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Modeling and analyzing the combined effects of disease and population dynamics

is important in understanding the effects of mechanisms such as pathogen transmission

and direct competition between host species on the distribution and abundance of dif-

ferent species in an ecological community. Mathematical analysis of such models in a

spatially explicit environment gives additional important insight into these systems. Mo-

tivated by our participation in the IGERT Ecosystem Informatics program, we explore

the interactions between and among disease, competition, and spatial heterogeneity from

a mathematical modeling perspective. In particular, we formulate a model in which two

species compete directly via Lotka-Volterra competition and share a directly transmitted

pathogen via both mass action (density-dependent) and frequency-dependent incidence.

We determine conditions under which the pathogen is endemic as well as conditions for

long-term coexistence of the two species and the pathogen. As the interior equilibria are

intractable, we examine a special case for which full stability analysis is possible. We show

that in this case, mass action and frequency incidence behave qualitatively the same. We

prove existence, uniqueness, and stability for the full model with frequency incidence un-

der the assumption of no death due to disease using theory of asymptotically autonomous

equations. Using persistence theory, we show that for the full model with mass action, if

all boundary equilibria are unstable, then both species and the pathogen persist uniformly



strongly. We extend the multi-host competition-disease model to include multiple patches

in order to model Barley Yellow Dwarf Virus in native grasslands. Our results suggest

that connectivity can interact with arrival time and host infection tolerance to determine

the success or failure of an invasion. Lastly, we simulate the spread of the multi-host virus

rinderpest in livestock across the United States, finding that the outcome varies greatly

with the starting location of the epidemic.
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1 INTRODUCTION

Modeling and analyzing the combined effects of disease and population dynamics is

important in understanding the effects of mechanisms such as pathogen transmission and

direct competition between host species on the distribution and abundance of different

species in an ecological community. Although mathematical advances have been made in

this area, analysis of equilibria of basic models that combine the dynamics of disease and

two interacting species is difficult and can often be intractable. Mathematical analysis

of such models in a spatially explicit environment gives additional insight into the role

that spatial heterogeneity can have on the dynamics of communities of different species.

Motivated by my participation in the IGERT Ecosystem Informatics program and col-

laboration with several faculty and Researchers in mathematics and ecology, I explore

the interactions between and among disease, competition, and spatial heterogeneity using

mathematical modeling and analysis.

Theoretical and empirical investigations have shown that generalist pathogens or

parasites infecting multiple host species can influence species diversity and community

structure [118, 81, 24, 34, 63, 84]. Empirical studies have also demonstrated the impor-

tance of the combined effects of inter- and intra-specific competition between species and

the effects of pathogens (apparent competition) on the population dynamics of multi-host

systems [59]. Thus, the interaction between community and disease ecology can help us

understand the structure of a biological system and the reasons why species coexist with

each other [39]. In addition, understanding the population biology of diseases is impor-

tant in conservation biology [48]. Mathematical models that include competition between

multiple species in addition to a shared pathogen are difficult to analyze for the case of in-

fected coexistence and several important cases remain open. This thesis considers models

in which two species compete directly via Lotka-Volterra competition and share a directly

transmitted pathogen.
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Humans are converting and fragmenting landscapes on every continent, changing

connectivity of habitats through effects including reduced patch size, creation of novel

habitats, and altered movement rates among patches that affect a diversity of species.

Pathogen movement and epidemics can depend intimately upon landscape connectivity

patterns [136, 104], which, in turn, control epidemic propagation or fadeout [78, 129].

Importantly, models including spatial heterogeneity can make qualitatively different pre-

dictions compared to models assuming homogeneous mixing [70, 66, 79]. In addition,

many emerging pathogens infect multiple hosts, but most multi-host theory developed

to date has focused on non-spatial models [49, 81, 102, 118, 73, 17, 26, 71]. Thus, in

spite of the importance of landscape connectivity for understanding spatial spread and

persistence of disease in real communities, the body of spatially-explicit theory dealing

with multi-host pathogens remains quite small [110], [48]. As a result, the spatial dy-

namics of multispecies host-parasite assemblages are gaining increasing attention in both

mathematics and ecology.

There are many ways to incorporate space into a model of ecological systems, in-

cluding multi-patch, metapopulation, interacting particle and reaction diffusion models.

In particular, metapopulation and patch models of disease are gaining impetus with the

recognition that species live in increasingly fragmented landscapes [62, 10, 12, 11, 58, 100,

101], and that the heterogeneity of the landscape, as well as the demography and the epi-

demiology of multiple interacting species, determine spatial spread and persistence of the

disease [113]. Multi-patch models can be thought of as graphs with systems of differential

equations at each vertex. They involve explicit movement of individuals between distinct

locations [10]. It has been shown that even a simple two-patch competition model can

yield behavior different from the non-spatial model. Thus, we also focus on multi-patch

models, for dispersal of organisms.

In this thesis, we utilize tools from dynamical systems, in particular the qualitative

theory of autonomous differential equations [112], asymptotically autonomous systems,

and persistence theory [137]. We also draw upon concepts from mathematical ecology and
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epidemiology such as models for competition between species and for the transmission of

infection in populations as well as spatial heterogeneity. At times, direct analysis of these

complex models, especially with multiple species and habitat patches is very difficult. So

we also make use of numerical analysis, bifurcation analysis and sensitivity analysis in

order to understand the qualitative behavior of a system. An outline for the remainder of

the thesis is now presented.

1.1 Outline of Thesis

In Chapter 2, background for dynamical systems is described along with a presen-

tation of basic population dynamics and epidemiological models. Here, we also present a

framework for multi-patch disease models.

In Chapter 3, a model of two competing species that share a directly transmitted

pathogen is presented. We consider two different types of disease transmission mecha-

nisms; mass action (density dependent) and frequency dependent transmission. All bound-

ary equilibria for this model are computed and a local stability analysis is performed. We

prove existence, uniqueness, and stability of the endemic coexistence equilibrium, for the

case of frequency incidence disease transmission, when death due to disease is negligi-

ble. We use the theory of asymptotically autonomous differential equations to analyze

this model. The analytic form for the endemic coexistence equilibrium for both models

remained intractable, so a simplified model is analyzed in which all the equilibria are

tractable

In Chapter 4, the full two species competition-disease model with mass action is

analyzed using persistence theory, which can be helpful when the endemic coexistence

equilibria are intractable. This follows the approach of Han and Pugliese [61] who show

persistence results for a similar model.
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In Chapters 5 and 6, two multi-host pathogen systems are considered in a spatially

explicit context. In Chapter 5, we model the transmission of a generalist pathogen within a

patch framework that incorporates the movement of vectors between discrete host patches

to investigate the effects of local host community composition and vector movement rates

on disease dynamics. We use barley and cereal yellow dwarf viruses (B/CYDV), a suite of

generalist, aphid-vectored pathogens of grasses, and their interactions with a range of host

species as our case study. We examine whether B/CYDV can persist locally or in a patch

framework across a range of host community configurations. We then determine how

pathogen-mediated interactions between perennial and annual competitors are altered at

the local and regional scale when the host populations are spatially structured.

In Chapter 6, we consider the spread of rinderpest in livestock in the United States.

Because of the potential severity of a rinderpest epidemic, it is prudent to prepare for

an unexpected outbreak in animal populations. There is no immunity to the disease

among the livestock or wildlife in the United States (US). If rinderpest were to emerge

in the US, the loss in livestock could be devastating. We predict the potential spread of

rinderpest using a two-stage model for the spread of a multi-host infectious disease among

agricultural animals in the US. The model incorporates large-scale interactions among US

counties and the small-scale dynamics of disease spread within a county.

Finally, in Chapter 7, conclusions and future directions are presented.

1.2 Resulting Publications

This thesis resulted in the following accepted and submitted publications.

1. V. A. Bokil and C. A. Manore, Coexistence of competing species with a directly

transmitted pathogen, Submitted, 2011

Also published online as Tech. Report ORST-MATH 10-05, Oregon State University,
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http://hdl.handle.net/1957/18639, 2010.

2. C. Manore, B. McMahon, J. Fair, J. M. Hyman, M. Brown, and M. LaBute, Disease

properties, geography, and mitigation strategies in a simulation spread of rinderpest

across the united states, Vet. Res. 42 (2011), no. 1, 55.

3. S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer, and P. R. Hosseini, Spa-

tiotemporal model of barley and cereal yellow dwarf virus transmission dynamics

with seasonality and plant competition, Published online, Bull. Math. Biol., DOI

10.1007/s11538-011-9654-4.
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2 MODELS IN ECOLOGY AND EPIDEMIOLOGY: A
DYNAMICAL SYSTEMS APPROACH

In this chapter, background for differential equations, dynamical systems, competi-

tion models, disease models, and multi-patch models is presented.

2.1 Ordinary Differential Equations and Dynamical Systems

Let x′ = f(x) be a system of autonomous ordinary differential equations with initial

condition x(0) = x0, where f : X → R
n and X is an open subset of Rn. We have the

following results:

Theorem 2.1.0.1 The Fundamental Existence-Uniqueness Theorem [112] For

f ∈ C1(X), the system x′ = f(x) has a unique solution on a time interval [−a, a] with
a > 0.

Additionally, under these conditions, the solution is continuously dependent on initial

conditions and parameters ([112], Chapter 2).

Definition 2.1.0.1 A point x∗ in X is an equilibrium of a system of ordinary differen-

tial equations if f(x∗) = 0. So, if x(0) = x∗ then x(t) = x∗ for all t ≥ 0.

Definition 2.1.0.2 An equilibrium x∗ is locally asymptotically stable if for every

ε > 0 there exists a δ > 0 such that if ‖x(0)− x∗‖ < δ then ‖x(t)− x∗‖ < ε for t ≥ 0 and

if there exists a δ > 0 such that for ‖x(0)− x∗‖ < δ, limt→∞ x(t) = x∗.

A semiflow is a triple (X,T,Φ) where X is called the state space, T is a time set,

and Φ is the semiflow map. A semiflow (or dynamical system) map induced by the
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differential equations, Φ : T × X → X has the property that Φ(0, x) = x. If x ∈ X

is the initial state of the system then Φ(t, x) = Φt(x) is the state at time t. Here, X

is a metric space and T is a subset of R+ = [0,∞). The map Φ also has the semiflow

property Φ(t+ s, x) = Φ(s,Φ(t, x)) for x ∈ X and t, s ∈ T ⊂ R
+. For ordinary differential

equations, Φ(t, x) is the solution at time t for initial condition x. The systems examined

in Chapters 3 and 4 are also dissipative, meaning that there exists a bounded subset U

of X such that for any u ∈ X, Φt(u) ∈ U for sufficiently large t, i.e., U is a bounded

attractor of X.

Definition 2.1.0.3 The orbit of Φ through a point x ∈ X is γ(x) = {Φ(t, x) : t−(x) ≤
t ≤ t+(x)} where the solution Φ(t, x) exists for all time in the open interval (t−(x), t+(x)).

The positive orbit is γ+(x) = {Φ(t, x) : 0 ≤ t+(x)}.

Definition 2.1.0.4 The omega-limit set of a point x ∈ X is defined as

ω(x) =
⋂
t≥0

⋃
s≥t

{Φ(r, x) : r ≥ s} (2.1.1)

and consists of the limits of all sequences {Φ(tn, x)} where tn → ∞ as n → ∞ and the

alpha limit set as

α(x) =
⋂
t<0

Φ((−∞, t], x).

.

Definition 2.1.0.5 For M ⊂ X, M is forward invariant if and only if Φt(M) ⊂ M

∀t > 0. M is invariant if all solutions with Φ0(x) ∈ M are defined for all time t ∈ R

and Φt(M) =M ∀t ∈ R.

Definition 2.1.0.6 A set is pre-compact in a finite-dimensional normed space if it is

bounded. More generally, a set P is pre-compact if any sequence of points in P has a

convergent subsequence [31].
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Definition 2.1.0.7 The stable subspace, ES, of a linear system x′ = Ax is Span{uj,vj|aj <
0} where λj = aj+ ibj is an eigenvalue of A and wj = uj+ ivj it’s generalized eigenvector.

The unstable subspace, EU is Span{uj,vj|aj > 0}.

Theorem 2.1.0.2 Stable Manifold Theorem [112] Under the same assumptions as

for Theorem 2.1.0.1 with X containing the origin, suppose that f(0) = 0 and that the

Jacobian evaluated at that equilibrium, Df(0), has k eigenvalues with negative real part

and n−k eigenvalues with positive real part. The there exists a k-dimensional differentiable

manifold W S tangent to the stable subspace ES of the linear system x′ = Df(x0)x at 0

such that for all t ≥ 0, Φt(S) ⊂ S and for all x0 ∈ W S, limt→∞Φt(x0) = 0. Also, there

exists an n−k dimensional differential manifold WU tangent to the unstable subspace EU

of the linear system at 0 such that for all t ≤ 0 then Φt(U) ⊂ WU and for all x0 ∈ U ,

limt→−∞Φt(x0) = 0.

Theorem 2.1.0.3 Poincare-Bendixson Theorem [6] Let γ+(x) be a positive orbit of

the autonomous ODE x′ = f(x) with x ∈ X ⊂ R
2 that remains in a closed and bounded

region U of the plane. Suppose that U contains only a finite number of equilibria. The

ω-limit set takes on only one of the following:

1. ω(x0) is an equilibrium, or

2. ω(x0) is a periodic orbit, or

3. ω(x0) contains a finite number of equilibria and a set of trajectories γi whose α- and

ω-limit sets consist of one of the equilibria for each trajectory γi.

2.2 Mathematical Models for Competition between Species

Populations can be represented mathematically as either the total population or the

density of the population in a fixed area. Models look very similar from either perspective,
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only differing by a scaling of parameters and variables [86, 56]. We start initially by

assuming that populations are only affected by the per capita birth rate a, the number of

births per individual per unit time, and the per capita death rate b, the number of deaths

per individual per unit time. The intrinsic rate of growth, r = a − b, is the difference

between the birth and death rates. In this case a population is modeled by the differential

equation
dN

dt
= rN. (2.2.1)

This model assumes there is no immigration or emigration. It predicts exponential growth

or decay for all time, which implies it may not be including important factors such as

resource limitation that affect the growth rate of a population.

One way to deal with this problem is to add density-dependence to the model,

assuming that the presence of other individuals of the same species in the habitat either

decreases the birth rate, increases the death rate, or both. The mechanisms for this

decrease in the growth rate can be explained by many factors, including resource limitation

and direct interference [56]. The growth rate decreasing linearly with the population

results in logistic growth
dN

dt
= rN

(
1− N

K

)
(2.2.2)

where K is the carrying capacity of the population. This model is well-posed and forward

invariant in the region XL = {N ∈ R|0 ≤ N ≤ K}.

Multiple species often live in the same habitat and it is expected that they may

interact with each other. A classic model for species interaction is the Lotka-Volterra

model which, depending on parameter values, can represent predator-prey, mutualistic, or

competitive interactions between species. The model is

dNi

dt
= riNi

(
1 +

n∑
k=1

Nj

Kij

)
, (2.2.3)

where ri is the intrinsic growth rate of species i and where 1/Kij represents the effect of

species j on the growth rate of species i. In this thesis, we will concentrate on competitive

interactions, for which the competition coefficients, 1/Kij are negative. Notice that in



11

the absence of any other species, each species is governed by the logistic equation (2.2.2).

Lotka-Volterra competition for 2 or 3 species is well known and fully analyzed. The two

species Lotka-Volterra competition model,

dN1

dt
= r1N1

(
1− N1

K11
− N2

K12

)
(2.2.4)

dN2

dt
= r2N2

(
1− N1

K21
− N2

K22

)
, (2.2.5)

is well-posed and forward invariant in the region XLV = {(N1, N2) ∈ R
2|0 ≤ Ni ≤ Kii, i =

1, 2}. Although individually quite tractable, the combination of competition and disease

quickly becomes complicated.

2.3 Mathematical Epidemiology

The types of disease models we consider here are compartmental Susceptible Infec-

tious Recovered (SIR) ordinary differential equations which assume each individual in a

population resides in one and only one disease state, namely susceptible, infectious, and

removed (or recovered). Individuals of a population move between these compartments

at certain transition rates. An organism in the susceptible class, denoted by S, is not

infected and is capable of contracting the disease. A member of the infectious class, I, is

infected with the disease and is able to transmit the disease to others. A member of the

removed class, R, has recovered from the disease and is immune, has permanent immunity

from some other source (e.g. vaccination), or is dead from the disease. In all cases, the

recovered class cannot transmit or contract the pathogen. Additional compartments such

as latent or vaccinated can be added as necessary.

The standard SIR disease model was developed by Ronald Ross (1915) [122] and

proposed in its current form by Kermack and McKendrick (1927) [83]. Because of this,

analysis of disease dynamics alone in one or multiple hosts is complete for the most

commonly used modes of transmission, mass action (density dependence) and frequency
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incidence. Note that most well analyzed models assume a small enough time scale that the

considered populations are assumed constant (no birth or natural death included). Some

work has been done on disease models for one or multiple species with basic population

dynamics such as exponential growth and logistic growth.

The two most common mathematical representations of disease transmission are

mass action (density-dependent) and frequency incidence. The transmission rate of a

disease is (usually) proportional to infectivity, susceptibility of non-infected individuals,

the contact rate between all individuals, the proportion of infected individuals, and the

number of susceptible individuals. Mass action assumes that the contact rate, and thus

the transmission rate, increases linearly with the number of individuals in a population

while frequency incidence assumes that the contact rate is constant. Appropriate use of

disease incidence depends upon the system one is considering [98, 16, 68].

Definition 2.3.0.8 The incidence of disease is the rate of new infections in suscepti-

bles resulting from contact with infectious individuals.

For C(N, t) the local contact rate, r the probability that the contact is with an infected

individual (often r = I
N ), p the probability that the contact is sufficient for transmission,

S the number (or density) of susceptible organisms, I the number of infectious, and N

the total population, then the disease incidence is CrpS(t) = Cp I
NS. There are many

forms used for disease incidence, but the two most common are mass action or density

dependent incidence and frequency dependent incidence. Mass action assumes that the

contact rate is proportional to the global density so C(N, t) = k(N/A), so incidence is

kpS I
A = νSI. Frequency dependent incidence assumes that the contact rate is constant,

so C(N, t) = c incidence is cp I
N S = β I

N S

Definition 2.3.0.9 The basic reproduction number, R0, is the expected number of

secondary cases that occur after the introduction of one infected individual into a fully

susceptible population. If R0 ≤ 1 then the disease will die out.



13

We use the next generation method [144, 27] to compute R0. For infected compart-

ments xi and uninfected compartments yi, then x
′
i = Fi(x, y)− Vi(x, y) and y

′
j = gj(x, y)

where Fi(x, y) represents new infections and Vi(x, y) is the net outflow of infectious com-

partment. We assume that

• Fi(0, y) = 0 and Vi(0, y) = 0

• Fi(x, y) ≥ 0 for nonnegative x, y;

• Vi(x, y) ≤ 0 for xi = 0;

• ∑n
i=1 Vi(x, y) ≥ 0 for nonnegative x, y

• y′ = g(0, y) has a unique asymptotically stable equilibrium (disease-free equilibrium)

Now, linearize about the disease-free equilibrium. x is decoupled from the rest of the

equations since ∂Fi
dyj

(0, y0) =
∂Vi
dyj

(0, y0) = 0. So, we can approximate x by x′ = (F − V )x

where F is the Jacobian of F and V is the Jacobian of V.

Let Φ(t, x0) be the solution to x′ = (F−V )x for x0 > 0 where F = 0, so there are no

new secondary infections. The ith component of Φ(t, x0) is the probability that the initial

case introduced at time t = 0 is in disease compartment i at time t. Then, we see that∫∞
0 φ(t, x0)dt is the expected time the initial case spends in the disease compartments.

Since when F = 0 thenx′ = −V x, we know Φ(t, x0) = e−V tx0. Then,
∫∞
0 Φ(t, x0)dt =

V −1x0 where the (i, j) entry of V −1 represents the expected time an individual initially

introduced into disease compartment j spends in disease compartment i. The (i, j) entry

of F is the rate at which new infections are produced in compartment i from an index

case in compartment j. Therefore, the expected number of secondary infections produced

by the initial case is ∫ ∞

0
Fe−V tx0dt = FV −1x0.

This is the time spent in a disease compartment times the rate at which a member of

that compartment creates a new infection. The matrix FV −1 is referred to as the next
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generation matrix. The next generation matrix is nonnegative, so has a nonnegative

eigenvalue with greatest modulus, which has a nonnegative eigenvector. We call this

eigenvalue, ρ(FV −1), or the spectral radius of FV −1, the basic reproduction number (R0)

of the system, [144, 27].

The following theorem proves that the stability of the disease free equilibrium can

be determined solely by R0.

Theorem 2.3.0.4 (Theorem 2, [144]) Consider a disease transmission model as described

above with the accompanying five assumptions. If x0 is a disease free equilibrium (DFE)

of the model, then x0 is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.

2.4 Multi-patch Disease Models

The dynamics of multispecies host-parasite assemblages have recently received a

lot of attention [49, 81, 102, 118, 73, 17, 26, 71]. For the most part, these studies have

closely analyzed particular models of host-parasite dynamics. Metapopulation models

of disease are also gaining impetus as natural and human-made landscape features such

as forests, rivers, roads and crops cause many endangered species to live in fragmented

landscapes [62, 10, 12, 11, 58, 100, 101]. The heterogeneity of the landscape as well as

the demography and the epidemiology of multiple interacting species determine spatial

spread and persistence of the disease.

There are many ways to incorporate space into a model of ecological systems, in-

cluding multi-patch, metapopulation, interacting particle and reaction diffusion models.

Which model to use depends upon the biology and dispersal mechanisms of the organ-

ism(s), the structure of the environment, time and spatial scales, the data available, and

the question one is trying to answer [31]. We focus here on multi-patch, or network mod-

els, for dispersal of organisms. Multi-patch models are graphs with systems of differential
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equations at each vertex. They involve explicit movement of individuals between distinct

locations [10]. It has been shown that even a simple two-patch competition model can

yield behavior different from the non-spatial model. Two species which could not coexist

in one patch can coexist in a two-patch system with moderate movement rates [33] . For

the case of spatio-temporal dynamics of disease spread, a multi-patch model would consist

of an SIR model on each vertex of a graph with connection between some or all of the

vertices. Multi-patch models can be viewed as a discrete approximation of diffusion or as

a model for discrete, or patchy, environments.

In a patchy environment, motivation for using a patch model is obvious. However,

a patch model can also be seen as discrete diffusion, an approximation to the continuous

reaction-diffusion model as described in [5]. Allen [5] analyzes a Lotka-Volterra two patch

model for competition between species. Consider the reaction-diffusion model

ut = f(u) + ηuxx, x ∈ [0, L] (2.4.1)

where η is the diffusion coefficient. The boundary conditions are either Dirichlet (u(0, t) =

0 = u(L, t)), Neumann (ux(0, t) = 0 = ux(L, t)), or Robin (ux(0, t) = −β1u(0, t),
ux(L, t) = β2u(L, t)). Dirichlet boundary conditions result from a population that avoids

the boundary but can enter or leave the region. Neumann boundary conditions mean that

the individuals cannot move across the boundary. Robin boundary conditions imply the

movement across the boundary is proportional to the population density.

Let’s use finite differences to approximate partial derivatives so

uxx(x, t) ≈ u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
. (2.4.2)

Let the population in patch 1 be u1(t) = u(x, t) and the population in patch 2 be u2(t) =

u(x+h, t). Then, u′1 = f1(u1)+
D
h2 (u2−2u1+u(x−h, t)) and u′2 = f2(u2)+

D
h2 (u1−2u2+

u(x+2h, t)) where u(x−h, t) and u(x+2h, t) are determined by the boundary conditions.

• For Dirichlet, u(x− h, t) = 0 = u(x+ 2h, t);
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• for Neumann, u(x,t)−u(x−h,t)
h = 0 = u(x+2h,t)−u(x+h,t)

h ;

• and for Robin, u(x,t)−u(x−h,t)
h = −β1u(x, t) and u(x+2h,t)−u(x+h,t)

h = β2u(x+ h, t).

So we end up with three different versions of the general two patch model u′j = fj(uj) +

Dj(uk − αjuj) for j = 1, 2, j �= k depending on boundary conditions. See [5] for a full

analysis of this system.

The question of how disease affects patchy populations, including whether or not a

disease might drive a population to extinction, is an important one to biologists today.

Although opening “corridors” between habitat patches may be important for preserving

a species, if one does not examine the possible changes that this might make in disease

dynamics, the result may be increased chance of epidemics or even local extinction [64,

100]. In addition, competition is an important structuring factor in animal and plant

communities. Classical competition theory predicts competitive exclusion of species with

similar requirements; however recent ideas stress that species diversity may be explained

by a multitude of processes acting at different scales, and that similarities in competitive

abilities often may facilitate coexistence [19, 2].

Multi-patch models can be generalized to apply to any system with a generalist

pathogen infecting multiple hosts where spatial heterogeneity is important. They are

designed for disease transmission in multiple species in multiple patches, which can be

interpreted as regions, cities, meadows, etc. We assume that each individual patch is

homogeneous, but that different patches may have different parameters. For each of the n

patches and s species, the patch population is split into compartments labeled Sip, Eip, Iip

and Rip, for p = 1, 2, . . . , n and i = 1, 2, . . . s. The total number of species i in patch p is

represented by

Nip = Sip + Eip + Iip +Rip.

Movement between the patches will be represented by the constants mS
ipq,m

E
ipq,m

I
ipq,m

R
ipq

for movement of species i from patch q to patch p when in a given S, E, I or R com-

partment, respectively. This model assumes that movement between patches may change
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with infection, but that individuals do not move into different disease compartments while

traveling. We also assume that mipp = 0 ∀i, p.

Each species in each patch has a given birth and death rate. The birth rate is

bip(Nip) and the natural death rate (independent of disease) is dip(Nip). We assume

that the birth and the death rates are nonnegative functions. The disease transmission

rate from species j to species i in patch p, βijp(Njp), is assumed to be a nonnegative

non-increasing function and disease is transmitted horizontally according to either mass

action or frequency incidence. Once an individual is infected, it moves into the exposed,

or latent compartment in which it has the pathogen but is unable to transmit it to others.

After a period of time, the individual moves into the infective compartment where it is

then able to transmit the disease to other individuals. Then, depending on the disease, the

individual may move into a recovered compartment where the individual is either immune

to the disease permanently, or is temporarily immune and then moves back into the

susceptible compartment. The average rate of movement between the exposed, infective,

and recovered compartments is εip, γip, and δip respectively, with 1/εip, 1/γip, and 1/δip

being the average period of time spent in each compartment. Most epidemic models

assume that the infection periods (e.g., latent, infectious, isolation periods) are either

exponentially distributed or have fixed durations [67]. In some cases, the disease may

cause death and the death rate will be represented as αip.

This general model can of course be adapted to various cases, such as when the

latent period is so short, it can be ignored, creating an SIR model, or when the recovered

period is either very short or nonexistent resulting in an SEI or SEIS model.

In the following section, I adapt the model analyzed by [12, 10, 11] so that some or all

of the included species are competing with each other within a patch via the basic Lotka-

Volterra competition model. We then compute the basic reproduction number for this

adapted model. Competition will be represented as ηip(Sip, Eip, Iip, Rip) > 1, a function

of Sip, Eip, Iip, and Rip or possibly just Nip, for i = 1, 2, . . . , s. This leads to the following

systems of ordinary differential equations:
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dSip
dt

= bip(Nip)ηip − dipSip −
s∑

j=1

βijpSip
Iip
Njp

+ δipRip +
n∑

q=1

mS
ipqSiq −

n∑
q=1

mS
iqpSip

(2.4.3)

dEip

dt
= −dipEip +

s∑
j=1

βijpSip
Iip
Njp

+

n∑
q=1

mE
ipqEiq −

n∑
q=1

mE
iqpEip − εipEip (2.4.4)

dIip
dt

= εipEip − dipIip − (γip + αip)Iip +
n∑

q=1

mI
ipqIiq −

n∑
q=1

mI
iqpIip (2.4.5)

dRip

dt
= γipIip − dipRip − δipRip +

n∑
q=1

mR
ipqRiq −

n∑
q=1

mR
iqpRip (2.4.6)

with the initial conditions Sip(0), and Eip(0), Iip(0), Rip(0) ≥ 0, as well as
∑n

p=1(Eip(0) +

Iip(0)) > 0 for some species i.

The population of species i in each patch p changes with the sum of all four equa-

tions above and since the solutions for all of the above equations are positive, the total

population remains nonnegative for all t ≥ 0. The total population of species i in the

entire system is Ni =
∑n

p=1Nip and the change in the total population of species i can be

represented by

dNi

dt
=

n∑
p=1

bip(Nip)ηip(Sip, Eip, Iip, Rip)− dipNip − αipIip (2.4.7)

We know that the population of patch p is at equilibrium if
dSip

dt ,
dEip

dt ,
dIip
dt ,

dRip

dt = 0

for each species i and is at a disease-free equilibrium (DFE) if Eip + Iip = 0 for each

species i. Similarly, species i is at a DFE if Eip + Iip = 0 for each patch p. Then, the

whole system is at a DFE if Eip + Iip = 0 for all species i and for all patches p, implying

that each patch is at an equilibrium, hence satisfying for each patch p

dNip

dt
= bip(Nip)ηip(Nip)− dipNip +

n∑
q=1

mS
ipqNiq −

n∑
q=1

mS
iqpNip = 0 (2.4.8)

We want to determine if (2.4.8) has a solution, S∗
ip = N∗

ip that will give us the DFE

and whether or not this solution is unique. The uniqueness of the solution depends upon
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the birth, death and the competition rates. We will assume that ηip has Lotka-Volterra

form

ηip = 1 +
s∑

j=1

σijp(Sjp + Ejp + ζjpIjp +Rjp)

where σijp is the effect of competition with species j and species i in patch p and where

ζjp is the reduction in biomass or fitness of infectious individuals of species j in patch p,

which decreases their ability to compete. Then (2.4.7) can be rewritten as

dNi

dt
=

n∑
p=1

bip(Nip)

⎛
⎝1 +

s∑
j=1

σijp(Sjp + Ejp + ζjpIjp +Rjp)

⎞
⎠− αipIip − dipNip

Finding the disease-free equilibria (DFEs) for the full models with multiple patches

and species is often intractable. We will now analyze a system of two patches each with

two species that compete with each other and are susceptible in some form to a common

disease. In order to further simplify, we will first consider an SI model. We will explore

this using the following set of ordinary differential equations for species i in patch k:

dSik
dt

= bikNik(1−
2∑

j=1

cijkNjk)−
2∑

j=1

βijkSikIjk − dikSik −m(
Sik
Kik

−
∑
q �=k

Siq
Kiq

) (2.4.9)

dIik
dt

=
2∑

j=1

βijkSikIjk − dikIik − γikIik − αikIik −m(
Iik
Kik

−
∑
q �=k

Iiq
Kiq

) (2.4.10)

with the initial conditions Siq(0), Iiq(0) ≥ 0, as well as
∑n

p=1(Iip(0)) ≥ 0 for some species

i. For this system, bik is the constant birth rate, dik is the natural constant death rate and

Kik is the carrying capacity. For mass action, βijk(Njk) = βijkNjk to result in the above

disease transmission term where βijk is the transmission rate from species j to species i

in patch k. Lastly, αik is the death rate due to infection. In this case, we will assume that

migration is density dependent and that m , the migration rate, is assumed to be constant

and strictly positive for simplifying purposes. Also, we are assuming that competition

is constant and affects only the birth rate, with cijk being the competition exerted upon

species i by species j in patch k. We will assume that the growth rate r = b−d is positive

for each species.
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2.4.1 Basic Reproduction Number

Theorem 2.4.1.1 Assuming m > 0, if the system is at equilibrium and a species is absent

in one patch, then that species is also absent in all other patches.

Proof. Sketch of proof. If, for example, S11 = 0 then by substituting S11 into the above

equation (1.9), we have that 0 =
mS12
K12

which implies that either S12 = 0 or m = 0 and

assuming strong connection, or m > 0, this implies that S12 = 0. Similarly, if S21 = 0

this implies using equation (1.11) that S22 = 0 and vice versa. Thus, for the DFEs, if one

species in one patch is at an equilibrium of population zero, then the other patch also has

a population zero of the same species at equilibrium.

We use the next generation matrix method to compute R0 for this system. Let

X = (S11, S12, S21, S22, I11, I12, I21, I22) and let dX
dt = F(X)−V(X). Then for the infected

compartments,

F(X) =

⎡
⎢⎢⎢⎢⎢⎢⎣

β111S11I11 + β121S11I21

β112S12I12 + β122S12I22

β221S21I21 + β211S21I11

β222S22I22 + β212S22I12

⎤
⎥⎥⎥⎥⎥⎥⎦

and

V(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11I11 + γ11I11 + α11I11 +m(
I11
K11

− I12
K12

)

d12I12 + γ12I12 + α12I12 +m(
I12
K12

− I11
K11

)

d21I21 + γ21I21 + α21I21 +m(
I21
K21

− I22
K22

)

d22I22 + γ22I22 + α22I22 +m(
I22
K22

− I21
K21

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we will linearize F(X) to get

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

β111S11 0 β121S11 0

0 β112S12 0 β122S12

β211S21 0 β221S21 0

0 β212S22 0 β222S22

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Next, we linearize V(X) around the DFE to get V =

⎡
⎣A 0

0 B

⎤
⎦ where

A =

⎡
⎢⎣d11 + γ11 + α11 +

m

K11
− m

K12

− m

K11
d12 + γ12 + α12 +

m

K12

⎤
⎥⎦ ,

B =

⎡
⎢⎣d21 + γ21 + α21 +

m

K21
− m

K22

− m

K21
d22 + γ22 + α22 +

m

K22

⎤
⎥⎦ ,

and where 0 denotes a 2× 2 zero matrix.

Now we are ready to compute R0 by finding the spectral radius of FV −1. Let

Γij = d11 + γ11 + α11. Then let

V1 =

⎡
⎢⎣Γ11 +

m

K11
− m

K12

− m

K11
Γ12

m

K12

⎤
⎥⎦ and V2 =

⎡
⎢⎣Γ21

m

K21
− m

K22

− m

K21
Γ22

m

K22

⎤
⎥⎦

so that V =

⎡
⎣V1 0

0 V2

⎤
⎦ and V −1 =

⎡
⎣V −1

1 0

0 V −1
2

⎤
⎦. Also, let Fij =

⎡
⎣βij1Si1 0

0 βij2Si2

⎤
⎦ so

that F =

⎡
⎣F11 F12

F21 F22

⎤
⎦. So, we have that

FV −1 =

⎡
⎣F11V

−1
1 F12V

−1
2

F21V
−1
1 F22V

−1
2

⎤
⎦

where

V −1
1 =

1

θ1

⎡
⎢⎣Γ12 +

m

K12

m

K12
m

K11
Γ11 +

m

K11

⎤
⎥⎦ and V −1

2 =
1

θ2

⎡
⎢⎣Γ22 +

m

K22

m

K22
m

K21
Γ21 +

m

K21

⎤
⎥⎦

for θ1 = detV1 = Γ11Γ12+Γ11
m

K12
+Γ12

m

K11
and θ2 = detV2 = Γ23Γ22+Γ21

m

K22
+Γ22

m

K21
.

Now, finding the basic reproduction number is equivalent to finding the spectral radius of

the following matrix evaluated at the DFE:
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FV −1 =

⎡
⎣C D

E F

⎤
⎦ (2.4.11)

where

C =

⎡
⎢⎣
1

θ1
β111S11

(
Γ12 +

m

K12

)
1

θ1
β111S11

m

K12
1

θ1
β112S12

m

K11

1

θ1
β112S12(Γ11 +

m

K11
)

⎤
⎥⎦ ,

D =

⎡
⎢⎣
1

θ2
β121S11(Γ22 +

m

K22
)

1

θ2
β121S11

m

K22
1

θ2
β122S12

m

K21

1

θ2
β122S12(Γ21 +

m

K21
)

⎤
⎥⎦ ,

E =

⎡
⎢⎣
1

θ1
β211S21(Γ12 +

m

K12
)

1

θ1
β211S21

m

K12
1

θ1
β212S22

m

K11

1

θ1
β212S22(Γ11 +

m

K11
)

⎤
⎥⎦ ,

and where

F =

⎡
⎢⎣
1

θ2
β221S21(Γ22 +

m

K22
)

1

θ2
β221S21

m

K22
1

θ2
β222S22

m

K21

1

θ2
β222S22(Γ21 +

m

K21
)

⎤
⎥⎦ .

In order to generalize to multiple species (n species) and patches (p patches), let

Γip = dip + γip + αip, then V has the form diag(M1, . . . ,Mn) where

[Mlij ] =

⎧⎪⎪⎨
⎪⎪⎩
Γlp +

m

Klp
for i = j

m

Klp
for i �= j.

Assuming βij is the same for each patch, F has the form [βijKi]i,j=1...n where [Kl] =

diag(Sik)k=1...p . So, finally we see that, in general, FV −1 = [βijKiM
−1
j ]i,j=1...n , where

Ki depends on the DFE. For our specific case with two species and two patches, then

R0 = ρ([βijKiM
−1
j ])

where

[βijKiM
−1
j ] =

⎡
⎣β11K1M

−1
1 β12K1M

−1
2

β21K2M
−1
1 β22K2M

−1
2

⎤
⎦ .

