Ki2) —a1Q} and A3 = —T'y +201Q% — B12i5 N5 — r1(1 — N3 /K12). Using
the definition of Q} one can show that A2 is always negative (Lemma 4.4.0.3). Hence

necessary and sufficient conditions for stability of E5 are R2 > 1 and
k1 =M =r(1—Nj/Kp) —a1Qf <0. (4.4.12)
This condition guarantees that the per capita growth rate of species 1 at Ej5 is negative

so species 1 cannot “invade” species 2 at equilibrium.

Lemma 4.4.0.2 The equilibrium E5 corresponds to the one-host infected equilibrium for

species 2 in the non-proportions model (3.3.4)-(3.3.7), i.e. i5Ng = I3 = I3.
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Proof. First,

1 2 RE—1
Z’;:T_Q_ 1+%_ 1_|_% _4% O2
CM22 T2 T2 T2 RO

and

*k 2 2
- Q215 Koo Qo 1% as (RE—1
Ny =K - ) ="11-—= 1+—=) —4—=
2 22( ?”2) B 7~2+\/< +r2> ?”2( R2

R2-1
Let G = (14 92)% — 492( 7 ). Then,
wn Koo Qo re 1 Qs
Nyiy="2(1-=4VG) =2z (1+=-VG (4.4.13)
2 r9 o 2 )
K22 9 a9 T9 a9 2 a9 R% -1
=—Z (2 -=42/G-=2((1+=2)2-4-= 4.4.14
4 <2 T2+ 062<(+?”2) 7“2( ’R,g ) ( )
Koo R% -1 2000
= 4 —2— —+2VG 4.4.15
2 (1% -2- 22400 i)
KQQ a9 2
_fe2 il 2 2 4.4.1
5 ( n Rt \/5) (4.4.16)
A Ix
and using that I} = I3 = 55 with I7 the largest root of the quadratic polynomial
22
REN _
Ps(Z) = 72 + 2T, (1 - 0T2> Z+T%(1—R3) with Ay := 2—22,
T2
—Ty Ty R} -
=222 (0‘2 7”2) (4.4.17)
B2z P 2 ()
1 - R)? [ag —1o\>
L Jargmzye (222 g (Rl (02 =) s (4.4.18)
2092 2 4 T2
Koo a2 a9 4oy
— 22 -2y 1= : 44.19
2 < 9 R(Q) \/( T2 ) R(Q)’I“2> ( )
Since \/(1 —52)* 4+ % = /G, we have that I; = i5N;. m

Lemma 4.4.0.3 )} = —T'; +201Q% — B12i5 N5 —r1(1— N3 /K12) is always negative under
the assumptions of model (4.4.1)-(4.4.4).
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Proof. Using the definitions of @], we know

A2 <0
& =T +20,QF — BraisNg — (1 — Ni/K12) <0
2201 QF < Proly +r1(1 — N3 /Kpo) +T4
T +r1(1 = Ny /Kig) + Br2(Ng —T'a/f22) — VB2 — 4AC < Pral3 +71(1 — Ny /K12) + T4

& — /B2 -4AC <0

where A = oy, B = B2 (NS—%) + 7 (1—%) + T, and C = B9 (NQ*—%) and
where I3 = i5N; = Nj —T'y/B22. Note that B> — 4AC > 0 is easily shown with algebra.

Similarly, the infected one host equilibrium for species 1, Ey = (if, N{, Q3,0) cor-
responding to Ej in (3.4.15) is stable when R} > 1 and a condition analogous to (4.4.12)
holds, i.e.,

Ko = A\ = 1ro(1 — Ni/Ka1) — Q3 < 0. (4.4.20)

This condition guarantees that the per capita growth rate of species 2 at Ej is negative

so species 2 is cannot “invade” species 1 at equilibrium.

4.5 Strong Uniform Persistence of the Hosts and Pathogen

First we show that for this model, at least one of the species will survive, i.e. not

go extinct, for all nonnegative parameters.

Theorem 4.5.0.6 For system (4.4.1)-(4.4.4) with N1(0) > 0 and N2(0) > 0, at least one
of N1 or Ny is uniformly strongly persistent, i.e. there exists € > 0 such that for any solu-

tion x(t) = (11(t), N1(t),i2(t), Nao(t)) of (4.4.1)-(4.4.4), lim inf; o max{N;(t), Na(t)} > e.
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Parameter | Description

& measure of intra- versus inter-specific effects exerted by species 1

& measure of intra- versus inter-specific effects exerted by species 2

K1 per capita growth rate of species 1 at species 2 infected 1-host equilibrium

K9 per capita growth rate of species 2 at species 1 infected 1-host equilibrium

RS basic reproduction number for the pathogen in species 1 alone

R(Q) basic reproduction number for the pathogen in species 2 alone

ROC basic reproduction number for the pathogen when both species are present
TABLE 4.1: Summary of important parameters and their ecological relevance.

& | & | R | ko | RE | k1 | RS | Equilibrium

-+ | <1 (0, N{,0,0)

+ | - <1 (0,0,0,N5)

+ |+ <11 (0,N{,0,N5)

— |+ | >1| - (73, Ny, Q%.,0)

+ | - >1| — (Q1,0, N5, %)

TABLE 4.2: Conditions for stability of the disease-free and one-host infected equilibria. The

values listed in the Equilibrium column are the non-zero variables at equilibrium. Variables not

listed are zero.
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Proof. Define Xy = {(i1, N1,i2,N2) : 0 <4y < 1,N; = 0,0l = 1,2} and let X; = X \ Xo.
Then both X; and X, are forward invariant with respect to the semiflow ® induced by
(4.4.1)-(4.4.4). Also, Qg is defined in equation (4.2.1) and M = {(0,0,0,0)} = Ej is a
finite covering for 22 and Ej is trivially isolated in X and acyclic in X5. It remains to
show that Fj is a weak repeller of X;. We consider the flow in X; near Ejy and assume
that 71, N1, 12, and Ny are close enough to zero that quadratic terms can be neglected, i.e.

we linearize the flow around Fy. Then,

dNq
I e N
i T14V1
dNs
2 o N
i 721V2

so that either N7 or Ny or both (depending on initial conditions) are growing exponentially
when close enough to Fy, hence Ej is a weak repeller of X;. Now, since X5 is compact in
X, by Theorem 4.2.0.4 we know that X5 is a uniform strong repeller for X, which implies

at least one of N1 or Nj is strongly uniformly persistent. m

The next theorem gives conditions under which species 1 will persist uniformly

strongly in the system. A similar theorem holds for species 2 with the indices switched.

Theorem 4.5.0.7 If & > 0 and either (1) RE < 1 or (2) R3 > 1 and k1 > 0 (as
defined in (4.4.12) ), then Ny persists uniformly strongly, i.e. there exists € > 0 such that

liminf; ;o Ni(t) > € with initial conditions N1(0) > 0.

PI‘OOf. Deﬁne XQ = {(’il,Nl,’iQ,Ng) : 0 S il S 1,0 S NQ S KQQ,Nl = O,Z = 1,2} and
let X7 = X\ Xy. X5 is compact in X and X; is forward invariant. Note that if initial
conditions for Nj (or N3) are positive then the solution to equations (4.4.3)-(4.4.4) for Ny

(or N3), respectively, will be positive for all time. Consider the following two cases:

Case 1: Let & > 0 and Rg < 1. Then, the solutions that start in X5 and remain
in Xy will converge to one of Ey or Ey = (0,0,0, K3) (in this case, E5 = (Q7,0,45, Ny) is
not feasible). For Xy N {N2 = 0}, the solution z(¢) tends to Ep, but for X5 N {Na > 0},
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x(t) converges to Eo as t — co. Because of this, neither Ey nor Fj is chained to itself,
i.e. thereis noy € Xo, y # Ep(or E3) such that w(y) is Eg(or Ey) and a(y) is Ep(or Ea).
Also, Ey and FEs, are not chained to each other in a cyclic way because this would require
ay € Xo, y# Eo,y # Es with w(y) = Ep and a(y) = Eo, which is clearly not possible.
So, M = {Ep} U{E>} is an acyclic covering for 2y as defined in equation (4.2.1).

We will now show that Ey and Fo are weak repellers for X;. By the same argument

as in Theorem 4.5.0.6, Ey is a weak repeller for X;. If we linearize the flow around F»

AN K
d—tl =r <1 - ﬁ) Ni. (4.5.1)

assuming N1(0) > 0, then

Since £ > 0, then Kj9 > Kago and the right hand side of equation (4.5.1) is positive.
Hence, F5 is also a weak repeller for X;. Also, both Ey and F, are isolated since the
growth rate of Ny is positive near both of them in X; and since Ej is a repeller and FEs

an attractor in Xs. Hence, by Theorem 4.2.0.4, X5 is a uniform strong repeller for Xj.

Case 2: Let & > 0, R(Q) > 1 and k1 > 0. Solutions that start in X5 and remain in X5
for all time will converge to one of Ey, Fo, and Fj5 (which is now feasible and stable). The
same analysis for Ey holds as in Case 1. For Xy N {iy = i3 = 0, N2 > 0}, z(t) converges to
Esy and for X5 N {iz > 0 or i1 > 0, Ny > 0}, x(t) converges to E5 as t — oo since R3 > 1.
Thus, neither Ey, E5, nor E5 can be chained to itself in Xs. They are also not chained
to each other in a cyclic way because this would require a y € Xy with y # Ey, Es(or Ej5)
and w(y) = Ey, or would require y € Xy with y # Es, E5 and a(y) = E5 while w(y) = Eo,
neither of which is not possible. So, M = {Ey} U{E>} U{E5} is an acyclic covering for
Qs.

By similar arguments as in Case 1, both Ey and Fy are weak repellers for X;. To
show Ej5 is a weak repeller, linearize the flow around E5 and consider initial conditions in

X1 to get
dNy
dt

= (Tl (1 — f](\'[f;) - ale)Nl (452)



99
However, k1 > 0 holding implies that the right hand side of equation (4.5.2) is positive,
hence E5 is a weak repeller for X; as well. Also, Ey, F>, and E5 are isolated since any
flow close enough to one of them will either be moving away or toward it in at least one

component. Therefore, by Theorem 4.2.0.4, X5 is a uniform strong repeller for X;. =

A similar theorem holds for species 2 with the indices switched.

Theorem 4.5.0.8 If &1 > 0 and either (1) Ry < 1 or (2) Ry > 1 and Ky > 0 (as
defined in (4.4.20) ), then Ny persists uniformly strongly, i.e. there exists € > 0 such that

liminfy_, o Na(t) > € with initial conditions N2(0) > 0.

Proof. The proof is analogous to Theorem 4.5.0.7. m

Now that we have shown that at least one species will persist uniformly strongly
and found conditions under which a particular species is strongly uniformly persistent,
we will prove that the disease persists uniformly strongly under certain conditions. The
following proofs use similar methods as those in Proposition 1.2 of [139] and Theorem 4.7

in [61].

Theorem 4.5.0.9 If& < 0, & > 0, and R3 > 1 then for initial conditions N1(0), N2(0) >
0 and i1(0) > 0 or i2(0) > 0 the disease persists uniformly strongly, i.e. there exists € > 0

such that iminf,_, o min{ii(t),iz(t)} > €.

Proof. Let Xy = {(i1,N1,i2,N2) : i1 = 0oriz = 0,0 < N; < Ky,l = 1,2} and let
X; = X\ Xo. Also, let X = {(i1, N1,i0,No) : 0 < iy < 1,0 < N; < Ky, 1 = 1,2}. Notice
that both X; and X; are forward invariant. Three equilibria, Ey, Ei, and Es, form a
covering for Q9 (defined as usual). As before, these equilibria are not chained to themselves
or each other in a cyclic way in Xs, so M = {Ep }U{E1 }U{E>} is in fact an acyclic covering
for Q. Ej is isolated and a weak repeller for X;. For X5 N {N3 =0, Ny > 0;i; =iy = 0},
the solution x(¢) tends toward E; while for Xo N{Na > 0, N; > 0;4; =iy = 0}, x(¢) tends
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toward E5. When the flow is linearized around E;, Ny grows exponentially since & > 0,
so F4p is also an isolated weak repeller for Xl. Next consider the flow of i9 linearized
around Fs,

% = (B22Ka2 — (b2 + a2))ia.

Since RZ = ’[2221—%22 > 1 then iy is growing exponentially near Fy and F» is isolated and a
weak repeller for X;. Notice that the conditions of Theorem 4.2.0.4 are not met by our
assumptions since we want X5 to repel X 1 and X9 U X 1 # X, so other methods must be
used. For the remainder of the proof, we first show that X5 is a uniform weak repeller

for X;. We then use this to prove that X5 is a uniform strong repeller for X, by way of

contradiction.

First we show that X5 is a uniform weak repeller for Xl so that there exists an
0 < €, chosen so that € < min(Q7, Q3,47,7), such that

lim sup min{i; (¢),22(¢)} > € (4.5.3)

t—o00
for any solution z(¢) with initial conditions Ny (0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
Assume X5 is not a uniform weak repeller for X;. Then there exists a sequence x, =
(21, N1ns 2.0, Nop) € X such that lim Sup;_, oo d(P¢(zy), X2) — 0 as n — oo. Since each
of Ey, E1, and Ey is a weak repeller for X1, then we know that w(z,) ¢ M. Then the
assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X5 is a uniform weak repeller for X 1.

Now we will show that X is a uniform strong repeller for X; by way of contradiction.
Suppose that X3 is not a uniform strong repeller for X;. Then, there exists no € > 0 such
that liminf, . min{i; j(t),i2,;(¢t)} > € thus there exists a sequence of initial conditions,
:c(])- = (i1,4(0), N1(0), 42, (0), N2 ;(0)) € X1, and a sequence 0 < ¢; < € such that

1ig£fmin{i17j(t),igJ(t)} <e¢jforj=1,2,--- (4.5.4)
where lim;_,o €; = 0 and where i1 ;(t), N1,;(t),42,;(t), and No ;(t) are solutions with initial

values x? € X;. By equations (4.5.3) and (4.5.4), we can also find sequences of times
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0<r; <s; <tj with lim;_,r; = oo and

hm min{ilyj(sj),igyj (Sj)} =0 (455)

Jj—00
min{iy,;(r;),dz,;(r;)} = min{iy ;(¢;), i2,;(¢;)} = € (4.5.6)
Hlin{’i17j(t),’i27j(t)} S € for ’I”j S t S t]’ (457)

Also, r; can be chosen large enough that

1. when R} < 1 then Ny j(t) > ¢* > 0 for t > r; by Case (1) of Theorem 4.5.0.8 and

2. when R} > 1 then max{Ny ;(t), N2 ;(t)} > €* > 0 for t > r; by Theorem 4.5.0.6.

After choosing a subsequence, the sequence (i1;(7;), N1,;(7;),12,;(rj), No(r;)) is
convergent in X by compactness of X. Let 2**(0) = (i1,4%(0), N1,4x(0), 72,5+ (0), N2 .+(0))
be its limit as j — co. Then by (4.5.6) we know that min{i; ,.(0),42.«(0)} = € so that

e Xi.

There are now two more steps. First, show that {t; — r;} is unbounded. Sup-
pose not. Then, after choosing subsequences, {s; — r;} is convergent and, by the semi-
group property of the flow, lim;_,oo(s; — 7;) = s* and limj_,o0(i1 (75 + ), N1 (rj +
§%),49,5(rj + 8%), N j(r; + s*)) = ™ (s*) where 2**(t) is the solution with initial value
x**(0) € X;. Since X; is forward invariant, z**(s*) € X;. We also can see that
lim; o0 (i1,5(85), N1,j(55),42,5(55), N2 j(s5)) = x*™(s*), which implies that z**(s*) € Xo

by (4.5.5) and the compactness of X5. This is a contradiction, hence t; —; is unbounded.

Second, assuming that X5 is not a uniform strong repeller for X1, if 2**(0) € X
then, by (4.5.3) we know that

lim sup min{iy .. (£), io 0 (£)} > ¢ (4.5.8)

t—r00
If 2**(0) € X \ X; then there are two cases. Case 1: If R} < 1 we know Noj(t) > €
for t > 7; 50 N2 (0) > €* and, by (4.5.6), min{i; 4+ (0),724(0)} = € Then we must

have N, (0) = 0 so that Nj..(t) = 0 and from analysis of the one-species infected
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equilibrium in Section 4.4, we know that lim;_,oc i1 4 (t) = Q7 and limy_,o 92 44 (t) = 45
so that equation (4.5.8) holds for this case as well since € < min(Q7, Q35,4},i3). Case
2: If R} > 1 then max{Ny ;(t),No;(t)} > €* for t > r; and either N ,.(0) = 0 and
No.x(0) > € or N .4(0) > €* and Ny . (0) = 0. Similarly to Case 1 we can now show

that equation (4.5.8) holds for Case 2 as well.

