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The ecological sciences have benefited greatly from recent advances in wireless sensor technologies. These
technologies allow researchers to deploy networks of automated sensors, which can monitor a landscape
at very fine temporal and spatial scales. However, these networks are subject to harsh conditions, which
lead to malfunctions in individual sensors and failures in network communications. The resulting data
streams often exhibit incorrect data measurements and missing values. Identifying and correcting these is
time-consuming and error-prone. We present a method for real-time automated data quality control (QC)
that exploits the spatial and temporal correlations in the data to distinguish sensor failures from valid
observations. The model adapts to each deployment site by learning a Bayesian network structure that
captures spatial relationships between sensors, and it extends the structure to a dynamic Bayesian network
to incorporate temporal correlations. This model is able to flag faulty observations and predict the true
values of the missing or corrupt readings. The performance of the model is evaluated on data collected by the
SensorScope Project. The results show that the spatiotemporal model demonstrates clear advantages over
models that include only temporal or only spatial correlations, and that the model is capable of accurately
imputing corrupted values.
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1. INTRODUCTION

The increasing availability (coupled with decreased cost) of lightweight, automated
wireless sensor technologies is changing the way ecosystem scientists collect and
distribute data. Portable sensor stations allow field experts to transport monitoring
equipment to sites of interest and observe ecological phenomena at a spatial gran-
ularity of their choosing. These nonpermanent deployments stand in stark contrast
to traditional observatory-like environmental monitoring stations whose initial
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spatial layout remains unchanged over the course of time. However, both approaches
are providing researchers with an unprecedented volume of ecological data. The
resultant surge in data has the potential to transform ecology from an analytical and
computational science into a data exploration science [Szalay and Gray 2002].

Temporary sensor deployments, whose durations can range from a single week to
several months, represent a new challenge for data quality control. By their nature of
being in-situ environmental stations, they are prone to the same technical problems
as long-term deployments, namely, damage due to extreme weather, transmission er-
rors and loss of signal, calibration errors, and drastic changes in environmental condi-
tions. Furthermore, it is important to rapidly detect and diagnose a damaged or failing
sensor so that it can be repaired. An insufficiently fast diagnosis could result in the
corruption or loss of data from a given sensor for the duration of the deployment; con-
sequently, techniques involving a postmortem analysis of the data are of little or no
value. However, the sheer abundance of data provided by large sensor networks oper-
ating at fine time resolutions makes manual analysis (visualizing the data) infeasible
for both online and offline quality control. This raises the need for efficient automated
methods of data “cleaning” that can function in an online setting and that can readily
adapt to dynamic spatial distributions.

The purpose of this article is to provide an example of spatially distributed envi-
ronmental monitoring, motivate a need for quality control in this domain through
documented examples of sensor failure, and introduce a machine learning approach
to automate the data cleaning process. Though we believe our methodology is read-
ily extendable to additional environmental phenomena, our work here deals only with
air temperature data. We propose an adaptive quality control (QC) system that ex-
ploits both temporal and spatial relationships among multiple environmental sensors
at a site. The QC system makes use of a dynamic Bayesian network (DBN; Dean and
Kanazawa [1988]) to correlate sensor readings within a sampling period (time step) to
readings taken from past sampling periods. Because the set of potential faults is un-
bounded, it is not practical to approach this as a diagnosis problem where each fault
is modeled separately [Hodge and Austin 2004]. Instead, we employ a general fault
model and focus on creating a highly accurate model of normal behavior, known as the
process model. The intuition is that if there is a discrepancy between the current es-
timate of normal behavior (provided by the process model) and the observation taken
from the sensor, then the observation is labeled anomalous. An additional benefit of
this approach is that it can impute values for the sensor readings during periods of
sensor malfunction.

This article is organized as follows. First, we will discuss the current ecological
monitoring campaign, known as SensorScope, that produced the data studied herein.
Second, we describe the nature of the air temperature data and the data-anomaly
types encountered, followed by a introduction to hybrid Bayesian networks. Third, we
describe our quality control model, including learning the process model and incorpo-
rating a general fault model. Finally, we present the results of the model applied to
temperature data from select SensorScope deployments as well as empirical results on
synthetic data. We conclude with a plan for future research.