Although this can be difficult to compute for large models, we will compute R0 for the

BYDV patch model during the growing season in Chapter 5.
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3 COEXISTENCE OF COMPETING SPECIES WITH A
DIRECTLY TRANSMITTED PATHOGEN

3.1 Introduction

Competitive interactions, as well as predator prey dynamics, have dominated in-

vestigations of species interactions in ecology and influence community structure via the

distribution, abundance and resource use of species in natural communities [130, 41, 54].

Classical competition theory predicts competitive exclusion of species with similar require-

ments. Understanding the mechanisms that drive the coexistence of competing species is

an important goal in community ecology [39].

Theoretical and empirical investigations have shown that generalist pathogens or

parasites infecting multiple host species can influence species diversity and community

structure [118, 81, 24, 34, 63, 84]. For example, in [48] the author argues that for most

of the 20th century, the wildebeest and buffalo herds in the Serengeti were in fact being

regulated not exclusively by predator prey interactions, but primarily by a virus called

rinderpest. Once rinderpest was controlled through vaccination, both predator and prey

populations in the area changed dramatically. In [24] and [106] a non-spatial and spatial

model, respectively, for the spread of Barley/Cereal Yellow Dwarf Viruses among multi-

ple grass hosts was analyzed, which suggests that this class of multi-host pathogens can

mediate the outcome of inter-specific competition, facilitating and maintaining invasion

by novel species. In [142], using a generic model the authors argue that it is likely that a

shared disease, parapoxvirus, in addition to competition for space and food, is the impetus

for the continued decline of the native red squirrel in the United Kingdom in the presence

of the introduced grey squirrel.

Empirical studies have demonstrated the importance of the combined effects of inter-

and intra-specific competition between species and the effects of pathogens (apparent com-
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petition) on the population dynamics of multi-host systems [59]. A review of empirical

studies in [43] finds strong evidence for parasite-induced extinction of one species (usu-

ally a native species replaced by an introduced exotic) induced by reservoir effects and

apparent competition. Experimental research also shows that the composition of the host

community can control pathogen dynamics [118]. Thus, the interaction between com-

munity and disease ecology can help us understand the structure of a biological system

and the reasons why species coexist with each other [39]. In addition, understanding the

population biology of diseases is important in conservation biology [48].

Although often difficult to quantify empirically, host-pathogen interactions can be

studied through mathematical models that combine elements of population dynamics and

epidemiology [24, 37, 38, 49]. Such models can give important qualitative insight into

the effects of pathogens on plant and animal populations and the factors that influence

species coexistence or exclusion in communities [17, 73, 57]. The correct choice of the type

of incidence (for example, mass action or frequency incidence transmission) that should

be used in a model depends on many factors [68, 16, 98]. These include the species that is

infected, the transmission routes of infection, and population sizes, among other things. In

[18], the authors considered the cowpox virus in coexisting populations of bank voles and

wood mice. Their analysis indicates that for each species in isolation frequency dependent

transmission is a superior descriptor. In [124, 142] the authors argue for the use of mass

action disease transmission in a SIR/SI type model to study the effects of a parapoxvirus

in competing grey/red squirrel species in the United Kingdom. Therefore, we investigate

both mass action and frequency incidence transmission in our models.

Two species models in which one or both species share a common pathogen and do

not interact competitively have been discussed in several papers [8, 73, 17, 57, 68, 35].

In many of these studies, finding conditions for the stability of the coexistence equilibria

proved to be difficult. As an alternative, numerical simulations are performed to under-

stand the behavior of the models. In particular, it was found that two host SIS models

with mass action incidence can have complicated behaviors including several infected co-
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existence equilibria and multiple attractive periodic solutions [57]. In [9, 146, 145] the

authors consider a two species model in which both species compete directly and one is

subject to a pathogen. The models assume mass action transmission of disease and in

[146] the existence of limit cycles is shown. In [145] it was found that if in the absence

of disease there is competitive exclusion between the two species, the presence of disease

can lead to stable or oscillatory coexistence of both species.

Mathematical models that include competition between multiple species in addition

to a shared pathogen are difficult to analyze for the case of infected coexistence. In [26],

the authors consider a two species model in which both species compete directly (Lotka-

Volterra competition) and both species share a common pathogen. They analyzed their

model using the notions of forces of infection and invasion criteria to determine whether

resident populations allow small invasions of other species to prosper or cause them to

decay. As with previous models, the coexistence equilibria proved impossible to fully an-

alyze. In [61] a model with Lotka-Volterra competition between two species which share

a common pathogen is considered. Mass action disease transmission is used in the model,

which in its complete generality is intractable. Both density-dependent and disease related

death rates are considered; however, unlike in [26], the birth rates are unaffected by com-

petition. The authors concentrate on deriving conditions that guarantee the persistence

of either hosts or the pathogen. Using Hopf bifurcation theory and numerical simulations,

complex behaviors of the model are demonstrated.

In [60] the authors considered an SIRS epidemic model of two competitive species us-

ing frequency dependent incidence and no disease related deaths. Under these conditions,

the authors in [60] were able to show stability conditions for all possible equilibria. In

[68] the authors considered many different models with frequency incidence disease trans-

mission. The models were shown to have the classic endemic model behavior; the disease

dies out below a threshold and approaches an endemic equilibrium above the threshold.

However, the behavior of the interior equilibrium remained intractable for the case with

density-independent death rates and density-dependent birth rates with both intra- and
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inter-specific competition.

In this paper we consider models in which two species compete directly via Lotka-

Volterra competition and share a directly transmitted pathogen (Sections 3.3 and 3.3.2).

Our models differ from other similar two species models analyzed in [68, 61, 60, 26] in the

following aspects. We consider both mass action and frequency incidence type transmis-

sion and compute basic reproduction numbers (Section 3.4.1). Similar to the mass action

model in [26], the natural mortality rates for the two species are density-independent,

while the birth rates are density-dependent with both intra- and inter-specific competi-

tion. The motivation for our choice comes from the case of the red/grey squirrel system

discussed in [124, 142]. In [142] both intraspecific crowding and interspecific competi-

tion were modeled as causing density-dependent effects on reproduction but not on adult

mortality. The authors point to two different sources as justification of this choice; docu-

mented negative correlations between squirrel density and squirrel productivity (but not

adult survival) for both species, and documented reduced red squirrel recruitment (but

no effect on adult mortality) in the presence of grey squirrels. As opposed to the models

in [26, 61] we also consider frequency incidence disease transmission, and investigate the

stability of the infected coexistence equilibrium (Section 3.5.4). In [73, 26, 17] a conjecture

was made, based on numerical simulations, that the conditions under which the infected

coexistence equilibrium is stable cause all the other equilibria to be unstable. However,

[57] provide counterexamples to this conjecture in the most general case. The infected

coexistence equilibrium for the most general mass action model has proved to be, in fact,

intractable. We are able to prove this conjecture for an ecologically relevant special case

in which the infected coexistence equilibrium is tractable (Section 3.4.4). In addition,

we show (Section 3.5.8) that for this special case the qualitative behavior of the model

with mass action disease transmission is identical to one with frequency incidence disease

transmission.
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3.2 Background

In this section, we present the SI disease model for one species with mass action

transmission (see for e.g., [17, 61]). We also present the two-species Lotka-Volterra (pure)

competition model (see for e.g., [61]). We rewrite the equilibria for these two models in a

non-standard way, in order to stress the role of the basic reproduction number R0, and the

role of two parameters, ξ1, and ξ2, whose values govern the relative importance between

intra- and inter-specific competition.

3.2.1 The Logistic Growth and Mass Action Disease Model for a Single
Species

As background, we present the SI disease model for one species with mass action

transmission. Consider the single species SI model with logistic growth,

dS

dt
= a

(
1− N

θ

)
N − bS − βSI, (3.2.1)

dI

dt
= βSI − ΓI, (3.2.2)

where the variable S denotes the density of susceptible individuals in the population, I

represents the density of infected individuals in the population, and N = S+I is the total

population density. The parameter r := a− b is the intrinsic per capita growth rate, with

a(1−N/θ), and b, the per capita birth and natural death rates, respectively. We assume

that a > b > 0 and hence r > 0. The parameter Γ = α+ b is a per capita net rate of loss

of infected individuals incorporating death due to disease α ≥ 0, and natural mortality b.

The model (3.2.1)-(3.2.2) is well-posed on the domain ΩD = {(S, I)T |S, I ≥ 0, 0 ≤
N ≤ K}. The carrying capacity of the species is K =

rθ

a
. The equilibria for model

(3.2.1)-(3.2.2) can be written in the form ED
0 = (0, 0), ED

1 = (K, 0), and

ED
2 =

⎛
⎝Γ

β
,
Γ

β

⎡
⎣−(

1− R0λ

2

)
+

√(
1− R0λ

2

)2

+ (R0 − 1)

⎤
⎦
⎞
⎠ , (3.2.3)
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where λ =
r − α

r
= 1 − α

r
and R0 =

βK

Γ
is the basic reproduction number for the

model. The stability of the disease free equilibrium (DFE), ED
1 , depends on R0. The basic

reproduction number (BRN) is defined as the average number of secondary infections that

occur when an infected individual is introduced into a completely susceptible population.

If R0 > 1, then the disease may emerge in the population, whereas if R0 < 1, then the

DFE is locally asymptotically stable [144].

3.2.2 The Logistic Growth and Frequency Incidence Disease Model for a
Single Species

We present the SI disease model for one species with frequency incidence transmis-

sion (see for e.g., [17]),

dS

dt
= a

(
1− N

θ

)
N − bS − β

I

N
S, (3.2.4)

dI

dt
= β

I

N
S − ΓI, (3.2.5)

where the variable S denotes the density of susceptible individuals in the population, I

represents the density of infected individuals in the population, and N = S+I is the total

population density. The model (3.2.4)-(3.2.5) is well-posed on the domain ΩF = {(S, I) ∈
R
2|S, I ≥ 0, 0 < N ≤ K}. The carrying capacity of the species is K =

rθ

a
. The equilibria

for model (3.2.4)-(3.2.5) are EF
0 = (0, 0), EF

1 = (K, 0), and

EF
2 =

(
SF
2 , (R0 − 1)SF

2

)
, (3.2.6)

where SF
2 = θ

R2
0

[
R0 +

α−β
a

]
, and R0 :=

β
Γ is the basic reproduction number for the model.

Thus, R0 > 1 is a feasibility condition for the equilibrium EF
2 .

We have the following lemma [126].

Lemma 3.2.2.1 For the model (3.2.4)-(3.2.5), the trivial equilibrium EF
0 is always un-

stable. If R0 < 1 then the disease-free equilibrium EF
1 is globally asymptotically stable

in the domain ΩD. If R0 > 1 then the infected equilibrium EF
2 is globally asymptotically

stable in the domain ΩF .
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3.2.3 The Pure Competition Model for Two Species

Consider the two species model with Lotka-Volterra competition,

dNi

dt
= ri

(
1− N1

Ki1
− N2

Ki2

)
Ni, i = 1, 2, (3.2.7)

where Ni is the total population density of species i, for i = 1, 2. The terms K11,K22 are

carrying capacities of species 1, and 2, respectively, and the termsK12,K21 are competition

parameters.

The model (3.2.7) is well-posed on the domain ΩC = {(N1, N2)
T |0 ≤ Ni ≤ Kii, i =

1, 2}. The equilibria for model (3.2.7) are EC
0 = (0, 0), EC

1 = (K11, 0), E
C
2 = (0,K22), and

the coexistence equilibrium EC
3 = (NC

1 , N
C
2 ), where

NC
1 =

K11K12

K12 +K11(ξ1/ξ2)
, NC

2 =
ξ1
ξ2
NC

1 . (3.2.8)

The parameters ξ1, and ξ2 are defined as

ξ1 :=
1

K11
− 1

K21
, ξ2 :=

1

K22
− 1

K12
. (3.2.9)

For this pure competition model, the existence (feasibility) and stability of equilibria

depend on the positivity or negativity of the parameters ξ1 and ξ2. We can interpret

the term 1/Kij as the inhibition strength of species j on species i [126]. Hence, the

parameters ξ1 and ξ2 are a measure of the relative strengths of intra- versus inter-specific

competition. Also, note that the sign of ξ1 is determined by the growth rate of species 2

linearized around the species 1 equilibrium EC
1 . Similarly, the sign of ξ2 is determined by

growth rate of species 1 linearized around the equilibrium EC
2 .

Lemma 3.2.3.1 For the pure competition model (3.2.7), the trivial equilibrium EC
0 is

always unstable. In addition, we have the following cases:

1. ξ1 > 0, ξ2 > 0: Intra-specific competition is stronger than inter-specific competition

for both species. The equilibria EC
1 , E

C
2 are unstable while EC

3 is globally asymptot-

ically stable in the domain ΩC .
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2. ξ1 < 0, ξ2 > 0: Intra-specific competition is stronger for species 1 and inter-specific

competition is stronger for species 2. EC
3 is not feasible. EC

1 is globally asymptoti-

cally stable, while EC
2 is unstable.

3. ξ1 > 0, ξ2 < 0: Intra-specific competition is stronger for species 2 and inter-specific

competition is stronger for species 1. EC
3 is not feasible. EC

2 is globally asymptoti-

cally stable, while EC
1 is unstable.

4. ξ1 < 0, ξ2 < 0: Inter-specific competition is stronger than intra-specific competition

for both species. The coexistence equilibrium EC
3 is a saddle. There is a separatrix

that separates the domain ΩC into two regions. We have bistability of EC
1 and EC

2

with stability (or instability) determined by the location of the initial conditions in

two regions of ΩC . If the initial conditions lie on the separatrix, then the solution

tends to EC
3 .

3.2.4 Asymptotically Autonomous Equations

The theory of asymptotically autonomous equations allows us to predict the even-

tual behavior of non-autonomous differential equations under certain conditions. These

properties will be used to analyze the endemic coexistence equilibrium for the frequency-

dependent incidence case in Section 3.3.2. We begin with background and theory for

asymptotically autonomous equations. Assume that f(t, x) and g(x) are continuous and

locally Lipschitz in x and that solutions exist for all forward time for (3.2.10) - (3.2.11).

This is true for all models considered in this chapter.

Definition 3.2.4.1 Let

dx

dt
= f(t, x) (3.2.10)

dy

dt
= g(y) (3.2.11)

be ordinary differential equations in R
n. Then equation (3.2.10) is asymptotically au-

tonomous with limit equation (3.2.11) if f(t, x) → g(x) as t → ∞ locally uniformly for
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x in any compact subset of Rn.

Let Φ be an asymptotically autonomous continuous semiflow on the metric space X and

Θ its continuous limit-semiflow.

Theorem 3.2.4.1 ([138] Theorem 2.5): ω−Φ-limit sets of points (s, x) with pre-compact

(forward) orbits are non-empty, compact, and connected. Further they attract the orbits,

i.e.

d(Φ(t, s, x), ωΦ(s, x)) → 0, t→ ∞.

They are also invariant under the limit-semiflow Θ so that any point y of ωΦ(s, x) lies on

an entire Θ-orbit in ωΦ(s, x). (Here s is the time for the initial condition and is usually

0.)

Lemma 3.2.4.1 ([138] Lemma 3.1): Assume that the point (s, x) with s ≥ t0 and x ∈ X
has a pre-compact Φ-orbit and that ω is its ω-limit set. Also, let M be a Θ-invariant set

such that M ∩ ω �= ∅ but ω �⊆ M and assume M ∩ ω is an isolated compact Θ-invariant

subset of ω. Then M has a non-empty stable and a non-empty unstable manifold in ω.

i.e. There exists a u ∈ ω \M with ωΘ(u) ⊆ M and a w ∈ ω \M with a full Θ − orbit

in ω whose α−Θ-limit set is contained in M . So, u can be chosen with its forward orbit

arbitrarily close to M and w can be chosen with its backward orbit arbitrarily close to M .

This lemma is essential in the proof for Theorem 4.1 from [138].

Theorem 3.2.4.2 ([138] Theorem 4.1): Let e be a locally asymptotically stable equilib-

rium of Θ and Ws(e) = {x ∈ X : Θ(t, x) → e, t → ∞} its basin of attraction or stable set.

Then every pre-compact Φ-orbit whose ω − Φ-limit set intersects Ws(e) converges to e.

Proof. Let ω be an ω − Φ-limit set which has a point x in common with Ws(e). By

Theorem 3.2.4.1, ωΘ(x) is contained in ω. However, we know ωΘ(x) is just e so e ∈ ω.
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Since e is locally asymptotically stable, {e} is an isolated compact Θ-invariant set. If

ω does contain elements different from e then by Lemma 3.2.4.1, ω contains a full orbit

through a different point from e whose α − Θ-limit set is {e}. This contradicts the local

stability of e and the conjecture is proved.

3.3 Two Species Models with Competition and Disease Dynamics

We consider two species models which incorporate species birth functions, gi, and

disease incidence functions, Ii, i = 1, 2, in the form

dSi
dt

= gi(N1, N2)Ni − biSi − Ii(I1, I2)Si, (3.3.1a)

dIi
dt

= Ii(I1, I2)Si − ΓiIi, (3.3.1b)

for i = 1, 2. The variable Si denotes the density of susceptible individuals in the population

of species i, Ii represents the density of infected individuals in the population of species

i, and Ni = Si + Ii is the total population density of species i. We assume that the birth

terms are density-dependent, including both intra-specific and inter-specific competition.

Assuming Lotka-Volterra competition, the birth functions for the two species are given as

gi(N1, N2) = ai

(
1− N1

θi1
− N2

θi2

)
, i = 1, 2. (3.3.2)

where ri := ai− bi is the intrinsic per capita growth rate for species i, with ai(1−Ni/θii),

and bi, the per capita birth and natural death rates, respectively, for species i in isolation.

We assume that ai > bi > 0 and hence ri > 0 for i = 1, 2. The terms Γi := αi + bi, for

species i, are per capita net rates of loss of infected individuals incorporating death due

to disease, αi ≥ 0, and natural mortality bi. We define Kij :=
riθij
ai

for i, j = 1, 2. The

carrying capacity for species i alone is Kii and the terms θ−1
ij for i �= j are competition

coefficients.

The disease transmission term, given here by the disease incidence functions Ii
for species i, describes the rate at which susceptible hosts are converted into infected
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hosts by their contact with infectious material. Transmission is the driving force in the

dynamics of any infectious disease and hence the functions Ii are a very important part

of epidemiological models.

3.3.1 Mass Action (Density Dependent) Incidence

The disease incidence functions for mass action transmission are given to be

Ii(I1, I2) = βi1I1 + βi2I2, (3.3.3)

for i = 1, 2. The model (3.3.1a)-(3.3.1b) can be written as

dS1
dt

= a1

(
1− N1

θ11
− N2

θ12

)
N1 − b1S1 − (β11I1 + β12I2)S1, (3.3.4)

dS2
dt

= a2

(
1− N2

θ22
− N1

θ21

)
N2 − b2S2 − (β22I2 + β21I1)S2, (3.3.5)

dI1
dt

= (β11I1 + β12I2)S1 − Γ1I1, (3.3.6)

dI2
dt

= (β22I2 + β21I1)S2 − Γ2I2. (3.3.7)

and makes ecological sense and is mathematically well-posed in the domain

D1 = {(S1, S2, I1, I2) ∈ R
4|S1, S2, I1, I2 ≥ 0, 0 ≤ Ni ≤ Kii, i = 1, 2}.

Theorem 3.3.1.1 Assuming that the initial conditions are in D1 the system (3.3.4)-

(3.3.7) has a unique solution that remains in D1 for all time t ≥ 0.

Proof. The right hand side of system (3.3.4)-(3.3.7) is continuous and continously differ-

entiable so we know that a solution exists and is unique. Next we show that the system

is invariant in D1 for all positive time. First, if I1 = 0 then I ′1 ≥ 0 and similarly if I2 = 0

then I ′2 ≥ 0. If N1 = S1 + I1 > K11 then N ′
1 = (S1 + I1)

′ < 0 and if N2 = S2 + I2 > K22

then N ′
2 = (S2 + I2)

′ < 0. Lastly if S1 = 0, assuming I1 ≤ K11 then S′
1 ≥ 0 and if S2 = 0

assuming that I2 ≤ K22 then S′
2 ≥ 0. So, D1 is forward invariant and no orbits beginning

in D1 leave D1. Therefore a solution with initial conditions in D1 exists, is unique, and

remains in D1 for all time.
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3.3.2 Frequency Dependent Incidence

We also consider a two species model in which the transmission dynamics follows

the frequency incidence approach. In this approach the intra-species and inter-species

transmission rates βij > 0 are constant terms for i, j = 1, 2. This means that the contact

rate between individuals of the two species is constant. Often this is the case when

populations are very large, for example. Frequency incidence is also often used to model

transmission through vectors. We can write the disease incidence functions as

I1(I1, I2) =
(
β11

I1
N1

+ β12
I2
N2

)
, (3.3.8)

I2(I1, I2) =
(
β22

I2
N2

+ β21
I1
N1

)
. (3.3.9)

The disease incidence is undefined when Ni = Si+Ii = 0 for at least one i = 1, 2. However,

the function h(Si, Ii) = SiIi/(Si + Ii) is a Lipschitz continuous function of Si and Ii in

the region Si, Ii > 0. In order to address the cases where one species die out, we extend

the function as in [7] to the space Si, Ii ≥ 0 by defining h(Si, Ii) = 0 when either Si, Ii,

or both are zero.

With these assumptions, the two-species competition model with frequency inci-

dence disease transmission is:

dS1
dt

= a1

(
1− N1

θ11
− N2

θ12

)
N1 − b1S1 −

(
β11

I1
N1

+ β12
I2
N2

)
S1, (3.3.10a)

dS2
dt

= a2

(
1− N2

θ22
− N1

θ21

)
N2 − b2S2 −

(
β22

I2
N2

+ β21
I1
N1

)
S2, (3.3.10b)

dI1
dt

=

(
β11

I1
N1

+ β12
I2
N2

)
S1 − Γ1I1, (3.3.10c)

dI2
dt

=

(
β22

I2
N2

+ β21
I1
N1

)
S2 − Γ2I2. (3.3.10d)

The model (3.3.10a)-(3.3.10d) makes ecological sense and is mathematically well-posed in

the domain D1 = {(S1, S2, I1, I2) ∈ R
4|S1, S2, I1, I2 ≥ 0, 0 ≤ Ni ≤ Kii, i = 1, 2}. The total
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population size Ni = Si + Ii of species i satisfy the differential equations,

dN1

dt
= r1

(
1− N1

K11
− N2

K12

)
N1 − α1I1, (3.3.11a)

dN2

dt
= r2

(
1− N2

K22
− N1

K21

)
N2 − α2I2, (3.3.11b)

Theorem 3.3.2.1 Assuming that the initial conditions are in D1 the system (3.3.10a)-

(3.3.10d) has a unique solution that remains in D1 for all time t ≥ 0.

Proof. Similar to the proof of Theorem 3.3.1.1 since the difference between the two

models is only in disease incidence.

3.4 Computation of Equilibria and Linear Stability Analysis for Mass
Action

We will denote equilibrial susceptible densities for species i by Ŝi and similarly

Îi for the infected equilibrial densities of species i, for i = 1, 2. Below we present the

equilibria for model (3.3.1a)-(3.3.1b), and their linear stability analysis. An equilibrium

Ee is represented using the notation Ee = (Ŝe
1, Ŝ

e
2 , Î

e
1 , Î

e
2).

The trivial equilibrium E0 of model (3.3.1a)-(3.3.1b) is

E0 = (Ŝ0
1 = 0, Ŝ0

2 = 0, Î01 = 0, Î02 = 0). (3.4.1)

The eigenvalues of the Jacobian of this model evaluated at E0, i.e., J (E0), are ri and −Γi

for i = 1, 2. Thus, by assumption at least two of the eigenvalues are always positive, and

hence the equilibrium E0 is always unstable.

There are three disease free equilibria E1, E2 and E3. These are given as E1 =

(Ŝ1
1 = K11, Ŝ

1
2 = 0, Î11 = 0, Î12 = 0), E2 = (Ŝ2

1 = 0, Ŝ2
2 = K22, Î

2
1 = 0, Î22 = 0), and
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E3 = (Ŝ3
1 , Ŝ

3
2 , Î

3
1 = 0, Î32 = 0), with

Ŝ3
1 =

K11K12

K12 +K11(ξ1/ξ2)
, Ŝ3

2 =
ξ1
ξ2
Ŝ3
1 , (3.4.2)

and the parameters ξ1 and ξ2 are defined in (3.2.9). We will refer to E1, E2 as the disease

free one-host equilibria, since one of the species survives in an uninfected state reaching

carrying capacity, while the other species dies out. The equilibrium E3 is called the disease

free coexistence equilibrium (DFE).

3.4.1 The Coexistence DFE

As a DFE, the coexistence equilibrium is biologically feasible when ξ1
ξ2
> 0.

Theorem 3.4.1.1 The basic reproduction number (BRN) for model (3.3.1a)-(3.3.1b) with

coexisting species is

RC
0 =

R11 +R22

2
+

√
(R11 −R22)2 + 4R12R21

2
, (3.4.3)

where, for i, j = 1, 2

Rij =
βij Ŝ1

i

Γj
; (3.4.4)

The basic reproduction number for species j in isolation is Rj
0 = Rjj, for j = 1, 2. The

condition RC
0 < 1 leads to the inequality

R11 +R22 +R12R21 −R11R22 < 1. (3.4.5)

Proof. We will use the next generation matrix method [144], which has become a standard

tool to determine the stability of the coexistence DFE, E3. Let X = (S1, S2, I1, I2)
T . Then

we can rewrite system (3.3.1a)-(3.3.1b) in the form

dX

dt
= F(X) − V(X), (3.4.6)

where F(X) represents the vector function that includes the new infectious cases and

V(X) contains all other dynamics due to death and recovery. We compute the Jacobian
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of F and V and evaluate these at the coexistence DFE, E3 = (Ŝ3
1 , Ŝ

3
2 , 0, 0). Let F and V

be the matrices defined by

F =

[
∂Fi

∂xj
(E3)

]
; V =

[
∂Vi

∂xj
(E3)

]
, (3.4.7)

where 3 ≤ i, j ≤ 4 and xj is the jth component of the vector X defined in (5.5.3).

Computing these matrices we have

F =

⎡
⎣ β11Ŝ

3
1 β12Ŝ

3
1

β21Ŝ3
2 β22Ŝ3

2

⎤
⎦ , (3.4.8)

and V = diag(Γi). The BRN RC
0 for model (3.3.1a)-(3.3.1b) with coexisting species is

given as

RC
0 = ρ(FV −1), (3.4.9)

where ρ(A) is the spectral radius of the matrix A. We have

FV −1 =

⎡
⎢⎢⎣
β11Ŝ3

1

Γ1

β12Ŝ3
1

Γ2

β21Ŝ3
2

Γ1

β22Ŝ3
2

Γ2

⎤
⎥⎥⎦ . (3.4.10)

Thus, using the definition (3.4.4) it is easily shown that the spectral radius of the matrix

FV −1 is given by the formula (3.4.3).

Assuming RC
0 < 1 in (3.4.3) we can now easily derive

β11
Γ1

Ŝ3
1 +

β22
Γ2

Ŝ3
2 +

(β12β21
Γ1Γ2

− β11β22
Γ1Γ2

)
Ŝ3
1 Ŝ

3
2 < 1, (3.4.11)

which is equivalent to the inequality (3.4.5).

Theorem 3.4.1.2 The coexistence DFE, E3 is feasible and stable if and only if the con-

ditions ξ1 > 0, ξ2 > 0 and RC
0 < 1 are satisfied.
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Proof. The Jacobian of the system (3.3.1a)-(3.3.1b) evaluated at the DFE E3 = (Ŝ3
1 , Ŝ

3
2 , Î

3
1 =

0, Î32 = 0) is the block triangular matrix

J (E3) =

⎡
⎣A ∗
0 F − V

⎤
⎦ , (3.4.12)

where the matrix A is the Jacobian matrix of the system (3.2.7) evaluated at EC
3 =

(NC
1 , N

C
2 ) = (Ŝ3

1 , Ŝ
3
2) (see section 3.2.3), and the matrices F and V are as defined in

(3.4.7) (the ∗ indicates a nonzero entry). Since the Jacobian J (E3) is block triangular,

its eigenvalues are the eigenvalues of the matrices A and F − V .

From [21], EC
3 = (NC

1 , N
C
2 ) is globally asymptotically stable if and only if ξ1 > 0

and ξ2 > 0. Thus, the eigenvalues of the matrix A are negative if and only if ξ1 > 0 and

ξ2 > 0, which are also feasibility conditions for E3. From the next generation approach,

the eigenvalues of the matrix F − V are negative if and only if RC
0 = ρ(FV −1) < 1 [144].

3.4.2 The Disease Free One-Host Equilibrium

When ξ1/ξ2 < 0 the coexistence DFE is infeasible. We have the following two cases.

1. Assume ξ1 < 0 and ξ2 > 0. In this case the disease free one-host equilibrium

E1 = (K11, 0, 0, 0) is feasible and stable if in addition the condition

R1
0 =

K11β11
Γ1

< 1 (3.4.13)

is satisfied, where R1
0 is the basic reproduction number for species 1 alone. This

result follows from conditions on stability of EC
1 (see Section 3.2.3) and conditions

on stability of ED
1 (see Section 3.2.1).

2. Assume ξ1 > 0 and ξ2 < 0. In this case the one-host DFE E2 = (0,K22, 0, 0) is

feasible and stable if in addition the condition

R2
0 =

K22β22
Γ2

< 1 (3.4.14)
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is satisfied, where R2
0 is the basic reproduction number for species 1 alone. As in

case 1, this result follows from conditions on stability of EC
2 and ED

1 .

3.4.3 Infected One-Host Equilibria

There are two types of infected one-host equilibria. In these one of the species

survives while the other species dies out. The first type of infected one-host equilibria are

given as

E4a,4b =

(
Ŝ4
1 =

Γ1

β11
, Ŝ4

2 = 0, Î4a,4b1 =
I∗4a,4b
β11

, Î42 = 0

)
, (3.4.15)

where I∗4a,4b are roots of the quadratic polynomial P4(x) = x2 + 2Γ1

(
1− R1

0λ1
2

)
x +

Γ2
1

(
1−R1

0

)
, with the parameter λ1 defined as λ1 :=

r1 − α1

r1
. Solving for the roots, the

infected component of species 1 in the one-host equilibria E4a,4b is

Î4a,4b1 = Ŝ4
1χ4a,4b, (3.4.16)

where ,

χ4a,4b = −
(
1− R1

0λ1
2

)
±
√(

1− R1
0λ1
2

)2

+ (R1
0 − 1). (3.4.17)

Lemma 3.4.3.1 The infected one-host equilibrium E4a with Î4a1 is biologically feasible if

and only if R1
0 > 1, whereas the equilibrium E4b with Î4b1 is always infeasible.

Proof. Case 1: Let R1
0 > 1, then χ4a > 0, and χ4b < 0. Thus, E4a is feasible and E4b is

biologically infeasible.

Case 2: Let 0 < R1
0 ≤ 1. In this case we note that the first term of χ4a,4b in (3.4.17) can

be rewritten as

−
(
1− R1

0λ1
2

)
= −

(
1− R1

0

2

)
− α1R1

0

2r1
< 0, (3.4.18)

as the rates α1 and r1 are both positive. Thus, in this case as well χ4b < 0, and E4b is

biologically infeasible. If R1
0 = 1, then χ4a = 0, and the equilibrium E4a reduces to the



40

disease free one-host equilibrium E1, whereas, if 0 < R1
0 < 1 then χ4a < 0 and E4a is also

biologically infeasible.

We will now refer to the equilibrium E4a as simply E4.

Lemma 3.4.3.2 Let R1
0 > 1. If α1 > 0, then N̂4

1 = Ŝ4
1(1 + χ4a) < K11. If α1 = 0 then

N̂4
1 = K11.

Proof. The condition R1
0 > 1 guarantees the feasibility of the equilibrium E4. By

assumption α1 > 0, and hence λ1 < 1. We then have

1− λ1 < R1
0(1− λ1) < R1

0

(
1− λ1

2

)2

−R1
0

λ21
4

(3.4.19)

1−R1
0λ1 +

(R1
0)

2λ21
4

+R1
0 − 1 < (R1

0)
2(1− λ1 +

λ21
4
) (3.4.20)

=⇒
(
1− R1

0λ1
2

)2

+ (R1
0 − 1) <

(
R1

0 −
R1

0λ1
2

)2

(3.4.21)

=⇒
√(

1− R1
0λ1
2

)2

+ (R1
0 − 1) < R1

0 −
R1

0λ1
2

(3.4.22)

=⇒ Γ1

β11

⎧⎨
⎩
(R1

0λ1
2

)
+

√(
1− R1

0λ1
2

)2

+ (R1
0 − 1)

⎫⎬
⎭ < K11, (3.4.23)

since from (3.4.13) R1
0 = (K11β11)/Γ1. From (3.4.15) and (3.4.16) we finally have

N̂4
1 = Ŝ4

1(1 + χ4a) < K11. (3.4.24)

If α1 = 0 (as in Section 3.4.4), then λ1 = 1 and N̂4
1 = K11. Hence, we can see

that the total population of the infected one-host equilibrium is less than (or equal to)

the carrying capacity for species 1 in the case that the disease related mortality α1 > 0

(α1 = 0).

Theorem 3.4.3.1 Assume α1 > 0. If R1
0 > 1 and K21 < N̂4

1 , then the infected one-host

equilibrium for species 1, E4, is feasible and stable.
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Proof. From Lemma 3.4.3.2 we know that the condition R1
0 > 1 guarantees the feasibility

of E4.

The Jacobian for the (species 1) infected one-host equilibrium E4, with the order

changed to E4 = (Ŝ4
1 , Î

4
1 , Ŝ

4
2 , Î

4
2 ) for convenience, is

J (E4) =

⎡
⎣P ∗
0 Q

⎤
⎦ , (3.4.25)

where

P =

⎡
⎢⎣a1

(
1− 2N̂4

1
θ11

)
− b1 − β11Î41 a1

(
1− 2N̂4

1
θ11

)
− β11Ŝ4

1

β11Î41 β11Ŝ4
1 − Γ1

⎤
⎥⎦ ,

Q =

⎡
⎢⎣a2

(
1− N̂4

1
θ21

)
− b2 − β21Î41 a2

(
1− N̂4

1
θ21

)
β21Î

4
1 −Γ2

⎤
⎥⎦ .

Since J (E4) is block triangular we need only consider the eigenvalues of P and Q.

We notice that the upper left block matrix, P , is the same as the Jacobian for species

1 alone with the disease, i.e., the Jacobian of the system (3.2.1)-(3.2.2) evaluated at the

equilibrium ED
2 (with the parameters and variables appropriately defined); see Section

3.2.1. Based on stability results of model (3.2.1)-(3.2.2) (see [21]), the eigenvalues of P

are negative if and only if R1
0 > 1.

We next consider the bottom right block matrix, Q, and use the trace determinant

theorem to arrive at conditions for stability. With some algebraic manipulations the trace

and determinant of the matrix Q can be written as

Tr[Q] = r2

(
1− N̂4

1

K21

)
− (β21Î41 + Γ2), (3.4.26)

det[Q] = −r2
(
1− N̂4

1

K21

)
(β21Î41 + Γ2) + β21Î41α2. (3.4.27)

If K21 < N̂4
1 , then

(
1− N̂4

1
K21

)
< 0 and hence Tr(Q) < 0 and det(Q) > 0, as all the

parameters are positive. Thus, if R1
0 > 1 and K21 < N̂4

1 then the infected one host

equilibrium E4 is stable.
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Remark 3.4.3.1 The condition K21 < N̂4
1 is not necessary for the stability of E4. Neces-

sary conditions for stability of E4 are obtained by the application of the Trace-determinant

theorem. From (3.4.27), det(Q) > 0 gives us the condition

r2

(
1− N̂4

1

K21

)
(β21Î41 + Γ2)− β21Î41α2 < 0. (3.4.28)

We can similarly define

E5a,5b =

(
Ŝ5
1 = 0, Ŝ5

2 =
Γ2

β22
, Î51 = 0, Î5a,5b2 =

I∗5a,5b
β22

)
, (3.4.29)

where I∗5a,5b are roots of the quadratic polynomial P5(x) = x2 + 2Γ2

(
1− R2

0λ2
2

)
x +

Γ2
2

(
1−R2

0

)
, with λ2 :=

r2 − α2

r2
. The infected component of species 2 in the one-host

equilibria E5a,5b, is Î
5a,5b
2 = Ŝ5

2χ5a,5b, with χ5a,5b defined similarly to (3.4.17) as⎡
⎣−(

1− R2
0λ2
2

)
±
√(

1− R2
0λ2
2

)2

+ (R2
0 − 1)

⎤
⎦ , (3.4.30)

As for the case with species 1, only the root I∗5a is positive and the equilibrium E5a is

conditionally feasible, whereas the root I∗5b is always negative and thus the equilibrium

E5b is always infeasible. We will refer to E5a as simply E5 in the future.

By similar arguments we can prove

Theorem 3.4.3.2 Assume α2 > 0. If R2
0 > 1 and K12 < N̂5

2 then the infected one-host

equilibrium E5a = E5 is biologically feasible and stable. The equilibrium E5b is always

infeasible.

Proof. The proof is similar to the proof of Theorem 3.4.3.1

3.4.4 Analysis of the Infected Coexistence Equilibrium of the Competition
and Disease Model Under Additional Assumptions

As discussed in [26] the infected coexistence equilibria are difficult to analyze. It

is possible to have multiple such equilibria present in the model with mass action disease
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transmission. We will consider a special case in which the infected coexistence equilibrium

is given by an analytical formula making analysis possible.