Now, since {t; —r;} is unbounded, using a subsequence, we can assume that {t; —r;}
is increasing monotonically and that the lim;_,(t; — 7;) = co. Then, by (4.5.7) we have
that for & > j, min{i; (ry + 7),i0k(ry +7)} < € for 0 < r < t; —r;. Fix r and j and
let k& — oo so that for 0 < r < t; — rj, min{ii . (r), 92 ()} = lmy_ oo min{iy g (rp +
r),iok(ry + 1)} < €. Now, let j — oo and lim; ,t; — r; = oo so that the previous
inequality holds for all » > 0. This contradicts (4.5.8), hence Xs is a uniform strong

repeller for X,. m

An analogous theorem holds for the indices exchanged on the relevant parameters.

Theorem 4.5.0.10 If&; <0, & > 0, and Ry > 1 then for initial conditions N1(0), N2(0) >
0 and i1(0) > 0 or i2(0) > 0 the disease persists uniformly strongly in at least one of the

species, i.e. there exists € > 0 such that liminf, . min{ii(t),i2(t)} > e.

Proof. The proof is the same as that for Theorem 4.5.0.9 with indices reversed. m

Now we consider conditions under which the disease will persist uniformly strongly
in the system (whether in one species or both species). Notice that if inter-species disease
transmission is positive then it is not possible for both species to persist but only one

species has disease present.

Theorem 4.5.0.11 If & > 0, & > 0, and ROC > 1 then disease persists uniformly
strongly, i.e. there exists € > 0 such that liminf,_, o min{iy (¢),i2(t)} > € for any solution

x(t) with N1(0), N2(0) > 0 and i;(0) > 0 or i2(0) > 0.
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Proof. Define Xo = {(i1,N1,i2,N2) : iy = 0oriy = 0,0 < N; < Ky, l = 1,2}, X; =
X\ Xo, and let X; = {(i1, N1,i2,No) : 0 < i < 1,0 < N; < Ky,1 = 1,2}. Both X; and
X are forward invariant with respect to the semiflow ®. Let Q9 be defined as in (4.2.1).
By analyzing the semiflow in X5 we see that (29 has a finite covering of four equilibria:
Ey = (0,0,0,0), Ey = (0,K11,0,0), E5 = (0,0,0, K92), and E3 = (0, K{,0, KJ). None of
these four equilibria are chained to themselves or to each other in a cyclic way because Ej
is unstable, F; and F, are unstable for initial conditions Xy N {Ny, Ny > 0541 = is = 0},
while Ej3 is stable. Thus, M = {Ep} U{E1} U {E>} U {E3} forms an acyclic covering for
Qo.

We will now show that each of the equilibria in M is isolated and a weak repeller as
well. As with the previous theorems, Fy is a stable equilibrium with initial conditions in
Xo N {N1, Ny = 0}, but if initial conditions for N; or Ny are positive then N; or Ny will

increase exponentially and Ej is unstable, hence Ej is isolated and a weak repeller for X;.

E is stable with initial conditions in XoN{Ny = i2 = i; = 0}, but, since {; > 0, with
initial conditions in XoN{Ng > 0,72 = i; = 0} then Fj is unstable. With initial conditions
in Xo N {Ny =iy = 0,i; > 0} then Ej is stable if R} < 1 and is unstable if R} > 1.
Finally, with initial conditions in X;, F; is unstable since Ny will grow exponentially.
Thus, E; is both isolated and a weak repeller for X;. Very similar analysis (with indices

exchanged) will show that Es is also isolated and a weak repeller.

Near F3 with initial conditions in Xy N {i; = ia = 0}, E3 is stable since &1,&; > 0.
With initial conditions in Xo N{N; = 0 or Ny = 0} then Ej is not an attractor (unstable).
With initial conditions in X;, Fj is also unstable since RS > 1 so that iy () or ix(t)
grow(s) exponentially near F3. This can be seen by examining the flow of i; and iy

linearized around Fjs,

d—tl = (Bu K7 — (b1 + a1))is + PraK3iz (4.5.9)
2 = (Baa K3 — (by + a2))iz + Bar Ky (4.5.10)

dt
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This system has strictly positive real eigenvalues when ROC > 1 since the Jacobian of
equations (4.4.1)-(4.4.2) from which R is derived has the same eigenvalues as the Jaco-
bian matrix formed by (4.5.9)-(4.5.10). Hence the solution to the above system is growing

exponentially near 3. Therefore, in all cases, Fs is isolated and is a weak repeller for X;.

Next we show that Xy is a uniform weak repeller for X, so that there exists an

0 < € < min(Q7, Q5,17,45) such that
lim sup min{i; (t),i2(t)} > € (4.5.11)

t—00
for any solution z(¢) with initial conditions N;(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
Assume X5 is mot a uniform weak repeller for X;. Then there exists a sequence x, =
(115 N1y i2.; Nop) € X1 such that limsup,_, . d(®¢(,), Xa) — 0 as n — oo. Since each
of Ey, Ey, Ey, and Ej is a weak repeller for X7, then we know that w(zy) ¢ M. Then the
assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X» is a uniform weak repeller for X;.

Now we will show that X5 is a uniform strong repeller for X| by way of contradiction.
Suppose that X5 is not a uniform strong repeller for X;. Then, there exists no e > 0 such
that liminf, o min{i; j(t),i2,;(t)} > € thus there exists a sequence of initial conditions,

:):9 = (i1,4(0), N1 j(0),i2,;(0), N2 ;(0)) € X; and a sequence 0 < ¢; < ¢ such that

lim inf min{4 ;(t),42,;(¢t)} <€, for j =1,2,--- (4.5.12)

t—00
where lim;_,o, €; = 0 and where i1 ;(t), N1 (), i2,j(t), and N3 ;(t) are solutions with initial
values :c? € X1. By equations (4.5.11) and (4.5.12), we can also find sequences of times

0<r; <s; <tj with limy_,o rj = oo and

hm min{ilyj(sj),igyj (Sj)} =0 (4513)

Jj—00
min{iy,;(r;),dz,;(r;)} = min{iy ;(¢;), i2,(¢;)} = € (4.5.14)
Hlin{’i17j(t),’i27j(t)} S ¢ for ’I”j S t S t]’ (4515)

Also, rj can be chosen large enough that



105

1. when R} <1 then Ny ;(t) > €* >0 for t > r; by case (1) of Theorem 4.5.0.8,
2. when R < 1 then Ny j(t) > €¢* > 0 for ¢ > r; by case (1) of Theorem 4.5.0.7, and

3. when R} > 1 or R% > 1 then max{N; (), No;(t)} > €* > 0 for t > r; by Theorem
4.5.0.6.

After choosing a subsequence, the sequence (i1 ;(7;), N1,;(7;),12,;(rj), No(r;)) is
convergent in X by compactness of X. Let 2**(0) = (i1,4(0), N1,4x(0), 2,4+ (0), No 4« (0))
be its limit as j — co. Then by (4.5.14) we know that min{i; ,.(0),i2..«(0)} = € so that

e Xi.

There are now two more steps. First, show that {t; — r;} is unbounded. Sup-
pose not. Then, after choosing subsequences, {s; — r;} is convergent and, by the semi-
group property of the flow, lim;_oo(s; — 7;) = s* and limj_,o0(i1 (75 + ), N1 (rj +
§%),49,5(r; + 8%), Noj(rj + s*)) = ™ (s*) where 2**(t) is the solution with initial value
x**(0) € X;. Since X; is forward invariant, z**(s*) € X;. We also can see that
im0 (1,5(55), N1,j(55),92,5(s5), Naj(s5)) = @**(s*), which implies that 2**(s*) € X, by

(4.5.13) and the compactness of X,. This is a contradiction, hence ¢; — r; is unbounded.

Second, assuming that X, is not a uniform strong repeller for X, if z**(0) € X,

then, by (4.5.11) we know that

lim sup min{i; . (), 424 ()} > €. (4.5.16)

t—00

If **(0) € X \ X; then there are three cases. Case 1: If R} < 1 we know Ny j(t) > €* for
t > 1 50 No,(0) > € and, by (4.5.14), min{iq 4 (0), 42,4 (0)} = € Then we must have
N1..+(0) = 0 so that Ny . (t) = 0 and from analysis of the one-species infected equilibrium
in Section 4.4, we know that lim_, i1 4« (t) = Q7 and limy_, 2 4« (t) = 5 so that equation
(4.5.16) holds for this case as well. Case 2: If RZ < 1 we know Ny ;(t) > €* for t > r; so
N1,4(0) > € and, by (4.5.14), min{i1 4+(0), 92.4x(0)} = €. Then we must have N ,,(0) =0
so that Ny, (t) = 0 and from analysis of the one-species infected equilibrium in Section

4.4, we know that lim; o 92 4 (t) = Q3 and limy_, 41 4« (t) = 4] so that equation (4.5.16)
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holds for this case as well. Case 3: If R} > 1 or R > 1 then max{Ny ;(t), N2 ;(t)} > €*
for t > r; and either Ny ., (0) = 0 and N ,.(0) > € or vice versa. Similarly to Cases 1

and 2 we can now show that equation (4.5.16) holds for Case 3 as well.

Now, since {t; —r;} is unbounded, using a subsequence, we can assume that {t; —r;}
is increasing monotonically and that the lim;_,(t; — ;) = co. Then, by (4.5.15) we have
that for k > j, min{iy (ry +7),92%(rr +7)} < €. Fix r and j and let k£ — oo so that for
0 <7 <t;—rj min{iw(r), i (r)} = limg_oo min{iy yx(ry +17), 4925 (rx +7)} < €. Now,
let j — oo and lim;_,t; — r; = 0o so that the previous inequality holds for all » > 0.

This contradicts (4.5.16), hence X5 is a uniform strong repeller for X;. m

Theorem 4.5.0.12 If & <0, & <0, R > 1, RE > 1, and ROC > 1 then disease persists
uniformly strongly, i.e. there exists € > 0 such that liminf; . min{i;(t),i2(t)} > € for

any solution x(t) with N1(0), N2(0) > 0 and i1(0) > 0 oriz(0) > 0.

Proof. The proof is similar to that of Theorem 4.5.0.11 except in the following aspects:
First, that in XoN{i; =iy = 0}, E3 is unstable and F; and E3 are bistable, with stability
determined by initial conditions. With initial conditions in X 1, near F1, i1 has a positive
growth rate since R(l) > 1; near Fs, 19 grows since Rg > 1; and near Fs3, the same analysis

holds as for Theorem 4.5.0.11. So, each of Ey, E1, Fo, and E3 are weak repellers for )~(1.

Second, if z**(0) € X \ X, there are two cases. By Theorem 4.5.0.6, we know
that max{Ny ;(t), No;(t)} > €. Case 1: Ny (0) = 0 and N3, (0) > ex so that
limy o0 i1 44 (t) = 4] and limy_,o0 i2.4x () = Q5 so that equation (4.5.16) holds for this
theorem. Case 2: Ny,4(0) = 0 and Ny . (0) > ex so that limy_,o i 4 (t) = 45 and
limy 00 @1 44 (t) = Q7 so that equation (4.5.16) holds. m

Theorem 4.5.0.13 Let &5 < 0, R3 > 1, and k1 > 0. Let either (1) & >0 or (2) & <0
and Ry > 1. Then, species 1 persists uniformly strongly, i.e. there exists € > 0 such that

liminfy_, o Ni(t) > € with initial conditions N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
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Proof. Define Xy = {(i1, N1,i2,N2) : 0 < 4; < 1I,N; = 0,0 < Ny < Koo, l = 1,2},
X; = X\ Xy, and let X; = {(i1,N1,i2, No) : 0 < 4y < 1,0 < N; < Ky,1 = 1,2}. Both
X, and X; are forward invariant with respect to the semiflow ®. Let 9 be defined as

in (4.2.1). By analyzing the semiflow in Xy we see that ()3 has a finite covering of three

equilibria: Ey = (0,0,0,0), Ey = (0,0,0, Ka), and Es = (Q*,0,i}, N3).

We will now show that each of the equilibria in M is isolated and a weak repeller.
As with the previous theorems, Fj is a stable equilibrium with initial conditions in X5 N
{N1, N3 = 0}, but if initial conditions for Ny or Nj are positive then Ny or Ny will increase
exponentially and Fy is unstable, hence Ej is isolated and a weak repeller for X;. Also,

FEy is not chained to itself and is not part of a cycle.

Es is stable with initial conditions in Xy N {Ny > 0,i; = io = 0}, but, since R% > 1,
with initial conditions in Xo N {N3 > 0,i3 > 0 or 43 > 0} then FEj is unstable. Finally,
with initial conditions in Xl, FEs5 is a weak repeller since the flow linearized around FEs
with initial conditions in X7 is

dig

% = (ﬁQQKQQ — (b2 + Oég))iQ (4.5.17)

which will grow exponentially since RZ > 1. Thus, Fy is both isolated and a weak repeller

for Xl.

Es5 is not an attractor with initial conditions in XoN{i; =iy = 0} or XoN{Ny = 0}
but is an attractor for Xo N {Ny > 0,42 > 0 or i1 > 0}. With initial conditions in X1, Es
is also a weak repeller since x; > 0 so that N; grows exponentially near E5. This can be

seen by examining the flow of Ny linearized around Ej,

dNy

7 (r1(1 — Koo/ Ki2) — a1Q7) Ny (4.5.18)

which is positive since k1 > 0. Therefore, F5 is isolated and is a weak repeller for X;.

None of these three equilibria are chained to themselves or to each other in a cyclic

way in X9 because Ej is unstable, Fs is stable only for initial conditions Xo N {Ny >



108
0;i1 = 12 = 0}, while Ej5 is stable for Xo N {Ny > 0;i; > 0 orip > 0}. Thus, M =
{Eo} U{Es} U{Es} forms an acyclic covering for s.

Next we show that X5 is a uniform weak repeller for Xl so that there exists an

0 < € < min(Ky1, Ny) such that

limsup Ny (t) > ¢ (4.5.19)

t—00
for any solution z(¢) with initial conditions N;(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
Assume X5 is not a uniform weak repeller for Xl. Then there exists a sequence x,, =
(i1 N1y i2.; No) € X1 such that limsup,_, . d(®¢(,), Xa) — 0 as n — oo. Since each
of Ey, Es, and Es is a weak repeller for X, then we know that w(xy) ¢ M. Then the
assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X» is a uniform weak repeller for X;.

Now we will show that X5 is a uniform strong repeller for X| by way of contradiction.
Suppose that X5 is not a uniform strong repeller for X;. Then, there exists no ¢ > 0
such that liminf; .o Ny ;(t) > € thus there exists a sequence of initial conditions xg-) =

(i1,4(0), N1 j(0),49(0), N9 ;(0)) € X; and a sequence 0 < ¢; < € such that

lim inf Nl,j(t) < €j forj=1,2,--- (4520)

t—00
where lim;_,o €; = 0 and where i1 ;(t), N1,;(t),42,;(t), and No ;(t) are solutions with initial
values :1:9 € X,. By equations (4.5.19) and (4.5.20), we can also find sequences of times

0<r; <s; <tj with lim;_,r; = oo and

hm NLJ‘(S]') =0 (4521)

Jj—o0
Nyj(rj) = Nij(t;) = € (4.5.22)
Nij(t) < &forry <t <t (4.5.23)

After choosing a subsequence, the sequence (i ;(r;), N1;(r;),12,(rj), Noj(r;j)) is
convergent in X by compactness of X. Let 2**(0) = (i1,4%(0), N1,4x(0), 12,5+ (0), N2 .+(0))
be its limit as j — oco. Then by (4.5.22) we know that N ., (0) = € so that 2™ € X;.
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There are now two more steps. First, show that {t; — r;} is unbounded. Sup-

pose not. Then, after choosing subsequences, {s; — r;} is convergent and, by the semi-
group property of the flow, limj_,oo(s; — 7;) = s* and limj o0 (i1 (75 + ), N1 ;(rj +
§%),49,5(rj + 8%), N j(r; + s*)) = ™ (s*) where 2**(t) is the solution with initial value
x**(0) € X;. Since X; is forward invariant, z**(s*) € X;. We also can see that
limy o0 (1,5(55), N1,j(55),92,5(55), Naj(s5)) = 2™ (s*), which implies that z**(s*) € X3 by
(4.5.13) and the compactness of X5. This is a contradiction, hence ¢; — r; is unbounded.