2. THE SENSORSCOPE SYSTEM

The SensorScope Station, developed at the Ecole Polytechnique Fédérale de Lausanne
(EPFL) in Switzerland, represents a significant change in traditional tools for in situ
data collection and distribution. In place of few, expensive long-term or permanent
monitoring stations deployed sparsely over a heterogeneous spatial area, SensorScope
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Fig. 1. The Genepi Glacier and FishNet SensorScope deployments (from Google Earth).

allows field scientists to deploy many lightweight, inexpensive stations at a much
higher spatial resolution and monitor at user-specified time granularities. The
portability of these stations facilitates dynamic deployments, wherein sensors can be
relocated within a deployment to adapt to changing monitoring requirements.

Component sensors for measuring air temperature, skin (surface) temperature,
wind speed, wind direction, humidity, etc., are typically acquired from external man-
ufacturers. The SensorScope stations are equipped with a power supply sufficient to
host a small set of these sensors (the number dependent on each sensor’s energy re-
quirement) operating simultaneously, as well as a radio device for communication with
nearby stations. Every deployment contains at least one General Packet Radio Service
(GPRS) hub that transmits data received from the SensorScope stations to a central
server at the EPFL via a cellular signal. Once the data reaches the central server, it
is converted from its raw voltage to a value particular to the phenomenon being mea-
sured (degrees Celsius in the case of temperatures) via a conversion formula specific
to the sensor type. When the data is requested for download or plotting via the Sen-
sorScope Web site,! it is filtered automatically by a range checker to remove extreme
values associated with sensor malfunctions.

Figure 1 (left) shows a three-dimensional (3D) visualization of the Le Genepi Glacier
deployment, which was in place from August 27 to November 5, 2007. The glacial
valley, located approximately 60 km south of the western edge of Lake Geneva, slopes
downward toward the northeast and is surrounded by mountains on all other sides.
The sensors are placed at an elevation range of 2300 m to 2500 m. At the time of the
deployment, the northeast corner of the glacier was the only area accessible by cellular
signal; therefore, the GPRS (labeled Base Station 1) was placed in this location. A
total of 16 stations were deployed over the area, whose dimensions can be roughly
approximated by a 100 m x 200 m rectangle, to allow for a comprehensive analysis
incorporating the spatial heterogeneity of the relatively small region.

The right portion of Figure 1 shows a much smaller deployment of six stations along
a stream, known as the FishNet deployment. The sensors operated from August 3
to September 4, 2007. The topographical difference is relatively small compared to
Le Genepi (the sensors are all located at approximately 600 m of elevation), as the
deployment was in an agricultural area bordering a forested area to the south. The
GPRS station (not shown in the figure) is located approximately 100 m to the west of

Thttp://sensorscope.epfl.ch/index . php/SensorScope_Deployments
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Fig. 2. Air temperature readings from the FishNet SensorScope deployment. Each row represents the
sensor labeled in the corresponding upper right corner. The x axis denotes the day (the vertical dashed
line depicts midnight) since the deployment began, and the y axis denotes temperature in degrees Celsius.
Corresponding station names appear on the right side of the graph next to the stream they depict.

Station 104, and the length of the stream covered by the deployment is approximately
300 m.

3. SENSORSCOPE DATA

Each SensorScope station is capable of hosting a changing set of environmental sen-
sors; hence there is not a consistent set of phenomena recorded by all stations across
all deployments. Rather, each station is provided only with those sensors needed to
measure the variables of interest for a given field campaign and is then retooled be-
tween deployments. As air temperature (the temperature roughly 1.5 m above the
surface) is of interest in nearly all campaigns to date, we shall focus our discussion
primarily on this type of data. Air temperature readings are taken from Sensirion
SHT75 sensors mounted on the SensorScope stations [Sensirion 2005]. Figures 2 and
3 show two different sets of data streams from the stations at the FishNet and Le
Genepi deployments, respectively. The air temperature readings from both sites were
sampled at a rate of once every 2 min. The graphs show those readings binned and
averaged into 10-min windows.