In this section, we derive an analytical expression for the infected coexistence equi-

librium of the two species model (3.3.1a)-(3.3.1b) under additional assumptions. Con-

sequently we are able to perform a full stability analysis. This allows us to prove the

conjecture made in [73] and [17] based on numerical simulations about the behavior of

the infected coexistence equilibrium of population models that are combined with mass

action disease models. This conjecture states that if all other equilibria are unstable then

the infected coexistence equilibrium is stable and, conversely, that if any of the other

equilibria are stable then the infected coexistence equilibrium is unstable.

Here we make the following additional assumptions on the model (3.3.1a)-(3.3.1b)

described in Section 3.3.

(A1) αi = 0, so that there is no increased death rate as a result of the disease.

(A2) a = a1 = a2, b = b1 = b2, θ = θ11 = θ22, and β = βij for all i, j = 1, 2. As before, let

r := a− b be the intrinsic growth rate for both the species. Also, K = K11 = K22 =

rθ
a , so the carrying capacity is the same for both species.

(A3) θ12 �= θ21 (in order to retain a difference between the species).

As before, we define Kij :=
rθij
a . These simplifications are not only didactic but result

in a model that can represent actual ecological systems. For example, if two species are

limited by different resources then they may have very similar intra-specific competition

but quite different inter-specific competition while still being susceptible to a generalist

pathogen or parasite [25].

First, we compute the possible equilibria, in the form Ee = (Ŝe
1, Ŝ

e
2, Î

e
1 , Î

e
2), for the

competing two species SI model with mass action disease transmission, (3.3.1a)-(3.3.1b)
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under the additional assumptions (A1), (A2) and (A3). We then use the Jacobian of our

simplified model to establish stability conditions for all the equilibria. Finally we prove

that the conjecture of [73] and of [17] holds.

The Jacobian for this simplified system computed at an equilibrium

Ee = (Ŝe
1, Ŝ

e
2, Î

e
1 , Î

e
2) is

J (Ee) =

⎡
⎣A(Ee) B(Ee)

C(Ee) D(Ee)

⎤
⎦ , (3.4.31)

where, the 2× 2 matrices A, B, C, and D evaluated at an equilibrium Ee are defined as

A(Ee) =

⎡
⎣A(Ee)− b− I(Ee) A12(Ee)

B21(Ee) B(Ee)− b− I(Ee)

⎤
⎦ , (3.4.32)

B(Ee) =

⎡
⎣ A(Ee)− βŜe

1 A12(Ee)− βŜe
1

B21(Ee)− βŜ2
e

B(Ee)− βŜe
2

⎤
⎦ , (3.4.33)

C(Ee) =

⎡
⎣I(Ee) 0

0 I(Ee)

⎤
⎦ , (3.4.34)

and

D(Ee) =

⎡
⎣βŜe

1 − b βŜe
1

βŜe
2 βŜe

2 − b

⎤
⎦ . (3.4.35)

with the definitions

A(Ee) :=
−aN̂ e

1

θ
+ g1(N̂ e

1 , N̂
e
2 ), (3.4.36)

A12(Ee) :=
−aN̂ e

1

θ12
, (3.4.37)

B(Ee) :=
−aN̂ e

2

θ
+ g2(N̂ e

1 , N̂
e
2 ), (3.4.38)

B21(Ee) :=
−aN̂ e

2

θ21
. (3.4.39)

For i = 1, 2, we have N̂i = Ŝi + Îi. From (3.3.3) we have the disease incidence function,

I(Ee) = β(Îe1 + Îe2), (3.4.40)
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(I1 = I2), and for i = 1, 2, the birth functions gi as defined in (3.3.2) (with θ = θ11 = θ22)

evaluated at Ee are given as

g1(Ee) = a

(
1− N̂ e

1

θ
− N̂ e

2

θ12

)
, (3.4.41a)

g2(Ee) = a

(
1− N̂ e

2

θ
− N̂ e

1

θ21

)
. (3.4.41b)

3.4.5 Trivial and Disease Free Equilibria

As in the non simplified model, the trivial equilibrium E0 = (0, 0, 0, 0) is always

unstable for positive parameters.

The disease free one-host equilibria E1 = (K, 0, 0, 0) is stable if conditions

(C1) R0 =
Kβ
b < 1, and

(C2) ξ1 < 0,

hold. In the symmetric case, the other disease free one-host equilibrium E2 = (0, 0,K, 0)

is stable if condition (C1) holds and if the condition

(C3) ξ2 < 0,

holds.

The disease free coexistence equilibrium for the simplified model isE3 = (Ŝ3
1 , Ŝ

3
2 , 0, 0)

with

Ŝ3
1 =

KK12

K12 +K(ξ1/ξ2)
, Ŝ3

2 =
ξ1
ξ2
Ŝ3
1 , (3.4.42)

where the parameters ξ1 and ξ2 defined in (3.2.9) reduce to

ξ1 =
1

K
− 1

K21
, ξ2 =

1

K
− 1

K12
. (3.4.43)
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The DFE E3 is feasible when ξ1/ξ2 > 0. The Jacobian (3.4.31) evaluated at E3 is of the

form

J (E3) =

⎡
⎣A(E3) B(E3)

0 D(E3)

⎤
⎦ , (3.4.44)

where the 2×2 matrices A, B, and D defined in (3.4.32), (3.4.33), and (3.4.35), respectively

are all evaluated at the equilibrium E3.

Lemma 3.4.5.1 Assume that ξ1/ξ2 > 0, so that the disease free coexistence equilibrium

E3 is feasible. In this case

det [A](E3) = r2Ŝ3
1ξ1, (3.4.45)

Tr[A](E3) = −rŜ
3
1

K

(
1 +

ξ1
ξ2

)
. (3.4.46)

Thus, Tr[A](E3) is always negative, whereas det [A](E3) > 0 if and only if ξ1 > 0 and (by

assumption) ξ2 > 0.

Proof. Evaluating (3.4.32), and (3.4.36)-(3.4.41b) at E3 we have

Tr[A](E3) = 2r − 2a

(
Ŝ3
1 + Ŝ3

2

θ

)
− a

(
Ŝ3
2

θ12
+
Ŝ3
1

θ21

)
. (3.4.47)

Substituting (3.4.42) in the above we get

Tr[A](E3) = rŜ3
1

(
2

Ŝ3
1

−
(

2

K
+

1

K21

)
− ξ1
ξ2

(
2

K
+

1

K12

))
, (3.4.48)

which can be simplified as

Tr[A](E3) = rŜ3
1

(
2K21(ξ2K12 + ξ1K)− ξ2K12(2K21 +K)

ξ2KK12K21

)

−
(
ξ1K21(2K12 +K)

ξ2KK12K21

)
.

(3.4.49)

This can be rewritten in the form

Tr[A](E3) =
rŜ3

1

ξ2K

{
ξ1

(
K

K12
− 2

)
− ξ2

K

K21

}
. (3.4.50)
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Using the definitions of ξ1, and ξ2, from (3.4.43), we obtain

Tr[A](E3) = − rŜ3
1

Kξ2
(ξ1 + ξ2). (3.4.51)

Next, consider the determinant of A evaluated at the equilibrium E3,

det[A](E3) = AB −A12B21 − b(A+B) + b2 (3.4.52)

= (AB −A12B21 − b2)− b(A+B − 2b) (3.4.53)

= Θ− b(Tr[A](E3)), (3.4.54)

where the terms A,A12, B,B21 defined in (3.4.36)-(3.4.39), are all evaluated at E3. The

term Θ can be simplified as

Θ = AB −A12B21 − b2 (3.4.55)

= (a2 − b2)− a2

[
2(Ŝ3

1 + Ŝ3
2)

θ
+
Ŝ3
1

θ21
+
Ŝ3
2

θ12

]

+a2

[
2(Ŝ3

1)
2

θθ21
+

2(Ŝ3
2)

2

θθ12
+

4Ŝ3
1 Ŝ

3
2

θ2

]
.

(3.4.56)

Since Ŝ3
2 = (ξ1/ξ2)Ŝ3

1 , we have

Θ = a(Tr[A](E3))− r2 + 2a2(Ŝ3
1)

2

[
1

θθ21
+

(
ξ1
ξ2

)2 1

θθ12
+ 2

ξ1
ξ2

1

θ

]
. (3.4.57)

Substituting (3.4.57) in (3.4.54), using the definitions of ξ1, ξ2, from (3.4.43), and (??),

respectively, and simplifying we have

det[A](E3) = r2(Ŝ3
1)

2

(
ξ21

ξ2K12
+
ξ1
K

)
(3.4.58)

= r2(Ŝ3
1)

2ξ1

(
ξ1K + ξ2K12

KK12ξ2

)
(3.4.59)

= r2Ŝ3
1ξ1, (3.4.60)

by using (3.4.42).
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Since the Jacobian J (E3) is block upper triangular, its eigenvalues are the same as

those of matrices A(E3) and D(E3). The matrix A(E3) is the Jacobian of the two species

model with pure competition, (3.2.7) evaluated at (NC
1 , N

C
2 ) (see Section 3.2.3) under the

assumptions (A2) and (A3). From Lemma 3.4.5.1, the eigenvalues of A(E3) are negative

if and only if the conditions

(C4) ξ1 > 0, and

(C5) ξ2 > 0,

hold. The matrix D(E3) on the other hand is related to the disease parameters and its

eigenvalues are λ31 = −b and λ32 = β(Ŝ3
1 + Ŝ3

2) − b. The eigenvalue λ31 is always negative

and λ32 is negative under the condition

(C6) RC
0 =

β(Ŝ3
1 + Ŝ3

2)

b
< 1.

So, the DFE E3 is feasible and stable if and only if the conditions (C4), (C5) and (C6)

hold.

We note that this result is a special case of Theorem 3.4.1.2 derived from the stability

results of the pure competition model [21]. The condition (C6) is the analogue of the

inequality (3.4.5) for this special case.

3.4.6 The Infected One-Host Equilibrium

There are two infected one-host equilibria. These are E4 = (Ŝ4
1 , 0, Î

4
1 , 0) and E5 =

(0, Ŝ5
2 , 0, Î

5
2 ), where for i = 1, 2

Ŝ4
1 = Ŝ5

2 =
b

β
, (3.4.61)

Î41 =
rθ

a
− b

β
= (R0 − 1)Ŝ4

1 , (3.4.62)

Î52 =
rθ

a
− b

β
= (R0 − 1)Ŝ5

1 . (3.4.63)
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and R0 = R1
0 = R2

0 =
Kβ

b
is the same for both species. The Jacobian (3.4.31) evaluated

at E4,

J (E4) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

(
1− 2K

θ

)
− βK

−aK
θ12

a

(
1− 2K

θ

)
− b

−aK
θ12

− b

0 a

(
1− K

θ21

)
− βK 0 a

(
1− K

θ21

)
βK − b 0 0 b

0 βK − b 0 −b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

has eigenvalues λ41 = −Kβ, λ42 = b(1−R0), λ
4
3 = −r, and λ44 = rKξ1. We can see that λ1

and λ3 are always negative. Thus, the stability (and feasibility) conditions for E4 are

(C7) R0 =
Kβ

b
> 1,

which guarantees that λ42 < 0 and condition (C2) which guarantees that λ44 < 0. For the

symmetric case, E5 is feasible and stable if conditions (C7) and (C3) hold.

3.4.7 The Infected Coexistence Equilibrium

Lastly, we consider the infected coexistence equilibrium E6. We can prove alge-

braically or by using a software like MAPLE that E6 = (Ŝ6
1 , Ŝ

6
2 , Î

6
1 , Î

6
2 ), with

Ŝ6
1 =

b

β
(
1 + ξ1

ξ2

) , (3.4.64)

Ŝ6
2 =

ξ1
ξ2
Ŝ6
1 , (3.4.65)

Î61 =

β

(
1 +

ξ1
ξ2

)
− b

(
1

K
+

ξ1
K12ξ2

)

β

(
1 +

ξ1
ξ2

)(
1

K
+

ξ1
K12ξ2

) , (3.4.66)

Î62 =
ξ1
ξ2
Î61 . (3.4.67)

Before we look at local stability for E6 we prove two results.



50

Lemma 3.4.7.1 The equilibrium value Î6i can be rewritten as

Î6i = (RC
0 − 1)Ŝ6

i , (3.4.68)

for i = 1, 2, with

RC
0 =

β

b

(
Ŝ3
1 + Ŝ3

2

)
. (3.4.69)

Proof. From equations (3.4.64), (3.4.66) and (3.4.42), we have

Î61 = Ŝ6
1

{
β

b

(
1 +

ξ1
ξ2

)
Ŝ3
1 − 1

}
(3.4.70)

= Ŝ6
1

{
β

b

(
Ŝ3
1 + Ŝ3

2

)
− 1

}
(3.4.71)

= Ŝ6
1(RC

0 − 1). (3.4.72)

Similarly, we can show that Î62 = (RC
0 − 1)Ŝ6

2 .

Lemma 3.4.7.2 The total population size N̂6
i = Ŝ3

i , for i = 1, 2.

Proof. From Lemma 3.4.7.1 and equations (3.4.69), (3.4.64), and (3.4.42), we have

N̂6
1 = ˆS6

1+Î
6
1 = Ŝ6

1RC
0 (3.4.73)

=
b

β(1 + ξ1
ξ2
)

β

b
Ŝ3
1

(
1 +

ξ1
ξ2

)
= Ŝ3

1 (3.4.74)

Similarly, we can show that N̂6
2 = Ŝ3

2 .

The characteristic polynomial of J (E6) is given as

P6(x) = (x+ η)(x + ε)(x2 + δ1x+ δ2), (3.4.75)

where

η = b+ β(Î61 + Î62 ), (3.4.76)

ε = b+ β(Î61 + Î62 )− β(Ŝ6
1 + Ŝ6

2), (3.4.77)

δ1 = −(A(E6) +B(E6)) + 2b, (3.4.78)

δ2 = −A12(E6)B21(E6) +A(E6)B(E6)− b(A(E6) +B(E6)) + b2, (3.4.79)
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where for i = 1, 2, N̂6
i = Ŝ6

i + Î6i . The terms A,B,A12 and B21 as defined in (3.4.36)-

(3.4.39) are all evaluated at the infected coexistence equilibria E6. Then, the eigenvalues

of the Jacobian J (E6) are

λ61 = −η = −b− β(Î61 + Î62 ), (3.4.80)

λ62 = −ε = −b− β(Î61 + Î62 ) + β(Ŝ6
1 + Ŝ6

2), (3.4.81)

λ63,4 =
1

2

(
−δ1 ±

√
δ21 − 4δ2

)
. (3.4.82)

Lemma 3.4.7.3 The condition that λ62 < 0 is equivalent to RC
0 > 1

Proof. From (3.4.65), (3.4.67) and Lemma 3.4.7.1 we have

λ62 < 0

⇐⇒ −b− β(Î61 + Î62 ) + β(Ŝ6
1 + Ŝ6

2) < 0

⇐⇒ Ŝ6
1 − Î61 + Ŝ6

2 − Î62 <
b

β

⇐⇒ (1 +
ξ1
ξ2
)(Ŝ6

1 − Î61 ) <
b

β

⇐⇒ (2−RC
0 )(1 +

ξ1
ξ2
)

b

β(1 + ξ1
ξ2
)
<
b

β

⇐⇒ RC
0 > 1.

Thus, RC
0 > 1 is both a feasibility and stability condition for the infected coexistence

equilibrium E6.

Lemma 3.4.7.4 The eigenvalues λ63 and λ64 are roots of the polynomial equation

x2 − Tr[A](E3)x+ det[A](E3) = 0. (3.4.83)

Proof. From Lemma 3.4.7.2, we have N̂6
i = Ŝ3

i = N̂3
i (as Î3i = 0 for E3), for i = 1, 2.

Thus, from (3.4.78) and (3.4.79) and the definitions of the functions A, B, A12, and B21
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in (3.4.36)-(3.4.39), we have

δ1 = −(A(E3) +B(E3)) + 2b, (3.4.84)

δ2 = −A12(E3)B21(E3) +A(E3)B(E3)− b(A(E3) +B(E3)) + b2. (3.4.85)

From the definition of the matrix A in (3.4.32), we observe that

δ1 = −Tr[A](E3) (3.4.86)

δ2 = det[A](E3) (3.4.87)

From equation (3.4.82), it is clear that the eigenvalues λ63 and λ
6
4 are roots of the polynomial

equation (3.4.83).

Theorem 3.4.7.1 Assume that ξ1/ξ2 > 0 so that the infected coexistence equilibrium E6

is feasible. Then E6 is stable if and only if ξ1 > 0, ξ2 > 0, and RC
0 > 1. In this case all

the other equilibria, i.e., E0, E1, E2, E3, E4 and E5 are either infeasible and/or unstable.

Proof. It is easy to see that λ61 given in (3.4.80) is negative for all I1,e + I2,e ≥ 0. Thus,

since the infected coexistence equilibrium E6 is feasible by assumption (ξ1/ξ2 > 0) we

have λ61 < 0. As a result of Lemma 3.4.7.3, the first condition for stability of E6 is

(C8) RC
0 > 1

Since Î61 = (RC
0 − 1)Ŝ6

1 , the condition (C8) is also a feasibility condition for E6. From

Lemma 3.4.5.1, Lemma 3.4.7.4, and the Trace-Determinant theorem [6], we see that the

eigenvalues λ63 and λ
6
4 are negative if and only if the conditions (C4) and (C5) are satisfied.

When conditions (C4), (C5) and (C8) are satisfied, all the other equilibria, i.e., E0-

E5 are either infeasible or unstable based on the linear stability analysis presented above

for each of these equilibria.



53

3.4.8 Bifurcations

Considering the parameters ξ1, and ξ2, defined in (3.4.43), as bifurcation parameters

we can make the following observations. If ξ1 = 0 and/or ξ2 = 0 then RC
0 = Kβ

b = R0.

If ξ1 = 0 and ξ2 > 0 then E3 = E1 and E6 = E4. Similarly, if ξ1 > 0 and ξ2 = 0 then

E3 = E2 and E6 = E5. If both ξ1 = 0 and ξ2 = 0 then the sum of the state variables
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FIGURE 3.1: Phase planes for susceptible compartment when ξ1 > 0 and ξ2 > 0.

behaves as one species with logistic growth. In this case, the equilibrium E3 is any solution

(Ŝ1, Ŝ2, 0, 0) on the line Ŝ1 + Ŝ2 = K. Similarly, E6 becomes any solution (Ŝ1, Ŝ2, Î1, Î2)

on the plane Ŝ1 + Ŝ2 = b
β , Î1 + Î2 = b

β (R0 − 1). Notice that in both cases, since there is

no additional death due to disease, N̂1 + N̂2 = K. Based on these observations, we have

the following results:

Corollary 3.4.8.1 Assume ξ1 = 0 and ξ2 > 0. Then,
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FIGURE 3.2: Phase planes for infected compartment when ξ1 > 0 and ξ2 > 0.

1. If RC
0 = R0 < 1, the equilibrium E3 = E1 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E6 = E4 exists in a neutral state.

Proof. In the first case, the eigenvalues for E3 are λ31 = −r, λ32,3 = 0, and λ34 = βK − b =
b(R0 − 1). We can see that if RC

0 = R0 < 1 then λ34 < 0 and E3 is neutral. In fact,

E3 exchanges stability with E1 as it moves through the half plane ξ1 = 0, ξ2 > 0 when

R0 < 1.

In the second case, the eigenvalues for E6 are λ61 = −r, λ62 = 0, λ63 = −Kβ, and
λ64 = b(1 − R0). We can see that if RC

0 = R0 > 1 then λ63 < 0, hence E6 is neutral. In

fact, E6 exchanges stability with E4 as it moves through the half plane ξ1 = 0, ξ2 > 0

when R0 > 1. See Figures 3.1 - 3.6.

Corollary 3.4.8.2 Assume ξ1 > 0 and ξ2 = 0. Then,
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FIGURE 3.3: Phase planes for susceptible compartment when ξ1 = 0 and ξ2 > 0.

1. If RC
0 = R0 < 1, the equilibrium E3 = E2 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E6 = E5 exists in a neutral state.

Proof. The proof omitted as it is similar to the proof of Corollary 1.

Corollary 3.4.8.3 Assume ξ1 = 0 and ξ2 = 0. Then,

1. If RC
0 = R0 < 1, the equilibrium E3 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E6 exists in a neutral state.

Proof. In the first case the eigenvalues of E3 are λ31 = −r, λ32 = 0, λ33 = −b, and

λ34 = b(R0 − 1). We can see if RC
0 = R0 < 1 then E3 is neutral. In fact, as E3 moves

along the line ξ1 = ξ2 from ξ1, ξ2 > 0 through ξ1, ξ2 = 0 into ξ1, ξ2 < 0, it progresses from

stable to neutral to stable.
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FIGURE 3.4: Phase planes for infected compartment when ξ1 = 0 and ξ2 > 0.

In the second case the eigenvalues of E6 are λ61 = −r, λ62 = 0, λ63 = −βK, and

λ64 = b(1 − R0). We can see if RC
0 = R0 > 1 then E6 is neutral. Similarly to E3, as E6

moves along the line ξ1 = ξ2 through ξ1, ξ2 = 0 it also progresses from stable to neutral

to stable.

3.4.9 Hopf Bifurcations

Another simplified case, similar to the one in Section 3.4.4, except that β11 = β22 =

β, β12 = β21 = β2, and α1 = α2 = α, for which we did not compute the interior equilib-

ria, displays interesting behavior. We present here a bifurcation diagram for the interior

equilibria of this special case using MatCont software [47]. We find complicated behavior,

including two Hopf bifurcations (H), two saddle-node bifurcations (LP), and a branch-

ing point bifurcation (BP) point for the simplified model with inter-species transmission

different from intra-species transmission and the addition of death due to disease. See
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FIGURE 3.5: Phase planes for susceptible compartment when ξ1 < 0 and ξ2 > 0.

Figures 3.7-3.10 for the bifurcation diagrams. This shows that even a relatively simple

version of the full model displays complicated behavior. In fact, when .98 < θ12 < 1.01

there are three internal equilibria for the model.

3.5 Computation of Equilibria and Linear Stability Analysis for Fre-
quency Incidence

Below we present the equilibria for model (3.3.10a)-(3.3.10d), and their linear sta-

bility analysis. We will denote equilibrial susceptible densities for species i by Ŝi and

similarly Îi for the infected equilibrial densities of species i, for i = 1, 2. An equilibrium

Ee is represented using the notation Ee = (Ŝe
1, Ŝ

e
2 , Î

e
1 , Î

e
2).
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FIGURE 3.6: Phase planes for infected compartment when ξ1 < 0 and ξ2 > 0.
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FIGURE 3.7: Bifurcation diagram for S2 with bifurcation parameter θ12 and with param-
eters a = 2, b = 1, θ = 0.25, θ21 = 1, α = 1, β = 6, and β2 = 0.1.
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3.5.1 Disease Free Coexistence Equilibrium

The disease free equilibrium (DFE) is E3 = (Ŝ3
1 , Ŝ

3
2 , Î

3
1 = 0, Î32 = 0), defined as in

equation 3.4.2. The expressions for the susceptible components emphasize the dependence

of the DFE on the parameters ξ1 and ξ2.

Theorem 3.5.1.1 The basic reproduction number (BRN) for model (3.3.1a)-(3.3.1b) with

coexisting species and frequency incidence is

RC
0 =

R11 +R22

2
+

√
(R11 −R22)2 + 4R12R21

2
, (3.5.1)

where, for i, j = 1, 2

Rij =
βij Ŝ1

i

ΓjŜ1
j

; (3.5.2)

The basic reproduction number for species j in isolation is Rj
0 = Rjj, for j = 1, 2. The

coexistence DFE, E1, is feasible and stable if and only if the conditions ξ1 > 0, ξ2 > 0 and

RC
0 < 1 are satisfied.
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Proof. A very similar analysis to that in Theorem 3.4.1.1 will result in the value of RC
0

for the frequency incidence case. The Jacobians of F and V, called F and V , respectively,

for frequency incidence are evaluated at the coexistence DFE, E3 = (Ŝ3
1 , Ŝ

3
2 , 0, 0). We

then have

F (E3) =

⎡
⎢⎣ β11 β12

Ŝ3
1

Ŝ3
2

β21
Ŝ3
2

Ŝ3
1

β22

⎤
⎥⎦ , V (E3) = diag(Γi) (3.5.3)

The BRN RC
0 for model (3.3.10a)-(3.3.10d) with coexisting species is given as

RC
0 = ρ(FV −1), (3.5.4)

where ρ(A) is the spectral radius of the matrix A.

Theorem 3.5.1.2 The coexistence DFE, E3, is feasible and stable if and only if the con-

ditions ξ1 > 0, ξ2 > 0 and RC
0 < 1 are satisfied with RC

0 as defined in Theorem 3.4.1.1.

Proof. The Jacobian of the system (3.3.10a)-(3.3.10d) evaluated at the DFE E3 =

(Ŝ3
1 , Ŝ

3
2 , Î

3
1 = 0, Î32 = 0) is the block triangular matrix

J (E3) =

⎡
⎣A(E3) ∗

0 F (E3)− V (E3)

⎤
⎦ , (3.5.5)

where the matrix A(E3) is the Jacobian matrix of the system (3.2.7) evaluated at EC
3 =

(NC
1 , N

C
2 ) = (Ŝ3

1 , Ŝ
3
2) (see section 3.2.3), and the matrices F and V are as defined in

(3.5.3) (the ∗ indicates a nonzero entry). Since the Jacobian J (E3) is block triangular,

its eigenvalues are the eigenvalues of the matrices A(E3) and F (E3)− V (E3).

From Section 3.2.3, EC
3 = (NC

1 , N
C
2 ) is globally asymptotically stable if and only

if ξ1 > 0 and ξ2 > 0. Thus, the eigenvalues of the matrix A are negative if and only if

ξ1 > 0 and ξ2 > 0, which are also feasibility conditions for E3. From the next generation

approach, the eigenvalues of the matrix F (E3)− V (E3) are negative if and only if RC
0 =

ρ(FV −1) < 1 [144].
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3.5.2 The Disease Free One-Host Equilibria

When ξ1/ξ2 < 0 the coexistence DFE is infeasible. We have the following two cases.

1. Assume ξ1 < 0 and ξ2 > 0. In this case the disease free one-host equilibrium

E2 = (Ŝ2
1 = K11, Ŝ2

2 = 0, Î21 = 0, Î22 = 0) is feasible and stable if in addition the

condition

R1
0 =

β11
Γ1

< 1 (3.5.6)

is satisfied, where R1
0 is the basic reproduction number for species 1 alone. This

result follows from conditions on stability of EC
1 (see Section 3.2.3) and conditions

on stability of EF
1 (see Section 3.2.1).

2. Assume ξ1 > 0 and ξ2 < 0. In this case the one-host DFE E2 = (Ŝ2
1 = 0, Ŝ2

2 =

K22, Î21 = 0, Î22 = 0) is feasible and stable if in addition the condition R2
0 = β22

Γ2
< 1

is satisfied, where R2
0 is the basic reproduction number for species 1 alone. As in

case 1, this result follows from conditions on stability of EC
2 and EF

2 .

3.5.3 Infected One-Host Equilibria

There are two infected one-host equilibria in which one of the species survives while

the other species dies out. See the note in Section 3.3.2 about using Lipschitz continuity

to extend the transmission functions to incorporate the extinction of one or more species.

The first infected one-host equilibrium is

E4 = (Ŝ4
1 =

K11

R1
0

(
1− α1(R1

0 − 1)

r1R1
0

)
, Ŝ4

2 = 0, Î41 = (R1
0 − 1)Ŝ4

1 , Î
4
2 = 0), (3.5.7)

We can similarly define

E5 = (Ŝ5
1 = 0, Ŝ5

2 =
K22

R2
0

(
1− α2(R2

0 − 1)

r2R2
0

)
, Î51 = 0, Î52 = (R2

0 − 1)Ŝ5
2), (3.5.8)
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Theorem 3.5.3.1 Assume α1 > 0, then N̂4
1 = K11

(
1− α1(R1

0 − 1)

r1R1
0

)
< K11. If α1 = 0

then N̂4
1 = K11. If R1

0 > 1 and K21 < N̂4
1 , then the infected one-host equilibrium for

species 1, E4, is feasible and stable.

Proof. The conditionR1
0 > 1 guarantees the feasibility of the equilibrium E4. In addition,

it can be seen by inspection that if α1 = 0 then N̂4
1 = K11 and that if α1 > 0 then

N̂4
1 < K11.

The Jacobian for the (species 1) infected one-host equilibrium E4, with the order

changed to E4 = (Ŝ4
1 , Î

4
1 , Ŝ

4
2 , Î

4
2 ) for convenience, is

J (E4) =

⎡
⎣P ∗
0 Q

⎤
⎦ , (3.5.9)

where * indicates a non-zero entry and

P =

⎡
⎢⎣a1

(
1− 2N̂4

1
θ11

)
− b1 − β11

Î41

N̂4
1

+
β11Ŝ4

1 Î
4
1

(N̂4
1 )

2
a1

(
1− 2N̂4

1
θ11

)
− β11

Ŝ4
1

N̂4
1

+
β11Ŝ4

1 Î
4
1

(N̂4
1 )

2

β11
Î41

N̂4
1

− β11Ŝ4
1 Î

4
1

(N̂4
1 )

2
β11

Ŝ4
1

N̂4
1

− Γ1 − β11Ŝ4
1 Î

4
1

(N̂4
1 )

2

⎤
⎥⎦ ,

Q =

⎡
⎢⎣a2

(
1− N̂4

1
θ21

)
− b2 − β21

Î51
N̂4

1

a2

(
1− N̂4

1
θ21

)
β21

Î41
N̂4

1

−Γ2

⎤
⎥⎦ .

Since J (E4) is block triangular we need only consider the eigenvalues of P and Q.

We notice that the upper left block matrix, P , is the same as the Jacobian for species

1 alone with the disease, i.e., the Jacobian of the system (3.2.4)-(3.2.5) evaluated at the

equilibrium EF
2 (with the parameters and variables appropriately defined); see Section

3.2.2. Based on stability results of model (3.2.4)-(3.2.5) (see [21]), the eigenvalues of P

are negative if and only if R1
0 > 1.

We next consider the bottom right block matrix, Q, and use the trace determinant

theorem to arrive at conditions for stability. With some algebraic manipulations the trace
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and determinant of the matrix Q can be written as

Tr[Q] = r2

(
1− N̂4

1

K21

)
−
(
β21

Î41

N̂4
1

+ Γ2

)
, (3.5.10)

det[Q] = −r2
(
1− N̂4

1

K21

)
(β21

Î41

N̂4
1

+ Γ2) + β21
Î41

N̂4
1

α2. (3.5.11)

If K21 < N̂4
1 , then

(
1− N̂4

1
K21

)
< 0 and hence Tr(Q) < 0 and det(Q) > 0, as all the

parameters are positive. Thus, if R1
0 > 1 and K21 < N̂4

1 then the infected one host

equilibrium E4 is stable.

Remark 3.5.3.1 The condition K21 < N̂4
1 is not necessary for the stability of E4. Neces-

sary conditions for stability of E4 are obtained by the application of the Trace-determinant

theorem. From (3.5.11), det(Q) > 0 gives us the condition

r2

(
1− N̂4

1

K21

)
(β21

Î41

N̂4
1

+ Γ2)− β21
Î41

N̂4
1

α2 < 0. (3.5.12)

In fact, simulations indicate that there are situations for which K21 > N̂4
1 and E4 appears

to be stable regardless.

By similar arguments we can prove

Theorem 3.5.3.2 Assume α2 > 0. If R2
0 > 1 and K12 < N̂5

2 then the infected one-host

equilibrium E5 is biologically feasible and stable.

3.5.4 Infected Coexistence Equilibrium for Frequency Incidence

In this section we examine the infected coexistence (endemic) equilibrium of the

system (3.3.10a)-(3.3.10d) with frequency incidence disease transmission in (3.3.8)-(3.3.9).

We assume that feasibility conditions are met and both species are present (see Theorem

3.5.5.1 and Theorem 3.5.5.2). Although the actual value of this equilibrium is algebraically
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intractable, we use methods similar to [102] to analyze the existence and stability of the

endemic equilibrium. However, unlike the simpler case in [102], the complete analysis of

this equilibrium requires results from the theory of asympotically autonomous systems

[138].

Assuming that N1, N2 > 0, we will express the model (3.3.1a)-(3.3.1b) in terms of

the proportion of infected individuals and the total population size Nj = Sj + Ij , j = 1, 2.

Let i1 =
I1
N1

, i2 =
I2
N2

. Then, model (3.3.10a)-(3.3.10d) can be rewritten as

di1
dt

= (1− i1)(β11i1 + β12i2 − α1i1)− a1i1

(
1− N1

θ11
− N2

θ12

)
, (3.5.13a)

di2
dt

= (1− i2)(β22i2 + β21i1 − α2i2)− a2i2

(
1− N2

θ22
− N1

θ21

)
, (3.5.13b)

dN1

dt
= a1N1

(
1− N1

θ11
− N2

θ12

)
− b1N1 − α1i1N1, (3.5.13c)

dN2

dt
= a2N2

(
1− N2

θ22
− N1

θ21

)
− b2N2 − α2i2N2. (3.5.13d)

The model (3.5.13a)-(3.5.13d) makes ecological sense and is mathematically well-posed in

the domain D2 = {(i1, i2, N1, N2) ∈ R
4|0 ≤ i1, i2 ≤ 1, 0 ≤ Ni ≤ Kii, i = 1, 2}. Unlike

[102], in which density-dependent death rates (but no inter-species competition) were

considered, the equations (3.5.13a)-(3.5.13d) do not decouple when rewritten in terms of

proportions of infected individuals.

3.5.5 Ultimate Bounds for the Total Population Size

In this section we derive ultimate bounds for the total population size, defined by

equations (3.5.13c)-(3.5.13d), under which the presence of both species is guaranteed for

all time.

We can rewrite equations (3.5.13c)-(3.5.13d) as a pair of non-autonomous Lotka-
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Volterra equations in the form

dN1

dt
= N1

(
rα1 (t)−

a1
θ11

N1 − a2
θ12

N2

)
, (3.5.14a)

dN2

dt
= N2

(
rα2 (t)−

a2
θ22

N2 − a1
θ21

N1

)
, (3.5.14b)

where the functions rαk (t) = rk − αkik(t), k = 1, 2. We make the assumption

(U1) r̃k = rk − αk > 0, k = 1, 2.

The functions ik(t), k = 1, 2 are continuous and bounded above and below on 0 ≤ t <∞,

with inf{ik(t) : 0 ≤ t < ∞} ≥ 0 and sup{ik(t) : 0 ≤ t < ∞} ≤ 1 for k = 1, 2. Thus, the

functions rαk (t) are continuous and bounded above and below with 0 ≤ rk − αk = r̃k ≤
inf{rαk (t) : 0 ≤ t <∞} and 0 < sup{rαk (t) : 0 ≤ t <∞} ≤ rk for k = 1, 2.

We next make the following definitions for i, j = 1, 2:

K̃ij = r̃i
θij
ai

= Kij(1− αi/ri), (3.5.15a)

hi(Ni, Nj) = r̃iNi

(
1− Ni

K̃ii

− Nj

K̃ij

)
, i �= j, (3.5.15b)

pi(Ni, Nj) = riNi

(
1− Ni

Kii
− Nj

Kij

)
, i �= j. (3.5.15c)

The functions hi, and pi are lower and upper bounds for the derivatives in (3.5.14a) and

(3.5.14b). We also define the modified parameters ξ̃i = 1/K̃ii − 1/K̃ji, i �= j. Based on

the analysis in Section 3.3.2, for ξ̃1, ξ̃2 > 0 the solution to dNi
dt = hi(Ni, Nj), i, j = 1, 2, i �=

j with positive initial conditions stays positive for all time and converges globally in

{(N1, N2) ∈ R
2|0 < Ni ≤ Kii, i = 1, 2} to the asymptotically stable equilibrium (N̂ l

1, N̂
l
2)

N̂ l
1 =

K̃11K̃12

K̃12 + K̃11(ξ̃1/ξ̃2)
, N̂ l

2 =
ξ̃1

ξ̃2
N̂ l

1 (3.5.16)

Similarly, if ξ1, ξ2 > 0, the solution to dNi
dt = pi(Ni, Nj), i, j = 1, 2, i �= j with positive

initial conditions remains positive for all time and converges globally in {(N1, N2) ∈ R
2|0 <

Ni ≤ Kii, i = 1, 2} to the asymptotically stable equilibrium (N̂u
1 = N̂3

1 = Ŝ3
1 , N̂

u
2 = N̂3

2 =
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Ŝ3
2), with Ŝ3

i , i = 1, 2 as defined in (3.4.2). Sufficient conditions for ξ̃1, ξ̃2, ξ1, ξ2 > 0 to

hold are Assumption (U1) and the following additional assumptions

(U2) K̃21 > K11,

(U3) K̃12 > K22,

which we will now make.

Using results on nonautonomous Lotka-Volterra models in [1] we state the following

two results.