Second, assuming that X5 is not a uniform strong repeller for X1, if 2**(0) € X;
then, by (4.5.19) we know that

lim sup min{é; . (), i2.4(t)} > €. (4.5.24)

t—00
If 2**(0) € X\ X, then we know by Theorems 4.5.0.9 and 4.5.0.12 that disease is uniformly
strongly persistent in this case. Since k1 > 0, Ej5 is unstable with initial conditions in X;.
So the only possibility is if R} > 1 and ky < 0 so that Ej exists and is globally stable
for initial conditions in X;. Then, from analysis of the one-species infected equilibrium in
Section 4.4, we know that lim;_,o N1 .« (t) = N{ > € so there exists a r; large enough so

we know Ny ;(t) > €* for t > r; and equation (4.5.24) holds for this case as well.

Now, since t; —r; is unbounded, using a subsequence, we can assume that t; —r; is
increasing monotonically and that the lim; ,o(t; —7;) = oo. Then, by (4.5.15) we have
that for k& > j, Nyp(ry +17) < € for 0 < r < t; —r;. Fix r and j and let & — oo so
that for 0 < r < t; — ), Nisw(r) = limpoo Nig(ry +7) < €. Now, let j — oo and
lim; ;o t; — 7; = oo so that the previous inequality holds for all » > 0. This contradicts

(4.5.24), hence Xo is a uniform strong repeller for X;. m
An analogous theorem holds for species 2.
Theorem 4.5.0.14 Let & <0, Ry > 1, and ka > 0. Let either (1) & >0 or (2) & <0

and RE( and hence ROC) > 1. Then, species 2 persists uniformly strongly, i.e. there exists

€ > 0 such that liminf,_, o, Na(t) > € with initial conditions N1(0), N2(0) > 0 and i1(0) > 0
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or iz(0) > 0.

Proof. The proof is analogous to that for Theorem 4.5.0.13. m

The following theorems are direct results of combining the conditions of Theorems

4.5.0.6-4.5.0.14.

Theorem 4.5.0.15 If & > 0, & < 0, R2 > 1, and k1 > 0 and if either (1) R < 1
or (2) Ry > 1 and ky > 0, then both species and the disease persist uniformly strongly,
i.e. there exists an € > 0 such that liminf; . min{Ny(t),41(t), Na(t),i2(t)} > € for initial
conditions i (0), Ni(0) > 0 with k =1,2.

A similar result holds when exchanging the indices.

Theorem 4.5.0.16 If & > 0, & < 0, Ry > 1, and k2 > 0 and if either (1) RE < 1
or (2) R3 > 1 and k1 > 0, then both species and the disease persist uniformly strongly,
i.e. there exists an € > 0 such that liminf, o min{Ny(t),i1(t), Nao(t),i2(t)} > € for initial

conditions i (0), Nt(0) > 0 with k = 1,2.

Theorem 4.5.0.17 If&1,& > 0 and RS > 1 and any one of the conditions (1) R}, R3 <
L (2) Ry >1, RE<1land ke >0, (3) RE>1, R} <1 and k1 > 0, or (4) R} > 1,

RZ > 1, ky > 0 and k1 > 0, then both species and the disease persist uniformly strongly.

Theorem 4.5.0.18 If & < 0,6, <0, R§ > 1, Ry > 1, R3 > 1, kg > 0 and r1 > 0, then

both species and the disease persist uniformly strongly.

Note that, as in Corollary 4.15 of [61], if conditions are met such that any one of Theorems
4.5.0.15-4.5.0.18 hold, then there exists at least one internal equilibrium of the full system
by [91] Remark 3.10 and Theorem 4.7, and by [69] pp. 160-166. See Table 4.3 for a

summary of our results.



111

G| & | Ry | k2 | RE | k1 | RS | SUP
+ <1 N
+ >1 |+ N
+ | - >1 |+ N
— | =] >1 >1 |+ Ny
+ <1 Ny
+ >1 |+ Ny
— |+ | >1|+ N,
| = |>1|+ | >1 Ny
— |+ [ >1 1,19
+ | - > 1 i1, 19
+ | + > 1| 11,00
— =] >1 > 1 > 1| i, 9
+ 11— 1<1 >1| 4+ All
+ | = 1>1|4+ |>1]+ All
+ 1+ ] <1 <1 >1 | Al
+ |+ |>1 |+ | <1 >1 1| Al
+ |+ | <1 >1 |4+ | >1] Al
+ |4+ |>1|+ |>1|+ | >1]Al
-+ |>1]+ | <1 All
-+ |>1|4+ | >1|+ All
—|—|>1]|+ |>1|+ | >1]Al

TABLE 4.3: Conditions for strong uniform persistence (SUP). + denotes strictly positive, —
denotes strictly negative. For the column SUP, the variable listed is the one guaranteed strong

uniform persistence; ‘All’ means that every variable is SUP.



112

4.6 Discussion and Conclusion

We make two main observations. Han and Pugliese [61] found conditions for strong
uniform persistence of disease and for one or both species for the case of density-dependent
birth with competition in the death term. We find that adding competition to the birth
term and removing density dependence from death affects the actual equilibrial densities
of the computed boundary equilibria but does not qualitatively change the conditions
under which the species and/or the disease persist uniformly strongly. This suggests that
the particular way in which competition acts on the growth rate of the species does not
change the qualitative outcome of our model in the context of strong uniform persistence
of both species and the pathogen. We frame our persistence results in the context of the
ecologically relevant terms &1, £o, ROC, R(l], R%, K1, and ko, all of which have intuitive
ecological significance (see Table 4.1) and can be used exclusively to show feasibility and

stability of the boundary equilibria (Section 3.3 and Table 4.2).

The second observation is that, in the case where both species and the disease persist
uniformly strongly, we obtain a modified version of the conjecture in Chapter 2 (Theo-
rem 3.4.7.1) that when all other feasible equilibria are unstable the endemic coexistence

equilibrium is stable. The modified theorem is as follows:

Theorem 4.6.0.19 When all feasible boundary equilibria are unstable, both species and
the pathogen are strongly uniformly persistent for all initial conditions with N1(0), N2(0) >

0 and i1(0) > 0 oriz(0) > 0. Thus, under these conditions, there is endemic coezistence.

This can be seen from Tables 4.2 and 4.3 since conditions for strong uniform persistence of
all species and the pathogen can be derived from situations in which the feasible boundary
equilibria (including the one-host infected equilibria) are unstable (see Figure 4.3). These
persistence results are verified for the simplified system in Section 3.4.4, for which all

dynamics are known. For the simplified case, k1 = &, ko = &1, and R(l) = Rg = Ry,
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No
Is E; unstable? — s Exit
l Yes
No .
Is E, unstable? — s Exit

l Yes

Is E; feasible?
No | Yes

l

No .
Is E; unstable? — s Exit

l Yes

Is E, feasible?
No | Yes

!

No .
Is E, unstable? — s Exit

l Yes

Is Eg feasible?
No | Yes

l

No
Is E5 unstable? — s Exit

l Yes

Strong Uniform Persistence of all
Variables (i.e. Endemic Coexistence)

FIGURE 4.3: Flow chart for determining strong uniform persistence of both species and
the pathogen.
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so persistence can be determined by the parameters &1, &3, Rg, and ROC . When & > 0,
& >0, and Rg > 1 then both species and the pathogen persist. In this case, conditions
for strong uniform persistence are the same as those for global stability of the unique

endemic coexistence equilibrium.

Although stability of particular interior equilibria and/or limit cycles is not proved,
the strong uniform persistence of the system is proved. This is an important result from
an ecological perspective, since it guarantees that all variables stay bounded strictly away
from zero, thus will not go extinct. In summary, we use persistence theory to complete the
analysis of the full model for competition and disease with mass action incidence, showing
that persistence of both species and the disease is determined by a few ecologically relevant

parameters.
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5 A SPATIOTEMPORAL MODEL FOR THE SPREAD OF
BARLEY YELLOW DWARF VIRUS IN GRASSLANDS

5.1 Introduction

In Chapters 3 and 4, it is shown that competition between species and inter-specific
disease transmission can interact to determine persistence of the hosts and/or pathogen
under conditions different from those derived for the single host model or a model with
multiple hosts that do not directly compete for resources. For example, even if the basic
reproduction number for one species alone with the pathogen is below one, the presence
of a nearby competent host can cause the pathogen to persist. On the other hand, two
species exhibiting competitive exclusion without a pathogen present can coexist in the
presence of a multi-host pathogen (see Sections 3.4, 3.5, and 4.4). The question of how
disease affects populations, including whether or not a disease might drive a population
to extinction, is an important one to biologists today. The results from Chapters 3 and 4
have important implications for the successful invasion of exotic species in the presence of
a generalist pathogen. A pathogen can mitigate exclusion or coexistence of host species,
while, conversely, the presence of multiple hosts can cause a disease to either persist or

die out, all depending on properties of the system.

These results assume that the pathogen and host species are mixing in a single
homogeneous environment. However, space can often play an important role in invasion of
pathogens and exotic species, and spatial models of disease are gaining impetus as natural
and human-made landscape features such as forests, rivers, roads and crops cause many
endangered species to live in fragmented landscapes [62, 10, 12, 11, 58, 100, 101]. The
heterogeneity of the landscape as well as the demography and the epidemiology of multiple
interacting species determine spatial spread and persistence of the disease. Although

opening “corridors” between habitat patches may be important for preserving a species, if
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one does not examine the possible changes that this might make in disease dynamics, the
result may be increased chance of epidemics or even local extinction [64, 100]. Therefore, in
Chapters 5 and 6, we couple multi-host disease models such as those discussed in Chapters
2-4 with a multi-patch model in order to determine the effects of spatial heterogeneity on

single patch results. See Section 2.4 for an introduction to multi-patch epidemic models.

This chapter is the interdisciplinary chapter resulting from my participation in the
Ecosystem Informatics IGERT program at Oregon State University. It is the result of work
by teams from multiple disciplines and institutions. We apply mathematical methods to
model and analyze the spread of Barley/Cereal Yellow Dwarf Virus (BYDV) in native

California grasslands.

5.1.1 Spatial Dynamics of Host-Pathogen Systems

Humans are converting and fragmenting landscapes on every continent, changing
connectivity of habitats through effects including reduced patch size, creation of novel
habitats, and altered movement rates among patches that affect a diversity of species.
Pathogen movement and epidemics can depend intimately upon landscape connectivity
patterns [136, 104], which, in turn, control epidemic propagation or fadeout [78, 129].
Importantly, models including spatial heterogeneity can make qualitatively different pre-
dictions compared to models assuming homogeneous mixing [70, 66, 79]. In addition,
many emerging pathogens infect multiple hosts, but most multi-host theory developed to
date has focused on non-spatial models [49, 81, 102, 118, 73, 17, 26, 71]. Thus, in spite
of the importance of landscape connectivity for understanding spatial spread and persis-
tence of disease in real communities, the body of spatially-explicit theory dealing with
multi-host pathogens remains quite small [110] (chapter 5), [47]. As a result, the spa-
tial dynamics of multispecies host-parasite assemblages are gaining increasing attention
in both mathematics and ecology. In particular, metapopulation and patch models of dis-
ease are gaining impetus with the recognition that species live in increasingly fragmented

landscapes [62, 10, 12, 11, 58, 100, 101], and that the heterogeneity of the landscape, as
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well as the demography and the epidemiology of multiple interacting species, determine

spatial spread and persistence of the disease [113].

The dynamics of generalist pathogens depend on many factors that influence their
persistence and determine the manner in which disease spreads. Among these factors
spatial dynamics are particularly important for plant pathogens because natural plant
communities exist in spatially heterogeneous landscapes. The different host species, af-
fected by a common generalist pathogen, are often distributed in patches [113]. Another
factor is cross-species transmission dynamics. Host species differ in their susceptibility
to a disease and their competency in transmitting the disease to other hosts. Hence, the
diversity and composition of a community can influence the pathogen load at both pop-
ulation and community levels [84, 105, 118]. The mere presence of a host that is highly
susceptible to a disease can lead to a local epidemic, while the presence of a host with a low
reservoir competency can lead to a dilution effect where the overall disease prevalence is
reduced [81]. Finally, if a generalist pathogen is vector-transmitted then host populations

may also differ in their contact with and effect on the vector population [118].

Pathogens that are host generalists can also mediate the outcome of interspecific
competition between host species. If the pathogen has differential effects on the fitness
of the competing species, relative competitive strengths and hence population outcomes
can be altered [24]. Theoretical and empirical investigations have shown that a generalist
pathogen infecting multiple (competing) host species can influence species diversity and
community structure [118, 81, 24, 34, 63, 84]. Consequently, generalist pathogens can
have a significant impact on endangered species, particularly in the presence of a species

that acts as a reservoir for the pathogen [44].

In this paper we use barley and cereal yellow dwarf viruses (B/CYDV), a suite
of aphid-vectored pathogens, and their interactions with a range of host species as our
case study. Our goal is to construct and analyze a model that helps in determining
the possibility of invasion of native species by exotic (i.e., non-native) species due to

the presence of disease (B/CYDV) among the (competing) multiple species in a patch
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framework.

Here we develop a multi-patch framework to examine the influence of spatial hetero-
geneity, seasonality, and competition on disease dynamics and pathogen-mediated plant
invasion. We begin by investigating the effects of local host community composition and
vector movement on B/CYDV dynamics in which the landscape is divided into a system of
discrete patches containing smaller local populations, with disease transmission occurring
via vector movement between patches (Section 5.3). We then analyze a simplified two
patch model in order to derive the B/CYDV system’s basic reproduction number, which
serves as a threshold for invasion into a susceptible host community. We also use the
basic reproduction number to examine the sensitivity of spatial transmission dynamics to
key epidemiological and biological parameters (Section 5.5). We then examine whether
B/CYDV can persist locally or in a patch framework across a range of host community
configurations. First we adjust the number of patches connected by aphid migration and
vary aphid migration rates between patches. We also modify community configurations
to examine whether pathogen-mediated interactions and competitive outcome between
perennial and annual competitors are altered at the local and regional scale when the host

populations are spatially structured (Section 5.6).

5.2 The B/CYDV Empirical System

B/CYDV is one of the most economically important diseases of grain crops world-
wide and infects over 100 grass species in both agricultural and natural systems [75].
Because it can be a devastating crop pathogen, the vast majority of the theoretical and
empirical studies of B/CYDV have been focused on crop settings. Thus, the history
of modeling of this pathogen is strongly focused on epidemiology in single host species
[82, 50, 88, 149]. However, B/CYDV also infects many non-crop grass species. Exotic (i.e,

non-native) annual grasses have been invading and displacing native perennial grasses in
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much of the western United States [24, 94, 93]. Recent theoretical and empirical work
has demonstrated that B/CYDV may also play a critically important role in facilitating
and maintaining natural grassland invasion [94, 24]. Borer et al. [24] analyzed a non-
spatial model of B/CYDV, which suggested that the virus could reverse the competitive
outcome between perennial and annual host grasses, leading to the successful invasion by
the competitively inferior annuals. However, continued existence of B/CYDV requires the
persistence of the perennial grass in the community due to its role as a reservoir for in-
fection between growing seasons. Hence we incorporate patch structure in the nonspatial
model considered in [24] to examine the effect of spatial heterogeneity of the host species

on disease dynamics and the possibility of invasion by exotic species.