Nominal air temperature data contains a regular diurnal (day to day) trend that is
dependent on the season and location of the sensor. For example, the FishNet has a
more pronounced diurnal signal because the recording period is in the late summer
(August) whereas the the Le Genepi deployment has a suppressed the diurnal trend
due to both the time it was observed (October) and its Alpine location. Storm and cloud
coverage events occur at irregular intervals but may also suppress the diurnal signal.
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Fig. 3. Air temperature readings from 1 week at the Le Genepi deployment. Each row represents the
sensor labeled in the corresponding upper right corner. The x axis denotes the day (the vertical dashed
line depicts midnight) since the deployment began, and the y axis denotes temperature in degrees Celsius.
Corresponding station names appear on the right side of the graph next to the stream they depict.

The FishNet data shows the effect of a storm in days 2 through 4. We have found the
following data-anomaly types present in the air temperature data.

— GPRS Outage. In the case where the GRPS hub becomes inoperative, data for the
entire deployment is lost. The FishNet deployment contains many segmented pe-
riods of sensor outages among all stations. These outages indicate a failure of the
GPRS, because they occur simultaneously across all sensor streams. The faults are
evident between days 15-16 and days 17-20.

— Sensor Outage. A sensor outage occurs when an individual sensor stream is lost.
Multiple sensor outages can overlap during a give time period; however, unlike in
a GPRS outage, the start, end, and duration of each outage are not synchronized.
There are individual sensor outages in the FishNet deployment at stations 101, 102,
and 103, spanning days 24 and 25.

— Data Anomalies. Data anomalies are characterized as observations from a given
sensor that are corrupted due to a sensor malfunction. Such anomalous values are
particularly obvious at station 6 in the Le Genepi deployment (Figure 3), where
extremely large temperature values are recorded due to incorrect voltages gener-
ated at the sensor. Subtler spikes in temperature occur at station 6 on day 41 (Le
Genepi) and station 101 on day 17 (FishNet). A flatline in temperature is created by
the temperature sensor reporting a 0-V value. The conversion algorithm maps this
value to a —1°C value upon storing it into a database. An example of this error is
provided in Section 6.2.

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 3, Publication date: August 2011.
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Fig. 4. Left: conditional Gaussian Bayesian network. Right: conditional Linear-Gaussian Bayesian
network.

Given the correlation between the sensors within a deployment, it is our goal to be
able to identify data anomalies and impute the true temperature values in the case of
both individual sensor outages and sensor malfunctions. Sensor failures that manifest
themselves as either extraordinarily hot or cold temperatures are simple to diagnose
by means of range checking [Mourad and Bertrand-Krajewski 2002]; however, mal-
functions resulting in flatline values and subtler spikes in temperature readings are
not detected by extreme value tests. While the values appear anomalous in the con-
text of their immediate temporal neighbors, they are not abnormal in the range of
temperatures recorded over the full duration of the deployment.

4. HYBRID BAYESIAN NETWORKS

Our probabilistic model of the air temperature domain is a conditional linear-Gaussian
network, also known as a hybrid network because it contains both continuous and dis-
crete variables [Lauritzen and Wermuth 1989; Murphy 1998; Pearl 1988]. For the sake
of computational convenience, we will restrict our networks so that discrete-valued
variables do not have continuous-valued parents and so that all continuous-valued
variables are modeled as Gaussians.

In this section, we describe how the probability distributions for continuous-valued
variables are parameterized. We consider three cases: (a) continuous variables with
discrete parents, (b) continuous variables with continuous parents, and (c) continuous
variables with a mix of discrete and continuous parents.