Theorem 3.5.5.1 If the assumptions (U1), (U2) and (U3) hold, then there exists a so-

lution (N∗
1 , N

∗
2 ) of (3.5.14a) and (3.5.14b) (or equivalently (3.5.13c)-(3.5.13d)) for which

the optimal bounds

0 <

(
K̃12 −K22

K̃12 − K̃22

)
N̂ l

1 ≤ N∗
1 (t) ≤

(
K12 − K̃22

K12 −K22

)
N̂u

1 , (3.5.17)

0 <

(
K̃21 −K11

K̃21 − K̃11

)
N̂ l

2 ≤ N∗
2 (t) ≤

(
K21 − K̃11

K21 −K11

)
N̂u

2 , (3.5.18)

hold for all 0 ≤ t <∞.

Proof. The proof follows from Theorem 2 in [1] and some algebraic manipulations. We

note that the assumptions (U2) and (U3) imply

K21 > K̃21 > K11 > K̃11, (3.5.19)

K12 > K̃12 > K22 > K̃22. (3.5.20)

Theorem 3.5.5.2 If the assumptions (U1), (U2) and (U3) hold, and if (N1
1 , N

1
2 ), and

(N2
1 , N

2
2 ) are any two solutions of (3.5.14a) and (3.5.14b) such that Nk

1 (t
∗) > 0, and
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Nk
2 (t

∗) > 0 for some t∗ ≥ 0, k = 1, 2, then we have

N1
j (t)−N2

j (t) → 0, for j = 1, 2, as t→ ∞. (3.5.21)

Thus, if (N∗∗
1 , N∗∗

2 ) is any solution of (3.5.14a) and (3.5.14b) with N∗∗
k (t∗) > 0, k = 1, 2

for some t∗ > 0 and ε > 0 is arbitrary, then, from Theorem 3.5.5.1, we have that

0 <

(
K̃12 −K22

K̃12 − K̃22

)
N̂ l

1 − ε < N∗∗
1 (t) <

(
K12 − K̃22

K12 −K22

)
N̂u

1 + ε, (3.5.22)

0 <

(
K̃21 −K11

K̃21 − K̃11

)
N̂ l

2 − ε < N∗∗
2 (t) <

(
K21 − K̃11

K21 −K11

)
N̂u

2 + ε, (3.5.23)

hold for sufficiently large t.

Proof. The proof follows from Theorem 1 and Theorem 2 in [1], and some algebraic

manipulations.

3.5.6 Existence and Uniqueness of an Endemic Equilibrium

Under the assumptions (U1), (U2) and (U3), we have the following result.

Theorem 3.5.6.1 For frequency incidence, a unique endemic equilibrium exists for the

SI model with competition, (3.5.13a)-(3.5.13b), if and only if (a) Rjj > 1 for either j = 1

or j = 2 or (b) Rjj ≤ 1 for both j = 1, 2 and (1−R11)(1 −R22) < R12R21.

Proof. We note that conditions (a) and (b) are equivalent to RC
0 > 1 for RC

0 defined in

(3.4.3) and (3.4.4).

We begin by setting (3.5.13c) and (3.5.13d) equal to zero, so that we can examine

i1 and i2 on the cross-section of space where the Ni’s are at the equilibrium, (N̂1, N̂2), or

where N ′
1 = 0 and N ′

2 = 0, so that

N̂1(i1, i2) = N̂u
1 +H1(i1, i2), (3.5.24a)

N̂2(i1, i2) = N̂u
2 +H2(i1, i2), (3.5.24b)
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for (i1, i2) ∈ D = [0, 1] × [0, 1], and N̂u
i = Ŝ3

i , i = 1, 2 are as defined in (3.4.2). The

functions H1 and H2 are defined as

H1(i1, i2) =

(
α1i1K12

r1
− α2i2K22

r2

)(
K22

K21
− K12

K11

)−1

, (3.5.25a)

H2(i1, i2) =

(
α2i2K21

r2
− α1i1K11

r1

)(
K11

K12
− K21

K22

)−1

. (3.5.25b)

We then substitute N̂1 and N̂2 into equations (3.5.13a), and (3.5.13b) resulting in the

equations

di1
dt

= (1− i1)(β11i1 + β12i2 − α1i1)− i1(b1 + α1i1), (3.5.26a)

di2
dt

= (1− i2)(β22i2 + β21i1 − α2i2)− i2(b2 + α2i2). (3.5.26b)

The model (3.5.26a)-(3.5.26b) is different from the one that is derived in [102]; however

similar techniques can be used to analyze it, which we now consider. Setting (3.5.26a)

and (3.5.26b) equal to zero, we obtain the isoclines for i1 and i2 in the plane where N1

and N2 are at equilibrium as

i2 = f1(i1) =
i1[b1 + α1i1 − (1− i1)(β11 − α1)]

(1− i1)β12
, (3.5.27a)

i1 = f2(i2) =
i2[b2 + α2i2 − (1− i2)(β22 − α2)]

(1− i2)β21
. (3.5.27b)

We note that the domain D = [0, 1] × [0, 1] is invariant for the sytem (3.5.26a) and

(3.5.26b), since if ik = 0 then dik/dt > 0 and if ik = 1 then dik/dt < 0, for k = 1, 2, in

D+ = D \ {0, 0}. The isoclines always intersect at the origin. The function f1 has an

asymptote at i1 = 1, and f2 has an asymptote at i2 = 1 and

df1
di1

∣∣∣
i1=0

=
b1 + α1 − β11

β12
, (3.5.28)

and
df2
di2

∣∣∣
i2=0

=
b2 + α2 − β22

β21
. (3.5.29)

Also,
d2fk
di2k

=
2(bk + αk)

βkj(1− ik)3
> 0, k, j = 1, 2, k �= j, 0 ≤ ik < 1, (3.5.30)
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which implies that the nullclines ij = fk(ik), k, j = 1, 2, k �= j are concave up on 0 ≤ ik <

1.

Sufficiency part of proof: We break this part up into four cases:

Case (1): Assume that R11 > 1 and R22 > 1. Then, we can see from (3.4.3) and (3.4.4)

that βii > Γi = bi + αi, for i = 1, 2. Using this in equations (3.5.28) and (3.5.29), we find

that
dfk
dik

∣∣∣
ik=0

< 0, (3.5.31)

which implies that there is one point of intersection in D (see Figure 3.11).

FIGURE 3.11: Isoclines for the case where both R11,R22 > 1. Disease related parameters
are β11 = 2.7, β22 = 3.2, β12 = 1.1, β21 = 1.1, α1 = 1, α2 = .5, b1 = 1, and b2 = 2.

Case (2): Assume R11 < 1 and R22 > 1. Then df1
di1

|i1=0 > 0 and df2
di2

|i2=0 < 0, so that f1

and f2 again intersect uniquely in D (see Figure 3.12).

Case (3): Assume R11 > 1 and R22 < 1. Changing roles in Case (2), we again have that

f1 and f2 intersect uniquely in D.
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FIGURE 3.12: Isoclines for the case where R11 < 1 and R22 > 1. Disease related
parameters are β11 = 1.8, β22 = 3.2, β12 = 1.1, β21 = 1.1, α1 = 1, α2 = .5, b1 = 1, and
b2 = 2.

Case (4): Lastly, we consider the case whereR11 < 1 andR22 < 1, and (1−R11)(1−R22) <

R12R21. This implies that dfk
dik

|ik=0 > 0 for k = 1, 2. In order for the nullclines to cross in

D, we must also have
df1
di1

∣∣∣
i1=0

<
1

df2
di2

∣∣
i2=0

. (3.5.32)

This is equivalent to (1 −R11)(1 −R22) < R12R21, which holds by assumption for Case

4 (see Figure 3.13).

Necessary part of proof: Assume that there exists a unique endemic equilibrium but

that conditions (a) and (b) of Theorem 3.5.6.1 do not hold. So, Rjj < 1 for j = 1, 2

and (1 −R11)(1 −R22) ≥ R12R21. This implies that dfk
dik

|ik=0 > 0 for k = 1, 2. However,

the condition df1
di1

|i1=0 <
1

df2
di2

|i2=0

no longer holds, hence the nullclines do not intersect

in the interior of D, which contradicts the assumption of existence of a unique endemic

equilibrium (see Figure 3.14).
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FIGURE 3.13: Isoclines for the case whereR11,R22 < 1 but (1−R11)(1−R22) < R12R21.
Disease related parameters are β11 = 1.8, β22 = 2.3, β12 = 1.1, β21 = 1.1, α1 = 1, α2 = .5,
b1 = 1, and b2 = 2.
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FIGURE 3.14: Isoclines for the case where neither condition (i) nor (ii) of Theorem
3.5.6.1 hold. Disease related parameters are β11 = 1.5, β22 = 2, β12 = .2, β21 = .2, α1 = 1,
α2 = .5, b1 = 1, and b2 = 2.
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3.5.7 Stability of the Endemic Equilibrium

Let us denote the unique endemic equilibrium as E6 = (î61, î
6
2, N̂1(î

6
1, î

6
2), N̂2(î

6
1, î

6
2)).

Then, we have the following result.

Theorem 3.5.7.1 Consider the frequency incidence SI model with Lotka-Volterra com-

petition (3.5.26a)-(3.5.26b). If RC
0 < 1 then the disease free equilibrium (î31 = 0, î32 = 0)

is globally asymptotically stable in the region D = [0, 1] × [0, 1] and if RC
0 > 1 then

the infected coexistence (endemic) equilibrium (î61, î
6
2) is globally asymptotically stable in

D+ = D \ {0, 0}.

Proof. Suppose RC
0 < 1. Then by Theorem 3.5.6.1 there is no infected coexistence

equilibrium. The only equilibrium for (3.5.26a)-(3.5.26b) is the origin (which corresponds

to the disease-free equilibrium (0, 0, Ŝ3
1 , Ŝ

3
2) for (3.5.13a)-(3.5.13d)) and is locally asymp-

totically stable in D by [144]. The Poincare-Bendixson Trichotomy states that a positive

orbit of the system that remains in a closed and bounded region of the plane with only

a finite number of equilibria will have an omega limit set that takes on only one of three

forms, namely, an equilibrium, a periodic orbit, or a finite number of equilibria, and a set

of trajectories whose α- and ω- limit sets consist of one of these equilibria for each trajec-

tory [6]. Since the solutions of our system are indeed bounded and the only equilibrium in

the region D = [0, 1]× [0, 1] for (3.5.26a)-(3.5.26b) is the origin, which is stable, there are

no periodic solutions in the region and the origin is globally stable for (3.5.26a)-(3.5.26b).

This implies that the disease-free equilibrium (î31 = 0, î32 = 0) for (3.5.26a)-(3.5.26b) is

globally stable in D.

Next suppose RC
0 > 1. Then by Theorem 3.5.6.1 there is a unique infected coexis-

tence equilibrium, (î61, î
6
2), for (3.5.26a)-(3.5.26b). We will first show that no solution of

(3.5.26a)-(3.5.26b) in the invariant region D+ will approach the origin. The Jacobian for
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(3.5.26a) and (3.5.26b) evaluated at the origin is

J (0, 0) =

⎡
⎣β11 − (α1 + b1) β12

β21 β22 − (α2 + b2)

⎤
⎦ ,

which has eigenvalues

λ61, λ
6
2 =

1

2
[(β11 − Γ1) + (β22 − Γ2)±

√
[(β11 − Γ1)− (β22 − Γ2)]2 + 4β21β12], (3.5.33)

where Γi = αi + bi. Since RC
0 > 1 then we know atleast one of β11 − Γ1 and β22 − Γ2

are positive or both are negative and (β11 − Γ1)(β22 − Γ2) < β12β21, both cases for which

λ61 > 0. Now, if λ62 > 0 as well then the origin is a repellor. If, on the other hand, λ62 < 0

then the eigenvector of λ62 is⎡
⎣x1
x2

⎤
⎦ =

⎡
⎣ 1

β21
(λ62 − (β22 − Γ2))

1

⎤
⎦ . (3.5.34)

Since λ62 < 0 then we can see that x1 < 0 also and the stable manifold of the origin does

not lie in D+. Hence, none of the solutions in D+ approach the DFE.

Lastly, we need to show that no periodic solutions exist inside D+. We can see

by examining the phase plane of the proportions system (3.5.26a) and (3.5.26b) that the

region, A, enclosed by the nullclines of i1 and i2 but to the left of and below the endemic

equilibrium is invariant. Along the i1 nullcline in A, di2/dt > 0 and along the i2 nullcline

in A, di1/dt > 0, which proves that the region A is invariant. The region to the right of and

above the endemic equilibrium, B, enclosed by the nullclines is also invariant with di2/dt <

0 along the i1 nullcline and di1/dt < 0 along the i2 nullcline. So, any solution trajectory

that tries to orbit around the endemic equilibrium will be ‘trapped’ in either region A or

region B and will approach the endemic equilibrium. Thus, no periodic solutions exist.

Since the solutions are bounded, we can use the Poincare-Bendixson Trichotomy to deduce

that all solution trajectories approach the infected coexistence equilibrium, and therefore

it is globally asymptotically stable in the region D+.

We note that the stability of the infected coexistence equilibrium of the proportions

model (3.5.26a)-(3.5.26b) inD+ need not guarantee the stability of the infected coexistence
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of the model (3.5.13a)-(3.5.13d) in D2 = {(i1, i2, N1, N2) ∈ R
4|0 ≤ i1, i2 ≤ 1, 0 ≤ Ni ≤

Kii, i = 1, 2}. However, if αi = 0 for i = 1, 2 then the conditions under which the

coexistence equilibrium (N̂1, N̂2), for the system of equations (3.5.13c) and (3.5.13d), is

globally stable in theN1−N2 plane do not depend on i1 and i2. Therefore, if these stability

conditions are met (namely ξ1 > 0, ξ2 > 0) then we can extend Theorem 3.5.7.1 to prove

global asymptotic stability of the DFE and the endemic equilibrium of the model (3.5.13a)-

(3.5.13d) in the domain D2 using the theory of asymptotically autonomous equations.

Theorem 3.5.7.2 Assume that αi = 0 for i = 1, 2 and ξ1 > 0, ξ2 > 0. Then, if RC
0 < 1

the disease free equilibrium E3 = (î31 = 0, î32 = 0, N̂3
1 = Ŝ3

1 , N̂
3
2 = Ŝ3

2) is globally asymptot-

ically stable in D̂2
+ = {(i1, i2, N1, N2) ∈ R

4|0 ≤ i1, i2 ≤ 1, 0 < Ni ≤ Kii, i = 1, 2} and if

RC
0 > 1 the infected coexistence equilibrium E6 = (î61, î

6
2, N̂

6
1 , N̂

6
2 ) is globally asymptotically

stable with initial conditions in the region D2
+ = {(i1, i2, N1, N2) ∈ R

4|0 < i1, i2 ≤ 1, 0 <

Ni ≤ Kii, i = 1, 2}.

Proof. Consider the non-autonomous system with equations (3.5.13a) - (3.5.13b) rewrit-

ten as:

di1
dt

= (1− i1)(β11i1 + β12i2)− a1i1

(
1− N1(t)

θ11
− N2(t)

θ12

)
, (3.5.35a)

di2
dt

= (1− i2)(β22i2 + β21i1)− a2i2

(
1− N2(t)

θ22
− N1(t)

θ21

)
, (3.5.35b)

in which Ni(t) is a solution of

dN1

dt
= a1N1

(
1− N1

θ11
− N2

θ12

)
− b1N1, (3.5.36a)

dN2

dt
= a2N2

(
1− N2

θ22
− N1

θ21

)
− b2N2. (3.5.36b)

We can write system (3.5.35a) - (3.5.35b) as

x′ = f(x, t) (3.5.37)

where x is the vector (i1, i2)
T , and the components of f are the right hand sides in (3.5.35a)

- (3.5.35b). The equilibrium of system (3.5.36a) - (3.5.36b) can be found independently
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of i1 and i2. Under the assumption ξ1 > 0, ξ2 > 0, the coexistence equilibrium (N̂6
1 =

Ŝ3
1 , N̂

6
2 = Ŝ3

2) of this system is locally (and globally) asymptotically stable independently

of i1 and i2 in its basin of attraction, D̂2
+. Hence, Ni(t) → N̂6

i as t→ ∞ in D̂2
+ for i = 1, 2.

We then substitute N̂6
1 into system (3.5.37) to get

di1
dt

= (1− i1)(β11i1 + β12i2)− a1i1

(
1− N̂1

1

θ11
− N̂1

2

θ12

)
, (3.5.38a)

di2
dt

= (1− i2)(β22i2 + β21i1)− a2i2

(
1− N̂1

2

θ22
− N̂1

1

θ21

)
. (3.5.38b)

Therefore, system (3.5.37) is an asymptotically autonomous system and has limit equa-

tions given by ((3.5.38a)-(3.5.38b)) which we can rewrite as

x′ = h(x) (3.5.39)

in the region D̂2
+.

We now consider two cases. For the first case we assume that RC
0 < 1. By Theorem

3.5.7.1, when N1 = N̂3
1 and N2 = N̂3

2 are at the (globally stable) coexistence equilibrium,

the disease free equilibrium for system (3.5.38a)-(3.5.38b) is unique and globally asymp-

totically stable in the region D. Therefore, by Theorem 4.1 from [138], the disease free

equilibrium for system (3.5.37) is also globally stable in the region D̂2
+.

For case two, assuming RC
0 > 1 we consider the endemic equilibrium corresponding

to (î61, î
6
2). Again, by Theorem 3.5.7.1 (which holds true when αk = 0, k = 1, 2), when N1

andN2 are at the (globally stable) coexistence equilibrium N̂6
1 = Ŝ3

1 , N̂
6
2 = Ŝ3

2 , the endemic

equilibrium for system (3.5.39) is unique and globally stable inD+. Therefore, by Theorem

4.1 from [138] , the endemic equilibrium for system (3.5.37) is globally asymptotically

stable in the region D2
+.
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3.5.8 Analysis of the Infected Coexistence Equilibrium Under Additional As-
sumptions

We will consider a special case in which the infected coexistence equilibrium is

given by an analytical formula. In this section, we derive an analytical expression for the

infected coexistence equilibrium of the two species model under additional assumptions.

Consequently we are able to perform a full stability analysis. We finish by comparing the

results of this special case with frequency incidence transmission with the results for the

special case with mass action [21].

We add the following additional assumptions to the model (3.3.10a)-(3.3.10d) de-

scribed in Section 3.3.2.

(A1) αi = 0, so that there is no increased death rate as a result of the disease.

(A2) a = a1 = a2, b = b1 = b2, θ = θ11 = θ22, and β = βij for all i, j = 1, 2. As before, let

r := a− b be the intrinsic growth rate for both the species. Also, K = K11 = K22 =

rθ
a , so the carrying capacity is the same for both species.

(A3) θ12 �= θ21 (in order to retain a difference between the species).

As before, we define Kij :=
rθij
a .

First, we compute the possible equilibria, in the form Ee = (Ŝe
1, Ŝ

e
2, Î

e
1 , Î

e
2), for the

competing two species SI model with frequency incidence disease transmission, (3.3.10a)-

(3.3.10d) under the additional assumptions (A1), (A2) and (A3). We then use the Jacobian

of our simplified model to establish stability conditions for all the equilibria. Finally we

compare our results to previous results for a mass action model.

The Jacobian for this simplified system computed at an equilibrium

Ee = (Ŝe
1, Ŝ

e
2, Î

e
1 , Î

e
2) is

J (Ee) =

⎡
⎣A(Ee) B(Ee)

C(Ee) D(Ee)

⎤
⎦ , (3.5.40)
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where, the 2× 2 matrices A, B, C, and D evaluated at an equilibrium Ee are defined as

A(Ee) =

⎡
⎢⎢⎢⎢⎣
A(Ee)− b− I(Ee) +

βŜe
1 Î

e
1

N̂ e
1

2 A12(Ee) +
βŜe

1 Î
e
2

N̂ e
2

2

B21(Ee) +
βŜe

2 Î
e
1

N̂ e
1

2 B(Ee)− b− I(Ee) +
βŜe

2 Î
e
2

N̂ e
2

2

⎤
⎥⎥⎥⎥⎦ , (3.5.41)

B(Ee) =

⎡
⎢⎢⎢⎢⎣
A(Ee)− βŜe

1

N̂ e
1

+
βŜe

1 Î
e
1

N̂ e
1

2 A12(Ee)− βŜe
1

N̂ e
2

+
βŜe

1 Î
e
2

N̂ e
2

2

B21(Ee)− βŜe
2

N̂ e
1

+
βŜe

2 Î1
e

N̂ e
1

2 B(Ee)− βŜe
2

N̂ e
2

+
βŜe

2 Î
e
2

N̂ e
2

2

⎤
⎥⎥⎥⎥⎦ , (3.5.42)

C(Ee) =

⎡
⎢⎣I(Ee)− βŜe

1 Î
e
1

N̂e
1

2 −βŜe
1 Î

e
2

N̂e
2

2

−βŜe
2 Î

e
1

N̂e
1

2 I(Ee)− βŜe
2 Î

e
2

N̂e
2

2

⎤
⎥⎦ , (3.5.43)

and

D(Ee) =

⎡
⎢⎣

βŜe
1

N̂e
1

− b− βŜe
1 Î

e
1

N̂e
1

2

βŜe
1

N̂e
2

− βŜe
1 Î

e
2

N̂e
2

2

βŜe
2

N̂e
1

− βŜe
2 Î1

N̂e
1

2

βŜe
2

N̂e
2

− b− βŜe
2 Î

e
2

N̂e
2

2

⎤
⎥⎦ . (3.5.44)

with the definitions

A(Ee) :=
−aN̂ e

1

θ
+ g1(N̂ e

1 , N̂
e
2 ), (3.5.45)

A12(Ee) :=
−aN̂ e

1

θ12
, (3.5.46)

B(Ee) :=
−aN̂ e

2

θ
+ g2(N̂ e

1 , N̂
e
2 ), (3.5.47)

B21(Ee) :=
−aN̂ e

2

θ21
. (3.5.48)

For i = 1, 2, we have N̂ e
i = Ŝe

i + Îei . We have the disease incidence function,

I(Ee) = β(
Îe1
N̂ e

1

+
Îe2
N̂ e

2

), (3.5.49)

(I1 = I2), and for i = 1, 2, the birth functions gi as defined in (3.3.2) (with θ = θ11 = θ22)

evaluated at Ee are given as

g1(Ee) = a

(
1− N̂ e

1

θ
− N̂ e

2

θ12

)
, (3.5.50a)

g2(Ee) = a

(
1− N̂ e

2

θ
− N̂ e

1

θ21

)
. (3.5.50b)
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The disease free coexistence equilibrium for the simplified model isE3 = (Ŝ3
1 , Ŝ

3
2 , 0, 0),

the same as in Section 3.4.4. Lemma 3.4.5.1 holds for the frequency incidence case as well.

Since the Jacobian J (E3) is block upper triangular, its eigenvalues are the same as

those of matrices A(E3) and D(E1). The matrix A(E3) is the Jacobian of the two species

model with pure competition, (3.2.7) evaluated at (NC
1 , N

C
2 ) (see Section 3.2.3) under the

assumptions (A2) and (A3). From Lemma 3.2.3.1, the eigenvalues of A(E3) are negative

if and only if the conditions

(C4) ξ1 > 0, and

(C5) ξ2 > 0,

hold. The matrix D(E3) on the other hand is related to the disease parameters and its

eigenvalues are λ31 = −b and λ32 = β

(
Ŝ3
1

N̂3
1

+
Ŝ3
2

N̂3
2

)
− b. The eigenvalue λ31 is always negative

and λ32 is negative under the condition

(C6) RC
0 =

2β

b
< 1.

So, the DFE E3 is feasible and stable if and only if the conditions (C4), (C5) and (C6)

hold.

We note that this result is a special case of Theorem 3.5.1.2 derived from the stability

results of the pure competition model. The condition (C6) is the analogue of the inequality

(3.4.5) for this special case.

3.5.9 The Infected Coexistence Equilibrium

Lastly, we consider the infected coexistence equilibrium E6. We only consider E6

since the disease free one-host equilibria (E1,E2) and infected one-host equilibria (E4, E5)

can be analyzed in the full system and easily extended to our simplifying assumptions.
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We can prove algebraically or by using software like MAPLE that E6 = (Ŝ6
1 , Ŝ

6
2 , Î

6
1 , Î

6
2 ),

with

Ŝ6
1 =

Ŝ1
1

RC
0

, (3.5.51)

Ŝ6
2 =

ξ1
ξ2
Ŝ6
1 (3.5.52)

Î61 = RC
0 − 1Ŝ6

1 , (3.5.53)

Î62 =
ξ1
ξ2
Î61 . (3.5.54)

Note that the total population size N̂6
i = Ŝ1

i , for i = 1, 2.

The characteristic polynomial of J (E6) is given as

P7(x) = (x+ η)(x + ε)(x2 + δ1x+ δ2), (3.5.55)

where

η = b+ β(
Î61

N̂6
1

+
Î62

N̂6
2

), (3.5.56)

ε = b+ β(
Î61

N̂6
1

+
Î62

N̂6
2

)− β(
Ŝ6
1

N̂6
1

+
Ŝ6
2

N̂6
2

), (3.5.57)

δ1 = −(A(E2) +B(E2)) + 2b, (3.5.58)

δ2 = −A12(E2)B21(E2) +A(E2)B(E2)− b(A(E2) +B(E2)) + b2, (3.5.59)

where for i = 1, 2, N̂6
i = Ŝ6

i + Î6i . The terms A,B,A12 and B21 as defined in (3.5.45)-

(3.5.48) are all evaluated at the infected coexistence equilibrium E6. Then, the eigenvalues

of the Jacobian J (E6) are

λ61 = −η = −b− β(
Î61

N̂6
1

+
Î62

N̂6
2

), (3.5.60)

λ62 = −ε = −b− β(
Î61

N̂6
1

+
Î62

N̂6
2

) + β(
Ŝ6
1

N̂6
1

+
Ŝ6
2

N̂6
2

), (3.5.61)

λ63,4 =
1

2

(
−δ1 ±

√
δ21 − 4δ2

)
. (3.5.62)
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Lemma 3.5.9.1 The condition that λ62 < 0 is equivalent to RC
0 > 1

Proof. From (3.5.51), (3.5.53) and using that

Ŝ6
1

N̂6
1

=
Ŝ6
2

N̂6
2

=
1

RC
0

and
Î61

N̂6
1

=
Î62

N̂6
2

=
RC

0 − 1

RC
0

we have

λ62 < 0

⇐⇒ −b− β(
Î61

N̂6
1

+
Î62

N̂6
2

) + β(
Ŝ6
1

N̂6
1

+
Ŝ6
2

N̂6
2

) < 0

⇐⇒ Ŝ6
1

N̂6
1

− Î61

N̂6
1

+
Ŝ6
2

N̂6
2

− Î62

N̂6
2

<
b

β

⇐⇒ 2

(
1

RC
0

− RC
0 − 1

RC
0

)
<

2

RC
0

from (C6)

⇐⇒ 2−RC
0

RC
0

<
1

RC
0

⇐⇒ RC
0 > 1.

Thus, RC
0 > 1 is both a feasibility and stability condition for the infected coexistence

equilibrium E6.

Lemma 3.4.7.4 holds for the frequency incidence case as well.

Theorem 3.5.9.1 Assume that ξ1/ξ2 > 0 so that the infected coexistence equilibrium E6

is feasible. Then E6 is stable if and only if ξ1 > 0, ξ2 > 0, and RC
0 > 1.

Proof. It is easy to see that λ61 given in (3.5.60) is negative for all Î61 + Î62 ≥ 0. Thus,

since the infected coexistence equilibrium E6 is feasible by assumption (ξ1/ξ2 > 0) we

have λ1 < 0. As a result of Lemma 3.5.9.1, the first condition for stability of E6 is
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(C8) RC
0 > 1

Since Î61 = (RC
0 − 1)Ŝ6

1 , the condition (C8) is also a feasibility condition for E6. From

Lemma 3.2.3.1, Lemma 3.4.7.4, and the Trace-Determinant theorem [6], we see that the

eigenvalues λ3 and λ4 are negative if and only if the conditions (C4) and (C5) are satisfied.

In this case all the other equilibria, i.e. E1, E2, E3, E4, and E5, are either infeasible

and/or unstable.

3.6 Conclusion and Discussion

The effects of a shared disease on the outcome of competition between two species

has been investigated by several authors in the ecological and mathematical ecology com-

munities. Although many papers propose and analyze mathematical models of Lotka-

Volterra competition between two species that share a common (generalist) pathogen,

some important cases are difficult to analyze. In particular, it has been difficult to find

existence and stability conditions of the infected coexistence equilibrium for these models.

In this chapter, we consider a competition model with density independent death rates and

a shared disease that spreads by either mass action or frequency incidence transmission.

For models with frequency incidence disease transmission, we prove the existence,

uniqueness and global stability of the infected coexistence equilibrium under the assump-

tion that coexistence of the species is feasible using the theory of asymptotically au-

tonomous systems. As is the case for most models with frequency incidence disease trans-

mission, the stability of the coexistence equilibrium depends on the basic reproduction

number (BRN) being greater than one. Thus, the frequency incidence disease model ex-

hibits the classic endemic model behavior; the disease dies out below a threshold and

approaches an endemic equilibrium above the threshold.
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The infected coexistence equilibrium for the model with mass action disease trans-

mission is intractable. Hence, we simplify the model by assuming that the two species

are similar enough to have the same intra-specific competition rates and to transmit the

disease to each other at the same rates. We also assume that the pathogen does not cause

death in its hosts, as with the common cold in humans, for example. Under these con-

straints, we derive all the existence and stability conditions for the equilibria of the mass

action disease model. We prove that a conjecture made in [73, 26, 17] about the infected

coexistence equilibrium holds for our simplified model. In particular, we show that the

conditions under which infected coexistence is stable guarantee that all other equilibria are

unstable and vice versa. In addition, we also show that under the simplifying assumptions,

the qualitative behavior of the model with mass action disease transmission is identical to

the model with frequency incidence disease transmission.

In the case of mass action disease transmission we show in [21] that, if the death

rate due to disease is positive, then disease can reduce the total equilibrium density for

each species in isolation [21]. This in turn affects competitive ability indirectly (apparent

competition), and is another indication that in the presence of disease, the competitive

outcome can change. We hypothesize that one of the driving forces behind the possible

switch of competitive outcomes and the difficulty of analysis of the full model is death due

to disease. This force may be magnified by differing rates of transmission between and

within species. In our simplified mass action model there is negligible death due to disease

and no significant difference between transmission rates. Analysis of this simplified model

is tractable and we determine that the presence of disease does not change the competitive

outcome of the disease free case.
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4 PERSISTENCE OF DISEASE IN TWO COMPETING SPECIES

4.1 Introduction

A question often asked when analyzing models for population dynamics and/or

disease spread is whether or not coexistence of multiple interacting species, or coexistence

of host species along with a pathogen is possible, or whether a population will persist under

certain scenarios. For some cases, this can be accomplished by analyzing the equilibria of

a model and the conditions for stability of those equilibria. More generally, though, we

can ask if the variables or particular subgroups of the variables of a model are bounded

strictly away from zero so that even if exact equilibrial values are unknown, we can predict

persistence of variables in the system with some certainty. Here, we determine conditions

for the persistence of both the pathogen and the species represented in our model. The

persistence of disease in multi-host systems is important because both invasivity of a

pathogen, the ability to invade a new system, and endemicity of a pathogen, the ability

to persist in a system, can depend upon variation in host composition and environment.

Additionally, emerging diseases can play an important role in the success of invasive species

and can facilitate either coexistence or competitive exclusion.

We consider the particular case of two competing species susceptible to a common

generalist pathogen or parasite that is spread directly by mass action transmission. Per-

sistence theory is useful in this case because the interior equilibria for the full model for

competition and a directly transmitted pathogen is intractable. Hence, it is difficult to

prove stability of any interior equilibria. We can, however, prove that particular compo-

nents of the system are eventually bounded below by a number strictly greater than zero.

Often, showing a population is strongly uniformly persistent involves showing that the

boundary of the system, where at least one component is zero, is a repeller for the dynam-

ical system modeling the population(s). A nice exposition of population persistence can



85

be found in [137]. Using this theory long term coexistence and/or pathogen persistence

can be proved even if explicit formulae for equilibria are unavailable. In this chapter, we

use persistence theory to obtain conditions under which a directly transmitted pathogen

affecting two host species will always persist and under which both species will coexist.

The authors of [30] explore the acyclicity boundary flow approach to determining

persistence in the context of dynamical systems. In [148] and [52], the Lyapunov method

of determining persistence in addition to analysis of the boundary flow and acyclicity are

analyzed. Thieme [139] proves several important theorems about persistence and applies

the theory to an epidemic model, determining conditions for persistence of the host and

the pathogen. The authors of [45] use persistence theory to analyze a model for HIV while

in [46] the authors prove coexistence of vertically and horizontally transmitted pathogen

strains using persistence theory. All of these papers focused on coexistence of competing

species or persistence of disease in a one species model.

Han and Pugliese [61] examined a model similar to ours with competition between

two species that share a common pathogen. They proved conditions under which both

species and the pathogen persist. Their model has density-dependent birth terms and

competition in the death terms. Our model, on the other had, includes density-dependence

and competition in the birth term while assuming a constant death rate.

4.2 Background

Let X be a metric space with metric d and let X1 ∪X2 = X, X1 ∩X2 = ∅. Let Φ

be a continuous semiflow on X with Φ(t, x) = Φt(x). Recall that d(x, Y ) = infy∈Y d(x, y)

where x ∈ R
n and Y ⊂ R

n.

Definition 4.2.0.1 A compact invariant set M ⊆ Y ⊆ X is an isolated compact invari-

ant set in Y if there exists an open subset U ⊆ X such that there is no invariant set M̃
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with M ⊆ M̃ ⊆ U ∩ Y except M itself. A neighborhood V of M is called an isolating

neighborhood of M in X if every compact invariant set K ⊂ V is a subset of M ; in this

case, M is isolated.

Define

Ω2 =
⋃
x∈Y2

ω(x) with Y2 = {x ∈ X2 : Φt(x) ∈ X2,∀t > 0}. (4.2.1)

If Ω2 has a finite covering, Ω2 ⊆ M = ∪m
k=1Mk ⊂ Y , then M is isolated in Y if the sets

Mk are pairwise disjoint subsets which are isolated compact invariant sets in Y . Often,

assumptions about an isolated covering are made to show a kind of “hyperbolicity” so that

invariant sets aren’t accumulating on the boundary resulting in the possibility of cycles

that begin on the interior but move arbitrarily close to the boundary with time [148]. In

fact, hyperbolic equilibria are isolated [137].

Definition 4.2.0.2 A set M ⊂ Y is chained in Y to a not necessarily different set

N ⊂ Y (denoted M �→ N) if there exists some y ∈ Y , y /∈M ∪N and a full orbit through

y in Y whose ω-limit set is contained in N and whose α-limit set is contained in M .

In this chapter, we will use the idea of chained sets in the context of equilibria for a system

of ordinary differential equations (ODEs) in Y . In that context, an equilibrium x∗ ∈ Y is

chained to an equilibrium y∗ ∈ Y if there exists a solution trajectory x(t) defined for all

t ∈ R with all its values in Y such that x(t) → x∗ as t → −∞ and x(t) → y∗ as t → ∞
and there is some t such that x(t) �= y∗, x(t) �= x∗ [46].

Definition 4.2.0.3 A finite covering M ⊂ Y with m elements is cyclic in Y if, after

possible renumbering, M1 �→ M2 �→ . . . �→ Mk �→ M1 for k ∈ {1, . . . ,m}. The finite

covering M is acyclic if it is not cyclic.

Definition 4.2.0.4 For Y2 ⊂ X2, Y2 is called a weak repeller for X1 if

lim sup
t→∞

d(Φt(x1), Y2) > 0, ∀x1 ∈ X1.
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It is a uniform weak repeller if there exists ε > 0 such that

lim sup
t→∞

d(Φt(x1), Y2) > ε, ∀x1 ∈ X1.

One practical way to test whether or not a set Y2 is a weak repeller of X1 is to examine

its stable manifold, W s(Y2); if W
s(Y2) ∩X1 = ∅ then Y2 is a weak repeller [45, 52, 127].

Alternatively, a set Y2 is a weak repeller for X1 if there is no x ∈ X1 such that ω(x) ⊂ Y2

[52]. In the context of population dynamics and disease, in general, if the per-capita

growth rate of the applicable variable linearized around Y2 with initial conditions in X1

is positive, then Y2 is a weak repeller [31].

Definition 4.2.0.5 Y2 is a strong repeller for X1 if

lim inf
t→∞ d(Φt(x1), Y2) > 0, ∀x1 ∈ X1

and is a uniform strong repeller if there exists ε > 0 such that

lim inf
t→∞ d(Φt(x1), Y2) > ε, ∀x1 ∈ X1.

If X2, or the boundary with respect to a particular variable or variables, is a uniform

strong repeller for X1 as defined appropriately, then the variable (or variables) are said

to be uniformly strongly persistent. Thieme [139] uses the following two theorems to

prove strong uniform persistence under certain conditions.

Theorem 4.2.0.2 (Theorem 1.3 [139]): Let X be a locally compact metric space with

metric d and let X be the union of two disjoint sets X1 and X2 with X2 compact. Let Φ

be a continuous semiflow on X1. Then if X2 is a uniform weak repeller for X1 it is also

a uniform strong repeller for X1.

Theorem 4.2.0.3 (Theorem 4.4 [139]): Let X be a locally compact metric space. Let X1

be an open set that is forward invariant under the continuous semiflow Φ on X. Assume

that Ω2 as defined in equation (4.2.1) has an isolated acyclic covering M = ∪m
k=1Mk with

each Mk a weak repeller for X1. Then X2 is a uniform weak repeller for X1.
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The following theorem is used to show that a set is a uniform strong repeller.