The virus has a short latency period in both its host plants and the aphid vector;
however, once infected, a vector is potentially infective for life and individual hosts typ-
ically do not recover from a B/CYDV infection. Host susceptibility to B/CYDV varies,
with some species suffering increased mortality and reduced fecundity when infected and
other species experiencing little change in their overall fitness [75]. Studies have also
shown that the presence of highly competent reservoir species can increase the preva-
lence of B/CYDV in local host communities [118, 24, 94, 93]. Host-aphid interactions
also vary by host, with aphids showing preference for and experiencing higher fitness on
certain host species [89, 103]. The various host species often compete for resources and
the presence of B/CYDV may alter their relative competitive abilities, leading to shifts
in host community composition [24]. Annual grasses may act to amplify the prevalence
of B/CYDV because aphids feed preferentially on annuals and have higher growth rates
when feeding on annuals [23]. The transmission rates to and from aphids may also be
higher for annual grasses [42]. While the effect of these host community differences have
been investigated at the local level, their importance for regional patterns of B/CYDV
spread and persistence have not been fully explored. Both local, within-field movements
and long-distance dispersal by aphids are important for B/CYDV transmission [76], and
host-vector interactions at multiple spatial scales may influence local and regional disease

dynamics.
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5.3 Model formulation

In California grasslands, the wet winter and spring growing seasons alternate with
hot, dry summers, during which perennial grasses remain dormant and annuals persist
only as seeds. We use a differential-difference modeling approach [24] to describe the
punctuated seasonality of this system. During the growing season (of length 7), differ-
ential equations are the effective model, and the dormant summer season is described by
difference equations [(t,, + 7) to (¢, +1 = t,+1)] where t,, = n is time in years. Since time
units are in years, 7 < 1. We use the following susceptible-infected model structure to

summarize the multihost-pathogen dynamics of the California grassland community.

Each of the vector and host subpopulations consists of susceptible (S) and infected
(I) individuals. Vector population dynamics are modeled explicitly in order to repre-
sent infection dynamics within the aphid population as well as aphid migration between
patches. Vector population dynamics and epidemiology during the growing (rainy) sea-
son are represented by a pair of differential equations for each subpopulation in a patch
model. We use a simplified, reduced parameter Lotka-Volterra competition formulation
[32], with a reduced competitive pressure from infected individuals (parameterized as
€), as described in [24]. Fecundity and biomass reduction are represented by the same
parameter €, because plant fecundity is largely a function of plant biomass and the em-
pirical estimates were identical. We explicitly track susceptible perennial seedlings (pg),
infected perennial seedlings (pr), susceptible perennial adults (Ps), infected perennial
adults (Pr), susceptible annuals (ag), and infected annuals (a7). We also explicitly track
the susceptible vectors (Vg), and infected vectors (V7). Figure 5.1 shows the competitive
structure between the susceptible and infected host compartments, while Figure 5.2 shows
the transmission of infection from vectors to hosts. Figure 5.3 depicts the movement of
vectors between patches. Aphid population growth depends on the relative densities of
annual and perennial hosts, because aphids show both a preference for annual grasses and

higher performance (fecundity) on annual hosts [23].



Host and vector growing season/continuous time equations for ¢, < t < t, + 7:

(a = annuals, p = 1st year perennials, P = adult perennials, V= vector)

df;’j =~ (mptp + BupV15)Ps.5

dfli’j = ~HpllpepPL; + PupV1iPs g,

d];*:’j = —PuV1,iPsj;

% = BupV1.iPs ;5

dc;iyj = —(KaNa + BuaVij)as,;,

dc;;,j = —HaNaa01,j + BoaV1,jas.j,

d‘c;?j = 1(t) = (Bavarj + Bpo(prj + Prj))Vs,j — uvVs,j + Ms,j,
dz’j = (Bavar,j + Bpo(prj + Prj))Vs,j — uvVij+ M.

Dry season/discrete time for each patch, j, and for ¢,, + 7 — t,41:

pS,j(tn-i-l) = bP(PS,j(tn + T) + 6ppl,j(tn + T))a
p1,j(tns1) =0,

Ps j(tn+1) = 0ps(ps,j(tn + 7) + Psj(tn + 7)),
Prj(tns1) = op (prj(tn +7) + Prj(tn + 7)),
as,j(tns1) = balasj(tn +7) + €qar j(tn + 7)),
arj(tns1) =0,

Vs,j(tns1) = C,

Vi,j(tns1) =0

Plant competition terms:

Na = 1+ aaa(as,j + €qar ;) + aap(ps,; + pr,j) + aap(Psj + €, Pr 5),

Np =1+ app(psj + €pprj) + apalas,j + €qar;) + app(Psj + €, Pr ).
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(5.3.1a)
(5.3.1b)
(5.3.1c)
(5.3.1d)
(5.3.1¢)
(5.3.1f)
(5.3.1g)

(5.3.1h)

(5.3.3a)

(5.3.3b)
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Vector growth term:

r(t) =dv(Aas,; + ar;) + (ps;j + prj) + (Psj + Prj)). (5.3.4)

Vector migration terms where Y € {S, I'}:

N N
Myj = — Z mEVy,j + Z M Vy ks (5.3.5)

where N is the total number of patches. We remark here that the parameter m; denotes
the migration rate from patch j to patch k£ and not from patch k£ to j, as is assumed in

some other papers.

During the dry season it is assumed that all infected aphids die, while the uninfected
aphids may either survive as a function of their density at the end of the growing season
or they may recolonize from outside the patch system. These two possibilities correspond
to different life history strategies employed by aphids; some species remain within the
grassland at low abundances between growing seasons with uninfected offspring emerging
at the beginning of the growing season, while others migrate to an alternate host, typically
in another habitat (e.g., Rhopalosiphum padi switches from grasses to a species of Prunus

during the dry season).

The model considers age structure in the perennial grasses. Perennial adults are
qualitatively different from annual grasses; they are competitively superior and less palat-
able to aphids [23]. In contrast, first-year perennials are more similar to annuals in these
characteristics. The model also examines both reduced fecundity and disease-induced dor-
mant season mortality. See Table 1 for a description of model parameters. The subscript
S represents susceptible and I represents infected individuals of a species and /or age class.

The subscript j indicates the patch in which the individuals reside.

We note that B/CYDV requires an aphid vector for transmission from plant to

plant and cannot be spread via seeds. We use a Lotka-Volterra competition framework
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because of the nature of the data available for parameter estimation. In addition, host
density makes a sensible common currency for competition and disease for a systemic
virus [24]. MATLAB was used to numerically simulate the outcome of reciprocal invasion
experiments with susceptible and infected perennials and annuals as both residents and

invaders and to test the sensitivity of our results to the estimated vital rate values.

N

2
S

1
1
1
1
1
1
1
1
1
Y.

FIGURE 5.1: Transfer diagram for the growing season depicting the population dynamics
of hosts, and the competitive interactions between the susceptible and infected host plants.

In the figure, the parameters afj, aij; are defined as af. = €xij, and a;; = €;€504; with
€p = €.

v

5.4 Estimation of Model Parameter Values from Field Data

A great deal of information about aphid reproductive rates, host composition of
grasslands, transmission competence of hosts for certain B/CYDV serotypes, and popula-
tion dynamic effects of infection on different host species is available for model parameteri-
zation [24]. We have amassed data on 20 different native and exotic, annual, and perennial

grass US West Coast species ([42, 23]; Welsh, Borer, and Mitchell, unpubl. data). The
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Symbol  Description Value Reference

bp Perennial birth rate 45.0 [24]

ba Annual birth rate 200 [133]

opg Healthy perennial (adult) survival rate 0.88 [93]

op, Infected perennial (adult) survival rate 0.77 [93]

€p Fractional reduction in biomass and fecundity 0.5 [93]
of infected perennials

€q Fractional reduction in biomass and fecundity 0.11 [93]
of infected annuals

T Growing season length 20 wks [24]

C Number of aphids at beginning of growing season 100

Bup Aphid to perennial transmission rate 0.2

Bra Aphid to annual transmission rate 0.4

Bpw Perennial to aphid transmission rate 0.02 [24]

Bav Annual to aphid transmission rate 0.04 [24]

A Vector preference and performance 1.5 [94]

(aphids per annual/aphids per perennial)

L Annual death rate 1 [24]

p Seedling perennial death rate 0.5 [24]

[h% Aphid death rate 10

dy Aphid fecundity rate 13.2

Mk Aphid migration rate from patch j to patch k 1x107° see text

Qpp Competition between first-year perennials 1.3x 1073 [24]

Qpa The effect on first-year perennials by annuals 6.8 x 107%  [24]

app The effect on first-year perennials by adult perennials 0.7 [24]

Qgq Competition between annuals 1.1 x 1073 [24]

Qap Effect on annuals of first-year perennials 3.4 x 1077 [24]

Qgp Effect on annuals of adult perennials 0.7 [24]

TABLE 5.1: Description of model parameters and values used for initial model analysis
and simulation. Values were estimated from empirical work in California grasslands. Dis-
crete and continuous units are year~! (except € and A which are unitless), and competition
parameters are individual .
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FIGURE 5.2: Transfer diagram for the growing season depicting the population dynamics
of vectors and the disease transmission between hosts and vectors.

Patch 1 Patch 2

FIGURE 5.3: Patch diagram for two patches, depicting the different compartments in
each patch, and the movement of vectors between patches.



126
species for which we have many experimental and observational estimates represent some
of the most important native and invasive grasses in the system. In addition, species we
have examined span the range of characteristics from extremely widespread to extremely
restricted West Coast ranges as well as locally abundant and always rare within commu-
nities. Although B/CYDV infection has been documented in at least 33 native and 80
exotic grasses in California [92], we focus on two common grasses, Elymus glaucus, a native
perennial, and Bromus hordeaceus, an exotic annual, because these species have among
the broadest ranges of West Coast grassland species. They have been the focus of our
own multiyear B/CYDV monitoring and, among the native perennials, the best-quality
published prevalence data are available for E. glaucus [94]. Although we parameterize the
model for these two species for our numerical simulations (see parameter values in Table
1), we also conduct sensitivity analyses by varying the different epidemiological parame-
ters within the range exhibited by other grass species in field and laboratory studies. This
allows us to examine how B/CYDV may control competitive outcomes depending on the

composition of the host community.

For the estimation of the dispersal coefficient we note that movement involves leav-
ing, moving between, and arriving in patches and is notoriously complicated to estimate
on very small animals, such as aphids. Therefore we use simulations to examine the effect

of different aphid migration rates on B/CYDV transmission in a patch framework.

5.5 Analysis of a Two Patch Model

In order to better understand the dynamics of the full model that includes spatial
heterogeneity, seasonality, competition, and disease dynamics, we consider the growing
season dynamics in one and two patches. In particular, we find the basic reproduction
number for the growing season dynamics in an isolated population and in two patches

under an additional assumption about adult perennial death rates. Since the dry season
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dynamics decrease the number of infected organisms through the death of all infected
annuals and infected aphids and the reduced survival of infected perennials, the basic
reproduction number for the growing season will give us a good approximation of the

initial spread of the virus.

5.5.1 Computation of the Basic Reproduction Number, R,

In order for the basic reproduction number to be defined, we assume that there is a
small death rate for perennial adults, dp, during the growing season. Omitting a growing
season death rate for adult perennials was a simplifying assumption of the non-spatial
model in [24]. Based on numerical sensitivity analysis we choose appropriate values of dp
that do not significantly change the outcome of the model (see Figure 4). This assumption

changes only equations (5.3.1c) and (5.3.1d) to the following:

dPg ;

dj] = —,BUpV[JPSJ‘ — dpPS’j, (5.5.1)
dPry ;
# = BupVr,jPs,j — dpPrj. (5.5.2)

We chose dp = 0.1 so that, neglecting the dry season, the average lifespan of a perennial

is 10 years.

With this additional assumption, we will use the next generation matrix method
[144] to determine the basic reproduction number for the one-patch case, or an isolated
population. Let X = (ps, Ps,as, Vs, pr, Pr,ar, Vi)”. Then we can rewrite system (5.3.1a)-
(5.3.1h) in the form
dX

— = F(X) = V(X), (5.5.3)

where F(X) represents a vector function for the new infectious cases and V(X)) contains all
other dynamics. We compute the Jacobian of F and V and evaluate these at the disease
free equilibrium (DFE), E* = (pg, P¢,a%,V§,0,0,0,0). Let F and V be the matrices
defined by

Fe [g; (E*)} - [gg‘; (E*)] , (5.5.4)
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FIGURE 5.4: We plot dp versus Ry (dotted line) and dp versus total adult perennial
equilibrium values (solid line) in the disease-free scenario for one patch. In this case,
regardless of dp, the disease-free equilibrium value for annuals is 0.

where 5 < 4,57 < 8 and z; is the jth component of the vector X defined in (5.5.3).

Computing these matrices we have

0 0 0 BupPs

0 0 0 o o

- BunP;

0 0 0 Buals

8oV BuVi BuVi 0
and )
eptipnp(E*) 0 0 0
v 0 dp 0 0
0 0 ea,uana(E*) 0
i 0 0 0 B |

The basic reproduction number, Ry, is given as

Ro1 = p(FV™H,

, (5.5.5)

(5.5.6)

(5.5.7)

where p(A) is the spectral radius of the matrix A. The spectral radius of the matrix F'V !
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is given by the formula

Ry = \/RVp(Rp + RP) + RVaRe, (5.5.8)
where
Bupp
RP = P25 (5.5.9a)
Eptpp(E*)
v P§
R = BP—S, (5.5.9b)
dp
Bvaag’
Rt = 7S 5.5.9¢
€attana(E*) ( )
Vs
RY = BP—S, (5.5.9d)
22%
(l’l)V*
RYe = PaVs (5.5.9¢)
122%

For the baseline parameter values chosen, simulations indicate that in the disease free
scenario perennials and annuals do not coexist. When the disease free patch is perennial-
only R* = 0 and when the patch is annual-only then RP = RY = 0. The parameter Roq
is proportional in both cases to the transmission terms and the equilibrium populations
of both vector and plants while varying inversely with vector and plant death rates. For
seedling perennials and annuals, these death rates depend in part upon the reduction of

biomass due to infection.

Next we compute the basic reproduction number for the growing season in two
patches. Let Ef = (p§71,P§71,a§71,V§‘71,0,0,0,0), E; = (p§72,P§72,a§72,Vg‘,Q,O,O,0,0) be
the disease-free equilibrium for patch 1 and patch 2 respectively. Then, using the next

generation method [11, 10],

F, 0
F= , (5.5.10)
0 £

where, 0 denotes a 4 x 4 matrix of all zeros, and for ¢ = 1,2, the 4 x 4 matrices, F1, Fb



are defined as

0 0 0 Bubl

po| O 0 0 BuPi
0 0 0 Boadl,
PooVs BooVsy BaVs;, 0

We also define the matrix

where for 4,7 = 1,2,1 # j,

and

v Vi Mo ’
Moy Vo
eptipnp(E7) 0 0 0
0 d 0 0
Vi = "’
0 0 Eauana(E;k) 0
I 0 0 0 By 4 My |
000 o |
0 0 0 0
Mij =
0 0 0 0
_0 0 0 —mij_
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(5.5.11)

(5.5.12)

(5.5.13)

(5.5.14)

The basic reproduction number for the whole system, Rg , where Ry ; is the basic re-

production number for patch ¢ alone and assuming that migration is symmetric so that

mi2 = Mo — MM, is

where

and where

1
RE = 5\ B 4 (B3 B ) (B + R,

v
R, = ——,
BV om4 py
m
R, =—,
T 2m A4y

R* = /Ry, (B3, — R3,)2 + R3,(R3, + R3 )2

(5.5.15)

(5.5.16)

(5.5.17)

(5.5.18)
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We remark that if both patches are identical and inhabited by the same single species,
then Rp2 = Rp;. In addition if migration of vectors between patches is very small so
Ry, is negligible and R, is close to one, then Rg ~ Rp1. Thus, the basic reproduction
number for the system simply becomes the basic reproduction number for the individual

identical patches.
5.5.2 Sensitivity Analysis

Here we include background for the sensitivity analysis performed in the next sec-
tion. Sensitivity analysis, here in the context of deterministic differential equations, quan-
tifies the dependence of the output of a model on the input of a model. When parameters
or initial conditions vary, so does the model output. There are many ways to approach
sensitivity analysis, but the method used in this chapter is forward sensitivity analysis.

We follow the approach of [74] in the rest of this section. For an initial value problem

u' = f(u7t§p)7 U(O) = uo,

forward sensitivity analysis estimates how the solution w or some function of the solution
J(u) changes with perturbations of a parameter p. Essentially, forward sensitivity analysis
aims to compute the partial derivatives du/dp or d.J(u)/dp. One common way to compare

sensitivity to various parameters is to compute a normalized sensitivity index.

Definition 5.5.2.1 (Definition 1.4.1 [74]) Let J(u) be a function which depends on the
forward solution u which depends on parameter p. Let 6p be a perturbation to the parameter

p and let 0.J denote the resulting perturbation in J(u). The normalized sensitivity index

is defined as
(4 op
= () () 559

where J,p # 0. When the function is differentiable, the sensitivity index can be re-written
as

s, =222 (5.5.20)
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Notice that often the chain rule is need to compute S, in the definition (5.5.20).