4.1. Continuous Variables with Discrete Parents

Consider a single continuous variable, X . For every possible instantiation of values for
the discrete parents of X, X takes on a Gaussian distribution with separate values for
u and o2. For example, if X has a single Boolean parent, Y =y € {true, false}, then the
conditional probability table (CPT) of X would contain two entries: P (X |y = true) ~

N (us,02) and P(X|y = false) ~ N(,u I3 a?). In general, let Y = {Y1, Y5, ..., Y,} denote

the set of discrete parents of the continuous variable X . Further, let |[Y| = |Y1] x |Y3| x
... X |Y,| be the total size (number of possible instantiations) of Y. Then, we specify the
CPT of X with the |Y| dimensional vector, u = (,ul, L2y e ,u|Y|). Similarly, we specify

the set of variances of X, depending on the parent configuration, as the vector o2 =
<o—12, 02, ..., oﬁ{l). Figure 4 (left) contains an example with binary discrete variables.

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 3, Publication date: August 2011.



Spatiotemporal Models for Data-Anomaly Detection 3.7

4.2. Continuous Variables with Continuous Parents

Consider a single continuous variable, X, but now with m continuous-valued parents.
For each continuous-valued parent, Z; € Z={Z, Zs, ..., Z ,,}, X has a weight, w;, such
that mean of X is calculated as

m
Uy = €+ Zwizi, (D
i=1

where z; is the value of the parent random variable, Z;, and ¢ is X’s “intercept term” in
the linear regression formula. An essential requirement for computational tractability
is that the variance of X is specified by a single ¢2 parameter not conditioned on the
parents. Note that this conditional distribution has exactly the same form as a linear
regression model.

4.3. Continuous Variables with a Mix of Discrete and Continuous Parents

If a variable has a mix of continuous and discrete parents, we employ a distinct linear
Gaussian distribution for each combination of values of the discrete parents. This is
known as a conditional linear Gaussian (CLG) model. Let X be a continuous variable
with a set of discrete parents, Y, and continuous parents, Z. Then X has a separate
mean, variance, and set of regression weights for each possible instantiation of Y.
We specify a CLG variable by a mean vector, u = (,ul, L2y e ,u|Y|), a variance vector,

o _[ 2 2 2 : e
02 = <01 Oy s s a|Y|>, and a |Y| x |Z| regression matrix:

w11 w12 ... W1,)Z
w21 W22 ... W2)Z 2)
w. .1 W.2 .. W._|Z

wyy|,1 WY.2 - WY]|Z|

Figure 4 (right) contains a CLG network with a continuous variable having one dis-
crete and one continuous parent.

5. DEVELOPING A SPATIOTEMPORAL PROCESS MODEL

In the following sections, we describe our process model as the combination of two
individual pieces: the spatial component that represents the relationships among all
sensors within a deployment for a given time slice, and a temporal component that
captures the transition dynamics from one time period (10-min interval) to the next.
The complete process model is represented as a dynamic Bayesian network [Dean and
Kanazawa 1988], in which the task of quality control is achieved by inferring the most
likely state of the sensors given the current temperature observations and those of
the immediate past. The procedure for building the complete quality control model is
summarized in Figure 5.

5.1. Structure Learning and the Spatial Component

As the geographical layout of stations changes with each deployment, it is desirable
to have the QA routines autonomously learn the spatial relationships for each new
deployment from the observed data. To this end, we apply Bayesian network structure
learning algorithms to learn the set of conditional-independence relationships among
sensors at a given deployment. Recall that, though each SensorScope station is capa-
ble of monitoring several environmental variables according to the type and number
of sensors it is hosting, we focus our work to air temperature data for purposes of

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 3, Publication date: August 2011.
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(1) Begin with initial Bayesian Network structure, B;¢, for the input data, D. If no initial network
is provided, B;,;+ is a network containing no arcs and each variable z; € B, ~ N (0,1.0)

(2) Compute the sample mean and covariance of D, X; and S;.

(3) Compute the mean and covariance represented by Bj,i+: fip and 3.

(4) Compute Ty and T using the values from steps (2) and (3) in equations (5) and (4).