Theorem 4.2.0.4 (Theorem 4.5 [139]): Let X be locally compact and let X1 be forward

invariant under the continuous semiflow Φ on X and X2 be compact in X. Assume that

Ω2 as defined in (4.2.1) has an acyclic isolated covering M = ∪m
k=1Mk with each Mk a

weak repeller for X1. Then X2 is a uniform strong repeller for X1.

Proof. By Theorem 4.2.0.3, we know that X2 is a uniform weak repeller for X1. Hence

by Theorem 4.2.0.2, X2 is a uniform strong repeller for X1.

The following theorem is used (by way of contradiction) to show a set is a uniform

strong repeller when the assumptions of Theorem 4.2.0.4 are not met.

Theorem 4.2.0.5 (Proposition 4.3 [139]): Let X be locally compact, X2 compact in X,

and X1 forward invariant as in Theorem 4.2.0.4. Let {xn} be a sequence of elements in

X1 with lim supt→∞ d(Φt(xn),X2) → 0, n → ∞. Let M = ∪m
k=1Mk be an isolated covering

of Ω2 such that ω(xn) �⊆Mk for all n, k. Then M is cyclic.

4.3 Classic Example

Consider the three species Lotka-Volterra competition model

dx1
dt

= x1f1(x1, x2, x3) (4.3.1)

dx2
dt

= x2f2(x1, x2, x3) (4.3.2)

dx3
dt

= x3f3(x1, x2, x3) (4.3.3)

with fi ∈ C1. We assume that each species alone exhibits logistic type growth so that

∂fi
∂xj

< 0 for i �= j and there exists a carrying capacity, Ki, such that when xi = Ki and
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xj = 0 for i �= j then fi = 0 and ∂fi
∂xi

< 0. This model makes ecological and mathematical

sense on the domain X = {(x1, x2, x3) : 0 ≤ xi ≤ Ki, i = 1, 2, 3}.

Let X2 = {(x1, x2, x3)|x1 = 0 or x2 = 0 or x3 = 0} and let X1 = X \ X2. The

boundary, X2, is forward invariant with respect to the flow, as is X1. We assume that x1

out-competes x3, x3 out-competes x2, and f3(x
∗
1, x

∗
2, 0) > 0. Then, there are exactly five

boundary equilibria in X2: E0 = (0, 0, 0), E1 = (K1, 0, 0), E2 = (0,K2, 0), E3 = (0, 0,K3),

and E∗ = (x∗1, x∗2, 0). Now suppose that all the equilibria are hyperbolic, hence isolated,

i.e., one can find a neighborhood of each of the equilibria within which no other invariant

set lies. The equilibrium E0 is a weak repeller of X1 since each species grows exponentially

when close enough to zero. In the x1 − x2 plane, E∗ is a global attractor. On the xj line,

Ej is an attractor for j = 1, 2, 3, in the x2−x3 plane E3 is an attractor and on the x1−x3
plane E1 is an attractor. So none of the boundary equilibria are chained to themselves.

Since E0 is a universal repeller there is no cycle containing E0. Since E∗ is the global

attractor in the x1 − x2 plane and both E1 and E2 are unstable, there is no cycle in the

x1 − x2 plane nor is there a cycle containing the equilibria on the x1 − x2 plane. Hence,

M = {E0} ∪ {E1} ∪ {E2} ∪ {E3} ∪ {E∗} is acyclic.

The per-capita growth rate of x3 near E∗, f3(E∗) is positive, hence E∗ is a weak

repeller for X1. Near E1, x2 will have a positive per-capita growth rate (by global stability

of E∗ in x1 − x2 plane) and near E2, x3 will have a positive per-capita growth rate since

x3 out-competes x2, so both E1 and E2 are weak repellers of X1. Near E3, we know that

x1 has a positive per-capita growth rate since it out-competes x3. Hence, the boundary

equilibria form an isolated acyclic covering for Ω2 as defined in (4.2.1) and each of them

is a weak repeller for X1. Therefore, X2 is a uniform strong repeller for X1 by Theorem

4.2.0.4. This means that all three species coexist and are strongly uniformly persistent.

Now, consider the case where E∗ does not exist and where x1 out-competes x3, x3

out-competes x2, and x2 out-competes x1. For example, consider the May-Leonard model
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[97]

dx1
dt

= x1(1− x1 − αx2 − βx3)

dx2
dt

= x2(1− βx1 − x2 − αx3)

dx3
dt

= x3(1− αx1 − βx2 − x3)

where 0 < β < 1 < α and α + β > 2. The only equilibria in X2 are E0, E1, E2, and

E3, all of which are still weak repellers for X1 and are still isolated. However they do

not form an acyclic covering because there is a heteroclinic cycle E1 �→ E2 �→ E3 �→ E1.

In this case, X2 is not a uniform strong repeller for X1. In fact, lim supt→∞ xi(t) = 1

and lim inft→∞ xi(t) = 0. The interior equilibrium is unstable in this case, so for any

strictly interior initial conditions x0, the orbit will cycle out toward the heteroclinic cycle

connecting E1, E2, and E3 (see Figures 4.1 and 4.2). In fact the ω-limit set, ω(x0) is

E1 ∪E2 ∪ E3, [131].

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xy

z

FIGURE 4.1: Orbit for May-Leonard competition with α = 0.7, β = 1.4 and the x axis is
x1, y-axis is x2 and z-axis is x3.
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FIGURE 4.2: Time series for x1 from Figure 4.1. Notice that the time spent very close
to zero gets longer as time increases.

4.4 Competition and Disease Model with Mass Action Incidence

We will now consider the general model in Chapter 2 with Lotka-Volterra competi-

tion and mass action transmission of disease between two species in the context of strong

uniform persistence. For ease of computation in the proofs, the model (3.3.4)-(3.3.7) can

be re-written in terms of infected proportions ik and total populations Nk, k = 1, 2, as

di1
dt

=

(
β11(1− i1)N1 − r1

(
1− N1

K11
− N2

K12

)
− (b1 + α1) + α1i1

)
i1 + β12(1− i1)i2N2

(4.4.1)

di2
dt

=

(
β22(1− i2)N2 − r2

(
1− N2

K22
− N1

K21

)
− (b2 + α2) + α2i2

)
i2 + β21(1− i2)i1N1

(4.4.2)

dN1

dt
=

(
r1

(
1− N1

K11
− N2

K12

)
− α1i1

)
N1 (4.4.3)

dN2

dt
=

(
r2

(
1− N2

K22
− N1

K21

)
− α2i2

)
N2. (4.4.4)
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where ik = Ik/Nk for k = 1, 2. This system is well defined and ecologically relevant on

the space X = {(i1, N1, i2, N2) : 0 ≤ il ≤ 1, 0 ≤ Nl ≤ Kll, l = 1, 2}.

When i1, i2 = 0, equations (4.4.3)-(4.4.4) reduce to the two species Lotka-Volterra

competition model. The disease free equilibria are E0 = (0, 0, 0, 0), E1 = (0,K11, 0, 0),

E2 = (0, 0, 0,K22), and E3 = (0,K∗
1 , 0,K

∗
2 ) where Kij = riθij/ai and K∗

i are defined

in equation (3.2.8) as K∗
1 =

K11K12

K12 +K11(ξ1/ξ2)
,K∗

2 =
ξ1
ξ2
K∗

1 . Stability of the resulting

disease free equilibria can be determined by the parameters ξ1 = 1/K11 − 1/K21 and

ξ2 = 1/K22 − 1/K12 as defined in (3.2.9) and seen in Section 3.4, and by R1
0, R2

0, and RC
0

as in equations (3.4.13), (3.4.14), and (3.4.3). The sign of ξ1 is determined directly by the

per-capita growth rate of species 2 near (linearized around) the equilibrium E1 and the

sign of ξ2 is determined by the per-capita growth rate of species 1 linearized around the

equilibrium E2.

We re-frame the conditions for stability of the infected one host equilibria in terms

of the proportions model (4.4.1)-(4.4.4). The infected one host equilibrium for species 2

is E5 = (Q∗
1, 0, i

∗
2, N

∗
2 ) where Q

∗
1 is the smallest root (only root in the interval (0, 1)) of

α1Z
2 −

(
β12

(
N∗

2 − Γ2

β22

)
+ r1

(
1− N∗

2

K12

)
+ Γ1

)
Z + β12

(
N∗

2 − Γ2

β22

)
= 0, (4.4.5)

N∗
2 = K22(1− α2i

∗
2

r2
), and i∗2 is the smallest root (only root in the interval (0, 1)) of

α2

r2
Z2 − (1 +

α2

r2
)Z +

R2
0 − 1

R2
0

= 0. (4.4.6)

Because competition affects only the birth rates in our model, equations (4.4.1)-(4.4.2),

(4.4.5), and (4.4.6) are different from those in [61] for which competition affects the death

rate only. Equations (4.4.1)-(4.4.2) replace the terms −(bi − airiNi/Ki) in [61] with

−ri(1 − Ni/Kii − Nj/Kij) for i �= j. Equation (4.4.5) adds the term, not present in the

Han-Pugliese model [61], r1(1 − N∗
2 /K12) to the Z coefficient. Finally, equation (4.4.6)

differs by adding the term α2/r2 to the Z coefficient. We note that the equilibrium

E5 = (Q∗
1, 0, i

∗
2, N

∗
2 ) corresponds to E5 in (3.4.29) so i∗2N∗

2 = I∗2 = Î52 (see Lemma 4.4.0.2).
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The Jacobian of the system at equilibrium E5 = (Q∗
1, 0, i

∗
2, N

∗
2 ) is

J (E5) =

⎡
⎣A B

C D

⎤
⎦ (4.4.7)

where

B =

⎡
⎣β12(1−Q∗

1)N
∗
2

r1
K12

Q∗
1 + β12(1−Q∗

1)i
∗
2

0 0

⎤
⎦ , (4.4.8)

C =

⎡
⎣0 r2

K21
i∗2 + β21(1− i∗2)Q∗

1

0 −r2
K21

N∗
2

⎤
⎦ , (4.4.9)

A =

⎡
⎣−r1(1− N∗

2
K12

)− Γ1 + 2α1Q
∗
1 − β12i

∗
2N

∗
2 β11(1−Q∗

1)Q
∗
1 +

r1
K11

Q∗
1

0 r1(1− N∗
2

K12
)− α1Q

∗
1

⎤
⎦ , (4.4.10)

and where

D =

⎡
⎣β22(1− 2i∗2)N∗

2 − r2(1− N∗
2

K22
)− Γ2 + 2α1i

∗
2 β22(1− i∗2)i∗2 +

r2
K22

i∗2

−α2N
∗
2 r2(1− N∗

2
K22

)− α2i
∗
2 − r2

K22
N∗

2

⎤
⎦ .

(4.4.11)

The eigenvalues of the Jacobian of (4.4.1)-(4.4.4) evaluated at E5 are the same as those

for the matrices A and D. The eigenvalues of D are negative if R2
0 > 1 since it is the

same as the Jacobian for species 2 alone with the pathogen. The eigenvalues of A are

λ21 = r1(1−N∗
2 /K12)−α1Q

∗
1 and λ22 = −Γ1 +2α1Q

∗
1 − β12i

∗
2N

∗
2 − r1(1−N∗

2 /K12). Using

the definition of Q∗
1 one can show that λ22 is always negative (Lemma 4.4.0.3). Hence

necessary and sufficient conditions for stability of E5 are R2
0 > 1 and

κ1 = λ21 = r1(1−N∗
2 /K12)− α1Q

∗
1 < 0. (4.4.12)

This condition guarantees that the per capita growth rate of species 1 at E5 is negative

so species 1 cannot “invade” species 2 at equilibrium.

Lemma 4.4.0.2 The equilibrium E5 corresponds to the one-host infected equilibrium for

species 2 in the non-proportions model (3.3.4)-(3.3.7), i.e. i∗2N∗
2 = I∗2 = Î52 .
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Proof. First,

i∗2 =
r2
α2

1

2

⎛
⎝1 +

α2

r2
−
√(

1 +
α2

r2

)2

− 4
α2

r2

(R2
0 − 1

R2
0

)⎞⎠
and

N∗
2 = K22(1− α2i

∗
2

r2
) =

K22

2

⎛
⎝1− α2

r2
+

√(
1 +

α2

r2

)2

− 4
α2

r2

(R2
0 − 1

R2
0

)⎞⎠ .

Let G = (1 + α2
r2
)2 − 4α2

r2
(
R2

0−1

R2
0
). Then,

N∗
2 i

∗
2 =

K22

2

(
1− α2

r2
+

√
G

)
r2
α2

1

2

(
1 +

α2

r2
−

√
G

)
(4.4.13)

=
K22

4

(
r2
α2

− α2

r2
+ 2

√
G− r2

α2

(
(1 +

α2

r2
)2 − 4

α2

r2
(
R2

0 − 1

R2
0

)

))
(4.4.14)

=
K22

4

(
4(
R2

0 − 1

R2
0

)− 2− 2α2

r2
+ 2

√
G

)
(4.4.15)

=
K22

2

(
1− α2

r2
− 2

R2
0

+
√
G

)
(4.4.16)

and using that I∗2 = Î52 =
I∗5
β22

with I∗5 the largest root of the quadratic polynomial

P5(Z) = Z2 + 2Γ2

(
1− R2

0λ2
2

)
Z + Γ2

2

(
1−R2

0

)
with λ2 :=

r2 − α2

r2
,

I∗2 =
−Γ2

β22
− Γ2

β22

R2
0

2

(
α2 − r2
r2

)
(4.4.17)

+
1

2β22

√
4Γ2

2(R2
0)

2

(
α2 − r2
r2

)
+ 4Γ2

2

(R2
0)

2

4

(
α2 − r2
r2

)2

+ 4Γ2
2R2

0 (4.4.18)

=
K22

2

(
1− α2

r2
− 2

R2
0

+

√
(1− α2

r2
)2 +

4α2

R2
0r2

)
. (4.4.19)

Since
√

(1− α2
r2
)2 + 4α2

R2
0r2

=
√
G, we have that I∗2 = i∗2N∗

2 .

Lemma 4.4.0.3 λ22 = −Γ1+2α1Q
∗
1−β12i∗2N∗

2 −r1(1−N∗
2 /K12) is always negative under

the assumptions of model (4.4.1)-(4.4.4).
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Proof. Using the definitions of Q∗
1, we know

λ22 < 0

⇔− Γ1 + 2α1Q
∗
1 − β12i

∗
2N

∗
2 − r1(1−N∗

2 /K12) < 0

⇔2α1Q
∗
1 < β12I

∗
2 + r1(1 −N∗

2 /K12) + Γ1

⇔Γ1 + r1(1−N∗
2 /K12) + β12(N

∗
2 − Γ2/β22)−

√
B2 − 4AC < β12I

∗
2 + r1(1−N∗

2 /K12) + Γ1

⇔−
√
B2 − 4AC < 0

where A = α1, B = β12

(
N∗

2 − Γ2
β22

)
+ r1

(
1− N∗

2
K12

)
+ Γ1, and C = β12

(
N∗

2 − Γ2
β22

)
and

where I∗2 = i∗2N
∗
2 = N∗

2 − Γ2/β22. Note that B2 − 4AC > 0 is easily shown with algebra.

Similarly, the infected one host equilibrium for species 1, E4 = (i∗1, N∗
1 , Q

∗
2, 0) cor-

responding to E4 in (3.4.15) is stable when R1
0 > 1 and a condition analogous to (4.4.12)

holds, i.e.,

κ2 = λ11 = r2(1−N∗
1 /K21)− α2Q

∗
2 < 0. (4.4.20)

This condition guarantees that the per capita growth rate of species 2 at E4 is negative

so species 2 is cannot “invade” species 1 at equilibrium.

4.5 Strong Uniform Persistence of the Hosts and Pathogen

First we show that for this model, at least one of the species will survive, i.e. not

go extinct, for all nonnegative parameters.

Theorem 4.5.0.6 For system (4.4.1)-(4.4.4) with N1(0) > 0 and N2(0) > 0, at least one

of N1 or N2 is uniformly strongly persistent, i.e. there exists ε > 0 such that for any solu-

tion x(t) = (i1(t), N1(t), i2(t), N2(t)) of (4.4.1)-(4.4.4), lim inft→∞max{N1(t), N2(t)} > ε.
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Parameter Description

ξ1 measure of intra- versus inter-specific effects exerted by species 1

ξ2 measure of intra- versus inter-specific effects exerted by species 2

κ1 per capita growth rate of species 1 at species 2 infected 1-host equilibrium

κ2 per capita growth rate of species 2 at species 1 infected 1-host equilibrium

R1
0 basic reproduction number for the pathogen in species 1 alone

R2
0 basic reproduction number for the pathogen in species 2 alone

RC
0 basic reproduction number for the pathogen when both species are present

TABLE 4.1: Summary of important parameters and their ecological relevance.

ξ1 ξ2 R1
0 κ2 R2

0 κ1 RC
0 Equilibrium

− + < 1 (0, N∗
1 , 0, 0)

+ − < 1 (0, 0, 0, N∗
2 )

+ + < 1 (0, N∗
1 , 0, N

∗
2 )

− + > 1 − (i∗1, N
∗
1 , Q

∗
2, 0)

+ − > 1 − (Q∗
1, 0, N

∗
2 , i

∗
2)

TABLE 4.2: Conditions for stability of the disease-free and one-host infected equilibria. The

values listed in the Equilibrium column are the non-zero variables at equilibrium. Variables not

listed are zero.
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Proof. Define X2 = {(i1, N1, i2, N2) : 0 ≤ il ≤ 1, Nl = 0, l = 1, 2} and let X1 = X \X2.

Then both X1 and X2 are forward invariant with respect to the semiflow Φ induced by

(4.4.1)-(4.4.4). Also, Ω2 is defined in equation (4.2.1) and M = {(0, 0, 0, 0)} = E0 is a

finite covering for Ω2 and E0 is trivially isolated in X and acyclic in X2. It remains to

show that E0 is a weak repeller of X1. We consider the flow in X1 near E0 and assume

that i1, N1, i2, and N2 are close enough to zero that quadratic terms can be neglected, i.e.

we linearize the flow around E0. Then,

dN1

dt
= r1N1

dN2

dt
= r2N2

so that either N1 or N2 or both (depending on initial conditions) are growing exponentially

when close enough to E0, hence E0 is a weak repeller of X1. Now, since X2 is compact in

X, by Theorem 4.2.0.4 we know that X2 is a uniform strong repeller for X1, which implies

at least one of N1 or N2 is strongly uniformly persistent.

The next theorem gives conditions under which species 1 will persist uniformly

strongly in the system. A similar theorem holds for species 2 with the indices switched.

Theorem 4.5.0.7 If ξ2 > 0 and either (1) R2
0 ≤ 1 or (2) R2

0 > 1 and κ1 > 0 (as

defined in (4.4.12)), then N1 persists uniformly strongly, i.e. there exists ε > 0 such that

lim inft→∞N1(t) > ε with initial conditions N1(0) > 0.

Proof. Define X2 = {(i1, N1, i2, N2) : 0 ≤ il ≤ 1, 0 ≤ N2 ≤ K22, N1 = 0, l = 1, 2} and

let X1 = X \ X2. X2 is compact in X and X1 is forward invariant. Note that if initial

conditions for N1 (or N2) are positive then the solution to equations (4.4.3)-(4.4.4) for N1

(or N2), respectively, will be positive for all time. Consider the following two cases:

Case 1: Let ξ2 > 0 and R2
0 ≤ 1. Then, the solutions that start in X2 and remain

in X2 will converge to one of E0 or E2 = (0, 0, 0,K2) (in this case, E5 = (Q∗
1, 0, i

∗
2, N

∗
2 ) is

not feasible). For X2 ∩ {N2 = 0}, the solution x(t) tends to E0, but for X2 ∩ {N2 > 0},
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x(t) converges to E2 as t → ∞. Because of this, neither E0 nor E2 is chained to itself,

i.e. there is no y ∈ X2, y �= E0(or E2) such that ω(y) is E0(or E2) and α(y) is E0(or E2).

Also, E0 and E2 are not chained to each other in a cyclic way because this would require

a y ∈ X2, y �= E0, y �= E2 with ω(y) = E0 and α(y) = E2, which is clearly not possible.

So, M = {E0} ∪ {E2} is an acyclic covering for Ω2 as defined in equation (4.2.1).

We will now show that E0 and E2 are weak repellers for X1. By the same argument

as in Theorem 4.5.0.6, E0 is a weak repeller for X1. If we linearize the flow around E2

assuming N1(0) > 0, then
dN1

dt
= r1

(
1− K22

K12

)
N1. (4.5.1)

Since ξ2 > 0, then K12 > K22 and the right hand side of equation (4.5.1) is positive.

Hence, E2 is also a weak repeller for X1. Also, both E0 and E2 are isolated since the

growth rate of N1 is positive near both of them in X1 and since E0 is a repeller and E2

an attractor in X2. Hence, by Theorem 4.2.0.4, X2 is a uniform strong repeller for X1.

Case 2: Let ξ2 > 0, R2
0 > 1 and κ1 > 0. Solutions that start in X2 and remain in X2

for all time will converge to one of E0, E2, and E5 (which is now feasible and stable). The

same analysis for E0 holds as in Case 1. For X2 ∩{i2 = i1 = 0, N2 > 0}, x(t) converges to
E2 and for X2 ∩ {i2 > 0 or i1 > 0, N2 > 0}, x(t) converges to E5 as t→ ∞ since R2

0 > 1.

Thus, neither E0, E2, nor E5 can be chained to itself in X2. They are also not chained

to each other in a cyclic way because this would require a y ∈ X2 with y �= E0, E2(or E5)

and ω(y) = E0, or would require y ∈ X2 with y �= E2, E5 and α(y) = E5 while ω(y) = E2,

neither of which is not possible. So, M = {E0} ∪ {E2} ∪ {E5} is an acyclic covering for

Ω2.

By similar arguments as in Case 1, both E0 and E2 are weak repellers for X1. To

show E5 is a weak repeller, linearize the flow around E5 and consider initial conditions in

X1 to get
dN1

dt
= (r1

(
1− N∗

2

K12

)
− α1Q

∗
1)N1 (4.5.2)
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However, κ1 > 0 holding implies that the right hand side of equation (4.5.2) is positive,

hence E5 is a weak repeller for X1 as well. Also, E0, E2, and E5 are isolated since any

flow close enough to one of them will either be moving away or toward it in at least one

component. Therefore, by Theorem 4.2.0.4, X2 is a uniform strong repeller for X1.

A similar theorem holds for species 2 with the indices switched.

Theorem 4.5.0.8 If ξ1 > 0 and either (1) R1
0 ≤ 1 or (2) R1

0 > 1 and κ2 > 0 (as

defined in (4.4.20)), then N2 persists uniformly strongly, i.e. there exists ε > 0 such that

lim inft→∞N2(t) > ε with initial conditions N2(0) > 0.

Proof. The proof is analogous to Theorem 4.5.0.7.

Now that we have shown that at least one species will persist uniformly strongly

and found conditions under which a particular species is strongly uniformly persistent,

we will prove that the disease persists uniformly strongly under certain conditions. The

following proofs use similar methods as those in Proposition 1.2 of [139] and Theorem 4.7

in [61].

Theorem 4.5.0.9 If ξ2 < 0, ξ1 > 0, and R2
0 > 1 then for initial conditions N1(0), N2(0) >

0 and i1(0) > 0 or i2(0) > 0 the disease persists uniformly strongly, i.e. there exists ε > 0

such that lim inft→∞min{i1(t), i2(t)} > ε.

Proof. Let X2 = {(i1, N1, i2, N2) : i1 = 0 or i2 = 0, 0 ≤ Nl ≤ Kll, l = 1, 2} and let

X1 = X \X2. Also, let X̃1 = {(i1, N1, i2, N2) : 0 < il ≤ 1, 0 < Nl ≤ Kll, l = 1, 2}. Notice

that both X1 and X̃1 are forward invariant. Three equilibria, E0, E1, and E2, form a

covering for Ω2 (defined as usual). As before, these equilibria are not chained to themselves

or each other in a cyclic way inX2, soM = {E0}∪{E1}∪{E2} is in fact an acyclic covering

for Ω2. E0 is isolated and a weak repeller for X̃1. For X2 ∩ {N2 = 0, N1 > 0; i1 = i2 = 0},
the solution x(t) tends toward E1 while for X2 ∩{N2 > 0, N1 ≥ 0; i1 = i2 = 0}, x(t) tends
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toward E2. When the flow is linearized around E1, N2 grows exponentially since ξ1 > 0,

so E1 is also an isolated weak repeller for X̃1. Next consider the flow of i2 linearized

around E2,
di2
dt

= (β22K22 − (b2 + α2))i2.

Since R2
0 = β22K22

b2+α2
> 1 then i2 is growing exponentially near E2 and E2 is isolated and a

weak repeller for X̃1. Notice that the conditions of Theorem 4.2.0.4 are not met by our

assumptions since we want X2 to repel X̃1 and X2 ∪ X̃1 �= X, so other methods must be

used. For the remainder of the proof, we first show that X2 is a uniform weak repeller

for X̃1. We then use this to prove that X2 is a uniform strong repeller for X̃1 by way of

contradiction.

First we show that X2 is a uniform weak repeller for X̃1 so that there exists an

0 < ε̃, chosen so that ε̃ < min(Q∗
1, Q

∗
2, i

∗
1, i

∗
2), such that

lim sup
t→∞

min{i1(t), i2(t)} > ε̃ (4.5.3)

for any solution x(t) with initial conditions N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.

Assume X2 is not a uniform weak repeller for X̃1. Then there exists a sequence xn =

(i1,n, N1,n, i2,n, N2,n) ∈ X̃1 such that lim supt→∞ d(Φt(xn),X2) → 0 as n→ ∞. Since each

of E0, E1, and E2 is a weak repeller for X̃1, then we know that ω(xn) �⊂ M . Then the

assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X2 is a uniform weak repeller for X̃1.

Now we will show thatX2 is a uniform strong repeller for X̃1 by way of contradiction.

Suppose that X2 is not a uniform strong repeller for X̃1. Then, there exists no ε > 0 such

that lim inf t→∞min{i1,j(t), i2,j(t)} > ε thus there exists a sequence of initial conditions,

x0j = (i1,j(0), N1,j(0), i2,j(0), N2,j(0)) ∈ X̃1, and a sequence 0 < εj < ε̃ such that

lim inf
t→∞ min{i1,j(t), i2,j(t)} < εj for j = 1, 2, · · · (4.5.4)

where limj→∞ εj = 0 and where i1,j(t), N1,j(t), i2,j(t), and N2,j(t) are solutions with initial

values x0j ∈ X̃1. By equations (4.5.3) and (4.5.4), we can also find sequences of times
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0 < rj < sj < tj with limt→∞ rj = ∞ and

lim
j→∞

min{i1,j(sj), i2,j(sj)} = 0 (4.5.5)

min{i1,j(rj), i2,j(rj)} = min{i1,j(tj), i2,j(tj)} = ε̃ (4.5.6)

min{i1,j(t), i2,j(t)} ≤ ε̃ for rj ≤ t ≤ tj (4.5.7)

Also, rj can be chosen large enough that

1. when R1
0 ≤ 1 then N2,j(t) > ε∗ > 0 for t > rj by Case (1) of Theorem 4.5.0.8 and

2. when R1
0 > 1 then max{N1,j(t), N2,j(t)} > ε∗ > 0 for t ≥ rj by Theorem 4.5.0.6.

After choosing a subsequence, the sequence (i1,j(rj), N1,j(rj), i2,j(rj), N2,j(rj)) is

convergent in X by compactness of X. Let x∗∗(0) = (i1,∗∗(0), N1,∗∗(0), i2,∗∗(0), N2,∗∗(0))

be its limit as j → ∞. Then by (4.5.6) we know that min{i1,∗∗(0), i2,∗∗(0)} = ε̃ so that

x∗∗ ∈ X1.

There are now two more steps. First, show that {tj − rj} is unbounded. Sup-

pose not. Then, after choosing subsequences, {sj − rj} is convergent and, by the semi-

group property of the flow, limj→∞(sj − rj) = s∗ and limj→∞(i1,j(rj + s∗), N1,j(rj +

s∗), i2,j(rj + s∗), N2,j(rj + s∗)) = x∗∗(s∗) where x∗∗(t) is the solution with initial value

x∗∗(0) ∈ X1. Since X1 is forward invariant, x∗∗(s∗) ∈ X1. We also can see that

limj→∞(i1,j(sj), N1,j(sj), i2,j(sj), N2,j(sj)) = x∗∗(s∗), which implies that x∗∗(s∗) ∈ X2

by (4.5.5) and the compactness of X2. This is a contradiction, hence tj− rj is unbounded.

Second, assuming that X2 is not a uniform strong repeller for X̃1, if x
∗∗(0) ∈ X̃1

then, by (4.5.3) we know that

lim sup
t→∞

min{i1,∗∗(t), i2,∗∗(t)} > ε̃. (4.5.8)

If x∗∗(0) ∈ X \ X̃1 then there are two cases. Case 1: If R1
0 ≤ 1 we know N2,j(t) > ε∗

for t ≥ rj so N2,∗∗(0) ≥ ε∗ and, by (4.5.6), min{i1,∗∗(0), i2,∗∗(0)} = ε̃. Then we must

have N1,∗∗(0) = 0 so that N1,∗∗(t) = 0 and from analysis of the one-species infected
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equilibrium in Section 4.4, we know that limt→∞ i1,∗∗(t) = Q∗
1 and limt→∞ i2,∗∗(t) = i∗2

so that equation (4.5.8) holds for this case as well since ε̃ < min(Q∗
1, Q

∗
2, i

∗
1, i

∗
2). Case

2: If R1
0 > 1 then max{N1,j(t), N2,j(t)} > ε∗ for t ≥ rj and either N1,∗∗(0) = 0 and

N2,∗∗(0) ≥ ε∗ or N1,∗∗(0) ≥ ε∗ and N1,∗∗(0) = 0. Similarly to Case 1 we can now show

that equation (4.5.8) holds for Case 2 as well.

Now, since {tj−rj} is unbounded, using a subsequence, we can assume that {tj−rj}
is increasing monotonically and that the limj→∞(tj − rj) = ∞. Then, by (4.5.7) we have

that for k > j, min{i1,k(rk + r), i2,k(rk + r)} ≤ ε∗ for 0 ≤ r ≤ tj − rj. Fix r and j and

let k → ∞ so that for 0 ≤ r ≤ tj − rj , min{i1,∗∗(r), i2,∗∗(r)} = limk→∞min{i1,k(rk +

r), i2,k(rk + r)} ≤ ε∗. Now, let j → ∞ and limj→∞ tj − rj = ∞ so that the previous

inequality holds for all r ≥ 0. This contradicts (4.5.8), hence X2 is a uniform strong

repeller for X̃1.

An analogous theorem holds for the indices exchanged on the relevant parameters.

Theorem 4.5.0.10 If ξ1 < 0, ξ2 > 0, and R1
0 > 1 then for initial conditions N1(0), N2(0) >

0 and i1(0) > 0 or i2(0) > 0 the disease persists uniformly strongly in at least one of the

species, i.e. there exists ε > 0 such that lim inft→∞min{i1(t), i2(t)} > ε.

Proof. The proof is the same as that for Theorem 4.5.0.9 with indices reversed.

Now we consider conditions under which the disease will persist uniformly strongly

in the system (whether in one species or both species). Notice that if inter-species disease

transmission is positive then it is not possible for both species to persist but only one

species has disease present.

Theorem 4.5.0.11 If ξ1 > 0, ξ2 > 0, and RC
0 > 1 then disease persists uniformly

strongly, i.e. there exists ε > 0 such that lim inft→∞min{i1(t), i2(t)} > ε for any solution

x(t) with N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
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Proof. Define X2 = {(i1, N1, i2, N2) : i1 = 0 or i2 = 0, 0 ≤ Nl ≤ Kll, l = 1, 2}, X1 =

X \X2, and let X̃1 = {(i1, N1, i2, N2) : 0 < il ≤ 1, 0 < Nl ≤ Kll, l = 1, 2}. Both X1 and

X̃1 are forward invariant with respect to the semiflow Φ. Let Ω2 be defined as in (4.2.1).

By analyzing the semiflow in X2 we see that Ω2 has a finite covering of four equilibria:

E0 = (0, 0, 0, 0), E1 = (0,K11, 0, 0), E2 = (0, 0, 0,K22), and E3 = (0,K∗
1 , 0,K

∗
2 ). None of

these four equilibria are chained to themselves or to each other in a cyclic way because E0

is unstable, E1 and E2 are unstable for initial conditions X2 ∩ {N1, N2 > 0; i1 = i2 = 0},
while E3 is stable. Thus, M = {E0} ∪ {E1} ∪ {E2} ∪ {E3} forms an acyclic covering for

Ω2.

We will now show that each of the equilibria in M is isolated and a weak repeller as

well. As with the previous theorems, E0 is a stable equilibrium with initial conditions in

X2 ∩ {N1, N2 = 0}, but if initial conditions for N1 or N2 are positive then N1 or N2 will

increase exponentially and E0 is unstable, hence E0 is isolated and a weak repeller for X̃1.

E1 is stable with initial conditions in X2∩{N2 = i2 = i1 = 0}, but, since ξ1 > 0, with

initial conditions in X2∩{N2 > 0, i2 = i1 = 0} then E1 is unstable. With initial conditions

in X2 ∩ {N2 = i2 = 0, i1 > 0} then E1 is stable if R1
0 ≤ 1 and is unstable if R1

0 > 1.

Finally, with initial conditions in X̃1, E1 is unstable since N2 will grow exponentially.

Thus, E1 is both isolated and a weak repeller for X̃1. Very similar analysis (with indices

exchanged) will show that E2 is also isolated and a weak repeller.

Near E3 with initial conditions in X2 ∩ {i1 = i2 = 0}, E3 is stable since ξ1, ξ2 > 0.

With initial conditions in X2∩{N1 = 0 or N2 = 0} then E3 is not an attractor (unstable).

With initial conditions in X̃1, E3 is also unstable since RC
0 > 1 so that i1(t) or i2(t)

grow(s) exponentially near E3. This can be seen by examining the flow of i1 and i2

linearized around E3,

di1
dt

= (β11K
∗
1 − (b1 + α1))i1 + β12K

∗
2 i2 (4.5.9)

di2
dt

= (β22K
∗
2 − (b2 + α2))i2 + β21K

∗
1 i1. (4.5.10)
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This system has strictly positive real eigenvalues when RC
0 > 1 since the Jacobian of

equations (4.4.1)-(4.4.2) from which RC
0 is derived has the same eigenvalues as the Jaco-

bian matrix formed by (4.5.9)-(4.5.10). Hence the solution to the above system is growing

exponentially near E3. Therefore, in all cases, E3 is isolated and is a weak repeller for X̃1.

Next we show that X2 is a uniform weak repeller for X̃1 so that there exists an

0 < ε̃ < min(Q∗
1, Q

∗
2, i

∗
1, i

∗
2) such that

lim sup
t→∞

min{i1(t), i2(t)} > ε̃ (4.5.11)

for any solution x(t) with initial conditions N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.

Assume X2 is not a uniform weak repeller for X̃1. Then there exists a sequence xn =

(i1,n, N1,n, i2,n, N2,n) ∈ X̃1 such that lim supt→∞ d(Φt(xn),X2) → 0 as n→ ∞. Since each

of E0, E1, E2, and E3 is a weak repeller for X̃1, then we know that ω(xn) �⊂M . Then the

assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X2 is a uniform weak repeller for X̃1.

Now we will show thatX2 is a uniform strong repeller for X̃1 by way of contradiction.

Suppose that X2 is not a uniform strong repeller for X̃1. Then, there exists no ε > 0 such

that lim inf t→∞min{i1,j(t), i2,j(t)} > ε thus there exists a sequence of initial conditions,

x0j = (i1,j(0), N1,j(0), i2,j(0), N2,j(0)) ∈ X̃1 and a sequence 0 < εj < ε̃ such that

lim inf
t→∞ min{i1,j(t), i2,j(t)} < εj for j = 1, 2, · · · (4.5.12)

where limj→∞ εj = 0 and where i1,j(t), N1,j(t), i2,j(t), and N2,j(t) are solutions with initial

values x0j ∈ X̃1. By equations (4.5.11) and (4.5.12), we can also find sequences of times

0 < rj < sj < tj with limt→∞ rj = ∞ and

lim
j→∞

min{i1,j(sj), i2,j(sj)} = 0 (4.5.13)

min{i1,j(rj), i2,j(rj)} = min{i1,j(tj), i2,j(tj)} = ε̃ (4.5.14)

min{i1,j(t), i2,j(t)} ≤ ε̃ for rj ≤ t ≤ tj (4.5.15)

Also, rj can be chosen large enough that
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1. when R1
0 ≤ 1 then N2,j(t) > ε∗ > 0 for t > rj by case (1) of Theorem 4.5.0.8,

2. when R2
0 ≤ 1 then N1,j(t) > ε∗ > 0 for t > rj by case (1) of Theorem 4.5.0.7, and

3. when R1
0 > 1 or R2

0 > 1 then max{N1,j(t), N2,j(t)} > ε∗ > 0 for t ≥ rj by Theorem

4.5.0.6.