Forward sensitivity analysis is local, depending on the particular solution of the
system at fixed parameter values. In other words, it computes sensitivity to a parameter
perturbed around a particular value, in our case around the parameters estimated by the
data or around the expected value of a parameter based on the literature. In this chapter
we will use forward sensitivity analysis to help determine the most important parameters
to the success of invasion by a pathogen (Rg) and to the cumulative number of infected
organisms. This can give important insight into possible control methods for a pathogen

as well as general qualitative information about the behavior of the system.

5.5.3 Sensitivity Analysis of Ry to Parameters

In order to better understand why the native perennials are susceptible to invasion
by non-native annuals in the presence of disease, we found the relative importance of
all parameters to the initial spread of B/CYDV using Ry for one and two patches. The
initial successful spread of B/CYDV depends on Ry for the growing season, while the
endemic coexistence equilibrium values indicate long term persistence of the virus and thus
long term coexistence of annuals and perennials. We therefore computed the sensitivity
indices of Ry to the parameters of the model in order to understand what factors are most

important in disease prevalence and exotic invasion.

The sensitivity index dd% is a linear estimate of the number of unit change in Ry as a
result of a unit change in the parameter £. Such sensitivity indices depend on the physical
units of state variables and parameters, and hence we cannot compare different sensitivity
indices. To make comparison feasible, and make the sensitivity analysis independent of

the units of the model, we use normalized sensitivity indices as defined below.

Definition 5.5.3.1 A normalized sensitivity index for the state variable Ry, with respect

to the parameter &, denoted as ¢%O, is the ratio of relative change in Ry, to the relative



133

change in the parameter &, and is defined as [128, 30]:

¢ _ORy &
VR, = 9% Ro (5.5.21)

The coefficient ¢%O, represents a linear estimate of the percentage change in the state

variable Ry caused by a one percent change in the parameter £.

Since we have an analytic expression for Iy for one and two patches we can explicitly
compute the sensitivity indices for Ry with respect to all the parameters in our model. We
evaluate the sensitivity indices at the baseline parameters (see Table 1) for our two patch
model. Many of the sensitivity indices depend on the disease-free equilibrium population
sizes of perennials and annuals (see appendix for an example), so changing demographic

parameters will affect the indices.

The results of this sensitivity analysis are tabulated in Table 2. Based on these
results we make the following observations. The sensitivity indices for two perennial (or
annual) patches (not shown in Table 2) with very small migration rates are essentially
the same as those for one perennial (or annual) patch (see Table 2). For the annual-only
patches, Ry = Ry 1 is most sensitive to €4, the fractional reduction in fecundity of infected
annuals. If €, is increased by 10% then Ry is decreased by 45.46%. If the transmission rates
between aphids and annuals, (4, or 3,4, increase or decrease by 10% then Ry increases
or decreases by 5%. The sensitivity indices with respect to py and p,, the death rate of
aphids and annuals, are constant at —0.5 so that if uy or p, are increased by 10% then
Ry decreases by 5%. Ry is just slighly less sensitive to ayq, the competition coefficient
between annuals, than it is to py and p,. For this case, the sensitivity indices for oy, and
apg are always zero since pg = P& = 0. In summary, the initial spread of B/CYDV in
annual-only patches is most sensitive to the fractional reduction in fecundity of infected
annuals, the disease transmission rates between aphids and annuals, the death rates of
aphids and annuals, and the competitive effect of annuals on each other, in the given order

of importance.
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In perennial-only patches, Ry increases by 5% when either f3,, or ,, increase by

10%. Rg decreases by 5% when puy increases by 10%. Ry also decreases by 4.98% when dp,
the growing season death rate of adult perennials, increases by 10%. Neither €, u,, a,p,
nor ay, have much effect on the value of Ry (see Table 2). For this case, the sensitivity
index for gy is always zero since a§ = 0. So, the initial spread of B/CYDV in perennials
is most sensitive to the adult perennial death rate, disease transmission rates, and aphid

death rate for perennial-only patches.

Next we consider two patches that are not identical. When one patch is annual and
one is perennial, the annual patch dynamics dominate the initial spread of the virus. Rg
is most sensitive to €, as with the annual-only patches. In fact, if €, is increased by 1%,
Rg decreases by 4.5%. The rest of the parameters related to annual plants are relatively
less important (see Table 2) while the parameters related to perennials have little effect on
the value of R(()J . In Table 2 the migration rate used is rather high. When the migration
rate is lower, the perennials are even less significant to the initial spread of disease in
the two patch system. The dominant role of annuals in initial spread of B/CYDV is due
to their higher density, higher transmission rates, and aphid preference for and increased
fecundity on the annual species we are considering. Ultimate persistence of the virus,
however, depends almost entirely on the perennials since disease is not maintained in

annuals during the dry season and there is no vertical transmission.

5.5.4 Numerical Simulations for the Two Patch Model

For our baseline values, if disease is present, the exotic and native species will be
able to coexist, in part due to a basic reproduction number for perennial-only patches
greater than one. It may be important for conservation and restoration design to consider
the case when a patch of perennials would not support the virus alone but faces invasion

by an exotic and competent reservoir for B/CYDV.

We performed numerical simulations for two patches, one perennial only, and one
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annual only patch. Perennial disease transmission rates are kept small enough so that
a perennial-only patch will have a basic reproduction number less than one (Rp; < 1)
when there is no migration of vectors between patches. The nearby annual-only patch has
baseline annual-aphid transmission rates resulting in a high basic reproduction number,
Ry 2, for that patch. Since we are concerned primarily with the presence of disease in the
perennial patch, we consider the sensitivity of Ry, to aphid migration rates. However,
equation (5.5.15) indicates that the basic reproduction number for the whole system is
proportional to Ry 1 and R 2 so when Ry 1 increases, Rg increases as well. When migration
of vectors is symmetric between the perennial patch and the annual patch, the perennial
patch basic reproduction number, Ry 1 increases with the increase of migration and quickly
moves above one. When vectors migrate only from the annual to the perennial patch,
Ry,; for the perennial patch increases even more quickly and is slightly more sensitive
to the migration rates. For both of these cases, Ry increases as the migration rates
of the vectors increase. Thus, movement of vectors between the annual and perennial
patches results in persistence of the pathogen in perennials that would not otherwise occur.
When vectors migrate only from perennial to annual patch, however, the perennial patch
basic reproduction number R decreases slightly as migration increases while the basic
reproduction number for the annual patch remains virtually unchanged. These results
confirm that the disease dynamics of the annual patches dominate the initial spread and
success of the virus and migration behavior of vectors can in fact change the disease

dynamics of a perennial-only patch.

5.6 Large Scale Numerical Simulations

For our larger scale numerical simulations we examined the full spatial model with
20 patches arranged linearly, as shown in Figure 5.5. Initial simulations with this model
were conducted using within-patch transmission rates high enough for annual grasses to

increase in abundance in infected mixed-host patches (see Table 1 for initial parameter
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Table 2
Parameter Annual-only Patch  Perennial-only Patch  One of Each

Ry 343.09 4.8131 310.5801
Sensitivity Indices Rp1 Ro2 R§

€a -4.5455 0 -4.4961

Baw 0.5 0 0.4946

Bua 0.5 0 0.4946

[y 0.5 -0.5 -0.4696

[ta 0.5 0 -0.4946

Qaa -0.3346 0 -0.3308

Bow 0 0.5 1.2457 x 107°
Bup 0 0.5 1.2457 x 107°
dp 0 -0.4986 —1.2423 x 107
€ 0 -0.0014 —3.4077 x 1078
[y 0 -0.0014 —3.4077 x 1078
app 0 -0.0013 —3.2787 x 1078
pp 0 —4.4660 x 1077 —1.1127 x 10711
mi2, M1 0 0 —.0250

TABLE 5.2: Normalized sensitivity indices for Ry. Note that these rates are in 1/year
units. The other parameters used are total time = 100, 7 = 40/100, b4 = 200, bp = 45,

py =10, pa = 1, pp = 0.5, dy = 13.2, dp = 0.1, g = 1.1 x 1073, argyy = 3.4 x 1077,

agp = 0.7, ayp,
/Bav = 0047 ﬁp

=13 x 1073, ap, = 6.8 x 1074, app = 0.7, A = 1.5, ¢, = 0.11, ¢, = 0.5,
pv = 0.02, /va = 0.2, ﬁva = 0.4, Opy = 0.88, op; = 0.77, mio = Mmoo = .6, 10

initial annuals for the annual-only, and 4 seedling perennials and 10 adult perennials for
the perennial-only patch.
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values). Under a global connectivity scenario (identical aphid migration rates between
each patch) every patch becomes infected with B/CYDV, even when aphid migration
rates are very low (< 10712yr~!). Under this scenario B/CYDV prevalence is so high
in annual-only, perennial-only, and mixed-host patches (even when migration rates are
very low) that increasing the migration rate does not have a large effect on prevalence.
In addition, varying the proportion of patches occupied by perennial grasses does not
significantly affect B/CYDV persistence or prevalence; prevalence in each perennial patch
remains constant and prevalence in annual patches is 100% by the end of each growing

season.

When aphid migration is not global, increasing patch connectivity leads to an in-
crease in the number of infected patches when the simulations are allowed to run to
long-term equilibrium (Figure 5.6). Patch connectivity is determined by the number of
neighboring patches an aphid can reach when it emigrates from a patch (Figure 5.5).
Connectivity is unlikely to be global because aphid dispersal between patches is limited
by distance and landscape heterogeneity. An increase in patch connectivity could be the
result of either a decrease in the distance between patches or an increase in the distance
that individual aphids can travel. As the number of infected patches increases, B/CYDV
prevalence at the regional level increases. However, patch-level prevalence depends only
on the distance of the patch from the initial source of infection and not the regional-level

prevalence.

When each patch is connected with only one or two neighboring patches (in a linear
chain), increasing the proportion of perennial-only patches leads to a linear increase in the
proportion of infected patches (assuming that all perennial patches are initially infected).
However, if we start with B/CYDV in a single source patch, the relationship between
the proportion of perennial-occupied patches and B/CYDV prevalence is nonlinear over
intermediate timeframes (Figure 5.7). Initial increases in the proportion of perennial
patches increase global B/CYDV prevalence by increasing the number of infected patches;

but, above a threshold, increasing the number of perennial patches leads to a decline in
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the number of infected patches over the first 50 years of the simulation. Although when
the simulation is allowed to run to equilibrium, all perennial patches eventually become
infected, it can take 50+ years for B/CYDV to reach the furthest patches from the initial
source of infection. This occurs because in mixed host patches further away from the initial
source of infection the perennial grasses outcompete annual grasses before B/CYDV can
arrive in the patch. In this case, increasing the proportion of perennial grasses leads to a
decline in the regional level presence of annual grasses (Figure 5.8). The lower transmission
rates to and from perennial grasses reduces the number of patches to which B/CYDV can

travel within the growing season.

Figure 5.8 also shows that the ability of annuals to coexist with perennials depends
on the distance of the patch from initial source of infection as well as the proportion of
perennials in the patch system. Only patches within 3 jumps of the initial source of infec-
tion receive infected aphid immigrants early enough in the growing season for annuals to
overcome their competitive inferiority in the absence of the pathogen. However, simula-
tions of the invasion by annuals in perennial only patches reveal that annuals can invade
perennial patches once B/CYDV has become established in the patch. Thus only peren-
nial patches that remain disease-free because they are not connected to any other patches
via migration, or are only distantly connected to other perennially infected patches, will

remain resistant to invasion from annual grasses.

B/CYDV prevalence at the patch and regional levels is higher when there are mixed
patches containing both host species rather than patches containing either all annual
or all perennial grasses. The higher transmission rates associated with annual grasses
lead to higher prevalence levels in juvenile perennial grasses in mixed patches compared
to perennial-only patches (85% versus 60% at equilibrium). In addition, the average
abundances of both annual grasses and perennial grasses are reduced in mixed patches.
Perennial biomass is reduced by 4.5% and 20.5% in adults and juveniles respectively, and

annual biomass can be reduced by up to 30% depending on prevalence.

Thus we can conclude from our numerical simulations that if invasion by annuals
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grasses occurs in a patch system where B/CYDV has already established in perennial
grasses then annuals will be able to invade all infected patches. However if the introduction
of B/CYDV and annual grasses occurs simultaneously, then the success of the annuals
will depend on where within the patch system they invade relative to the introduction
of B/CYDV. While annuals will be able to invade patches close to the initial site of
infection, they will fail to invade patches further from the infection source because they
will be outcompeted by perennials before B/CYDV becomes prevalent enough in the patch
to counter their competitive inferiority. However, these perennial patches will become
susceptible to annual invasion over time as they reach an equilibrium-level of B/CYDV

prevalence.

On the west coast of the US, fragmented grassland habitat is arranged along both
a north-south and an elevational gradient. Although grasslands in California are dom-
inated by invasive annuals, grasslands in Oregon and at higher elevations tend to re-
main perennial-dominated. Our sensitivity analysis showed that Ry is more sensitive
to aphid migration rates when transmission rates are lower than predicted for Califor-
nia grasslands. This suggests that a combination of lower B/CYDV transmission rates
in perennial-dominated populations and a shorter growing season could prevent annuals
from establishing in these populations at a higher latitude or elevation. The simulation
results also show that if B/CYDV were initially introduced into a population in South-
ern California, annuals would be outcompeted at the northern end of the range before the
virus became prevalent enough in those populations. The results of the sensitivity analysis
suggest that these northern perennial populations could then remain resistant to invasion

by annuals if transmission rates were low enough to prevent annual reintroduction.
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FIGURE 5.5: Linear arrangement of 20 patches used in numerical simulations. Three
scenarios included are: (a) aphid migration is unidirectional and to the next patch only,
(b) aphid migration is unidirectional and to the two nearest patches, and (c) aphids
migration occurs between every patch at the same rate (global connectivity scenario).

5.7 Discussion and Conclusions

The landscape-scale composition and configuration of host communities, along with
vector movement patterns among patches, are essential determinants of pathogen spread
and prevalence in fragmented landscapes [111, 113]. Pathogen spread depends on host
composition (e.g. presence of reservoirs, probability of transmission) and vector density
and dispersal, all of which can vary among patches in a complex landscape. Management
can increase connectivity, elevating transmission of multi-host pathogens, as is the case
with fire suppression increasing connectivity among hosts susceptible to sudden oak death
(Phytophora ramorum; see [104]). Landscape-scale host composition also influences the
dynamics of many multi-host pathogens, including spread of sudden oak death in Califor-
nia oaks [40], Lyme disease prevalence [29, 4, 28], West Nile virus dynamics [3], hantavirus
prevalence in rodents [87], and the spread of foot and mouth disease [80]. Here we have

shown that the spatial configuration of the patch system, host composition within patches,



141

0.8 1.0

0.6

Proportion of infected patches

0.0

T T 1
1 2 3

Connectivity — number of patches

FIGURE 5.6: Proportion of 20 patches that are infected with B/CYDV as a function of
the number of neighboring patches that are connected via aphid migration (1, 2, or 3).
Figure shows simulation results for scenario where patches contain either all perennial or
all annual patches. Points represent the mean proportion of patches infected when the
percentage of patches contains perennial grasses is varied from 5% to 100%.
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FIGURE 5.8: Proportion of 20 initial patches that contain annual grasses at equilibrium
as a function of the number of patches containing perennial grasses in the presence of
B/CYDV. Each patch initially contains either annual grasses only, or a mixture of annuals
and perennials. B/CYDV is initially present in a single mixed host patch and subsequently
spreads via aphid migration.
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and patch connectivity affect not only the ability of B/CYDV to invade a fragmented sys-
tem, but also determine whether the pathogen facilitates the invasion of a non-native host
species. Below we discuss these three factors in the context of the analysis conducted for
our focal B/CYDV system, and we make broad observations and conclusions that could

apply to other similar systems.

The spatial structure of host populations can influence the spread of infectious
disease, as well as the spatial pattern of disease prevalence. Here we have shown that the
spatial configuration of the host community can interact with the timing of pathogen and
invasive host arrival to determine the ability of the pathogen to invade local populations
and influence competition between annual and perennial grass species. In our numerical
simulations, long term pathogen persistence and prevalence depended on the abundance of
perennial grasses in a patch system, with increasing perennial patch occupancy generally
leading to an increase in B/CYDV prevalence at the regional level because perennial
patches serve as a long-term pathogen reservoirs, whereas annual-only patches do not
maintain the pathogen between growing seasons. However, high proportions of perennial
patches can slow the spread of B/CYDV during the growing season because both aphid
fecundity and transmission rates are lower for perennial grasses than annuals. Thus, mixed
species patches or mixtures of patches with differing host composition tend to have the
highest prevalence rates because of the balance among pathogen residence time, pathogen

transmission probability, and vector fecundity.