(5) Perform hill-climbing (Algorithm 1) initialized from B;,;;. Call the resultant structure Bpos:.
(6) Build the Markov Equivalence Set, { Bx|Bx € MEC (Bpost)} and append the temporal model to
each network By.

(7) Compute MLE parameters for each By, € MEC (Bpos¢) from the data, D.

(8) Compute By.s; = arg max g, P (D|By).

(9) Append Sensor State (S;) and Observation variables (O;) for each sensor variable (X;) in Bj.g;.
The parameters of these variables are manually set.

Fig. 5. Procedure for constructing full QC model.

site-to-site continuity and ignore other data types. Furthermore, we assume that each
set of air temperature observations corresponding to a single 10-min period is gener-
ated from a multivariate Gaussian distribution, and thus a sample from a deployment
containing n SensorScope stations is generated from an n-dimensional multivariate
Gaussian. Our goal then is to learn the elements of the covariance matrix that de-
termine how each dimension (each sensor in a deployment) relates to the others. Our
assumptions facilitate the application of a measure known as BGe (a Bayesian metric
for Gaussian networks having score equivalence, developed by Geiger and Heckerman
[1994]) as a scoring metric for candidate networks. We summarize the scoring metric,
but ask the interested reader to see the aforementioned reference for further details.

A Bayesian network over n Gaussian distributed variables has a joint distribution
equal to a n-dimensional multivariate Gaussian. The network structure is referred
to as a sparse representation of the multivariate distribution. Sparse in this context
means that the representative network may not directly correlate each variable with
all other variables; in graphical terms, less than 22 edges (the maximum amount of
edges for an acyclic graph) are sufficient to represent the covariance structure among
n variables. In general, a lesser degree of connectivity in the graph structure will
decrease the time required to perform inference in the model and reduce the number
of parameters to fit once the structure is determined.

The BGe metric assumes the existence of a prior linear Gaussian network whose full
joint distribution represents an initial estimate of the true distribution from which the
observations are drawn. This Bayesian network can either be knowledge-engineered
by domain experts with information about the deployment or constructed ad hoc in
cases where specific domain knowledge is absent. Geiger and Heckerman [1994] para-
meterized the unknown generative, multivariate distribution with a mean vector, m,
and precision matrix, W = ~1. The prior joint distribution on these parameters is
assumed to be a normal-Wishart. Under these assumptions, the joint posterior distri-
bution, given a data set D (containing multivariate observations X1, X2, ..., X;, each of
n dimensions), over m and W can be divided into the conditional distribution P (ﬁz|W)

and the marginal P(W). The conditional distribution of P (m|W) is given as a multi-

variate normal

I),Zto + le
+1

where v encodes the strength of the prior in terms of an equivalent number of “prior”
observations and / is the number of “new” observations in the data set D. The posterior
of W is distributed itself as a Wishart (a +1, T}), where a specifies the degrees of freedom

P (W) ~ N(ﬁl: ,(v+l)W), 3)
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the Wishart distribution (for this reason, ¢ > n must be satisfied). X; and S, are the
sample mean and covariance of D, and ¢ and X, are the mean vector and covariance
of the prior network structure. The matrices T; and T are calculated as

L oo o

Ty = To+ 8+ = (iio = X) (iio - X))’. (4)

Ty = 5,0 %~ =1 (5)
v+1

Ty is the precision matrix of the of the prior marginal distribution on W (before the
observed data D is introduced), given as P(W) ~ Wishart(a, Ty). The BGe metric
scores the likelihood of an hypothesized network structure B; given a data set D and
the prior ¢ as

- P (Dxi,Hi|Bg> é:)

P(D|B;, &) = ,
P15 gP(DnABg,é)

(6)

where P (Dxi,Hi | B, 4‘) is the local score of the data relevant only to variable, x;, and its
parents, I1;. Specifically, we keep only those rows and columns of the T and 7} that
correspond to variables in x; U II; in the case of the numerator in (6). Similarly for
the denominator, we keep only those rows and columns in 7y and 7} corresponding to
the variables in IT;. The term B¢ represents a fully connected Gaussian network with
edges among all variables. Both the numerator and denominator in (6) are calculated
as follows:

| Tol% [Ty~ , (7)