After choosing a subsequence, the sequence (i1,j(rj), N1,j(rj), i2,j(rj), N2,j(rj)) is

convergent in X by compactness of X. Let x∗∗(0) = (i1,∗∗(0), N1,∗∗(0), i2,∗∗(0), N2,∗∗(0))

be its limit as j → ∞. Then by (4.5.14) we know that min{i1,∗∗(0), i2,∗∗(0)} = ε̃ so that

x∗∗ ∈ X1.

There are now two more steps. First, show that {tj − rj} is unbounded. Sup-

pose not. Then, after choosing subsequences, {sj − rj} is convergent and, by the semi-

group property of the flow, limj→∞(sj − rj) = s∗ and limj→∞(i1,j(rj + s∗), N1,j(rj +

s∗), i2,j(rj + s∗), N2,j(rj + s∗)) = x∗∗(s∗) where x∗∗(t) is the solution with initial value

x∗∗(0) ∈ X1. Since X1 is forward invariant, x∗∗(s∗) ∈ X1. We also can see that

limj→∞(i1,j(sj), N1,j(sj), i2,j(sj), N2,j(sj)) = x∗∗(s∗), which implies that x∗∗(s∗) ∈ X2 by

(4.5.13) and the compactness of X2. This is a contradiction, hence tj − rj is unbounded.

Second, assuming that X2 is not a uniform strong repeller for X̃1, if x
∗∗(0) ∈ X̃1

then, by (4.5.11) we know that

lim sup
t→∞

min{i1,∗∗(t), i2,∗∗(t)} > ε̃. (4.5.16)

If x∗∗(0) ∈ X \ X̃1 then there are three cases. Case 1: If R1
0 ≤ 1 we know N2,j(t) > ε∗ for

t ≥ rj so N2,∗∗(0) ≥ ε∗ and, by (4.5.14), min{i1,∗∗(0), i2,∗∗(0)} = ε̃. Then we must have

N1,∗∗(0) = 0 so that N1,∗∗(t) = 0 and from analysis of the one-species infected equilibrium

in Section 4.4, we know that limt→∞ i1,∗∗(t) = Q∗
1 and limt→∞ i2,∗∗(t) = i∗2 so that equation

(4.5.16) holds for this case as well. Case 2: If R2
0 ≤ 1 we know N1,j(t) > ε∗ for t ≥ rj so

N1,∗∗(0) ≥ ε∗ and, by (4.5.14), min{i1,∗∗(0), i2,∗∗(0)} = ε̃. Then we must have N2,∗∗(0) = 0

so that N2,∗∗(t) = 0 and from analysis of the one-species infected equilibrium in Section

4.4, we know that limt→∞ i2,∗∗(t) = Q∗
2 and limt→∞ i1,∗∗(t) = i∗1 so that equation (4.5.16)
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holds for this case as well. Case 3: If R1
0 > 1 or R2

0 > 1 then max{N1,j(t), N2,j(t)} > ε∗

for t ≥ rj and either N1,∗∗(0) = 0 and N2,∗∗(0) ≥ ε∗ or vice versa. Similarly to Cases 1

and 2 we can now show that equation (4.5.16) holds for Case 3 as well.

Now, since {tj−rj} is unbounded, using a subsequence, we can assume that {tj−rj}
is increasing monotonically and that the limj→∞(tj − rj) = ∞. Then, by (4.5.15) we have

that for k > j, min{i1,k(rk + r), i2,k(rk + r)} ≤ ε∗. Fix r and j and let k → ∞ so that for

0 ≤ r ≤ tj − rj , min{i1,∗∗(r), i2,∗∗(r)} = limk→∞min{i1,k(rk + r), i2,k(rk + r)} ≤ ε∗. Now,

let j → ∞ and limj→∞ tj − rj = ∞ so that the previous inequality holds for all r ≥ 0.

This contradicts (4.5.16), hence X2 is a uniform strong repeller for X̃1.

Theorem 4.5.0.12 If ξ1 < 0, ξ2 < 0, R1
0 > 1, R2

0 > 1, and RC
0 > 1 then disease persists

uniformly strongly, i.e. there exists ε > 0 such that lim inft→∞min{i1(t), i2(t)} > ε for

any solution x(t) with N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.

Proof. The proof is similar to that of Theorem 4.5.0.11 except in the following aspects:

First, that in X2∩{i1 = i2 = 0}, E3 is unstable and E1 and E2 are bistable, with stability

determined by initial conditions. With initial conditions in X̃1, near E1, i1 has a positive

growth rate since R1
0 > 1; near E2, i2 grows since R2

0 > 1; and near E3, the same analysis

holds as for Theorem 4.5.0.11. So, each of E0, E1, E2, and E3 are weak repellers for X̃1.

Second, if x∗∗(0) ∈ X \ X̃1, there are two cases. By Theorem 4.5.0.6, we know

that max{N1,j(t), N2,j(t)} > ε∗. Case 1: N1,∗∗(0) = 0 and N2,∗∗(0) ≥ ε∗ so that

limt→∞ i1,∗∗(t) = i∗1 and limt→∞ i2,∗∗(t) = Q∗
2 so that equation (4.5.16) holds for this

theorem. Case 2: N2,∗∗(0) = 0 and N1,∗∗(0) ≥ ε∗ so that limt→∞ i2,∗∗(t) = i∗2 and

limt→∞ i1,∗∗(t) = Q∗
1 so that equation (4.5.16) holds.

Theorem 4.5.0.13 Let ξ2 < 0, R2
0 > 1, and κ1 > 0. Let either (1) ξ1 > 0 or (2) ξ1 < 0

and R1
0 > 1. Then, species 1 persists uniformly strongly, i.e. there exists ε > 0 such that

lim inft→∞N1(t) > ε with initial conditions N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.
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Proof. Define X2 = {(i1, N1, i2, N2) : 0 ≤ il ≤ 1, N1 = 0, 0 ≤ N2 ≤ K22, l = 1, 2},
X1 = X \ X2, and let X̃1 = {(i1, N1, i2, N2) : 0 < il ≤ 1, 0 < Nl ≤ Kll, l = 1, 2}. Both

X1 and X̃1 are forward invariant with respect to the semiflow Φ. Let Ω2 be defined as

in (4.2.1). By analyzing the semiflow in X2 we see that Ω2 has a finite covering of three

equilibria: E0 = (0, 0, 0, 0), E2 = (0, 0, 0,K22), and E5 = (Q∗
1, 0, i

∗
2, N

∗
2 ).

We will now show that each of the equilibria in M is isolated and a weak repeller.

As with the previous theorems, E0 is a stable equilibrium with initial conditions in X2 ∩
{N1, N2 = 0}, but if initial conditions for N1 or N2 are positive then N1 or N2 will increase

exponentially and E0 is unstable, hence E0 is isolated and a weak repeller for X̃1. Also,

E0 is not chained to itself and is not part of a cycle.

E2 is stable with initial conditions in X2 ∩{N2 > 0, i1 = i2 = 0}, but, since R2
0 > 1,

with initial conditions in X2 ∩ {N2 > 0, i2 > 0 or i1 > 0} then E2 is unstable. Finally,

with initial conditions in X̃1, E2 is a weak repeller since the flow linearized around E2

with initial conditions in X̃1 is

di2
dt

= (β22K22 − (b2 + α2))i2 (4.5.17)

which will grow exponentially since R2
0 > 1 . Thus, E2 is both isolated and a weak repeller

for X̃1.

E5 is not an attractor with initial conditions in X2∩{i1 = i2 = 0} or X2∩{N2 = 0}
but is an attractor for X2 ∩ {N2 > 0, i2 > 0 or i1 > 0}. With initial conditions in X̃1, E5

is also a weak repeller since κ1 > 0 so that N1 grows exponentially near E5. This can be

seen by examining the flow of N1 linearized around E5,

dN1

dt
= (r1(1−K22/K12)− α1Q

∗
1)N1 (4.5.18)

which is positive since κ1 > 0. Therefore, E5 is isolated and is a weak repeller for X̃1.

None of these three equilibria are chained to themselves or to each other in a cyclic

way in X2 because E0 is unstable, E2 is stable only for initial conditions X2 ∩ {N2 >
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0; i1 = i2 = 0}, while E5 is stable for X2 ∩ {N2 > 0; i1 > 0 or i2 > 0}. Thus, M =

{E0} ∪ {E2} ∪ {E5} forms an acyclic covering for Ω2.

Next we show that X2 is a uniform weak repeller for X̃1 so that there exists an

0 < ε̃ < min(K11, N
∗
1 ) such that

lim sup
t→∞

N1(t) > ε̃ (4.5.19)

for any solution x(t) with initial conditions N1(0), N2(0) > 0 and i1(0) > 0 or i2(0) > 0.

Assume X2 is not a uniform weak repeller for X̃1. Then there exists a sequence xn =

(i1,n, N1,n, i2,n, N2,n) ∈ X̃1 such that lim supt→∞ d(Φt(xn),X2) → 0 as n→ ∞. Since each

of E0, E2, and E5 is a weak repeller for X̃1, then we know that ω(xn) �⊂ M . Then the

assumptions of Theorem 4.2.0.5 are met and M must be cyclic. This is a contradiction,

hence X2 is a uniform weak repeller for X̃1.

Now we will show thatX2 is a uniform strong repeller for X̃1 by way of contradiction.

Suppose that X2 is not a uniform strong repeller for X̃1. Then, there exists no ε > 0

such that lim inft→∞N1,j(t) > ε thus there exists a sequence of initial conditions x0j =

(i1,j(0), N1,j(0), i2,j(0), N2,j(0)) ∈ X̃1 and a sequence 0 < εj < ε̃ such that

lim inf
t→∞ N1,j(t) < εj for j = 1, 2, · · · (4.5.20)

where limj→∞ εj = 0 and where i1,j(t), N1,j(t), i2,j(t), and N2,j(t) are solutions with initial

values x0j ∈ X̃1. By equations (4.5.19) and (4.5.20), we can also find sequences of times

0 < rj < sj < tj with limt→∞ rj = ∞ and

lim
j→∞

N1,j(sj) = 0 (4.5.21)

N1,j(rj) = N1,j(tj) = ε̃ (4.5.22)

N1,j(t) ≤ ε̃ for rj ≤ t ≤ tj (4.5.23)

After choosing a subsequence, the sequence (i1,j(rj), N1,j(rj), i2,j(rj), N2,j(rj)) is

convergent in X by compactness of X. Let x∗∗(0) = (i1,∗∗(0), N1,∗∗(0), i2,∗∗(0), N2,∗∗(0))

be its limit as j → ∞. Then by (4.5.22) we know that N1,∗∗(0) = ε̃ so that x∗∗ ∈ X1.
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There are now two more steps. First, show that {tj − rj} is unbounded. Sup-

pose not. Then, after choosing subsequences, {sj − rj} is convergent and, by the semi-

group property of the flow, limj→∞(sj − rj) = s∗ and limj→∞(i1,j(rj + s∗), N1,j(rj +

s∗), i2,j(rj + s∗), N2,j(rj + s∗)) = x∗∗(s∗) where x∗∗(t) is the solution with initial value

x∗∗(0) ∈ X1. Since X1 is forward invariant, x∗∗(s∗) ∈ X1. We also can see that

limj→∞(i1,j(sj), N1,j(sj), i2,j(sj), N2,j(sj)) = x∗∗(s∗), which implies that x∗∗(s∗) ∈ X2 by

(4.5.13) and the compactness of X2. This is a contradiction, hence tj − rj is unbounded.

Second, assuming that X2 is not a uniform strong repeller for X̃1, if x
∗∗(0) ∈ X̃1

then, by (4.5.19) we know that

lim sup
t→∞

min{i1,∗∗(t), i2,∗∗(t)} > ε̃. (4.5.24)

If x∗∗(0) ∈ X\X̃1 then we know by Theorems 4.5.0.9 and 4.5.0.12 that disease is uniformly

strongly persistent in this case. Since κ1 > 0, E5 is unstable with initial conditions in X̃1.

So the only possibility is if R1
0 > 1 and κ2 < 0 so that E4 exists and is globally stable

for initial conditions in X̃1. Then, from analysis of the one-species infected equilibrium in

Section 4.4, we know that limt→∞N1,∗∗(t) = N∗
1 > ε∗ so there exists a rj large enough so

we know N1,j(t) > ε∗ for t ≥ rj and equation (4.5.24) holds for this case as well.

Now, since tj − rj is unbounded, using a subsequence, we can assume that tj − rj is

increasing monotonically and that the limj→∞(tj − rj) = ∞. Then, by (4.5.15) we have

that for k > j, N1,k(rk + r) ≤ ε∗ for 0 ≤ r ≤ tj − rj. Fix r and j and let k → ∞ so

that for 0 ≤ r ≤ tj − rj , N1,∗∗(r) = limk→∞N1,k(rk + r) ≤ ε∗. Now, let j → ∞ and

limj→∞ tj − rj = ∞ so that the previous inequality holds for all r ≥ 0. This contradicts

(4.5.24), hence X2 is a uniform strong repeller for X̃1.

An analogous theorem holds for species 2.

Theorem 4.5.0.14 Let ξ1 < 0, R1
0 > 1, and κ2 > 0. Let either (1) ξ2 > 0 or (2) ξ2 < 0

and R2
0( and hence RC

0 ) > 1. Then, species 2 persists uniformly strongly, i.e. there exists

ε > 0 such that lim inft→∞N2(t) > ε with initial conditions N1(0), N2(0) > 0 and i1(0) > 0
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or i2(0) > 0.

Proof. The proof is analogous to that for Theorem 4.5.0.13.

The following theorems are direct results of combining the conditions of Theorems

4.5.0.6-4.5.0.14.

Theorem 4.5.0.15 If ξ1 > 0, ξ2 < 0, R2
0 > 1, and κ1 > 0 and if either (1) R1

0 < 1

or (2) R1
0 > 1 and κ2 > 0, then both species and the disease persist uniformly strongly,

i.e. there exists an ε > 0 such that lim inft→∞min{N1(t), i1(t), N2(t), i2(t)} > ε for initial

conditions ik(0), Nk(0) > 0 with k = 1, 2.

A similar result holds when exchanging the indices.

Theorem 4.5.0.16 If ξ2 > 0, ξ1 < 0, R1
0 > 1, and κ2 > 0 and if either (1) R2

0 < 1

or (2) R2
0 > 1 and κ1 > 0, then both species and the disease persist uniformly strongly,

i.e. there exists an ε > 0 such that lim inft→∞min{N1(t), i1(t), N2(t), i2(t)} > ε for initial

conditions ik(0), Nk(0) > 0 with k = 1, 2.

Theorem 4.5.0.17 If ξ1, ξ2 > 0 and RC
0 > 1 and any one of the conditions (1) R1

0,R2
0 <

1, (2) R1
0 > 1, R2

0 < 1 and κ2 > 0, (3) R2
0 > 1, R1

0 < 1 and κ1 > 0, or (4) R1
0 > 1,

R2
0 > 1, κ2 > 0 and κ1 > 0, then both species and the disease persist uniformly strongly.

Theorem 4.5.0.18 If ξ1 < 0, ξ2 < 0, RC
0 > 1, R1

0 > 1, R2
0 > 1, κ2 > 0 and κ1 > 0, then

both species and the disease persist uniformly strongly.

Note that, as in Corollary 4.15 of [61], if conditions are met such that any one of Theorems

4.5.0.15-4.5.0.18 hold, then there exists at least one internal equilibrium of the full system

by [91] Remark 3.10 and Theorem 4.7, and by [69] pp. 160-166. See Table 4.3 for a

summary of our results.
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ξ1 ξ2 R1
0 κ2 R2

0 κ1 RC
0 SUP

+ < 1 N1

+ > 1 + N1

+ − > 1 + N1

− − > 1 > 1 + N1

+ < 1 N2

+ > 1 + N2

− + > 1 + N2

− − > 1 + > 1 N2

− + > 1 i1, i2

+ − > 1 i1, i2

+ + > 1 i1, i2

− − > 1 > 1 > 1 i1, i2

+ − < 1 > 1 + All

+ − > 1 + > 1 + All

+ + < 1 < 1 > 1 All

+ + > 1 + < 1 > 1 All

+ + < 1 > 1 + > 1 All

+ + > 1 + > 1 + > 1 All

− + > 1 + < 1 All

− + > 1 + > 1 + All

− − > 1 + > 1 + > 1 All

TABLE 4.3: Conditions for strong uniform persistence (SUP). + denotes strictly positive, −
denotes strictly negative. For the column SUP, the variable listed is the one guaranteed strong

uniform persistence; ‘All’ means that every variable is SUP.
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4.6 Discussion and Conclusion

We make two main observations. Han and Pugliese [61] found conditions for strong

uniform persistence of disease and for one or both species for the case of density-dependent

birth with competition in the death term. We find that adding competition to the birth

term and removing density dependence from death affects the actual equilibrial densities

of the computed boundary equilibria but does not qualitatively change the conditions

under which the species and/or the disease persist uniformly strongly. This suggests that

the particular way in which competition acts on the growth rate of the species does not

change the qualitative outcome of our model in the context of strong uniform persistence

of both species and the pathogen. We frame our persistence results in the context of the

ecologically relevant terms ξ1, ξ2, RC
0 , R1

0, R2
0, κ1, and κ2, all of which have intuitive

ecological significance (see Table 4.1) and can be used exclusively to show feasibility and

stability of the boundary equilibria (Section 3.3 and Table 4.2).

The second observation is that, in the case where both species and the disease persist

uniformly strongly, we obtain a modified version of the conjecture in Chapter 2 (Theo-

rem 3.4.7.1) that when all other feasible equilibria are unstable the endemic coexistence

equilibrium is stable. The modified theorem is as follows:

Theorem 4.6.0.19 When all feasible boundary equilibria are unstable, both species and

the pathogen are strongly uniformly persistent for all initial conditions with N1(0), N2(0) >

0 and i1(0) > 0 or i2(0) > 0. Thus, under these conditions, there is endemic coexistence.

This can be seen from Tables 4.2 and 4.3 since conditions for strong uniform persistence of

all species and the pathogen can be derived from situations in which the feasible boundary

equilibria (including the one-host infected equilibria) are unstable (see Figure 4.3). These

persistence results are verified for the simplified system in Section 3.4.4, for which all

dynamics are known. For the simplified case, κ1 = ξ2, κ2 = ξ1, and R1
0 = R2

0 = R0,
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Is E1 unstable?
No

Exit

Yes

Is E2 unstable?

Yes

No
Exit

Is E3 feasible?
YesNo

Is E3 unstable?
No

Exit

Yes

Is E4 feasible?
YesNo

Is E4 unstable?
No

Exit

Yes

Is E5 feasible?
YesNo

Is E5 unstable?
No

Exit

Yes

Strong Uniform Persistence of all 
Variables (i.e. Endemic Coexistence)

FIGURE 4.3: Flow chart for determining strong uniform persistence of both species and
the pathogen.
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so persistence can be determined by the parameters ξ1, ξ2, R0, and RC
0 . When ξ1 > 0,

ξ2 > 0, and RC
0 > 1 then both species and the pathogen persist. In this case, conditions

for strong uniform persistence are the same as those for global stability of the unique

endemic coexistence equilibrium.

Although stability of particular interior equilibria and/or limit cycles is not proved,

the strong uniform persistence of the system is proved. This is an important result from

an ecological perspective, since it guarantees that all variables stay bounded strictly away

from zero, thus will not go extinct. In summary, we use persistence theory to complete the

analysis of the full model for competition and disease with mass action incidence, showing

that persistence of both species and the disease is determined by a few ecologically relevant

parameters.
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5 A SPATIOTEMPORAL MODEL FOR THE SPREAD OF
BARLEY YELLOW DWARF VIRUS IN GRASSLANDS

5.1 Introduction

In Chapters 3 and 4, it is shown that competition between species and inter-specific

disease transmission can interact to determine persistence of the hosts and/or pathogen

under conditions different from those derived for the single host model or a model with

multiple hosts that do not directly compete for resources. For example, even if the basic

reproduction number for one species alone with the pathogen is below one, the presence

of a nearby competent host can cause the pathogen to persist. On the other hand, two

species exhibiting competitive exclusion without a pathogen present can coexist in the

presence of a multi-host pathogen (see Sections 3.4, 3.5, and 4.4). The question of how

disease affects populations, including whether or not a disease might drive a population

to extinction, is an important one to biologists today. The results from Chapters 3 and 4

have important implications for the successful invasion of exotic species in the presence of

a generalist pathogen. A pathogen can mitigate exclusion or coexistence of host species,

while, conversely, the presence of multiple hosts can cause a disease to either persist or

die out, all depending on properties of the system.

These results assume that the pathogen and host species are mixing in a single

homogeneous environment. However, space can often play an important role in invasion of

pathogens and exotic species, and spatial models of disease are gaining impetus as natural

and human-made landscape features such as forests, rivers, roads and crops cause many

endangered species to live in fragmented landscapes [62, 10, 12, 11, 58, 100, 101]. The

heterogeneity of the landscape as well as the demography and the epidemiology of multiple

interacting species determine spatial spread and persistence of the disease. Although

opening “corridors” between habitat patches may be important for preserving a species, if
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one does not examine the possible changes that this might make in disease dynamics, the

result may be increased chance of epidemics or even local extinction [64, 100]. Therefore, in

Chapters 5 and 6, we couple multi-host disease models such as those discussed in Chapters

2-4 with a multi-patch model in order to determine the effects of spatial heterogeneity on

single patch results. See Section 2.4 for an introduction to multi-patch epidemic models.

This chapter is the interdisciplinary chapter resulting from my participation in the

Ecosystem Informatics IGERT program at Oregon State University. It is the result of work

by teams from multiple disciplines and institutions. We apply mathematical methods to

model and analyze the spread of Barley/Cereal Yellow Dwarf Virus (BYDV) in native

California grasslands.

5.1.1 Spatial Dynamics of Host-Pathogen Systems

Humans are converting and fragmenting landscapes on every continent, changing

connectivity of habitats through effects including reduced patch size, creation of novel

habitats, and altered movement rates among patches that affect a diversity of species.

Pathogen movement and epidemics can depend intimately upon landscape connectivity

patterns [136, 104], which, in turn, control epidemic propagation or fadeout [78, 129].

Importantly, models including spatial heterogeneity can make qualitatively different pre-

dictions compared to models assuming homogeneous mixing [70, 66, 79]. In addition,

many emerging pathogens infect multiple hosts, but most multi-host theory developed to

date has focused on non-spatial models [49, 81, 102, 118, 73, 17, 26, 71]. Thus, in spite

of the importance of landscape connectivity for understanding spatial spread and persis-

tence of disease in real communities, the body of spatially-explicit theory dealing with

multi-host pathogens remains quite small [110] (chapter 5), [47]. As a result, the spa-

tial dynamics of multispecies host-parasite assemblages are gaining increasing attention

in both mathematics and ecology. In particular, metapopulation and patch models of dis-

ease are gaining impetus with the recognition that species live in increasingly fragmented

landscapes [62, 10, 12, 11, 58, 100, 101], and that the heterogeneity of the landscape, as
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well as the demography and the epidemiology of multiple interacting species, determine

spatial spread and persistence of the disease [113].

The dynamics of generalist pathogens depend on many factors that influence their

persistence and determine the manner in which disease spreads. Among these factors

spatial dynamics are particularly important for plant pathogens because natural plant

communities exist in spatially heterogeneous landscapes. The different host species, af-

fected by a common generalist pathogen, are often distributed in patches [113]. Another

factor is cross-species transmission dynamics. Host species differ in their susceptibility

to a disease and their competency in transmitting the disease to other hosts. Hence, the

diversity and composition of a community can influence the pathogen load at both pop-

ulation and community levels [84, 105, 118]. The mere presence of a host that is highly

susceptible to a disease can lead to a local epidemic, while the presence of a host with a low

reservoir competency can lead to a dilution effect where the overall disease prevalence is

reduced [81]. Finally, if a generalist pathogen is vector-transmitted then host populations

may also differ in their contact with and effect on the vector population [118].

Pathogens that are host generalists can also mediate the outcome of interspecific

competition between host species. If the pathogen has differential effects on the fitness

of the competing species, relative competitive strengths and hence population outcomes

can be altered [24]. Theoretical and empirical investigations have shown that a generalist

pathogen infecting multiple (competing) host species can influence species diversity and

community structure [118, 81, 24, 34, 63, 84]. Consequently, generalist pathogens can

have a significant impact on endangered species, particularly in the presence of a species

that acts as a reservoir for the pathogen [44].

In this paper we use barley and cereal yellow dwarf viruses (B/CYDV), a suite

of aphid-vectored pathogens, and their interactions with a range of host species as our

case study. Our goal is to construct and analyze a model that helps in determining

the possibility of invasion of native species by exotic (i.e., non-native) species due to

the presence of disease (B/CYDV) among the (competing) multiple species in a patch
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framework.

Here we develop a multi-patch framework to examine the influence of spatial hetero-

geneity, seasonality, and competition on disease dynamics and pathogen-mediated plant

invasion. We begin by investigating the effects of local host community composition and

vector movement on B/CYDV dynamics in which the landscape is divided into a system of

discrete patches containing smaller local populations, with disease transmission occurring

via vector movement between patches (Section 5.3). We then analyze a simplified two

patch model in order to derive the B/CYDV system’s basic reproduction number, which

serves as a threshold for invasion into a susceptible host community. We also use the

basic reproduction number to examine the sensitivity of spatial transmission dynamics to

key epidemiological and biological parameters (Section 5.5). We then examine whether

B/CYDV can persist locally or in a patch framework across a range of host community

configurations. First we adjust the number of patches connected by aphid migration and

vary aphid migration rates between patches. We also modify community configurations

to examine whether pathogen-mediated interactions and competitive outcome between

perennial and annual competitors are altered at the local and regional scale when the host

populations are spatially structured (Section 5.6).

5.2 The B/CYDV Empirical System

B/CYDV is one of the most economically important diseases of grain crops world-

wide and infects over 100 grass species in both agricultural and natural systems [75].

Because it can be a devastating crop pathogen, the vast majority of the theoretical and

empirical studies of B/CYDV have been focused on crop settings. Thus, the history

of modeling of this pathogen is strongly focused on epidemiology in single host species

[82, 50, 88, 149]. However, B/CYDV also infects many non-crop grass species. Exotic (i.e,

non-native) annual grasses have been invading and displacing native perennial grasses in
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much of the western United States [24, 94, 93]. Recent theoretical and empirical work

has demonstrated that B/CYDV may also play a critically important role in facilitating

and maintaining natural grassland invasion [94, 24]. Borer et al. [24] analyzed a non-

spatial model of B/CYDV, which suggested that the virus could reverse the competitive

outcome between perennial and annual host grasses, leading to the successful invasion by

the competitively inferior annuals. However, continued existence of B/CYDV requires the

persistence of the perennial grass in the community due to its role as a reservoir for in-

fection between growing seasons. Hence we incorporate patch structure in the nonspatial

model considered in [24] to examine the effect of spatial heterogeneity of the host species

on disease dynamics and the possibility of invasion by exotic species.

The virus has a short latency period in both its host plants and the aphid vector;

however, once infected, a vector is potentially infective for life and individual hosts typ-

ically do not recover from a B/CYDV infection. Host susceptibility to B/CYDV varies,

with some species suffering increased mortality and reduced fecundity when infected and

other species experiencing little change in their overall fitness [75]. Studies have also

shown that the presence of highly competent reservoir species can increase the preva-

lence of B/CYDV in local host communities [118, 24, 94, 93]. Host-aphid interactions

also vary by host, with aphids showing preference for and experiencing higher fitness on

certain host species [89, 103]. The various host species often compete for resources and

the presence of B/CYDV may alter their relative competitive abilities, leading to shifts

in host community composition [24]. Annual grasses may act to amplify the prevalence

of B/CYDV because aphids feed preferentially on annuals and have higher growth rates

when feeding on annuals [23]. The transmission rates to and from aphids may also be

higher for annual grasses [42]. While the effect of these host community differences have

been investigated at the local level, their importance for regional patterns of B/CYDV

spread and persistence have not been fully explored. Both local, within-field movements

and long-distance dispersal by aphids are important for B/CYDV transmission [76], and

host-vector interactions at multiple spatial scales may influence local and regional disease

dynamics.
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5.3 Model formulation

In California grasslands, the wet winter and spring growing seasons alternate with

hot, dry summers, during which perennial grasses remain dormant and annuals persist

only as seeds. We use a differential-difference modeling approach [24] to describe the

punctuated seasonality of this system. During the growing season (of length τ), differ-

ential equations are the effective model, and the dormant summer season is described by

difference equations [(tn + τ) to (tn +1 = tn+1)] where tn = n is time in years. Since time

units are in years, τ < 1. We use the following susceptible-infected model structure to

summarize the multihost-pathogen dynamics of the California grassland community.

Each of the vector and host subpopulations consists of susceptible (S) and infected

(I) individuals. Vector population dynamics are modeled explicitly in order to repre-

sent infection dynamics within the aphid population as well as aphid migration between

patches. Vector population dynamics and epidemiology during the growing (rainy) sea-

son are represented by a pair of differential equations for each subpopulation in a patch

model. We use a simplified, reduced parameter Lotka-Volterra competition formulation

[32], with a reduced competitive pressure from infected individuals (parameterized as

ε), as described in [24]. Fecundity and biomass reduction are represented by the same

parameter ε, because plant fecundity is largely a function of plant biomass and the em-

pirical estimates were identical. We explicitly track susceptible perennial seedlings (pS),

infected perennial seedlings (pI), susceptible perennial adults (PS), infected perennial

adults (PI), susceptible annuals (aS), and infected annuals (aI). We also explicitly track

the susceptible vectors (VS), and infected vectors (VI). Figure 5.1 shows the competitive

structure between the susceptible and infected host compartments, while Figure 5.2 shows

the transmission of infection from vectors to hosts. Figure 5.3 depicts the movement of

vectors between patches. Aphid population growth depends on the relative densities of

annual and perennial hosts, because aphids show both a preference for annual grasses and

higher performance (fecundity) on annual hosts [23].
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Host and vector growing season/continuous time equations for tn < t ≤ tn + τ :

(a = annuals, p = 1st year perennials, P = adult perennials, V= vector)

dpS,j
dt

= −(μpηp + βvpVI,j)pS,j, (5.3.1a)

dpI,j
dt

= −μpηpεppI,j + βvpVI,jpS,j, (5.3.1b)

dPS,j

dt
= −βvpVI,jPS,j, (5.3.1c)

dPI,j

dt
= βvpVI,jPS,j, (5.3.1d)

daS,j
dt

= −(μaηa + βvaVI,j)aS,j , (5.3.1e)

daI,j
dt

= −μaηaεaaI,j + βvaVI,jaS,j, (5.3.1f)

dVS,j
dt

= r(t)− (βavaI,j + βpv(pI,j + PI,j))VS,j − μV VS,j +MS,j, (5.3.1g)

dVI,j
dt

= (βavaI,j + βpv(pI,j + PI,j))VS,j − μV VI,j +MI,j. (5.3.1h)

Dry season/discrete time for each patch, j, and for tn + τ → tn+1:

pS,j(tn+1) = bP (PS,j(tn + τ) + εpPI,j(tn + τ)), (5.3.2a)

pI,j(tn+1) = 0, (5.3.2b)

PS,j(tn+1) = σPS
(pS,j(tn + τ) + PS,j(tn + τ)), (5.3.2c)

PI,j(tn+1) = σPI
(pI,j(tn + τ) + PI,j(tn + τ)), (5.3.2d)

aS,j(tn+1) = bA(aS,j(tn + τ) + εaaI,j(tn + τ)), (5.3.2e)

aI,j(tn+1) = 0, (5.3.2f)

VS,j(tn+1) = C, (5.3.2g)

VI,j(tn+1) = 0. (5.3.2h)

Plant competition terms:

ηa = 1 + αaa(aS,j + εaaI,j) + αap(pS,j + εppI,j) + αaP (PS,j + εpPI,j), (5.3.3a)

ηp = 1 + αpp(pS,j + εppI,j) + αpa(aS,j + εaaI,j) + αpP (PS,j + εpPI,j). (5.3.3b)
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Vector growth term:

r(t) =dV (λ(aS,j + aI,j) + (pS,j + pI,j) + (PS,j + PI,j)). (5.3.4)

Vector migration terms where Y ∈ {S, I}:

MY,j = −
N∑

k=1,k �=j

mjkVY,j +

N∑
k=1,k �=j

mkjVY,k, (5.3.5)

where N is the total number of patches. We remark here that the parameter mjk denotes

the migration rate from patch j to patch k and not from patch k to j, as is assumed in

some other papers.

During the dry season it is assumed that all infected aphids die, while the uninfected

aphids may either survive as a function of their density at the end of the growing season

or they may recolonize from outside the patch system. These two possibilities correspond

to different life history strategies employed by aphids; some species remain within the

grassland at low abundances between growing seasons with uninfected offspring emerging

at the beginning of the growing season, while others migrate to an alternate host, typically

in another habitat (e.g., Rhopalosiphum padi switches from grasses to a species of Prunus

during the dry season).

The model considers age structure in the perennial grasses. Perennial adults are

qualitatively different from annual grasses; they are competitively superior and less palat-

able to aphids [23]. In contrast, first-year perennials are more similar to annuals in these

characteristics. The model also examines both reduced fecundity and disease-induced dor-

mant season mortality. See Table 1 for a description of model parameters. The subscript

S represents susceptible and I represents infected individuals of a species and/or age class.

The subscript j indicates the patch in which the individuals reside.

We note that B/CYDV requires an aphid vector for transmission from plant to

plant and cannot be spread via seeds. We use a Lotka-Volterra competition framework
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because of the nature of the data available for parameter estimation. In addition, host

density makes a sensible common currency for competition and disease for a systemic

virus [24]. MATLAB was used to numerically simulate the outcome of reciprocal invasion

experiments with susceptible and infected perennials and annuals as both residents and

invaders and to test the sensitivity of our results to the estimated vital rate values.
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FIGURE 5.1: Transfer diagram for the growing season depicting the population dynamics
of hosts, and the competitive interactions between the susceptible and infected host plants.
In the figure, the parameters αk

ij, α̃ij are defined as αk
ij = εkαij , and α̃ij = εiεjαij with

εP = εp.

5.4 Estimation of Model Parameter Values from Field Data

A great deal of information about aphid reproductive rates, host composition of

grasslands, transmission competence of hosts for certain B/CYDV serotypes, and popula-

tion dynamic effects of infection on different host species is available for model parameteri-

zation [24]. We have amassed data on 20 different native and exotic, annual, and perennial

grass US West Coast species ([42, 23]; Welsh, Borer, and Mitchell, unpubl. data). The
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Symbol Description Value Reference

bP Perennial birth rate 45.0 [24]

bA Annual birth rate 200 [133]

σPS
Healthy perennial (adult) survival rate 0.88 [93]

σPI
Infected perennial (adult) survival rate 0.77 [93]

εp Fractional reduction in biomass and fecundity 0.5 [93]

of infected perennials

εa Fractional reduction in biomass and fecundity 0.11 [93]

of infected annuals

τ Growing season length 20 wks [24]

C Number of aphids at beginning of growing season 100

βvp Aphid to perennial transmission rate 0.2

βva Aphid to annual transmission rate 0.4

βpv Perennial to aphid transmission rate 0.02 [24]

βav Annual to aphid transmission rate 0.04 [24]

λ Vector preference and performance 1.5 [94]

(aphids per annual/aphids per perennial)

μa Annual death rate 1 [24]

μp Seedling perennial death rate 0.5 [24]

μV Aphid death rate 10

dV Aphid fecundity rate 13.2

mjk Aphid migration rate from patch j to patch k 1× 10−5 see text

αpp Competition between first-year perennials 1.3× 10−3 [24]

αpa The effect on first-year perennials by annuals 6.8× 10−4 [24]

αpP The effect on first-year perennials by adult perennials 0.7 [24]

αaa Competition between annuals 1.1× 10−3 [24]

αap Effect on annuals of first-year perennials 3.4× 10−7 [24]

αaP Effect on annuals of adult perennials 0.7 [24]

TABLE 5.1: Description of model parameters and values used for initial model analysis
and simulation. Values were estimated from empirical work in California grasslands. Dis-
crete and continuous units are year−1 (except ε and λ which are unitless), and competition
parameters are individual−1.
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species for which we have many experimental and observational estimates represent some

of the most important native and invasive grasses in the system. In addition, species we

have examined span the range of characteristics from extremely widespread to extremely

restricted West Coast ranges as well as locally abundant and always rare within commu-

nities. Although B/CYDV infection has been documented in at least 33 native and 80

exotic grasses in California [92], we focus on two common grasses, Elymus glaucus, a native

perennial, and Bromus hordeaceus, an exotic annual, because these species have among

the broadest ranges of West Coast grassland species. They have been the focus of our

own multiyear B/CYDV monitoring and, among the native perennials, the best-quality

published prevalence data are available for E. glaucus [94]. Although we parameterize the

model for these two species for our numerical simulations (see parameter values in Table

1), we also conduct sensitivity analyses by varying the different epidemiological parame-

ters within the range exhibited by other grass species in field and laboratory studies. This

allows us to examine how B/CYDV may control competitive outcomes depending on the

composition of the host community.

For the estimation of the dispersal coefficient we note that movement involves leav-

ing, moving between, and arriving in patches and is notoriously complicated to estimate

on very small animals, such as aphids. Therefore we use simulations to examine the effect

of different aphid migration rates on B/CYDV transmission in a patch framework.