The viral-induced reduction in annual host fecundity was the most important factor
controlling the successful initial spread of B/CYDV in mixed populations of annuals and
perennials and in perennial-only populations that were connected to annual populations
via aphid dispersal. Because annual hosts are superior to perennials for vector fecundity
in this system, the suppressive effect of infection on annuals and the amplification via
vector density interact to control the rate of pathogen spatial spread. The baseline value
for B/CYDV’s effect on annual fecundity was based on observations of the exotic annual

Bromus hordeaceus in California grasslands. However, the impact of the virus on host
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fecundity will vary by host species and also be mediated by environmental conditions
[134]. Therefore, in our focal system, B/CYDV prevalence levels in perennial populations
will depend on both the identity of nearby annual grasses as well as the environmental
conditions experienced by the annuals. If the reduction in annual fecundity is higher than
we estimated, annuals grasses may not be able to invade perennial populations. More
generally, host composition can feed back to control pathogen spread rates in a patchy

system.

Spatial connectivity can control both dispersal rates and local species densities. In
animal communities, both hosts and vectors can move among patches; however, in our
focal community, among-patch host movement is negligible, whereas vector dispersal is
key. Landscape-scale host composition can interact with vector dispersal to control disease
spread and epidemics, as in our case study. Similarly, bean dwarf mosaic virus, a whitefly-
transmitted virus that infects both soybeans and common bean plants causes severe disease
in the latter. In Argentina, increased soybean acreage shifted the landscape-scale host
composition, leading to the emergence of bean dwarf mosaic virus and threatening local
common bean production [45]. In multi-host communities where hosts also move among
patches, this will add further complexity that warrants future exploration. In mixed-
host communities, hosts vary in infection tolerance and probability of transmission; our
results suggest that this variation can interact with patch connectivity to affect pathogen
persistence and prevalence. This has important implications for both conservation and
understanding species invasions. For example, increased patch connectivity, a common
management scheme for endangered species, can lead to increased pathogen transmission
and prevalence [65, 64]. Our results suggest that this is especially true for mixed-host
communities. If hosts differ strongly in their pathogen tolerance, a less tolerant species of
concern could be driven to extinction in a highly connected landscape [72], particularly

by a vector-transmitted disease [44].

Species invasions can shape the composition of communities, species coexistence, and

biodiversity in fragmented patch systems, and pathogens have been implicated in species
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invasions in the B/CYDV system and others. For example, in the United Kingdom the
invasive grey squirrel and an introduced parapox virus are causing declines in the native
red squirrel population through resource competition and pathogen-mediated apparent
competition [125, 143]. In the B/CYDV system coexistence of annual and perennial
grasses requires B/CYDV to reduce the competitive advantage of perennial grasses [24].
Our current results modify this non-spatial understanding. In the context of a fragmented
patch system, the ability of annuals to invade depends on the timing of invasion with
respect to the introduction of disease, the spatial locations where these invasions happen,
and the composition and configuration of the patch system. Thus, our current results
suggest that connectivity can interact with arrival time and host infection tolerance to

determine the success or failure of an invasion.

5.8 Normalized Sensitivity Indices

Following are the normalized sensitivity indices for the annual-only patch:
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Normalized sensitivity indices for the perennial-only patch:
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For the normalized sensitivity indices computed above, pg, P, a;, V§ are the equi-
librium values of susceptible seedling perennials, adult perennials, annuals, and vectors
for the growing season dynamics. These equilibrium values are computed numerically by
running the numerical simulation for 100 years and using the values for each group at the

end of the growing season.

For the normalized sensitivity indices of Rg , we note that for parameter &
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Then we can use the sensitivity indices given before for Ry and the following to compute
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the sensitivity indices of Rg :
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6 NETWORK MODEL FOR THE SPREAD OF RINDERPEST

6.1 Introduction

This chapter is the interdisciplinary chapter resulting from an internship at Los
Alamos National Laboratory. It represents work with a team from multiple disciplines
and institutions. We use mathematical methods to model and analyze the introduction
and spread of rinderpest in livestock in the United States. This model is a multi-patch,
mutli-host disease model similar to those discussed in Chapters 2-4 but on a larger scale,
applied to five hosts and approximately 3,000 patches. Since the model is for livestock,
competition between species is not included. We see here, as in Chapter 5, that adding
spatial heterogeneity to a multi-host disease model can change the outcome of and give

additional insight into the non-spatial model.

Animal diseases, such as foot-and-mouth disease and avian influenza, are increas-
ingly important in world economics, national security, and biodiversity. Introduction of
an exotic livestock disease to the United States (US) either by natural or anthropogenic
means could have serious economic and public health consequences. Direct costs due to
recent outbreaks of mad cow disease and foot-and-mouth disease in the United Kingdom
cost billions of dollars in death of animals, culling, and vaccination. Although direct costs
can be enormous, indirect costs such as loss in livestock exports are often much greater. In
addition to economic loss, animal diseases are often a human public health threat. Many
animal diseases (e.g., avian flu, tularemia, monkeypox) are zoonotic and can be spread

from animals to humans.

To help prepare for the possibility of a serious animal disease epidemic, we created
a spatially explicit stochastic model for multi-host animal diseases to better understand
their spread in the US. The model uses county-level data and between-state animal trans-

portation rates to capture both the intra-county and inter-county behavior of an epidemic.
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The model is flexible and can be used to simulate many types of animal diseases among
various animal groups (poultry, cattle, pigs, etc.) while incorporating surveillance and

response strategies.

Rinderpest is a virus closely related to human measles and canine distemper that
affects cloven-hoofed animals such as cows, pigs, sheep, and wild or domestic buffalo
[141, 96]. This virus can cause high morbidity and mortality in naive populations, is
highly transmissible and has a long history of devastating livestock herds and wildlife in
Europe, Asia, and Africa [96, 77]. During World War II, vaccinations for rinderpest were
developed and produced in response to a possible threat of rinderpest introduced to the

US [147].

Rinderpest has a fairly short incubation period of 4 to 5 days followed by 1 to 2
weeks of clinical signs, including fever, loss of appetite, lesions, diarrhea, dehydration,
and death. Clinical signs can continue for many weeks as animals recovering from the
acute phase suffer debility, secondary infection e.g. skin disease, eye pathology and other
manifestations. In its most virulent form and with a high density population of nave
animals, rinderpest is a fast-moving disease that requires a large number of susceptible
animals to persist [119, 123]. There are avirulent strains of rinderpest that have occurred in
many different situations, but we will focus on virulent and/or rapidly spreading strains.
Mariner et al. [96] estimated the reproductive number of the more virulent lineage of

rinderpest to be 4.4 and the 1.2 for the less virulent lineage.

A relatively mild form of rinderpest endemic to cattle can have devastating effects
on wildlife populations and vice versa. Domestic cattle and wild or domestic buffalo have
the highest death rates due to rinderpest but it also affects sheep, goats, pigs, and many
wildlife species [20]. Additionally, wildlife populations may be an important source of
re-infection of rinderpest [85]. European bison and deer were susceptible to rinderpest
with high mortality rates. White-tailed deer have also been infected experimentally, so it
is likely they and other wildlife species could be a factor in the spread of rinderpest in the

United States. For the past decade, the Food and Agriculture Organization of the United
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Nations has been working on eradicating the disease through vaccination and intense
surveillance and was officially considered eradicated in October, 2010 [51]. Rinderpest
virus was last confirmed in wild buffalo in Kenya in 2001-2 and there is no confirmed
case or serological evidence of circulation of virus amongst wildlife since then. Equivocal
serology from cattle due to rinderpest has not been confirmed in any location or livestock
population within the declared infection zone of the Somali ecosystem of East Africa since

that period and all vaccination has ceased since 2003 [51, 53].

However, due to severity of rinderpest epidemics-and like smallpox- it will remain
a disease to research if it were to infect animal populations outside the laboratory. If
rinderpest were to emerge in the US, the loss in livestock would likely be devastating.
Rinderpest has never been detected in North America so there is no immunity to the
disease among our livestock or wildlife. Historically, introduction into nive herds causes
high death rates [90]. In the 1890s, the effects on cattle herds in eastern Africa and
large portions of sheep, goat, and ungulate wildlife populations were severe, changing
the distribution of animals in many regions of Africa. Consequences of this epidemic for
people living in the area included famine for some pastoral groups in sub-Saharan Africa,
including the Maasai. It was also a catalyst for the re-emergence of human diseases such
as sleeping sickness, which were temporarily absent due to the loss of tsetse fly hosts in
regions of Africa caused by rinderpest mortality [90, 99, 123]. If rinderpest entered the US,
it could be devastating to animal agriculture, wildlife, and the economy. To investigate
effective responses to an introduction of rinderpest to the US, we have adapted our spatial

epidemiology model specifically to the behavior of primary hosts of rinderpest.

James and Rossiter [123], Lefevre et al. [141], and Mariner et al. [96] have previously
developed mathematical models for the spread of rinderpest in Africa. All three incorpo-
rate different vaccination programs and stochasticity to explore the spread of rinderpest in
cattle herds within parts of Africa where the disease is either endemic or has been present
in the past. Their models do not include multiple hosts or spatial heterogeneity, both of

which are important to the spread of rinderpest. The models were used for previously
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exposed or vaccinated herds and some of the parameter values would not be accurate for
an epidemic in the US, since rinderpest is an exotic disease for the US and all animals
would be immunologically nive. Our model extends and expands the ideas in these mod-
els to include multiple mitigation strategies, spatial spread among counties on a network,
multiple host categories, and the effects of rinderpest on nive herds. Our objective was
to model a rinderpest outbreak in the US to determine agricultural and veterinary prac-
tices that minimize the risk of catastrophic damage from this exotic disease. Using an
epidemiological model, we explore the effectiveness of various mitigation strategies such
as surveillance, quarantine, vaccination, movement control, and culling, which are incor-
porated in the model. We determine the sensitivity of the model to these strategies and
compare results for different responses in order to minimize risk and damage. For rinder-
pest, the relevant groups of livestock are sheep, hogs and pigs, dairy cows, cattle on feed,
and beef cattle. The mathematical model was used to estimate the extent of spread in,
and the relevance of, each of these groups. Because there are no data for rinderpest in the

US, our model is useful for creating a plan of action should an outbreak occur.

6.2 Methods

Here we present a two-stage hybrid model of the spread of a multi-host infectious
disease among agricultural animals in the US using rinderpest as a case study. The model
incorporates large-scale interactions between US counties and the small-scale dynamics of
disease spread within a county. The large-scale interactions and spread of disease between
counties is stochastic. To model within county dynamics, we analyze a distribution of
solutions to deterministic equations (see Section 6.3) with parameters sampled from the
ranges in Table 6.1. The model is designed to be as general as possible so that it can be

adapted to varying parameter values and situations.



TABLE 6.1

Par Description Baseline | Range Ref

o infectivity of species i in stage I 0.00000023 | N/A [99]

Wk infectivity of species i in stage L | 0.000000115 | N/A [85]
(subclinical)

W infectivity of species ¢ in stage C' | 0.000000115 | N/A [99]
(carrier)

s5 susceptibility of susceptible stage | 5.0 N/A [107,
feedlot cattle 109, 115]

53 susceptibility of animals besides | 22.5 N/A [109]
feedlot in stage S

r(X) | 1/measure of density of animals in N/A [108,
county x 141]

a constant of proportion for contact | 5 N/A N/A
rate

By | transmission rate from type j in N/A 37, 77,
stage n to type i in stage m 109, 120]

ry. reduced susceptibility of wvacci- | 0.5 N/A [13, 14,
nated susceptible animals 15]

TV, reduced infectivity of vaccinated | 0.5 N/A [15, 132]

quiescent infected animals

Continued on next page
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TABLE 6.1 — continued
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Par Description Baseline Range Ref.

AL | rate of progression from latent to | 1/4.5 days 1/ 3-6 [116,
infectious stage (1/ residency time 114]
in stage)

Ac | rate of progression from carrier to | 1/ 698.75 days | 1/120-1277.5 | [55]
recovered

Ar | rate of progression from infectious | 1/ 6 day 1/ 4-8 days [55, 85]
to recovered

Av, | rate of progression from vaccinated | 1/ 10.5 days 1/ 7-14 [55]
susceptible to recovered

Av, | rate of progression from vaccinated | 1/698.75 days | 1/ 120-1277.5 | [85]
quiescent infected to recovered

Ar | rate of progression from recovered | 0 0 N/A
to susceptible

01, | ratio of infected progress to clinical | 0.975 0.95-1 [85]
symptoms

fp | ratio of infectious that die 0.9 0.8-1.0 [116]

€q efficacy of quarantine (ratio of sus- | 0.5 0.1-0.9 [13]
ceptible successfully quarantined)

€y, | efficacy of vaccine for susceptibles | 0.775 0.6-0.95 [77]
(will move into immune)

€y, | efficacy of vaccine for exposed (la- | 0.775 0.6-0.95 [119, 77
tent only)

€c efficacy of culling 0.5 N/A [53, 121]

€s efficacy of short-range movement | 0.5 0.1-0.9 N/A
control

Continued on next page




TABLE 6.1 — concluded

long-range movement kernel

Par Description Baseline | Range Ref.

€ efficacy of long-range movement | 0.5 0.1-0.9 N/A
control

T time after detection until inter- | 6.5 days | 1-14 days | N/A
state movement restricted

Ty | time after first detection in U.S. | 33.5 days | 7-60 days | N/A
until vaccine widely available

Tyo | time after further detection locally | 17 days N/A N/A
until vaccine available

p time after detection until quaran- | 2 days 1-3 days | N/A
tine implemented

T, time after detection until culling | 2 days 1-3 days | N/A
implemented

n number of infected animals needed | 50 N/A N/A
to trigger official detection

k constant of proportionality for | 0.001 N/A N/A
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TABLE 6.1: Model parameter description and disease input ranges used with supportive
references.

6.3 Intra-County Model

We begin with the micro-scale intra-county model in which deterministic equations

modeling disease spread within a county are solved for parameters sampled randomly from

across their ranges. First, we assumed that there is no natural death of hosts, so that

animals in the model die due to infection or culling. For this case study, the “types”
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of animals are beef cattle, dairy cattle, cattle on feed, sheep and goats, and pigs. We
will refer to each of the susceptible, infectious, recovered, dead, vaccinated, quarantined,
etc compartments as a disease stage. Within each county there is no heterogeneity for
livestock distributions in respect to the number of farms accounting for the number of
animals. Each susceptible host of type 7 in county x, denoted SY, has a certain probability,
namely g™ of becoming infected with the pathogen due to contact with another infected

animal of type j. This probability is based on the susceptibility to disease of animal type

n

j,anda

i in stage m, denoted s!*, the infectivity of animal type j in stage n, denoted ¢
scaled contact rate based on the density of farm animals in the county, denoted e~"(®)/a
where r(z) = 1/1/N/A. Here, N is the total number of all types of animals in the county,
A is the area of the county, and a is a constant of proportionality referred to as the

characteristic length of local spread. The transmission rate, or probability of infection, is
pi;" = (infectivity)(susceptibility)(contact rate)(fraction infected)

where fraction infected = n—J\; for n; the number of animals in (infected) stage n of type j
and represents the probability that a contact is with an infected individual. For our case,
we then rewrite the transmission probability as

(contact rate)

pig" = (infectivity)(susceptibility) (number infected)

(total population)

So, the probability of species i in stage m becoming infected by species j in stage

i where e "(@)/a ig the true contact rate scaled by

n is /LZTJ’?" = L?s;”e”(x)/“nj =
the total number of animals, V. Also note that for very low densities, e "(@)/a Hehaves
linearly, and as density increases, e "@)/a gpproaches 1 as its slope approaches zero. We
use a transmission function that moves between a linear dependence at low animal density

and saturates at high animal density.