) )% c(n,a)

v+l cn,a+l)

n N
cn.a) = [znﬂr(%l‘l)} . ®)
=1

To score an entire network, the expression in (6) must be evaluated or, equivalently,
the expression in (7) must be evaluated for each variable in the domain and then each
resultant value multiplied together. In the case of a nonuniform prior over network
structures, an additional weighting of P (B;|¢) should be factored into (6).

Provided with a scoring metric for linear-Gaussian Bayesian networks, we im-
plement a simple hill-climbing algorithm to find a good structure for the networks.
The algorithm is initialized with a prior network structure, then it takes one of
the following actions: (1) add an arc between variables x; and x; if no arc existed
already; (2) remove an existing arc between two variables; or (3) reverse an existing
arc between two variables. All three options are undertaken with the constraint
that the resulting structure must remain acyclic. Each of the possible networks
created by taking one of the these actions is evaluated using the BGe metric, and
the action resulting in the highest scoring network is taken. The resultant network
then becomes the initialization point for another application of this hill-climbing
search. The process is repeated until taking a single action (adding, removing, or
reversing an arc) creates no increase in the score, in which case an optimum has
been reached. Unfortunately, this hill-climbing methodology is subject to local optima,
and so the final network is perturbed. This perturbation is achieved by examining
every existing edge in the current structure and, with some probability, removing the
edge, reversing the direction of the edge (pending no cycle is created), or making no
change. In cases where no edge exists between two variables, we consider adding an

P(DIB,,¢) = 2m) 7 (
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Algorithm 1: Hill-climbing with BGe Metric

1: Input: An initial Bayesian Network: B,
2: Input: Number of perturbations to perform: pturb

: CurrentScore = BGe (B;)
CurrentNet = By,
BestScore = BGe(B,,i;)
: BestNet = B
: fori=1to pturb do
9:  LastScore = —oco
10:  while CurrentScore > LastScore do

AR S

11: LastScore = CurrentScore

12: AddNet = AddArc(CurrenNet)

13: RemNet = RemoveArc(CurrentNet)

14: RevNet = Reverse Arc(CurrentNet)

15: NextNet = argmax,,,, [BGe(AddNet), BGe(RemNet), BGe(RevNet)]
16: if BGe(NextNet) > CurrentScore then

17: CurrentScore = BGe(NextNet)

18: CurrentNet = NextNet

19: end if

20: end while
21:  if CwrrentScore > BestScore then

22: BestScore = CurrentScore
23: BestNet = CurrentNet
24:  end if

25:  CurrentNet = Perturb (CurrentNet)
26:  CurrentScore = BGe(CurrentNet)
27: end for

28: return BestNet

edge (pending no introduced cycle) or taking no action. The complete algorithm halts
after performing a user-specified number of perturbations/restarts, and the the best-
scoring network is returned. We outline the aforementioned hill-climbing algorithm in
Algorithm 1.

It is important to note that structure returned from this hill-climbing search may
not be unique relative to its score. The BGe metric demonstrates a property known
as score equivalence, which means that it scores network structures belonging to the
same Markov equivalence class (MEC) equally. An MEC is the set of graphs that
represent the same set of conditional independence relationships between variables.
Moreover, the algorithm described above only returns the structure of the network
(i.e., the set of parent-child arcs); it does not compute the parameter values for each
variable (means, variances, and regression weights). In Section 5.4, we describe how
we arrive at these values by computing the maximum likelihood estimates (MLE) for
each parameter directly from the data set, D.

The BGe metric is considered a local scoring function because of its decomposition
into summing over of node child/parent configurations. Specifically, if we consider
taking the log likelihood of the probability in (6), we arrive at the following summation:

n

log P(D|B,¢) = > [log P (Dy,n,|BS, &) —log P (Dyy, | B, &) 9)

=1
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Fig. 6. Left: top-down view of the FishNet Deployment. Right: learned dependency relationships among
the six sensor stations at the deployment.