5.5 Analysis of a Two Patch Model

In order to better understand the dynamics of the full model that includes spatial

heterogeneity, seasonality, competition, and disease dynamics, we consider the growing

season dynamics in one and two patches. In particular, we find the basic reproduction

number for the growing season dynamics in an isolated population and in two patches

under an additional assumption about adult perennial death rates. Since the dry season
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dynamics decrease the number of infected organisms through the death of all infected

annuals and infected aphids and the reduced survival of infected perennials, the basic

reproduction number for the growing season will give us a good approximation of the

initial spread of the virus.

5.5.1 Computation of the Basic Reproduction Number, R0

In order for the basic reproduction number to be defined, we assume that there is a

small death rate for perennial adults, dP , during the growing season. Omitting a growing

season death rate for adult perennials was a simplifying assumption of the non-spatial

model in [24]. Based on numerical sensitivity analysis we choose appropriate values of dP

that do not significantly change the outcome of the model (see Figure 4). This assumption

changes only equations (5.3.1c) and (5.3.1d) to the following:

dPS,j

dt
= −βvpVI,jPS,j − dPPS,j, (5.5.1)

dPI,j

dt
= βvpVI,jPS,j − dPPI,j. (5.5.2)

We chose dP = 0.1 so that, neglecting the dry season, the average lifespan of a perennial

is 10 years.

With this additional assumption, we will use the next generation matrix method

[144] to determine the basic reproduction number for the one-patch case, or an isolated

population. Let X = (pS, PS , aS , VS , pI , PI , aI , VI)
T . Then we can rewrite system (5.3.1a)-

(5.3.1h) in the form
dX

dt
= F(X) − V(X), (5.5.3)

where F(X) represents a vector function for the new infectious cases and V(X) contains all

other dynamics. We compute the Jacobian of F and V and evaluate these at the disease

free equilibrium (DFE), E∗ = (p∗S , P
∗
S , a

∗
S , V

∗
S , 0, 0, 0, 0). Let F and V be the matrices

defined by

F =

[
∂Fi

∂xj
(E∗)

]
; V =

[
∂Vi

∂xj
(E∗)

]
, (5.5.4)
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FIGURE 5.4: We plot dP versus R0 (dotted line) and dP versus total adult perennial
equilibrium values (solid line) in the disease-free scenario for one patch. In this case,
regardless of dP , the disease-free equilibrium value for annuals is 0.

where 5 ≤ i, j ≤ 8 and xj is the jth component of the vector X defined in (5.5.3).

Computing these matrices we have

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 βvpp
∗
S

0 0 0 βvpP
∗
S

0 0 0 βvaa
∗
S

βpvV
∗
S βpvV

∗
S βavV

∗
S 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5.5.5)

and

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

εpμpηp(E
∗) 0 0 0

0 dP 0 0

0 0 εaμaηa(E
∗) 0

0 0 0 μV

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.5.6)

The basic reproduction number, R0,1, is given as

R0,1 = ρ(FV −1), (5.5.7)

where ρ(A) is the spectral radius of the matrix A. The spectral radius of the matrix FV −1
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is given by the formula

R0,1 =
√
RVp(Rp +RP ) +RVaRa, (5.5.8)

where

Rp =
βvpp

∗
S

εpμpηp(E∗)
, (5.5.9a)

RP =
βvpP

∗
S

dP
, (5.5.9b)

Ra =
βvaa

∗
S

εaμaηa(E∗)
, (5.5.9c)

RVp =
βpvV

∗
S

μV
, (5.5.9d)

RVa =
βavV

∗
S

μV
. (5.5.9e)

For the baseline parameter values chosen, simulations indicate that in the disease free

scenario perennials and annuals do not coexist. When the disease free patch is perennial-

only Ra = 0 and when the patch is annual-only then Rp = RP = 0. The parameter R0,1

is proportional in both cases to the transmission terms and the equilibrium populations

of both vector and plants while varying inversely with vector and plant death rates. For

seedling perennials and annuals, these death rates depend in part upon the reduction of

biomass due to infection.

Next we compute the basic reproduction number for the growing season in two

patches. Let E∗
1 = (p∗S,1, P

∗
S,1, a

∗
S,1, V

∗
S,1, 0, 0, 0, 0), E

∗
2 = (p∗S,2, P

∗
S,2, a

∗
S,2, V

∗
S,2, 0, 0, 0, 0) be

the disease-free equilibrium for patch 1 and patch 2 respectively. Then, using the next

generation method [11, 10],

F =

⎡
⎣F1 0

0 F2

⎤
⎦ , (5.5.10)

where, 0 denotes a 4 × 4 matrix of all zeros, and for i = 1, 2, the 4 × 4 matrices, F1, F2
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are defined as

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 βvpp
∗
S,i

0 0 0 βvpP
∗
S,i

0 0 0 βvaa
∗
S,i

βpvV
∗
S,i βpvV

∗
S,i βavV

∗
S,i 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.5.11)

We also define the matrix

V =

⎡
⎣ V1 M12

M21 V2

⎤
⎦ , (5.5.12)

where for i, j = 1, 2, i �= j,

Vi =

⎡
⎢⎢⎢⎢⎢⎢⎣

εpμpηp(E
∗
i ) 0 0 0

0 dP 0 0

0 0 εaμaηa(E
∗
i ) 0

0 0 0 μV +mji

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5.5.13)

and

Mij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −mij

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.5.14)

The basic reproduction number for the whole system, RC
0 , where R0,i is the basic re-

production number for patch i alone and assuming that migration is symmetric so that

m12 = m21 = m, is

RC
0 =

1√
2

√
R∗ + (R2

0,1 +R2
0,2)(RμV

+Rm), (5.5.15)

where

RμV
=

μV
2m+ μV

, (5.5.16)

Rm =
m

2m+ μV
, (5.5.17)

and where

R∗ =
√
RμV

(R2
0,1 −R2

0,2)
2 +R2

m(R2
0,1 +R2

0,2)
2. (5.5.18)



131

We remark that if both patches are identical and inhabited by the same single species,

then R0,2 = R0,1. In addition if migration of vectors between patches is very small so

Rm is negligible and RμV
is close to one, then RC

0 ≈ R0,1. Thus, the basic reproduction

number for the system simply becomes the basic reproduction number for the individual

identical patches.

5.5.2 Sensitivity Analysis

Here we include background for the sensitivity analysis performed in the next sec-

tion. Sensitivity analysis, here in the context of deterministic differential equations, quan-

tifies the dependence of the output of a model on the input of a model. When parameters

or initial conditions vary, so does the model output. There are many ways to approach

sensitivity analysis, but the method used in this chapter is forward sensitivity analysis.

We follow the approach of [74] in the rest of this section. For an initial value problem

u′ = f(u, t; p), u(0) = u0,

forward sensitivity analysis estimates how the solution u or some function of the solution

J(u) changes with perturbations of a parameter p. Essentially, forward sensitivity analysis

aims to compute the partial derivatives ∂u/∂p or ∂J(u)/∂p. One common way to compare

sensitivity to various parameters is to compute a normalized sensitivity index.

Definition 5.5.2.1 (Definition 1.4.1 [74]) Let J(u) be a function which depends on the

forward solution u which depends on parameter p. Let δp be a perturbation to the parameter

p and let δJ denote the resulting perturbation in J(u). The normalized sensitivity index

is defined as

Sp =

(
δJ

J

)
/

(
δp

p

)
(5.5.19)

where J, p �= 0. When the function is differentiable, the sensitivity index can be re-written

as

Sp =
p

J

dJ

dp
. (5.5.20)
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Notice that often the chain rule is need to compute Sp in the definition (5.5.20).

Forward sensitivity analysis is local, depending on the particular solution of the

system at fixed parameter values. In other words, it computes sensitivity to a parameter

perturbed around a particular value, in our case around the parameters estimated by the

data or around the expected value of a parameter based on the literature. In this chapter

we will use forward sensitivity analysis to help determine the most important parameters

to the success of invasion by a pathogen (R0) and to the cumulative number of infected

organisms. This can give important insight into possible control methods for a pathogen

as well as general qualitative information about the behavior of the system.

5.5.3 Sensitivity Analysis of R0 to Parameters

In order to better understand why the native perennials are susceptible to invasion

by non-native annuals in the presence of disease, we found the relative importance of

all parameters to the initial spread of B/CYDV using R0 for one and two patches. The

initial successful spread of B/CYDV depends on R0 for the growing season, while the

endemic coexistence equilibrium values indicate long term persistence of the virus and thus

long term coexistence of annuals and perennials. We therefore computed the sensitivity

indices of R0 to the parameters of the model in order to understand what factors are most

important in disease prevalence and exotic invasion.

The sensitivity index dR0
dξ is a linear estimate of the number of unit change in R0 as a

result of a unit change in the parameter ξ. Such sensitivity indices depend on the physical

units of state variables and parameters, and hence we cannot compare different sensitivity

indices. To make comparison feasible, and make the sensitivity analysis independent of

the units of the model, we use normalized sensitivity indices as defined below.

Definition 5.5.3.1 A normalized sensitivity index for the state variable R0, with respect

to the parameter ξ, denoted as ψξ
R0

, is the ratio of relative change in R0, to the relative
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change in the parameter ξ, and is defined as [128, 36]:

ψξ
R0

=
∂R0

∂ξ
· ξ

R0
. (5.5.21)

The coefficient ψξ
R0

, represents a linear estimate of the percentage change in the state

variable R0 caused by a one percent change in the parameter ξ.

Since we have an analytic expression for R0 for one and two patches we can explicitly

compute the sensitivity indices for R0 with respect to all the parameters in our model. We

evaluate the sensitivity indices at the baseline parameters (see Table 1) for our two patch

model. Many of the sensitivity indices depend on the disease-free equilibrium population

sizes of perennials and annuals (see appendix for an example), so changing demographic

parameters will affect the indices.

The results of this sensitivity analysis are tabulated in Table 2. Based on these

results we make the following observations. The sensitivity indices for two perennial (or

annual) patches (not shown in Table 2) with very small migration rates are essentially

the same as those for one perennial (or annual) patch (see Table 2). For the annual-only

patches, R0 = R0,1 is most sensitive to εa, the fractional reduction in fecundity of infected

annuals. If εa is increased by 10% then R0 is decreased by 45.46%. If the transmission rates

between aphids and annuals, βav or βva, increase or decrease by 10% then R0 increases

or decreases by 5%. The sensitivity indices with respect to μV and μa, the death rate of

aphids and annuals, are constant at −0.5 so that if μV or μa are increased by 10% then

R0 decreases by 5%. R0 is just slighly less sensitive to αaa, the competition coefficient

between annuals, than it is to μV and μa. For this case, the sensitivity indices for αpa and

αPa are always zero since p∗S = P ∗
S = 0. In summary, the initial spread of B/CYDV in

annual-only patches is most sensitive to the fractional reduction in fecundity of infected

annuals, the disease transmission rates between aphids and annuals, the death rates of

aphids and annuals, and the competitive effect of annuals on each other, in the given order

of importance.
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In perennial-only patches, R0 increases by 5% when either βpv or βvp increase by

10%. R0 decreases by 5% when μV increases by 10%. R0 also decreases by 4.98% when dP ,

the growing season death rate of adult perennials, increases by 10%. Neither εp, μp, αpP ,

nor αpp have much effect on the value of R0 (see Table 2). For this case, the sensitivity

index for αap is always zero since a∗S = 0. So, the initial spread of B/CYDV in perennials

is most sensitive to the adult perennial death rate, disease transmission rates, and aphid

death rate for perennial-only patches.

Next we consider two patches that are not identical. When one patch is annual and

one is perennial, the annual patch dynamics dominate the initial spread of the virus. RC
0

is most sensitive to εa as with the annual-only patches. In fact, if εa is increased by 1%,

RC
0 decreases by 4.5%. The rest of the parameters related to annual plants are relatively

less important (see Table 2) while the parameters related to perennials have little effect on

the value of RC
0 . In Table 2 the migration rate used is rather high. When the migration

rate is lower, the perennials are even less significant to the initial spread of disease in

the two patch system. The dominant role of annuals in initial spread of B/CYDV is due

to their higher density, higher transmission rates, and aphid preference for and increased

fecundity on the annual species we are considering. Ultimate persistence of the virus,

however, depends almost entirely on the perennials since disease is not maintained in

annuals during the dry season and there is no vertical transmission.

5.5.4 Numerical Simulations for the Two Patch Model

For our baseline values, if disease is present, the exotic and native species will be

able to coexist, in part due to a basic reproduction number for perennial-only patches

greater than one. It may be important for conservation and restoration design to consider

the case when a patch of perennials would not support the virus alone but faces invasion

by an exotic and competent reservoir for B/CYDV.

We performed numerical simulations for two patches, one perennial only, and one
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annual only patch. Perennial disease transmission rates are kept small enough so that

a perennial-only patch will have a basic reproduction number less than one (R0,1 < 1)

when there is no migration of vectors between patches. The nearby annual-only patch has

baseline annual-aphid transmission rates resulting in a high basic reproduction number,

R0,2, for that patch. Since we are concerned primarily with the presence of disease in the

perennial patch, we consider the sensitivity of R0,1 to aphid migration rates. However,

equation (5.5.15) indicates that the basic reproduction number for the whole system is

proportional to R0,1 andR0,2 so whenR0,1 increases, R
C
0 increases as well. When migration

of vectors is symmetric between the perennial patch and the annual patch, the perennial

patch basic reproduction number, R0,1 increases with the increase of migration and quickly

moves above one. When vectors migrate only from the annual to the perennial patch,

R0,1 for the perennial patch increases even more quickly and is slightly more sensitive

to the migration rates. For both of these cases, R0,1 increases as the migration rates

of the vectors increase. Thus, movement of vectors between the annual and perennial

patches results in persistence of the pathogen in perennials that would not otherwise occur.

When vectors migrate only from perennial to annual patch, however, the perennial patch

basic reproduction number R0,1 decreases slightly as migration increases while the basic

reproduction number for the annual patch remains virtually unchanged. These results

confirm that the disease dynamics of the annual patches dominate the initial spread and

success of the virus and migration behavior of vectors can in fact change the disease

dynamics of a perennial-only patch.

5.6 Large Scale Numerical Simulations

For our larger scale numerical simulations we examined the full spatial model with

20 patches arranged linearly, as shown in Figure 5.5. Initial simulations with this model

were conducted using within-patch transmission rates high enough for annual grasses to

increase in abundance in infected mixed-host patches (see Table 1 for initial parameter
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Table 2

Parameter Annual-only Patch Perennial-only Patch One of Each

R0 343.09 4.8131 310.5801

Sensitivity Indices R0,1 R0,2 RC
0

εa -4.5455 0 -4.4961

βav 0.5 0 0.4946

βva 0.5 0 0.4946

μV -0.5 -0.5 -0.4696

μa -0.5 0 -0.4946

αaa -0.3346 0 -0.3308

βpv 0 0.5 1.2457 × 10−5

βvp 0 0.5 1.2457 × 10−5

dP 0 -0.4986 −1.2423 × 10−5

εp 0 -0.0014 −3.4077 × 10−8

μp 0 -0.0014 −3.4077 × 10−8

αpP 0 -0.0013 −3.2787 × 10−8

αpp 0 −4.4660 × 10−7 −1.1127 × 10−11

m12,m21 0 0 −.0250

TABLE 5.2: Normalized sensitivity indices for R0. Note that these rates are in 1/year
units. The other parameters used are total time = 100, τ = 40/100, bA = 200, bP = 45,
μV = 10, μa = 1, μp = 0.5, dV = 13.2, dP = 0.1, αaa = 1.1 × 10−3, αap = 3.4 × 10−7,
αaP = 0.7, αpp = 1.3 × 10−3, αpa = 6.8 × 10−4, αpP = 0.7, λ = 1.5, εa = 0.11, εp = 0.5,
βav = 0.04, βpv = 0.02, βvp = 0.2, βva = 0.4, σPS

= 0.88, σPI
= 0.77, m12 = m21 = .6, 10

initial annuals for the annual-only, and 4 seedling perennials and 10 adult perennials for
the perennial-only patch.
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values). Under a global connectivity scenario (identical aphid migration rates between

each patch) every patch becomes infected with B/CYDV, even when aphid migration

rates are very low (≤ 10−12yr−1). Under this scenario B/CYDV prevalence is so high

in annual-only, perennial-only, and mixed-host patches (even when migration rates are

very low) that increasing the migration rate does not have a large effect on prevalence.

In addition, varying the proportion of patches occupied by perennial grasses does not

significantly affect B/CYDV persistence or prevalence; prevalence in each perennial patch

remains constant and prevalence in annual patches is 100% by the end of each growing

season.

When aphid migration is not global, increasing patch connectivity leads to an in-

crease in the number of infected patches when the simulations are allowed to run to

long-term equilibrium (Figure 5.6). Patch connectivity is determined by the number of

neighboring patches an aphid can reach when it emigrates from a patch (Figure 5.5).

Connectivity is unlikely to be global because aphid dispersal between patches is limited

by distance and landscape heterogeneity. An increase in patch connectivity could be the

result of either a decrease in the distance between patches or an increase in the distance

that individual aphids can travel. As the number of infected patches increases, B/CYDV

prevalence at the regional level increases. However, patch-level prevalence depends only

on the distance of the patch from the initial source of infection and not the regional-level

prevalence.

When each patch is connected with only one or two neighboring patches (in a linear

chain), increasing the proportion of perennial-only patches leads to a linear increase in the

proportion of infected patches (assuming that all perennial patches are initially infected).

However, if we start with B/CYDV in a single source patch, the relationship between

the proportion of perennial-occupied patches and B/CYDV prevalence is nonlinear over

intermediate timeframes (Figure 5.7). Initial increases in the proportion of perennial

patches increase global B/CYDV prevalence by increasing the number of infected patches;

but, above a threshold, increasing the number of perennial patches leads to a decline in
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the number of infected patches over the first 50 years of the simulation. Although when

the simulation is allowed to run to equilibrium, all perennial patches eventually become

infected, it can take 50+ years for B/CYDV to reach the furthest patches from the initial

source of infection. This occurs because in mixed host patches further away from the initial

source of infection the perennial grasses outcompete annual grasses before B/CYDV can

arrive in the patch. In this case, increasing the proportion of perennial grasses leads to a

decline in the regional level presence of annual grasses (Figure 5.8). The lower transmission

rates to and from perennial grasses reduces the number of patches to which B/CYDV can

travel within the growing season.

Figure 5.8 also shows that the ability of annuals to coexist with perennials depends

on the distance of the patch from initial source of infection as well as the proportion of

perennials in the patch system. Only patches within 3 jumps of the initial source of infec-

tion receive infected aphid immigrants early enough in the growing season for annuals to

overcome their competitive inferiority in the absence of the pathogen. However, simula-

tions of the invasion by annuals in perennial only patches reveal that annuals can invade

perennial patches once B/CYDV has become established in the patch. Thus only peren-

nial patches that remain disease-free because they are not connected to any other patches

via migration, or are only distantly connected to other perennially infected patches, will

remain resistant to invasion from annual grasses.

B/CYDV prevalence at the patch and regional levels is higher when there are mixed

patches containing both host species rather than patches containing either all annual

or all perennial grasses. The higher transmission rates associated with annual grasses

lead to higher prevalence levels in juvenile perennial grasses in mixed patches compared

to perennial-only patches (85% versus 60% at equilibrium). In addition, the average

abundances of both annual grasses and perennial grasses are reduced in mixed patches.

Perennial biomass is reduced by 4.5% and 20.5% in adults and juveniles respectively, and

annual biomass can be reduced by up to 30% depending on prevalence.

Thus we can conclude from our numerical simulations that if invasion by annuals
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grasses occurs in a patch system where B/CYDV has already established in perennial

grasses then annuals will be able to invade all infected patches. However if the introduction

of B/CYDV and annual grasses occurs simultaneously, then the success of the annuals

will depend on where within the patch system they invade relative to the introduction

of B/CYDV. While annuals will be able to invade patches close to the initial site of

infection, they will fail to invade patches further from the infection source because they

will be outcompeted by perennials before B/CYDV becomes prevalent enough in the patch

to counter their competitive inferiority. However, these perennial patches will become

susceptible to annual invasion over time as they reach an equilibrium-level of B/CYDV

prevalence.

On the west coast of the US, fragmented grassland habitat is arranged along both

a north-south and an elevational gradient. Although grasslands in California are dom-

inated by invasive annuals, grasslands in Oregon and at higher elevations tend to re-

main perennial-dominated. Our sensitivity analysis showed that R0 is more sensitive

to aphid migration rates when transmission rates are lower than predicted for Califor-

nia grasslands. This suggests that a combination of lower B/CYDV transmission rates

in perennial-dominated populations and a shorter growing season could prevent annuals

from establishing in these populations at a higher latitude or elevation. The simulation

results also show that if B/CYDV were initially introduced into a population in South-

ern California, annuals would be outcompeted at the northern end of the range before the

virus became prevalent enough in those populations. The results of the sensitivity analysis

suggest that these northern perennial populations could then remain resistant to invasion

by annuals if transmission rates were low enough to prevent annual reintroduction.
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FIGURE 5.5: Linear arrangement of 20 patches used in numerical simulations. Three
scenarios included are: (a) aphid migration is unidirectional and to the next patch only,
(b) aphid migration is unidirectional and to the two nearest patches, and (c) aphids
migration occurs between every patch at the same rate (global connectivity scenario).

5.7 Discussion and Conclusions

The landscape-scale composition and configuration of host communities, along with

vector movement patterns among patches, are essential determinants of pathogen spread

and prevalence in fragmented landscapes [111, 113]. Pathogen spread depends on host

composition (e.g. presence of reservoirs, probability of transmission) and vector density

and dispersal, all of which can vary among patches in a complex landscape. Management

can increase connectivity, elevating transmission of multi-host pathogens, as is the case

with fire suppression increasing connectivity among hosts susceptible to sudden oak death

(Phytophora ramorum; see [104]). Landscape-scale host composition also influences the

dynamics of many multi-host pathogens, including spread of sudden oak death in Califor-

nia oaks [40], Lyme disease prevalence [29, 4, 28], West Nile virus dynamics [3], hantavirus

prevalence in rodents [87], and the spread of foot and mouth disease [80]. Here we have

shown that the spatial configuration of the patch system, host composition within patches,
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FIGURE 5.6: Proportion of 20 patches that are infected with B/CYDV as a function of
the number of neighboring patches that are connected via aphid migration (1, 2, or 3).
Figure shows simulation results for scenario where patches contain either all perennial or
all annual patches. Points represent the mean proportion of patches infected when the
percentage of patches contains perennial grasses is varied from 5% to 100%.
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FIGURE 5.8: Proportion of 20 initial patches that contain annual grasses at equilibrium
as a function of the number of patches containing perennial grasses in the presence of
B/CYDV. Each patch initially contains either annual grasses only, or a mixture of annuals
and perennials. B/CYDV is initially present in a single mixed host patch and subsequently
spreads via aphid migration.
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and patch connectivity affect not only the ability of B/CYDV to invade a fragmented sys-

tem, but also determine whether the pathogen facilitates the invasion of a non-native host

species. Below we discuss these three factors in the context of the analysis conducted for

our focal B/CYDV system, and we make broad observations and conclusions that could

apply to other similar systems.

The spatial structure of host populations can influence the spread of infectious

disease, as well as the spatial pattern of disease prevalence. Here we have shown that the

spatial configuration of the host community can interact with the timing of pathogen and

invasive host arrival to determine the ability of the pathogen to invade local populations

and influence competition between annual and perennial grass species. In our numerical

simulations, long term pathogen persistence and prevalence depended on the abundance of

perennial grasses in a patch system, with increasing perennial patch occupancy generally

leading to an increase in B/CYDV prevalence at the regional level because perennial

patches serve as a long-term pathogen reservoirs, whereas annual-only patches do not

maintain the pathogen between growing seasons. However, high proportions of perennial

patches can slow the spread of B/CYDV during the growing season because both aphid

fecundity and transmission rates are lower for perennial grasses than annuals. Thus, mixed

species patches or mixtures of patches with differing host composition tend to have the

highest prevalence rates because of the balance among pathogen residence time, pathogen

transmission probability, and vector fecundity.

The viral-induced reduction in annual host fecundity was the most important factor

controlling the successful initial spread of B/CYDV in mixed populations of annuals and

perennials and in perennial-only populations that were connected to annual populations

via aphid dispersal. Because annual hosts are superior to perennials for vector fecundity

in this system, the suppressive effect of infection on annuals and the amplification via

vector density interact to control the rate of pathogen spatial spread. The baseline value

for B/CYDV’s effect on annual fecundity was based on observations of the exotic annual

Bromus hordeaceus in California grasslands. However, the impact of the virus on host
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fecundity will vary by host species and also be mediated by environmental conditions

[134]. Therefore, in our focal system, B/CYDV prevalence levels in perennial populations

will depend on both the identity of nearby annual grasses as well as the environmental

conditions experienced by the annuals. If the reduction in annual fecundity is higher than

we estimated, annuals grasses may not be able to invade perennial populations. More

generally, host composition can feed back to control pathogen spread rates in a patchy

system.

Spatial connectivity can control both dispersal rates and local species densities. In

animal communities, both hosts and vectors can move among patches; however, in our

focal community, among-patch host movement is negligible, whereas vector dispersal is

key. Landscape-scale host composition can interact with vector dispersal to control disease

spread and epidemics, as in our case study. Similarly, bean dwarf mosaic virus, a whitefly-

transmitted virus that infects both soybeans and common bean plants causes severe disease

in the latter. In Argentina, increased soybean acreage shifted the landscape-scale host

composition, leading to the emergence of bean dwarf mosaic virus and threatening local

common bean production [45]. In multi-host communities where hosts also move among

patches, this will add further complexity that warrants future exploration. In mixed-

host communities, hosts vary in infection tolerance and probability of transmission; our

results suggest that this variation can interact with patch connectivity to affect pathogen

persistence and prevalence. This has important implications for both conservation and

understanding species invasions. For example, increased patch connectivity, a common

management scheme for endangered species, can lead to increased pathogen transmission

and prevalence [65, 64]. Our results suggest that this is especially true for mixed-host

communities. If hosts differ strongly in their pathogen tolerance, a less tolerant species of

concern could be driven to extinction in a highly connected landscape [72], particularly

by a vector-transmitted disease [44].

Species invasions can shape the composition of communities, species coexistence, and

biodiversity in fragmented patch systems, and pathogens have been implicated in species
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invasions in the B/CYDV system and others. For example, in the United Kingdom the

invasive grey squirrel and an introduced parapox virus are causing declines in the native

red squirrel population through resource competition and pathogen-mediated apparent

competition [125, 143]. In the B/CYDV system coexistence of annual and perennial

grasses requires B/CYDV to reduce the competitive advantage of perennial grasses [24].

Our current results modify this non-spatial understanding. In the context of a fragmented

patch system, the ability of annuals to invade depends on the timing of invasion with

respect to the introduction of disease, the spatial locations where these invasions happen,

and the composition and configuration of the patch system. Thus, our current results

suggest that connectivity can interact with arrival time and host infection tolerance to

determine the success or failure of an invasion.

5.8 Normalized Sensitivity Indices

Following are the normalized sensitivity indices for the annual-only patch:
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Normalized sensitivity indices for the perennial-only patch:
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For the normalized sensitivity indices computed above, p∗S , P
∗
S , a

∗
s, V

∗
S are the equi-

librium values of susceptible seedling perennials, adult perennials, annuals, and vectors

for the growing season dynamics. These equilibrium values are computed numerically by

running the numerical simulation for 100 years and using the values for each group at the

end of the growing season.

For the normalized sensitivity indices of RC
0 , we note that for parameter ξ
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Then we can use the sensitivity indices given before for R0,1 and the following to compute
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the sensitivity indices of RC
0 :
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6 NETWORK MODEL FOR THE SPREAD OF RINDERPEST

6.1 Introduction

This chapter is the interdisciplinary chapter resulting from an internship at Los

Alamos National Laboratory. It represents work with a team from multiple disciplines

and institutions. We use mathematical methods to model and analyze the introduction

and spread of rinderpest in livestock in the United States. This model is a multi-patch,

mutli-host disease model similar to those discussed in Chapters 2-4 but on a larger scale,

applied to five hosts and approximately 3,000 patches. Since the model is for livestock,

competition between species is not included. We see here, as in Chapter 5, that adding

spatial heterogeneity to a multi-host disease model can change the outcome of and give

additional insight into the non-spatial model.

Animal diseases, such as foot-and-mouth disease and avian influenza, are increas-

ingly important in world economics, national security, and biodiversity. Introduction of

an exotic livestock disease to the United States (US) either by natural or anthropogenic

means could have serious economic and public health consequences. Direct costs due to

recent outbreaks of mad cow disease and foot-and-mouth disease in the United Kingdom

cost billions of dollars in death of animals, culling, and vaccination. Although direct costs

can be enormous, indirect costs such as loss in livestock exports are often much greater. In

addition to economic loss, animal diseases are often a human public health threat. Many

animal diseases (e.g., avian flu, tularemia, monkeypox) are zoonotic and can be spread

from animals to humans.

To help prepare for the possibility of a serious animal disease epidemic, we created

a spatially explicit stochastic model for multi-host animal diseases to better understand

their spread in the US. The model uses county-level data and between-state animal trans-

portation rates to capture both the intra-county and inter-county behavior of an epidemic.
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The model is flexible and can be used to simulate many types of animal diseases among

various animal groups (poultry, cattle, pigs, etc.) while incorporating surveillance and

response strategies.

Rinderpest is a virus closely related to human measles and canine distemper that

affects cloven-hoofed animals such as cows, pigs, sheep, and wild or domestic buffalo

[141, 96]. This virus can cause high morbidity and mortality in naive populations, is

highly transmissible and has a long history of devastating livestock herds and wildlife in

Europe, Asia, and Africa [96, 77]. During World War II, vaccinations for rinderpest were

developed and produced in response to a possible threat of rinderpest introduced to the

US [147].

Rinderpest has a fairly short incubation period of 4 to 5 days followed by 1 to 2

weeks of clinical signs, including fever, loss of appetite, lesions, diarrhea, dehydration,

and death. Clinical signs can continue for many weeks as animals recovering from the

acute phase suffer debility, secondary infection e.g. skin disease, eye pathology and other

manifestations. In its most virulent form and with a high density population of nave

animals, rinderpest is a fast-moving disease that requires a large number of susceptible

animals to persist [119, 123]. There are avirulent strains of rinderpest that have occurred in

many different situations, but we will focus on virulent and/or rapidly spreading strains.

Mariner et al. [96] estimated the reproductive number of the more virulent lineage of

rinderpest to be 4.4 and the 1.2 for the less virulent lineage.

A relatively mild form of rinderpest endemic to cattle can have devastating effects

on wildlife populations and vice versa. Domestic cattle and wild or domestic buffalo have

the highest death rates due to rinderpest but it also affects sheep, goats, pigs, and many

wildlife species [20]. Additionally, wildlife populations may be an important source of

re-infection of rinderpest [85]. European bison and deer were susceptible to rinderpest

with high mortality rates. White-tailed deer have also been infected experimentally, so it

is likely they and other wildlife species could be a factor in the spread of rinderpest in the

United States. For the past decade, the Food and Agriculture Organization of the United
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Nations has been working on eradicating the disease through vaccination and intense

surveillance and was officially considered eradicated in October, 2010 [51]. Rinderpest

virus was last confirmed in wild buffalo in Kenya in 2001-2 and there is no confirmed

case or serological evidence of circulation of virus amongst wildlife since then. Equivocal

serology from cattle due to rinderpest has not been confirmed in any location or livestock

population within the declared infection zone of the Somali ecosystem of East Africa since

that period and all vaccination has ceased since 2003 [51, 53].

However, due to severity of rinderpest epidemics-and like smallpox- it will remain

a disease to research if it were to infect animal populations outside the laboratory. If

rinderpest were to emerge in the US, the loss in livestock would likely be devastating.

Rinderpest has never been detected in North America so there is no immunity to the

disease among our livestock or wildlife. Historically, introduction into nive herds causes

high death rates [90]. In the 1890s, the effects on cattle herds in eastern Africa and

large portions of sheep, goat, and ungulate wildlife populations were severe, changing

the distribution of animals in many regions of Africa. Consequences of this epidemic for

people living in the area included famine for some pastoral groups in sub-Saharan Africa,

including the Maasai. It was also a catalyst for the re-emergence of human diseases such

as sleeping sickness, which were temporarily absent due to the loss of tsetse fly hosts in

regions of Africa caused by rinderpest mortality [90, 99, 123]. If rinderpest entered the US,

it could be devastating to animal agriculture, wildlife, and the economy. To investigate

effective responses to an introduction of rinderpest to the US, we have adapted our spatial

epidemiology model specifically to the behavior of primary hosts of rinderpest.

James and Rossiter [123], Lefevre et al. [141], and Mariner et al. [96] have previously

developed mathematical models for the spread of rinderpest in Africa. All three incorpo-

rate different vaccination programs and stochasticity to explore the spread of rinderpest in

cattle herds within parts of Africa where the disease is either endemic or has been present

in the past. Their models do not include multiple hosts or spatial heterogeneity, both of

which are important to the spread of rinderpest. The models were used for previously
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exposed or vaccinated herds and some of the parameter values would not be accurate for

an epidemic in the US, since rinderpest is an exotic disease for the US and all animals

would be immunologically nive. Our model extends and expands the ideas in these mod-

els to include multiple mitigation strategies, spatial spread among counties on a network,

multiple host categories, and the effects of rinderpest on nive herds. Our objective was

to model a rinderpest outbreak in the US to determine agricultural and veterinary prac-

tices that minimize the risk of catastrophic damage from this exotic disease. Using an

epidemiological model, we explore the effectiveness of various mitigation strategies such

as surveillance, quarantine, vaccination, movement control, and culling, which are incor-

porated in the model. We determine the sensitivity of the model to these strategies and

compare results for different responses in order to minimize risk and damage. For rinder-

pest, the relevant groups of livestock are sheep, hogs and pigs, dairy cows, cattle on feed,

and beef cattle. The mathematical model was used to estimate the extent of spread in,

and the relevance of, each of these groups. Because there are no data for rinderpest in the

US, our model is useful for creating a plan of action should an outbreak occur.

6.2 Methods

Here we present a two-stage hybrid model of the spread of a multi-host infectious

disease among agricultural animals in the US using rinderpest as a case study. The model

incorporates large-scale interactions between US counties and the small-scale dynamics of

disease spread within a county. The large-scale interactions and spread of disease between

counties is stochastic. To model within county dynamics, we analyze a distribution of

solutions to deterministic equations (see Section 6.3) with parameters sampled from the

ranges in Table 6.1. The model is designed to be as general as possible so that it can be

adapted to varying parameter values and situations.
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TABLE 6.1

Par Description Baseline Range Ref.

ιIi infectivity of species i in stage I 0.00000023 N/A [99]

ιLi infectivity of species i in stage L

(subclinical)

0.000000115 N/A [85]

ιCi infectivity of species i in stage C

(carrier)

0.000000115 N/A [99]

ss4 susceptibility of susceptible stage

feedlot cattle

5.0 N/A [107,

109, 115]

ssi susceptibility of animals besides

feedlot in stage S

22.5 N/A [109]

r(X) 1/measure of density of animals in

county x

N/A [108,

141]

a constant of proportion for contact

rate

5 N/A N/A

βmn
ij transmission rate from type j in

stage n to type i in stage m

N/A [37, 77,

109, 120]

rVs reduced susceptibility of vacci-

nated susceptible animals

0.5 N/A [13, 14,

15]

rVe reduced infectivity of vaccinated

quiescent infected animals

0.5 N/A [15, 132]

Continued on next page
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TABLE 6.1 – continued

Par Description Baseline Range Ref.

λL rate of progression from latent to

infectious stage (1/ residency time

in stage)

1/4.5 days 1/ 3-6 [116,

114]

λC rate of progression from carrier to

recovered

1/ 698.75 days 1/120-1277.5 [55]

λI rate of progression from infectious

to recovered

1/ 6 day 1/ 4-8 days [55, 85]

λVs rate of progression from vaccinated

susceptible to recovered

1/ 10.5 days 1/ 7-14 [55]

λVe rate of progression from vaccinated

quiescent infected to recovered

1/698.75 days 1/ 120-1277.5 [85]

λR rate of progression from recovered

to susceptible

0 0 N/A

θL ratio of infected progress to clinical

symptoms

0.975 0.95-1 [85]

θD ratio of infectious that die 0.9 0.8-1.0 [116]

εq efficacy of quarantine (ratio of sus-

ceptible successfully quarantined)

0.5 0.1-0.9 [13]

εvs efficacy of vaccine for susceptibles

(will move into immune)

0.775 0.6-0.95 [77]

εve efficacy of vaccine for exposed (la-

tent only)

0.775 0.6-0.95 [119, 77]

εc efficacy of culling 0.5 N/A [53, 121]

εs efficacy of short-range movement

control

0.5 0.1-0.9 N/A

Continued on next page
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TABLE 6.1 – concluded

Par Description Baseline Range Ref.

εl efficacy of long-range movement

control

0.5 0.1-0.9 N/A

Tl time after detection until inter-

state movement restricted

6.5 days 1-14 days N/A

Tv1 time after first detection in U.S.

until vaccine widely available

33.5 days 7-60 days N/A

Tv2 time after further detection locally

until vaccine available

17 days N/A N/A

Tq time after detection until quaran-

tine implemented

2 days 1-3 days N/A

Tc time after detection until culling

implemented

2 days 1-3 days N/A

η number of infected animals needed

to trigger official detection

50 N/A N/A

k constant of proportionality for

long-range movement kernel

0.001 N/A N/A

TABLE 6.1: Model parameter description and disease input ranges used with supportive
references.