The possible progressions through the disease states of our model, which begin in the
susceptible state, S, and progress to either recovered, R, or dead, D, are diagrammed in
Figure 6.1. After becoming infected, a susceptible host can move into either a subclinical

“latent” state or a subclinical “carrier” non-progressing state with probability 07, or 1—60p,
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respectively. The host in the subclinical latent (incubation) stage, L, with infectivity LZ-L
remains for a residence time of 1/A;, upon which the host transitions into a symptomatic
infectious stage, I:. The hosts in the carrier stage, C}’, have an infectivity of LZ-C but never
exhibit clinical signs and after a residency time of 1/Ac move into a recovered, immune
stage, RY. We will refer to LY and C} as the quiescent infected group. Meanwhile, hosts
in the infectious stage will have infectivity LiI and remain infectious with time of 1/ after
which they will either die or recover with probability §p and 1 — 0p respectively. The

recovered class remains immune for life.

FIGURE 6.1: Description of the intra-county disease progression model. See Table 6.1
for specific symbol descriptions used in the model.

The intra-county portion of the model also includes mitigation processes such as
vaccination, quarantine, and culling, as well as the response time and efficacy of each of
these control measures. After 50 hosts are infected in a county, the disease is officially
detected with a corresponding time of detection, 74, and control measures are implemented
with an appropriate time lag. The first response to detection is quarantine. At the time
of quarantine, 1, uninfected hosts are isolated and thus removed from the susceptible
compartment. Here, ¢, is the efficacy of the quarantine, so that the total number of
animals of type i successfully quarantined are €,S7. The quarantine has a time lag, Tj,

of 1-2 days. We used a wide range for between 7 and 60 days when vaccines become
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widely available after the first time disease is detected in the US and we used an average
of 33.5 days to become available locally after subsequent detection of disease in a county.
We wanted to test for the impacts of having vaccines ready versus a longer time period
for vaccine development. For ¢,, and ¢, the efficacy of vaccination on susceptible and
quiescent infected animals respectively, the total number of successfully vaccinated animals
of type 7 at the time of vaccination, tg, is €,, 5" + €, (L¥ +CF). There is a lag between time
of vaccination and immunity so vaccinated susceptibles are moved into a temporary stage
Vs with residency time 1/\y, and susceptibility to disease reduced by a factor of ry, so
that BZ-‘;‘M =Ty, ﬁiS]-M where M is one of the infectious states. Similarly, vaccinated latent
animals (in L) are moved into stage V. with residency time 1/Ay, with infectivity reduced
by a factor of 7y, so that ﬁijy Ve =y ﬁi];-/[ L. Tt is assumed that vaccinated carriers exhibit no
different behavior than un-vaccinated carriers so that carriers that are vaccinated simply

remain in the CY, or carrier, stage.

Lastly, we consider culling, which has a lag time of 1-2 days after detection and
an efficacy of €.. Culling can occur in two instances: if a county is under surveillance
for the disease, then both infectious and quiescent infected groups are culled at time ¢3,
whereas if a county is not under official surveillance, then only clinical infectious animals
are culled at time t3. Notice that this implies the ideal situation where no susceptible
or recovered animals are culled. A county will be put under surveillance if it is within
20 miles of another known infected county that is under quarantine (this happens if the
number of clinical infectious animals in the county is greater than v = 50 and enough
time, T}, has elapsed for a quarantine to be put into place) or if the county itself is under
quarantine. This surveillance zone estimate is a conservative estimate based on the average
surveillance zone size of 30 km for foot and mouth epidemics in Europe. Since accurate
pen-side tests for rinderpest are available, good surveillance and methodical separation of

infected animals is possible.
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The equations for the intra-county model are then

dS¥
dtz = — 87 (x)Sy — €SI My, — €u, SF M,y (6.3.1)
dVi?
dtz = — 07 (2)Vii — AV + €0, ST Hy, (6.3.2)
dL?
dtl =01,(0; (x)Sy + 67 (x)Vsi) — ALLy — ey Ly He, — €cLiHe (6.3.3)
dC¥*
dtz =(1—01)(5; (2)SF + 6] (x)Vsi) — AcCf — O Hs (6.3.4)
o =ALLY = MIF — eI My (6.3.5)
dV.?
dtz = — Ay, Vei + €, LiHy, (6.3.6)
dR¥
- =MVl + ACCE + (1= 0p)AL] + M Ve (6.3.7)
dD X xT X T
% :HD)\]IZ + EC(Li + C’L )Ht; + ECIi Ht;uts (638)
where
55 (y) =D (BEFLY + BCCY + BT + 1y, BV (6.3.9)
J
5 (y) =D (rv.(B5FLY + BCCY + BTV + v, B VY (6.3.10)
J
and
0 tg A
Ha=Ha(t) =
1 teA

Finally, t{ is the set of all times when a quarantine occurs in county z, t5 the set of
all times when vaccination occurs in county z, t§ when culling occurs in a county x not
under surveillance, and t5. the set of all times when culling occurs in a county x under
surveillance. For this model, mitigation is conducted on the day scale so that the SIR-type
model is run for a full day in a county and at the end of that day mitigation strategies
are implemented and numbers of animals in each stage are updated accordingly before

running the SIR-type model for the next day.
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6.4 Inter-County Model

Next, we discuss the macro-scale inter-county and inter-state model. Figure 6.2
shows the density of cattle in the US with county-level resolution. This and similar data
for the other animal classifications are available from the 2007 agricultural census and the
cattle are split into beef cattle, dairy cattle, cattle on feed as used in the model [108].
Each susceptible county, x, has a probability of becoming infected of p,(t) = 1 — e T=(t)

where e~ T=(*) is the probability of not becoming infected and
Pa(t) = 57 S 165 (5, £)S2 + 8 (5, Vil s (s (2, 9) + xami (2] (6.4.1)
oy

for ¢ the number of species and y the number of counties. We use x to indicate reduced
long or short range movement due do movement control measures put into place after

detection of a disease and use k as a long or short range movement kernel. For this model

1 t<7y
Xs = (6.4.2)
€s t2>T74
1 t<1g+T;
g t=1+1
lIre —ry |l
ks(z,y) = e o and my(z,y) = 1 — e #2i9i@WAL Here, g is a constant of propor-

tionality for short-range movement seen as the length scale of transmission resulting from
animal-to-animal contact and fomites, |7, —ry|| is the distance between counties z and y
(on a sphere), k is a constant of proportionality for long-range movement, and At is the
time step being used. For our simulations, At = 0.125 (approximately 1/8 day). Also,
gi(x,y) is the frequency of inter-state movement from state y into state x based on data

from the US Department of Agriculture [135].

We chose 16 starting locations for the epidemic as case studies for our model. To
determine starting locations, we picked two counties from the top ten counties for number

of each of the groups of animals we considered (dairy cattle, feedlot cattle, beef cattle,
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FIGURE 6.2: Density of cattle and calves in the US by county.

sheep, and pigs). In addition, we started the epidemics in each of the different animal
groups to add variation and less predictability to the scenarios. There were several counties
with high populations for multiple groups so we minimized duplication by choosing from
among the top ten. We also chose several counties (in Florida, Arizona, California, and
Wyoming) that have much livestock but are geographically separated from other counties
with significant livestock density or numbers. These isolated counties were chosen in order
to see the comparative effects of short and long distance movement and movement control

for various regions in the United States.

6.5 Results

We ran our model 400 times for each of 16 starting locations throughout the US,

exploring different combinations of the various disease properties and mitigation parame-
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ters, as well as simple stochastic variation. The majority of simulation runs each produce
more than a ten-fold increase in the number of cases in a few days after the start of the
epidemic. A few days later, and at much lower levels, the recovered and dead populations
rise, reflecting the high mortality rate of rinderpest in cattle. Shortly after the sharp rise of
symptomatic animals, a massive quarantine program appears, and culling of symptomatic
animals. The next two months of the epidemic reflect a steady spread of disease to new
counties and the subsequent application of quarantine and culling to contain the spread
in each new region. Within the model, the duration of quarantine is indefinite, although

in reality, the quarantine could be lifted once an effective vaccination program occurs.

The spatial-temporal spread of a severe epidemic can be seen in Figure 6.3, showing
the map of the US, colored according to the day each county sees its first case of rinderpest.
The epidemic was seeded in Weld County, Colorado, on day 0, and spread to California
almost immediately (black circles). By day 11, the disease has already spread to over a
dozen locations throughout the US, seeding the second explosion of cases, during days
11 to 16. During the longest phase of the epidemic, from week 3 to 9, nearly all of
the 70 million beef cattle in the nation are quarantined, with almost one million beef
cattle culled. Rinderpest epidemics spread to essentially every area in the country that
contains significant populations of beef cattle. As the rate of the growth of new infections
levels off, a great deal of effort and activity is being expended during this portion of the
epidemic, as the spread is mitigated by a combination of a quarantine (which reduces the
effective reproductive number below one) and the rapid identification and culling of newly

symptomatic animals that results from imperfections in the quarantine.

6.6 Sensitivity to Model Parameters

The worst-case scenario represents only one of many possible instantiations of a

rinderpest epidemic (Figure 6.3). We explored the sensitivity of consequence to variation
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FIGURE 6.3: Geographic progression of one epidemic seeded in Weld County, Colorado.
All counties are shown with green crosses and counties impacted by the epidemic by days
2, 11, 21, 51, and 101 are shown with various symbols.

in nearly all model parameters. Figure 6.4 illustrates how the total number of dead beef
cattle depends on the starting location of the epidemic, as well as the effectiveness of the
quarantine. Epidemics were seeded with 100 infected animals of one type (beef cattle,
milk cattle, feedlot cattle, swine, or sheep) in one of 16 counties selected to be illustrative
of geographic diversity in the epidemiology. Quarantine efficacy was defined to be the
fraction of animals protected from infection by the quarantine and was allowed to vary
from 0.1 (only a ten percent reduction in infection) to 0.9, representing a ten-fold decrease
in the likelihood of disease spread. This parameter involves all possible modes of spread,
including animals moving, spread by wildlife, animals being transported, and disease
spread with fomites by humans. Considerations such as asymptomatic spread also appear
here. The impact of the time between detection of rinderpest in a county and initiation
of culling (varied from 1 to 4 days) was nearly as large as that of quarantine efficacy, but
most model parameters had a smaller impact on the overall number of animals infected

by the epidemic.
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FIGURE 6.4: Consequence realized over 400 runs of varying disease and mitigation pa-
rameters for epidemics started at the 16 locations (three groups). Counts are the number
of simulation runs with the number of total dead cattle.

The normalized forward sensitivity index of a variable to a parameter is the ratio
of the relative change in the variable to the relative change in the parameter. Since all
variables depend on many nodes in the network of counties and probability of infection
is stochastic, the sensitivity indices were computed numerically based on the mean of
approximately 5000 runs starting in 16 different locations. We computed the sensitivity
of total number of animals infected to the disease-related parameters. We found that
the total number of infected animals increases with the fraction of animals that progress
to symptoms, with the fraction of infected animals that die, and with an increase in
the incubation period. The number of infected animals is not very sensitive to intrinsic
disease parameters over the range they were varied (reflecting plausible values for these
parameters). We varied each of these parameters along their range for 16 different starting
locations. We then computed the average number of infected animals across the range of
each parameter for the 5000 runs. The slope of the best fit line for each parameter versus

the average number of infected animals was used to calculate the sensitivity index. See
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Normalized Forward Sensitivity Index

6¢ (ratio infected cows that progress to symp-
toms)

67 (ratio infected sheep that progress to symp-
toms)

Op(ratio infected that dies)

Hﬁ(ratio infected hogs that progress to symp-
toms)

T.(time after detection until culling imple-
mented)

es(efficacy short range movement control)
1/Ar(residency time in latent stage)
1/Ays(residency time in vaccinated susceptible)
¢ (efficacy long range movement control)
eq(efficacy quarantine)

1/Ar(residency time in infectious stage)

1/A¢ and 1/Aye(time in carrier stage)

11.3

3.4

3.4
0.5

0.4

0.3
0.2
-0.2
0.2
-0.1
0.1
0.1

TABLE 6.2: Sensitivity analysis for significant varied parameter for the simulations.

Table 6.6, of sensitivity indices.

Rinderpest can be controlled with several mitigation strategies. We use sensitivity

analysis to quantify the relative impact of various mitigation strategies on the total number

of infected cattle. We found that movement control is not very effective in controlling both

variables. Culling, on the other hand, is very effective, especially if implemented promptly

[140]. Vaccination can be effective for controlling the size of an epidemic, but only if the
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vaccine is readily available and stockpiled, which is not currently the case in the US.
The last important variable for controlling the epidemic is the time until the epidemic is

detected.

6.7 Importance of Geography

The most striking find was dependence of the overall epidemic size on the starting
location (Figure 6.4). Overall epidemic size, measured by the number of infected animals
for the epidemics started in 16 locations throughout the US, was related to the seed
location. Epidemics from the 16 seed locations can be classified according to overall
size into small epidemics of 100 to 300 animals (failed epidemics), epidemics infecting
3,000 to 30,000 animals (medium epidemics), and the large epidemics infecting around
one million beef cattle. Epidemics infecting 1000 beef cattle or 100,000 beef cattle rarely

occur, although several locations readily produce both failed and large epidemics.

6.8 Geographic Flow of Infection

From the simulated data, clustering exists around small and very large epidemics
with few cases falling between the two extremes. The conditions under which rinderpest
reaches large epidemic levels are related to the origin of the disease and whether or not the
disease moves into certain key counties in high-livestock-density areas of the US. We have
indicated the starting locations of the failed, medium, and large epidemics with appro-
priately colored symbols in Figure 6.2 of the density of beef cattle. Further examination
of the simulation results indicate that the large epidemics passed through the Midwest at

some point early in the epidemic.

The variation in spatial origin and size of observed epidemics suggests further ex-
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amination of the dependence of the epidemic size on response time and effectiveness of
movement controls. Because the parameter values were sampled from a uniform distribu-
tion, it is evident that failed epidemics are significantly more likely to occur in the presence
of reduced movement of animals. Equally evident, however, is that movement controls
alone are not particularly helpful. Clearly, if movement controls prevent all movement, the
epidemic would, by definition, not spread. Our model is merely highlighting that single

cases can, quite frequently, get through even stringent movement control schemes.

6.9 Discussion

Determining parameter values for rinderpest is difficult in many cases because there
is a paucity of spatial historical data and rinderpest has never been present in the US. We
can be relatively confident of disease progression parameters within individual hosts, such
as the incubation and infectious periods, as well as death rates experimentally [140, 117],

although exploration of ranges for these parameters is clearly prudent.

The epidemiological parameters are somewhat more difficult to quantify. The most
reliable indicator is the historical data of the frequency and size of epidemics. In ex-
trapolating the transmission likelihood from historical data, three significant sources of
uncertainty must be lumped together. First, are the intrinsic transmissibility of the dis-
ease and susceptibility of animals to the virus, which are likely to be higher than past
epidemics because of the long-term absence of circulating rinderpest. Second, are the
greatly increased size, density, and transport of livestock in the US. Finally, modern agri-
cultural practices are more highly refined than they were when rinderpest last circulated
freely, presumably resulting in better control of infectious disease in general. In order to
validate the model for transmissibility parameters, we compare qualitative spatial results
with what is known from previous outbreaks of rinderpest in nive herds and with well

known recent outbreaks of foot-and-mouth disease. It is important to realize that we are
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not primarily concerned here with computing the median consequence value for a rinder-
pest epidemic (that would require quite careful examination of the above three effects).
Instead, we aim to explore and quantify the relationship between disease properties, geog-
raphy, and mitigation strategies to better understand and mitigate the spread of infectious

diseases in multi-host populations.

We found that rinderpest spread as expected when started from different geographic
locations in the US. For example, in recent foot-and-mouth disease studies it has been
shown that number of animals is important in the initial stages of the disease, while
density of animals becomes important after the first one to two generations [20, 120]. We
would expect then that rinderpest requires a path through densely populated areas and
an initially large population of livestock in order to spread widely. This was indeed how
the model behaved. For instance, an epidemic started in a county in Idaho caused high
death rates in that county but was not able to spread to the rest of the US because Idaho
is surrounded by states with very low livestock densities. However, an epidemic started in
Towa spread rapidly throughout the high-density belt from the Midwest through eastern
Texas. One difficulty in the modern era is that, even if not surrounded by areas with
dense populations of livestock, infected animals may be shipped to areas that are densely
populated. We also saw that rinderpest spread quickly, which is to be expected from
examining the last continent-wide epidemic in nive herds in Africa in the 1890’s. Even
though transportation was much slower and less widespread, rinderpest spread from the

horn of Africa to the tip of South Africa (about 8000 km) in less than 10 years [90].

Spatial mixing plays an important role in other fast-spreading animal diseases such
as foot-and-mouth disease [116], and initial explorations indicate that the same is true
for rinderpest. Rinderpest spreads quickly, is highly transmissible, and has a high death
rate, so has the potential to burn itself out quickly if enough susceptible animals are
not available. Thus, for an initial infection to become an epidemic, rinderpest initially
requires a large number of susceptible animals. After the first few generations, high density

of hosts is required as with foot-and-mouth disease. So, we assume that rinderpest will
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only become a large-scale epidemic if it reaches or begins in the high-number, high-density
areas in the Midwest of beef cattle in the US. Because of human mobility we not only
have to consider proximity but rate of movement of livestock between areas. For example,
although California is geographically distant from other high-density livestock areas in
the US, high rates of movement between California and the mid to eastern US result in
large epidemics with origins in California. We separated the initial locations into three
categories: primarily small epidemics, primarily large epidemics, and bimodal distribution
of epidemics. In addition, the importance of wildlife in the propagation of rinderpest
should not be understated. Although the data on wildlife required to be incorporated into

the model are mostly unavailable, wildlife may be an important part of an epidemic.

In all of the simulations, the overall mortality rate never exceeded a few percent,
even though the case fatality rate is nearly unity. This is because we concluded that,
even in the worst case, ranchers would be able to control the epidemic by identifying and
culling the clearly symptomatic animals. The importance of this mitigative strategy is
evident in the dependence of the size of the epidemic on both the efficacy and rapidity of

quarantine and the rapidity of culling.

The apparent lack of importance of vaccination evident in the sensitivity analy-
sis does not indicate a lack of importance of a highly efficacious vaccine in controlling
rinderpest. It simply reflects our expectation that quarantine and culling of the sporadic
outbreaks will be utilized to control the epidemic only until the vaccine can be admin-
istered and become effective. Such a dependency would show up strongly in a complete

economic consequence analysis, which we have not attempted here.

One important advantage to our epidemiological model is its ability to treat multiple
hosts on an equal footing. The hosts can differ in either disease progression properties,
such as the greatly decreased disease susceptibility of swine to rinderpest, in comparison
to cattle. They can also differ in their epidemiological properties, such as the fact that
feedlot cattle do not typically return to mingle with beef cattle once they enter the feed

lot. Indeed, the low susceptibility of swine to rinderpest is a significant factor in the
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difference from foot-and-mouth epidemic spread across the US. Although our multi-host
model treats the different types of livestock appropriately, we only treated wildlife and
the spread of disease by humans (through fomites-humans do not contract rinderpest)
implicitly, through the imperfection of both long- and short-range movement restrictions.

It will be important to return to these questions in future studies.

The explosive spread of rinderpest apparent in Figures 6.3 and 6.4 can be traced to
three separate parameters in our model: asymptomatic spread, relatively short incubation
times, and a relatively high transmission and susceptibility coefficient. Given the likeli-
hood, even in a nave outbreak, of a percentage of asymptomatic cases and the possibility
of an avirulent strain being introduced and spreading widely, with potential subsequent
reversion to virulence, asymptomatic animals play an important role in both the long-term
outcome of a rinderpest epidemic and in the best surveillance and mitigation strategies.
Here, we focus on the virulent strain of rinderpest to simulate a worst-case scenario for
impacts. The ultimate ability to control the disease while losing only a few percent of the
Nation’s livestock can be traced to the clarity of the signs of disease and the existence of
an efficacious vaccine, which led to our assumed rapidity and effectiveness of culling and

quarantine.

An important outcome of this study is the importance of geography and the density
of susceptible hosts to the spread of rinderpest. The relatively small statistical correlation
of epidemic size to movement restrictions in comparison to quarantine and culling should
not be interpreted to mean that this control measure is of little importance. There are
several lessons learned from these simulations for the management of rinderpest or similar
disease outbreak in cattle populations in the US. First, it is far cheaper to implement
than quarantine or culling, although the economics of the loss of export are considerable.
Second, the impact of preventing the spread to the major cattle populations is a thousand-
fold decrease in epidemic size and a significant shortening in the duration of quarantine
and culling interventions. Third, the actual effectiveness of movement restrictions depends

on several key variables, such as the absolute value of the transmissibility of the virus and
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the implicit assumptions on the likelihood of spread by fomites or wildlife. Finally, it is
impossible to capture the adaptive nature of the mitigative measures in a model such as
ours. Our parameter estimates are applied ‘for the long haul’ and may not reflect potential

opportunistic mitigation.

These results strongly support the case for complete eradication of rinderpest. The
ability to systematically explore the epidemiology of disease will be important when con-
sidering the impacts of climate change and emerging disease, and the robustness of modern
agricultural practices. It is also important as a stepping stone to controlling zoonotic dis-
eases and understanding the evolutionary pressures of multi-host pathogens in general.
The geography and connectedness of populations plays an important role in the outcome
of an epidemic. Using this knowledge of animal population density and connectedness
can assist in determining critical populations or locations to apply mitigation or control

measures for animal movement.
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7 CONCLUSION AND FUTURE DIRECTIONS

7.1 Summary of Results

This thesis considered compartmental Susceptible-Infectious-Recovered (SIR) ordi-
nary differential equation models for the spread of a pathogen among competing species.
We also modeled spatial heterogeneity using multi-patch models that are graphs (or net-
works) with systems of differential equations at each vertex. These models can be viewed
as either an approximation of spatial diffusion or as a model for patchy environments. For
the case of spatio-temporal dynamics of disease spread, a multi-patch model consists of
an SIR model on each vertex of a graph or network with movement of species between
some or all of the vertices. Methods I used to understand and analyze the models include
stability analysis of equilibiria, persistence theory and analysis of flow along the bound-
aries of the system, threshold values for growth and other behaviors, sensitivity analysis,
and simulations. In addition, we added stochasticity to a model for spread of disease,
sampling across the range of parameters such as susceptibility, infectivity, and efficacy of

control strategies.

Understanding the mechanisms that drive coexistence of competing species is an
important question in community ecology. The effects of a shared disease on the outcome
of competition between two species has been investigated by several authors in the ecolog-
ical and mathematical ecology communities. Although many papers propose and analyze
mathematical models of Lotka-Volterra competition between two species that share a com-
mon (generalist) pathogen, some important cases are difficult to analyze. In particular,
it has been difficult to find existence and stability conditions of the infected coexistence

equilibrium for these models.

Chapters 3 and 4 addressed the effect of interactions between competition and dis-

ease dynamics on this endemic coexistence steady state. We considered a competition
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model for two species with a generalist pathogen and computed the basic reproduction
number, derived analytic forms for equilibria where possible, and performed local and
global stability analysis of the equilibria, including the disease-free and infected coexis-
tence equilibria. For models with frequency incidence disease transmission, we prove the
existence, uniqueness and global stability of the infected coexistence equilibrium under the
assumption that coexistence of the species is feasible using the theory of asymptotically
autonomous systems. As is the case for most models with frequency incidence disease
transmission, the stability of the coexistence equilibrium depends on the basic reproduc-
tion number (BRN) being greater than one. Thus, the frequency incidence disease model
exhibits the classic endemic model behavior; the disease dies out below a threshold and

approaches an endemic equilibrium above the threshold.

We prove that a conjecture made in [73, 26, 17] about the infected coexistence
equilibrium holds for a simplified model. In particular, we show that the conditions
under which infected coexistence is stable guarantee that all other equilibria are unstable
and vice versa. In addition, we also show that under the simplifying assumptions, the
qualitative behavior of the model with mass action disease transmission is identical to the
model with frequency incidence disease transmission. This is not true for the full general
system with mass action. We hypothesize, then, that for species with very similar intra-
specific competition rates and similar (a-virulent) pathogen transmission rates, the choice
of incidence functions does not change the conditions under which endemic coexistence is
stable, i.e., stability is determined by the basic reproduction number and relative strengths

of inter- and intra-specific competition.

In the case of mass action disease transmission we show that, if the death rate due to
disease is positive, then disease can reduce the total equilibrium density for each species in
isolation. This in turn affects competitive ability indirectly (apparent competition), and
is another indication that in the presence of disease, the competitive outcome can change.
We hypothesize that one of the driving forces behind the possible switch of competitive

outcomes and the difficulty of analysis of the full model is death due to disease. This
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force may be magnified by differing rates of transmission between and within species. The
results of this research can be found in a technical report [21], and a paper that is in

review [22].

In Chapter 4, for cases when stability of the system is difficult to determine, per-
sistence theory was used to show conditions under which species and/or the pathogen
persist in the system. Han and Pugliese [61] found conditions for strong uniform per-
sistence of disease and for one or both species for the case of density-dependent birth
with competition in the death term. We find that adding competition to the birth term
and removing density dependence from death affects the actual equilibrial densities of
the computed boundary equilibria but does not qualitatively change the conditions under
which the species and/or the disease persist uniformly strongly. This suggests that the
particular way in which competition acts on the growth rate of the species does not change
the qualitative outcome of our model in the context of strong uniform persistence of both

species and the pathogen.

It is also proved using persistence theory that when all other equilibria are unstable,
endemic coexistence is strongly uniformly persistent (i.e. there is coexistence of both
species and the pathogen). T also present conditions under which each individual species
and the disease are strongly uniformly persistent. Although stability of particular interior
equilibria and /or limit cycles is not proved, the strong uniform persistence of the system is
proved. This is an important result from an ecological perspective, since it guarantees that
all variables stay bounded strictly away from zero, thus will not go extinct. In summary,
we use persistence theory to complete the analysis of the full model for competition and
disease with mass action incidence, showing that persistence of both species and the disease

is determined by a few ecologically relevant parameters.

Chapter 5 pursues the question, “Could exotic species alter disease transmission
dynamics, which in turn facilitate invasion?” In collaboration with ecologists [106], we
considered a model to study the transmission dynamics of Barley Yellow Dwarf Virus

(BYDV), an important ecological component of native grasslands in California as well as
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patchy meadows in the Cascades. We modeled the spread of the aphid-vectored BYDV
on multiple patches for two host grass species, one native and one invasive, including both
seasonal and age related dynamics for the grasses. Using simulations, the basic reproduc-
tion number, and sensitivity analysis, we have shown that the spatial configuration of the
patch system, host composition within patches, and patch connectivity affect not only the
ability of BYDV to invade a fragmented system, but also determine whether the pathogen

facilitates the invasion of a non-native host species [106].

In animal communities, both hosts and vectors can move among patches; however,
in our focal community, among-patch host movement is negligible, whereas vector dis-
persal is key. Landscape-scale host composition can interact with vector dispersal to
control disease spread and epidemics, as in our case study. Similarly, bean dwarf mosaic
virus, a whitefly-transmitted virus that infects both soybeans and common bean plants
causes severe disease in the latter. In Argentina, increased soybean acreage shifted the
landscape-scale host composition, leading to the emergence of bean dwarf mosaic virus and
threatening local common bean production. In multi-host communities where hosts also

move among patches, this will add further complexity that warrants future exploration.

The landscape-scale composition and configuration of host communities, along with
vector movement patterns among patches, are essential determinants of pathogen spread
and prevalence in fragmented landscapes [111, 113]. Pathogen spread depends on host
composition (e.g. presence of reservoirs, probability of transmission) and vector density
and dispersal, all of which can vary among patches in a complex landscape. Management
can increase connectivity, elevating transmission of multi-host pathogens, as is the case
with fire suppression increasing connectivity among hosts susceptible to sudden oak death
(Phytophora ramorum; see [104]). Our results show that for cases such as the BYDV
system, mixed species patches or mixtures of patches with differing host composition tend
to have the highest prevalence rates because of the balance among pathogen residence time,
pathogen transmission probability, and vector fecundity. Further, our results suggest that

connectivity can interact with arrival time and host infection tolerance to determine the
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success or failure of establishment for newly arriving species.

Chapter 6 (in collaboration with colleagues from various disciplines at Los Alamos
National Laboratory) investigates the spread of generalist animal diseases on a large spatial
network, using Rinderpest as a case study. We predicted the potential spread of Rinderpest
using a two-stage model for the spread of a multi-host infectious disease among agricultural
animals in the US, incorporating USDA data for county-level livestock populations and
movement. The model includes pigs, sheep, goats, beef cattle, dairy cattle, and cattle on
feed as well as mitigation strategies such as quarantine, vaccination, culling, and movement
control. I ran simulations of the model for designed scenarios, and performed sensitivity
analysis of the parameters. We were not primarily concerned with computing the median
consequence value for a rinderpest epidemic (that would require quite careful examination
of the above three effects). Instead, we aimed to explore and quantify the relationship
between disease properties, geography, and mitigation strategies to better understand and

mitigate the spread of infectious diseases in multi-host populations.

We found the size of Rinderpest epidemics were directly related to the origin of
the disease and whether or not the disease moved into certain key counties in the high-
livestock-density areas of the US, and were sensitive to response time and effectiveness of
mitigation strategies [95]. Spatial mixing plays an important role in other fast-spreading
animal diseases such as foot-and-mouth disease [116], and initial explorations indicate that
the same is true for rinderpest. Rinderpest spreads quickly, is highly transmissible, and
has a high death rate, so has the potential to burn itself out quickly if enough susceptible
animals are not available. Thus, for an initial infection to become an epidemic, rinderpest
initially requires a large number of susceptible animals. After the first few generations,
high density of hosts is required as with foot-and-mouth disease. So, we assume that
rinderpest will only become a large-scale epidemic if it reaches or begins in the high-
number, high-density areas in the Midwest of beef cattle in the US. Because of human
mobility we not only have to consider proximity but rate of movement of livestock between

areas.



177

In summary, we find that competition, disease, and space can interact to create
complex dynamics. In fact, adding any one of these factors to a model can potentially
change the outcome of the model or the conditions under which coexistence of species is
possible. It will be important to continue to compare simple models with more complex
models in order to understand the situations under which more complexity is necessary to
answer the question being asked. As we discovered in Chapters 3 and 4, for some special
cases, adding disease dynamics to a model for competing species does not significantly
change the conditions for coexistence of the species. However, for other cases, adding
disease dynamics can completely switch the competitive outcome, as it does in the case
of Barley Yellow Dwarf Virus system. These results help us understand how the forces of
infection and competition combine and are implicated in determining community structure

in a spatially heterogeneous environment.

Additionally, we find that adding space to a model can give insight into the regional
dynamics of a pathogen, especially when there is a fragmented landscape with differing
host composition and environmental factors through which the pathogen must spread. As
in the case of rinderpest and BYDV, initial location and timing of the pathogen invasion
can significantly change the transitory dynamics and/or the final outcome of the system.
The ability to systematically explore the epidemiology of disease will be important when
considering the impacts of climate change and emerging disease, and the robustness of
modern agricultural practices. It is also important as a stepping stone to controlling
zoonotic diseases and understanding the evolutionary pressures of multi-host pathogens
in general. The geography and connectedness of populations plays an important role in
the outcome of an epidemic. Using this knowledge of host population density and con-
nectedness can assist in determining critical populations or locations to apply mitigation

or control measures for host or vector movement.
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7.2 Future Directions

Relatively little has been done in the way of expanding knowledge of models that
combine more complex population dynamics and disease. I plan to continue work on
numerical methods specifically for models that include both population dynamics and
disease spread. Additionally, it would be interesting to apply persistence theory to a
general model for competition between species with disease in only one of the species.
This is an important sub-case that has not been well explored in the context of persistence

theory.

The BYDV team hopes to compare the results of several different spatially explicit
and implicit models for BYDV spread in native grasslands and meadows. It would be
interesting to expand this work to other organisms whose competitive outcomes can be
changed by the presence of a generalist pathogen. There is much still to be done in the

area of spatial models for invasion of both pathogens and exotic species.

The rinderpest model is being adapted to Rift Valley Fever epidemics in East Africa,
a mosquito-vectored zoonotic disease. In the immediate future, we will further explore
and analyze models for mosquito-vectored pathogens including analysis of a simpler model

for Rift Valley Fever with vertical transmission and a model for Dengue.

The broad impact of this work is a partnership between ecologists, biologists, epi-
demiologists, and mathematicians to develop significant advances in the theory and ap-
plication of mathematical models. By applying mathematical models to biological and
ecological systems, we increase understanding of disease, pathogen, and population dy-
namics, contributing significant scientific knowledge to the management and understand-
ing of disease and/or exotic species. Long term, I want to continue to collaborate with
interdisciplinary researchers in biological, ecological, and health fields to work on models
that will expand knowledge and our problem solving abilities for both environmental and

humanitarian issues.
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