6.3 Intra-County Model

We begin with the micro-scale intra-county model in which deterministic equations

modeling disease spread within a county are solved for parameters sampled randomly from

across their ranges. First, we assumed that there is no natural death of hosts, so that

animals in the model die due to infection or culling. For this case study, the “types”
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of animals are beef cattle, dairy cattle, cattle on feed, sheep and goats, and pigs. We

will refer to each of the susceptible, infectious, recovered, dead, vaccinated, quarantined,

etc compartments as a disease stage. Within each county there is no heterogeneity for

livestock distributions in respect to the number of farms accounting for the number of

animals. Each susceptible host of type i in county x, denoted Sx
i , has a certain probability,

namely μmn
ij , of becoming infected with the pathogen due to contact with another infected

animal of type j. This probability is based on the susceptibility to disease of animal type

i in stage m, denoted smi , the infectivity of animal type j in stage n, denoted ιnj , and a

scaled contact rate based on the density of farm animals in the county, denoted e−r(x)/a

where r(x) = 1/
√
N/A. Here, N is the total number of all types of animals in the county,

A is the area of the county, and a is a constant of proportionality referred to as the

characteristic length of local spread. The transmission rate, or probability of infection, is

μmn
ij = (infectivity)(susceptibility)(contact rate)(fraction infected)

where fraction infected =
nj

N for nj the number of animals in (infected) stage n of type j

and represents the probability that a contact is with an infected individual. For our case,

we then rewrite the transmission probability as

μmn
ij = (infectivity)(susceptibility)

(contact rate)

(total population)
(number infected)

So, the probability of species i in stage m becoming infected by species j in stage

n is μmn
ij = ιnj s

m
i e

−r(x)/anj = βmn
ij nj where e−r(x)/a is the true contact rate scaled by

the total number of animals, N . Also note that for very low densities, e−r(x)/a behaves

linearly, and as density increases, e−r(x)/a approaches 1 as its slope approaches zero. We

use a transmission function that moves between a linear dependence at low animal density

and saturates at high animal density.

The possible progressions through the disease states of our model, which begin in the

susceptible state, S, and progress to either recovered, R, or dead, D, are diagrammed in

Figure 6.1. After becoming infected, a susceptible host can move into either a subclinical

“latent” state or a subclinical “carrier” non-progressing state with probability θL or 1−θL
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respectively. The host in the subclinical latent (incubation) stage, Lx
i , with infectivity ιLi

remains for a residence time of 1/λL upon which the host transitions into a symptomatic

infectious stage, Ixi . The hosts in the carrier stage, Cx
i , have an infectivity of ιCi but never

exhibit clinical signs and after a residency time of 1/λC move into a recovered, immune

stage, Rx
i . We will refer to Lx

i and Cx
i as the quiescent infected group. Meanwhile, hosts

in the infectious stage will have infectivity ιIi and remain infectious with time of 1/λI after

which they will either die or recover with probability θD and 1 − θD respectively. The

recovered class remains immune for life.

FIGURE 6.1: Description of the intra-county disease progression model. See Table 6.1
for specific symbol descriptions used in the model.

The intra-county portion of the model also includes mitigation processes such as

vaccination, quarantine, and culling, as well as the response time and efficacy of each of

these control measures. After 50 hosts are infected in a county, the disease is officially

detected with a corresponding time of detection, τd, and control measures are implemented

with an appropriate time lag. The first response to detection is quarantine. At the time

of quarantine, t1, uninfected hosts are isolated and thus removed from the susceptible

compartment. Here, εq is the efficacy of the quarantine, so that the total number of

animals of type i successfully quarantined are εqS
x
i . The quarantine has a time lag, Tq,

of 1-2 days. We used a wide range for between 7 and 60 days when vaccines become
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widely available after the first time disease is detected in the US and we used an average

of 33.5 days to become available locally after subsequent detection of disease in a county.

We wanted to test for the impacts of having vaccines ready versus a longer time period

for vaccine development. For εvs and εve the efficacy of vaccination on susceptible and

quiescent infected animals respectively, the total number of successfully vaccinated animals

of type i at the time of vaccination, t2, is εvsS
x
i +εve(L

x
i +C

x
i ). There is a lag between time

of vaccination and immunity so vaccinated susceptibles are moved into a temporary stage

Vs with residency time 1/λVs and susceptibility to disease reduced by a factor of rVs so

that βVsM
ij = rVsβ

SM
ij where M is one of the infectious states. Similarly, vaccinated latent

animals (in Lx
i ) are moved into stage Ve with residency time 1/λVe with infectivity reduced

by a factor of rVe so that β
MVe
ij = rVeβ

ML
ij . It is assumed that vaccinated carriers exhibit no

different behavior than un-vaccinated carriers so that carriers that are vaccinated simply

remain in the Cx
i , or carrier, stage.

Lastly, we consider culling, which has a lag time of 1-2 days after detection and

an efficacy of εc. Culling can occur in two instances: if a county is under surveillance

for the disease, then both infectious and quiescent infected groups are culled at time t∗3,

whereas if a county is not under official surveillance, then only clinical infectious animals

are culled at time t3. Notice that this implies the ideal situation where no susceptible

or recovered animals are culled. A county will be put under surveillance if it is within

20 miles of another known infected county that is under quarantine (this happens if the

number of clinical infectious animals in the county is greater than ν = 50 and enough

time, Tq, has elapsed for a quarantine to be put into place) or if the county itself is under

quarantine. This surveillance zone estimate is a conservative estimate based on the average

surveillance zone size of 30 km for foot and mouth epidemics in Europe. Since accurate

pen-side tests for rinderpest are available, good surveillance and methodical separation of

infected animals is possible.
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The equations for the intra-county model are then

dSx
i

dt
=− δsi (x)S

x
i − εqS

x
i Ht1 − εvsS

x
i Ht2 (6.3.1)

dVs
x
i

dt
=− δvi (x)Vs

x
i − λVsV

x
si + εvsS

x
i Ht2 (6.3.2)

dLx
i

dt
=θL(δ

s
i (x)S

x
i + δvi (x)Vs

x
i )− λLL

x
i − εveL

x
i Ht2 − εcL

x
i Ht∗3 (6.3.3)

dCx
i

dt
=(1− θL)(δ

s
i (x)S

x
i + δvi (x)Vs

x
i )− λCC

x
i − εcC

x
i Ht∗3 (6.3.4)

dIxi
dt

=λLL
x
i − λII

x
i − εcI

x
i Ht∗3 (6.3.5)

dVe
x
i

dt
=− λveVe

x
i + εveL

x
i Ht2 (6.3.6)

dRx
i

dt
=λvsVs

x
i + λCC

x
i + (1− θD)λII

x
i + λveVe

x
i (6.3.7)

dD

dt
=θDλII

x
i + εc(L

x
i +Cx

i )Ht∗3 + εcI
x
i Ht∗3∪t3 (6.3.8)

where

δsi (y) =
∑
j

(βSLij L
y
j + βSCij Cy

j + βSIij I
y
j + rVeβ

SL
ij Ve

y
j ) (6.3.9)

δvi (y) =
∑
j

(rVs(β
SL
ij L

y
j + βSCij Cy

j + βSIij I
y
j ) + rVsrVeβ

SL
ij Ve

y
j ) (6.3.10)

and

HA = HA(t) =

⎧⎨
⎩ 0 t /∈ A

1 t ∈ A

Finally, tx1 is the set of all times when a quarantine occurs in county x, tx2 the set of

all times when vaccination occurs in county x, tx3 when culling occurs in a county x not

under surveillance, and tx3∗ the set of all times when culling occurs in a county x under

surveillance. For this model, mitigation is conducted on the day scale so that the SIR-type

model is run for a full day in a county and at the end of that day mitigation strategies

are implemented and numbers of animals in each stage are updated accordingly before

running the SIR-type model for the next day.
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6.4 Inter-County Model

Next, we discuss the macro-scale inter-county and inter-state model. Figure 6.2

shows the density of cattle in the US with county-level resolution. This and similar data

for the other animal classifications are available from the 2007 agricultural census and the

cattle are split into beef cattle, dairy cattle, cattle on feed as used in the model [108].

Each susceptible county, x, has a probability of becoming infected of px(t) = 1 − e−Γx(t)

where e−Γx(t) is the probability of not becoming infected and

Γx(t) =
∑
i

∑
y

[δsi (y, t)S
x
i + δvi (y, t)Vs

x
i ][χs(t)κs(x, y) + χlκl(x, y)] (6.4.1)

for i the number of species and y the number of counties. We use χ to indicate reduced

long or short range movement due do movement control measures put into place after

detection of a disease and use κ as a long or short range movement kernel. For this model

χs =

⎧⎨
⎩ 1 t < τd

εs t ≥ τd
(6.4.2)

χl =

⎧⎨
⎩ 1 t < τd + Tl

εl t ≥ τd + Tl
(6.4.3)

κs(x, y) = e−
‖rx−ry‖

a and κl(x, y) = 1 − e−k
∑

i gi(x,y)Δt. Here, a is a constant of propor-

tionality for short-range movement seen as the length scale of transmission resulting from

animal-to-animal contact and fomites, ‖rx − ry‖ is the distance between counties x and y

(on a sphere), k is a constant of proportionality for long-range movement, and Δt is the

time step being used. For our simulations, Δt = 0.125 (approximately 1/8 day). Also,

gi(x, y) is the frequency of inter-state movement from state y into state x based on data

from the US Department of Agriculture [135].

We chose 16 starting locations for the epidemic as case studies for our model. To

determine starting locations, we picked two counties from the top ten counties for number

of each of the groups of animals we considered (dairy cattle, feedlot cattle, beef cattle,



161

FIGURE 6.2: Density of cattle and calves in the US by county.

sheep, and pigs). In addition, we started the epidemics in each of the different animal

groups to add variation and less predictability to the scenarios. There were several counties

with high populations for multiple groups so we minimized duplication by choosing from

among the top ten. We also chose several counties (in Florida, Arizona, California, and

Wyoming) that have much livestock but are geographically separated from other counties

with significant livestock density or numbers. These isolated counties were chosen in order

to see the comparative effects of short and long distance movement and movement control

for various regions in the United States.

6.5 Results

We ran our model 400 times for each of 16 starting locations throughout the US,

exploring different combinations of the various disease properties and mitigation parame-
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ters, as well as simple stochastic variation. The majority of simulation runs each produce

more than a ten-fold increase in the number of cases in a few days after the start of the

epidemic. A few days later, and at much lower levels, the recovered and dead populations

rise, reflecting the high mortality rate of rinderpest in cattle. Shortly after the sharp rise of

symptomatic animals, a massive quarantine program appears, and culling of symptomatic

animals. The next two months of the epidemic reflect a steady spread of disease to new

counties and the subsequent application of quarantine and culling to contain the spread

in each new region. Within the model, the duration of quarantine is indefinite, although

in reality, the quarantine could be lifted once an effective vaccination program occurs.

The spatial-temporal spread of a severe epidemic can be seen in Figure 6.3, showing

the map of the US, colored according to the day each county sees its first case of rinderpest.

The epidemic was seeded in Weld County, Colorado, on day 0, and spread to California

almost immediately (black circles). By day 11, the disease has already spread to over a

dozen locations throughout the US, seeding the second explosion of cases, during days

11 to 16. During the longest phase of the epidemic, from week 3 to 9, nearly all of

the 70 million beef cattle in the nation are quarantined, with almost one million beef

cattle culled. Rinderpest epidemics spread to essentially every area in the country that

contains significant populations of beef cattle. As the rate of the growth of new infections

levels off, a great deal of effort and activity is being expended during this portion of the

epidemic, as the spread is mitigated by a combination of a quarantine (which reduces the

effective reproductive number below one) and the rapid identification and culling of newly

symptomatic animals that results from imperfections in the quarantine.

6.6 Sensitivity to Model Parameters

The worst-case scenario represents only one of many possible instantiations of a

rinderpest epidemic (Figure 6.3). We explored the sensitivity of consequence to variation
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FIGURE 6.3: Geographic progression of one epidemic seeded in Weld County, Colorado.
All counties are shown with green crosses and counties impacted by the epidemic by days
2, 11, 21, 51, and 101 are shown with various symbols.

in nearly all model parameters. Figure 6.4 illustrates how the total number of dead beef

cattle depends on the starting location of the epidemic, as well as the effectiveness of the

quarantine. Epidemics were seeded with 100 infected animals of one type (beef cattle,

milk cattle, feedlot cattle, swine, or sheep) in one of 16 counties selected to be illustrative

of geographic diversity in the epidemiology. Quarantine efficacy was defined to be the

fraction of animals protected from infection by the quarantine and was allowed to vary

from 0.1 (only a ten percent reduction in infection) to 0.9, representing a ten-fold decrease

in the likelihood of disease spread. This parameter involves all possible modes of spread,

including animals moving, spread by wildlife, animals being transported, and disease

spread with fomites by humans. Considerations such as asymptomatic spread also appear

here. The impact of the time between detection of rinderpest in a county and initiation

of culling (varied from 1 to 4 days) was nearly as large as that of quarantine efficacy, but

most model parameters had a smaller impact on the overall number of animals infected

by the epidemic.
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FIGURE 6.4: Consequence realized over 400 runs of varying disease and mitigation pa-
rameters for epidemics started at the 16 locations (three groups). Counts are the number
of simulation runs with the number of total dead cattle.

The normalized forward sensitivity index of a variable to a parameter is the ratio

of the relative change in the variable to the relative change in the parameter. Since all

variables depend on many nodes in the network of counties and probability of infection

is stochastic, the sensitivity indices were computed numerically based on the mean of

approximately 5000 runs starting in 16 different locations. We computed the sensitivity

of total number of animals infected to the disease-related parameters. We found that

the total number of infected animals increases with the fraction of animals that progress

to symptoms, with the fraction of infected animals that die, and with an increase in

the incubation period. The number of infected animals is not very sensitive to intrinsic

disease parameters over the range they were varied (reflecting plausible values for these

parameters). We varied each of these parameters along their range for 16 different starting

locations. We then computed the average number of infected animals across the range of

each parameter for the 5000 runs. The slope of the best fit line for each parameter versus

the average number of infected animals was used to calculate the sensitivity index. See
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Parameter Normalized Forward Sensitivity Index

θcL(ratio infected cows that progress to symp-

toms)

11.3

θsL(ratio infected sheep that progress to symp-

toms)

3.4

θD(ratio infected that dies) 3.4

θhL(ratio infected hogs that progress to symp-

toms)

0.5

Tc(time after detection until culling imple-

mented)

0.4

εs(efficacy short range movement control) 0.3

1/λL(residency time in latent stage) 0.2

1/λV s(residency time in vaccinated susceptible) -0.2

εl(efficacy long range movement control) 0.2

εq(efficacy quarantine) -0.1

1/λI(residency time in infectious stage) 0.1

1/λC and 1/λV e(time in carrier stage) 0.1

TABLE 6.2: Sensitivity analysis for significant varied parameter for the simulations.

Table 6.6, of sensitivity indices.

Rinderpest can be controlled with several mitigation strategies. We use sensitivity

analysis to quantify the relative impact of various mitigation strategies on the total number

of infected cattle. We found that movement control is not very effective in controlling both

variables. Culling, on the other hand, is very effective, especially if implemented promptly

[140]. Vaccination can be effective for controlling the size of an epidemic, but only if the
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vaccine is readily available and stockpiled, which is not currently the case in the US.

The last important variable for controlling the epidemic is the time until the epidemic is

detected.

6.7 Importance of Geography

The most striking find was dependence of the overall epidemic size on the starting

location (Figure 6.4). Overall epidemic size, measured by the number of infected animals

for the epidemics started in 16 locations throughout the US, was related to the seed

location. Epidemics from the 16 seed locations can be classified according to overall

size into small epidemics of 100 to 300 animals (failed epidemics), epidemics infecting

3,000 to 30,000 animals (medium epidemics), and the large epidemics infecting around

one million beef cattle. Epidemics infecting 1000 beef cattle or 100,000 beef cattle rarely

occur, although several locations readily produce both failed and large epidemics.

6.8 Geographic Flow of Infection

From the simulated data, clustering exists around small and very large epidemics

with few cases falling between the two extremes. The conditions under which rinderpest

reaches large epidemic levels are related to the origin of the disease and whether or not the

disease moves into certain key counties in high-livestock-density areas of the US. We have

indicated the starting locations of the failed, medium, and large epidemics with appro-

priately colored symbols in Figure 6.2 of the density of beef cattle. Further examination

of the simulation results indicate that the large epidemics passed through the Midwest at

some point early in the epidemic.

The variation in spatial origin and size of observed epidemics suggests further ex-
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amination of the dependence of the epidemic size on response time and effectiveness of

movement controls. Because the parameter values were sampled from a uniform distribu-

tion, it is evident that failed epidemics are significantly more likely to occur in the presence

of reduced movement of animals. Equally evident, however, is that movement controls

alone are not particularly helpful. Clearly, if movement controls prevent all movement, the

epidemic would, by definition, not spread. Our model is merely highlighting that single

cases can, quite frequently, get through even stringent movement control schemes.

6.9 Discussion

Determining parameter values for rinderpest is difficult in many cases because there

is a paucity of spatial historical data and rinderpest has never been present in the US. We

can be relatively confident of disease progression parameters within individual hosts, such

as the incubation and infectious periods, as well as death rates experimentally [140, 117],

although exploration of ranges for these parameters is clearly prudent.

The epidemiological parameters are somewhat more difficult to quantify. The most

reliable indicator is the historical data of the frequency and size of epidemics. In ex-

trapolating the transmission likelihood from historical data, three significant sources of

uncertainty must be lumped together. First, are the intrinsic transmissibility of the dis-

ease and susceptibility of animals to the virus, which are likely to be higher than past

epidemics because of the long-term absence of circulating rinderpest. Second, are the

greatly increased size, density, and transport of livestock in the US. Finally, modern agri-

cultural practices are more highly refined than they were when rinderpest last circulated

freely, presumably resulting in better control of infectious disease in general. In order to

validate the model for transmissibility parameters, we compare qualitative spatial results

with what is known from previous outbreaks of rinderpest in nive herds and with well

known recent outbreaks of foot-and-mouth disease. It is important to realize that we are
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not primarily concerned here with computing the median consequence value for a rinder-

pest epidemic (that would require quite careful examination of the above three effects).

Instead, we aim to explore and quantify the relationship between disease properties, geog-

raphy, and mitigation strategies to better understand and mitigate the spread of infectious

diseases in multi-host populations.

We found that rinderpest spread as expected when started from different geographic

locations in the US. For example, in recent foot-and-mouth disease studies it has been

shown that number of animals is important in the initial stages of the disease, while

density of animals becomes important after the first one to two generations [20, 120]. We

would expect then that rinderpest requires a path through densely populated areas and

an initially large population of livestock in order to spread widely. This was indeed how

the model behaved. For instance, an epidemic started in a county in Idaho caused high

death rates in that county but was not able to spread to the rest of the US because Idaho

is surrounded by states with very low livestock densities. However, an epidemic started in

Iowa spread rapidly throughout the high-density belt from the Midwest through eastern

Texas. One difficulty in the modern era is that, even if not surrounded by areas with

dense populations of livestock, infected animals may be shipped to areas that are densely

populated. We also saw that rinderpest spread quickly, which is to be expected from

examining the last continent-wide epidemic in nive herds in Africa in the 1890’s. Even

though transportation was much slower and less widespread, rinderpest spread from the

horn of Africa to the tip of South Africa (about 8000 km) in less than 10 years [90].

Spatial mixing plays an important role in other fast-spreading animal diseases such

as foot-and-mouth disease [116], and initial explorations indicate that the same is true

for rinderpest. Rinderpest spreads quickly, is highly transmissible, and has a high death

rate, so has the potential to burn itself out quickly if enough susceptible animals are

not available. Thus, for an initial infection to become an epidemic, rinderpest initially

requires a large number of susceptible animals. After the first few generations, high density

of hosts is required as with foot-and-mouth disease. So, we assume that rinderpest will
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only become a large-scale epidemic if it reaches or begins in the high-number, high-density

areas in the Midwest of beef cattle in the US. Because of human mobility we not only

have to consider proximity but rate of movement of livestock between areas. For example,

although California is geographically distant from other high-density livestock areas in

the US, high rates of movement between California and the mid to eastern US result in

large epidemics with origins in California. We separated the initial locations into three

categories: primarily small epidemics, primarily large epidemics, and bimodal distribution

of epidemics. In addition, the importance of wildlife in the propagation of rinderpest

should not be understated. Although the data on wildlife required to be incorporated into

the model are mostly unavailable, wildlife may be an important part of an epidemic.

In all of the simulations, the overall mortality rate never exceeded a few percent,

even though the case fatality rate is nearly unity. This is because we concluded that,

even in the worst case, ranchers would be able to control the epidemic by identifying and

culling the clearly symptomatic animals. The importance of this mitigative strategy is

evident in the dependence of the size of the epidemic on both the efficacy and rapidity of

quarantine and the rapidity of culling.

The apparent lack of importance of vaccination evident in the sensitivity analy-

sis does not indicate a lack of importance of a highly efficacious vaccine in controlling

rinderpest. It simply reflects our expectation that quarantine and culling of the sporadic

outbreaks will be utilized to control the epidemic only until the vaccine can be admin-

istered and become effective. Such a dependency would show up strongly in a complete

economic consequence analysis, which we have not attempted here.

One important advantage to our epidemiological model is its ability to treat multiple

hosts on an equal footing. The hosts can differ in either disease progression properties,

such as the greatly decreased disease susceptibility of swine to rinderpest, in comparison

to cattle. They can also differ in their epidemiological properties, such as the fact that

feedlot cattle do not typically return to mingle with beef cattle once they enter the feed

lot. Indeed, the low susceptibility of swine to rinderpest is a significant factor in the
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difference from foot-and-mouth epidemic spread across the US. Although our multi-host

model treats the different types of livestock appropriately, we only treated wildlife and

the spread of disease by humans (through fomites-humans do not contract rinderpest)

implicitly, through the imperfection of both long- and short-range movement restrictions.

It will be important to return to these questions in future studies.

The explosive spread of rinderpest apparent in Figures 6.3 and 6.4 can be traced to

three separate parameters in our model: asymptomatic spread, relatively short incubation

times, and a relatively high transmission and susceptibility coefficient. Given the likeli-

hood, even in a nave outbreak, of a percentage of asymptomatic cases and the possibility

of an avirulent strain being introduced and spreading widely, with potential subsequent

reversion to virulence, asymptomatic animals play an important role in both the long-term

outcome of a rinderpest epidemic and in the best surveillance and mitigation strategies.

Here, we focus on the virulent strain of rinderpest to simulate a worst-case scenario for

impacts. The ultimate ability to control the disease while losing only a few percent of the

Nation’s livestock can be traced to the clarity of the signs of disease and the existence of

an efficacious vaccine, which led to our assumed rapidity and effectiveness of culling and

quarantine.

An important outcome of this study is the importance of geography and the density

of susceptible hosts to the spread of rinderpest. The relatively small statistical correlation

of epidemic size to movement restrictions in comparison to quarantine and culling should

not be interpreted to mean that this control measure is of little importance. There are

several lessons learned from these simulations for the management of rinderpest or similar

disease outbreak in cattle populations in the US. First, it is far cheaper to implement

than quarantine or culling, although the economics of the loss of export are considerable.

Second, the impact of preventing the spread to the major cattle populations is a thousand-

fold decrease in epidemic size and a significant shortening in the duration of quarantine

and culling interventions. Third, the actual effectiveness of movement restrictions depends

on several key variables, such as the absolute value of the transmissibility of the virus and
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the implicit assumptions on the likelihood of spread by fomites or wildlife. Finally, it is

impossible to capture the adaptive nature of the mitigative measures in a model such as

ours. Our parameter estimates are applied ‘for the long haul’ and may not reflect potential

opportunistic mitigation.

These results strongly support the case for complete eradication of rinderpest. The

ability to systematically explore the epidemiology of disease will be important when con-

sidering the impacts of climate change and emerging disease, and the robustness of modern

agricultural practices. It is also important as a stepping stone to controlling zoonotic dis-

eases and understanding the evolutionary pressures of multi-host pathogens in general.

The geography and connectedness of populations plays an important role in the outcome

of an epidemic. Using this knowledge of animal population density and connectedness

can assist in determining critical populations or locations to apply mitigation or control

measures for animal movement.
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7 CONCLUSION AND FUTURE DIRECTIONS

7.1 Summary of Results

This thesis considered compartmental Susceptible-Infectious-Recovered (SIR) ordi-

nary differential equation models for the spread of a pathogen among competing species.

We also modeled spatial heterogeneity using multi-patch models that are graphs (or net-

works) with systems of differential equations at each vertex. These models can be viewed

as either an approximation of spatial diffusion or as a model for patchy environments. For

the case of spatio-temporal dynamics of disease spread, a multi-patch model consists of

an SIR model on each vertex of a graph or network with movement of species between

some or all of the vertices. Methods I used to understand and analyze the models include

stability analysis of equilibiria, persistence theory and analysis of flow along the bound-

aries of the system, threshold values for growth and other behaviors, sensitivity analysis,

and simulations. In addition, we added stochasticity to a model for spread of disease,

sampling across the range of parameters such as susceptibility, infectivity, and efficacy of

control strategies.

Understanding the mechanisms that drive coexistence of competing species is an

important question in community ecology. The effects of a shared disease on the outcome

of competition between two species has been investigated by several authors in the ecolog-

ical and mathematical ecology communities. Although many papers propose and analyze

mathematical models of Lotka-Volterra competition between two species that share a com-

mon (generalist) pathogen, some important cases are difficult to analyze. In particular,

it has been difficult to find existence and stability conditions of the infected coexistence

equilibrium for these models.

Chapters 3 and 4 addressed the effect of interactions between competition and dis-

ease dynamics on this endemic coexistence steady state. We considered a competition
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model for two species with a generalist pathogen and computed the basic reproduction

number, derived analytic forms for equilibria where possible, and performed local and

global stability analysis of the equilibria, including the disease-free and infected coexis-

tence equilibria. For models with frequency incidence disease transmission, we prove the

existence, uniqueness and global stability of the infected coexistence equilibrium under the

assumption that coexistence of the species is feasible using the theory of asymptotically

autonomous systems. As is the case for most models with frequency incidence disease

transmission, the stability of the coexistence equilibrium depends on the basic reproduc-

tion number (BRN) being greater than one. Thus, the frequency incidence disease model

exhibits the classic endemic model behavior; the disease dies out below a threshold and

approaches an endemic equilibrium above the threshold.

We prove that a conjecture made in [73, 26, 17] about the infected coexistence

equilibrium holds for a simplified model. In particular, we show that the conditions

under which infected coexistence is stable guarantee that all other equilibria are unstable

and vice versa. In addition, we also show that under the simplifying assumptions, the

qualitative behavior of the model with mass action disease transmission is identical to the

model with frequency incidence disease transmission. This is not true for the full general

system with mass action. We hypothesize, then, that for species with very similar intra-

specific competition rates and similar (a-virulent) pathogen transmission rates, the choice

of incidence functions does not change the conditions under which endemic coexistence is

stable, i.e., stability is determined by the basic reproduction number and relative strengths

of inter- and intra-specific competition.

In the case of mass action disease transmission we show that, if the death rate due to

disease is positive, then disease can reduce the total equilibrium density for each species in

isolation. This in turn affects competitive ability indirectly (apparent competition), and

is another indication that in the presence of disease, the competitive outcome can change.

We hypothesize that one of the driving forces behind the possible switch of competitive

outcomes and the difficulty of analysis of the full model is death due to disease. This
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force may be magnified by differing rates of transmission between and within species. The

results of this research can be found in a technical report [21], and a paper that is in

review [22].

In Chapter 4, for cases when stability of the system is difficult to determine, per-

sistence theory was used to show conditions under which species and/or the pathogen

persist in the system. Han and Pugliese [61] found conditions for strong uniform per-

sistence of disease and for one or both species for the case of density-dependent birth

with competition in the death term. We find that adding competition to the birth term

and removing density dependence from death affects the actual equilibrial densities of

the computed boundary equilibria but does not qualitatively change the conditions under

which the species and/or the disease persist uniformly strongly. This suggests that the

particular way in which competition acts on the growth rate of the species does not change

the qualitative outcome of our model in the context of strong uniform persistence of both

species and the pathogen.

It is also proved using persistence theory that when all other equilibria are unstable,

endemic coexistence is strongly uniformly persistent (i.e. there is coexistence of both

species and the pathogen). I also present conditions under which each individual species

and the disease are strongly uniformly persistent. Although stability of particular interior

equilibria and/or limit cycles is not proved, the strong uniform persistence of the system is

proved. This is an important result from an ecological perspective, since it guarantees that

all variables stay bounded strictly away from zero, thus will not go extinct. In summary,

we use persistence theory to complete the analysis of the full model for competition and

disease with mass action incidence, showing that persistence of both species and the disease

is determined by a few ecologically relevant parameters.

Chapter 5 pursues the question, “Could exotic species alter disease transmission

dynamics, which in turn facilitate invasion?” In collaboration with ecologists [106], we

considered a model to study the transmission dynamics of Barley Yellow Dwarf Virus

(BYDV), an important ecological component of native grasslands in California as well as
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patchy meadows in the Cascades. We modeled the spread of the aphid-vectored BYDV

on multiple patches for two host grass species, one native and one invasive, including both

seasonal and age related dynamics for the grasses. Using simulations, the basic reproduc-

tion number, and sensitivity analysis, we have shown that the spatial configuration of the

patch system, host composition within patches, and patch connectivity affect not only the

ability of BYDV to invade a fragmented system, but also determine whether the pathogen

facilitates the invasion of a non-native host species [106].

In animal communities, both hosts and vectors can move among patches; however,

in our focal community, among-patch host movement is negligible, whereas vector dis-

persal is key. Landscape-scale host composition can interact with vector dispersal to

control disease spread and epidemics, as in our case study. Similarly, bean dwarf mosaic

virus, a whitefly-transmitted virus that infects both soybeans and common bean plants

causes severe disease in the latter. In Argentina, increased soybean acreage shifted the

landscape-scale host composition, leading to the emergence of bean dwarf mosaic virus and

threatening local common bean production. In multi-host communities where hosts also

move among patches, this will add further complexity that warrants future exploration.

The landscape-scale composition and configuration of host communities, along with

vector movement patterns among patches, are essential determinants of pathogen spread

and prevalence in fragmented landscapes [111, 113]. Pathogen spread depends on host

composition (e.g. presence of reservoirs, probability of transmission) and vector density

and dispersal, all of which can vary among patches in a complex landscape. Management

can increase connectivity, elevating transmission of multi-host pathogens, as is the case

with fire suppression increasing connectivity among hosts susceptible to sudden oak death

(Phytophora ramorum; see [104]). Our results show that for cases such as the BYDV

system, mixed species patches or mixtures of patches with differing host composition tend

to have the highest prevalence rates because of the balance among pathogen residence time,

pathogen transmission probability, and vector fecundity. Further, our results suggest that

connectivity can interact with arrival time and host infection tolerance to determine the
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success or failure of establishment for newly arriving species.

Chapter 6 (in collaboration with colleagues from various disciplines at Los Alamos

National Laboratory) investigates the spread of generalist animal diseases on a large spatial

network, using Rinderpest as a case study. We predicted the potential spread of Rinderpest

using a two-stage model for the spread of a multi-host infectious disease among agricultural

animals in the US, incorporating USDA data for county-level livestock populations and

movement. The model includes pigs, sheep, goats, beef cattle, dairy cattle, and cattle on

feed as well as mitigation strategies such as quarantine, vaccination, culling, and movement

control. I ran simulations of the model for designed scenarios, and performed sensitivity

analysis of the parameters. We were not primarily concerned with computing the median

consequence value for a rinderpest epidemic (that would require quite careful examination

of the above three effects). Instead, we aimed to explore and quantify the relationship

between disease properties, geography, and mitigation strategies to better understand and

mitigate the spread of infectious diseases in multi-host populations.

We found the size of Rinderpest epidemics were directly related to the origin of

the disease and whether or not the disease moved into certain key counties in the high-

livestock-density areas of the US, and were sensitive to response time and effectiveness of

mitigation strategies [95]. Spatial mixing plays an important role in other fast-spreading

animal diseases such as foot-and-mouth disease [116], and initial explorations indicate that

the same is true for rinderpest. Rinderpest spreads quickly, is highly transmissible, and

has a high death rate, so has the potential to burn itself out quickly if enough susceptible

animals are not available. Thus, for an initial infection to become an epidemic, rinderpest

initially requires a large number of susceptible animals. After the first few generations,

high density of hosts is required as with foot-and-mouth disease. So, we assume that

rinderpest will only become a large-scale epidemic if it reaches or begins in the high-

number, high-density areas in the Midwest of beef cattle in the US. Because of human

mobility we not only have to consider proximity but rate of movement of livestock between

areas.
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In summary, we find that competition, disease, and space can interact to create

complex dynamics. In fact, adding any one of these factors to a model can potentially

change the outcome of the model or the conditions under which coexistence of species is

possible. It will be important to continue to compare simple models with more complex

models in order to understand the situations under which more complexity is necessary to

answer the question being asked. As we discovered in Chapters 3 and 4, for some special

cases, adding disease dynamics to a model for competing species does not significantly

change the conditions for coexistence of the species. However, for other cases, adding

disease dynamics can completely switch the competitive outcome, as it does in the case

of Barley Yellow Dwarf Virus system. These results help us understand how the forces of

infection and competition combine and are implicated in determining community structure

in a spatially heterogeneous environment.

Additionally, we find that adding space to a model can give insight into the regional

dynamics of a pathogen, especially when there is a fragmented landscape with differing

host composition and environmental factors through which the pathogen must spread. As

in the case of rinderpest and BYDV, initial location and timing of the pathogen invasion

can significantly change the transitory dynamics and/or the final outcome of the system.

The ability to systematically explore the epidemiology of disease will be important when

considering the impacts of climate change and emerging disease, and the robustness of

modern agricultural practices. It is also important as a stepping stone to controlling

zoonotic diseases and understanding the evolutionary pressures of multi-host pathogens

in general. The geography and connectedness of populations plays an important role in

the outcome of an epidemic. Using this knowledge of host population density and con-

nectedness can assist in determining critical populations or locations to apply mitigation

or control measures for host or vector movement.



178

7.2 Future Directions

Relatively little has been done in the way of expanding knowledge of models that

combine more complex population dynamics and disease. I plan to continue work on

numerical methods specifically for models that include both population dynamics and

disease spread. Additionally, it would be interesting to apply persistence theory to a

general model for competition between species with disease in only one of the species.

This is an important sub-case that has not been well explored in the context of persistence

theory.

The BYDV team hopes to compare the results of several different spatially explicit

and implicit models for BYDV spread in native grasslands and meadows. It would be

interesting to expand this work to other organisms whose competitive outcomes can be

changed by the presence of a generalist pathogen. There is much still to be done in the

area of spatial models for invasion of both pathogens and exotic species.

The rinderpest model is being adapted to Rift Valley Fever epidemics in East Africa,

a mosquito-vectored zoonotic disease. In the immediate future, we will further explore

and analyze models for mosquito-vectored pathogens including analysis of a simpler model

for Rift Valley Fever with vertical transmission and a model for Dengue.

The broad impact of this work is a partnership between ecologists, biologists, epi-

demiologists, and mathematicians to develop significant advances in the theory and ap-

plication of mathematical models. By applying mathematical models to biological and

ecological systems, we increase understanding of disease, pathogen, and population dy-

namics, contributing significant scientific knowledge to the management and understand-

ing of disease and/or exotic species. Long term, I want to continue to collaborate with

interdisciplinary researchers in biological, ecological, and health fields to work on models

that will expand knowledge and our problem solving abilities for both environmental and

humanitarian issues.
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141. A. Tillé, CL Lefèvre, P.P. Pastoret, and E. Thiry, A mathematical model of rinder-

pest infection in cattle populations, Epidemiology and Infection 107 (1991), no. 02,

441–452.

142. D. M. Tompkins, A. R. White, and M. Boots, Ecological Replacement of Native Red

Squirrels by Invasive Greys Driven by Disease, Ecol. Lett. 6 (2003), no. 3, 189–196.

143. D. M. Tompkins, A. R. White, and M. Boots, Ecological replacement of native red

squirrels by invasive greys driven by disease, Ecol. Lett. 6 (2003), no. 3, 189–196.

144. P. van den Driessche and J. Watmough, Reproduction Numbers and Sub-threshold

Endemic Equilibria for Compartmental Models of Disease Transmission, Math.

Biosci. 180 (2002), no. 1, 29–48.

145. P. van den Driessche and M. L. Zeeman, Disease Induced Oscillations between Two

Competing Species, SIAM J. Appl. Dyn. Syst. 3 (2004), no. 4, 601–619.

146. E. Venturino, The Effects of Diseases on Competing Species, Math. Biosci. 174

(2001), no. 2, 111–131.

147. R. V. L. Walker, H. J. Griffiths, R. E. Shope, F. D. Maurer, and D. L. Jenkins,

Rinderpest 3. Immunization experiments with inactivated bovine tissue vaccines,

Am. J. Vet. Res. 7 (1946), 145–151.

148. P. Waltman, A brief survey of persistence in dynamical systems, Delay Differ. Equ.

Dyn. Syst. (1991), 31–40.

149. X. S. Zhang and J. Holt, Mathematical Models of Cross Protection in the Epidemi-

ology of Plant-Virus Diseases, Phytopath. 91 (2001), no. 10, 924–934.