We can then compute the log likelihood equivalent of expression Equation (7) to com-
pute the terms within the summation.

log P(D|B,.<) = log [(2@‘2—” (—) C(C’f”;i)l) I Tol? |Tz|_a2+l:| (10)
[—nl n v

+ [logc(n, a) —loge (n, a +1)] + [% longol] (12)

+ —a;llongﬂ] (13)

Once in summation form, it becomes clear that computing the BGe score for an entire
network is only necessary for the initial prior network, B;,;. Each subsequent change
in the network structure by adding, removing, or reversing an arc only requires a
modification of some factor in the score in (9). For example, if we add an arc from
variable x; to x;, then only the parent set of x; has changed; consequently, we only
need to recompute the ith term in (9). The score for the resulting network would be
the original network score minus the original ith term (the one not including x; as a
parent) plus the new ith term (the one including x; as a parent).

Figure 6 contains a learned structure for the FishNet deployment. The initial prior
network assumed complete independence among all six sensor stations at the site and
placed a standard normal distribution over all sensors (mean of zero and variance of
1.0). The training set is constructed from observations from the SensorScope stations
themselves. As we have no ground-truth data for the true temperature variables (X;’s),
we consider those observations not excluded by the Web site range-checker or repre-
sentative of a flatline sensor failure (i.e., consecutive —1°C values) to be the “true”
temperature values. The structure was learned using data from the first half of the
deployment; however, the training set was limited to only those observations where
all sensors reported a value. If a sample missed at least one observation (one sensor
failed to report within the 10-min window), it was rejected.

5.2. Incorporating a Temporal Model

The spatial model, learned from the methods described in the previous section, cap-
tures much of the correlative relationship among multiple sensors within a given de-
ployment; however, the model suffers from some significant drawbacks. Foremost, the
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Fig. 7. Time slices are designated by the dashed rectangles. Lag variables are appended for each sensor in
the deployment, representing the state of the process in the last time slice.

spatial model ignores the transition dynamics present in ecological data — a single
sample taken from all sensors in a time step is considered independent of all tempo-
rally nearby samples (the sample taken 10 min ago, 20 min ago, etc.). Many types
of ecological data are highly autocorrelated. In the case of air temperature, the diur-
nal cycle and seasonal cycle mean that data observed 24 h and 365 days in the past,
respectively, tend to correlate with data observed now. Because we generally do not
know (or cannot observe due to limited deployment durations) the existence of all cy-
cles in the data a priori, we implement only a first-order Markov relationship in the
process model to ensure that all stations transition from the current observation pe-
riod (10 min, for example) to the next in a consistent manner. This is achieved through
the introduction of a parent lag variable for each “true” temperature variable in the
spatial model. The lag variables capture the state of the process in the last time step.

The addition of a Markovian lag changes our model from a static Bayesian network
into a dynamic Bayesian network. Conceptually, we can now imagine our learned spa-
tial model being repeatedly “stamped out” over the course of / samples in our database.
Each stamp, or layer, contains the learned Bayesian network representing the spatial
relationships in addition to a lag variable for each sensor. Figure 7 depicts the tempo-
ral model appended to the learned spatial model for the FishNet deployment.

As mentioned in Section 5.1, the spatial component returned by our hill-climbing
search is not a unique representation of the set of conditional independencies between
the temperature variables; it belongs to a Markov equivalence class. However, once
we append our temporal model to each network in the MEC, the resultant models
may no longer belong to the same class. To choose the best candidate network for the
spatial model, we generate all members of this set by using an approach described
by Andersson et al. [1995]. Given a directed acyclic graph (DAG), their algorithm
returns an essential graph that represents the equivalence class and has directed or
undirected edges in place of all edges in the input graph. Undirected edges represent
relationships between variables that can be reversed (parent becomes the child and
visa versa) without changing the overall set of conditional independence relationships.
We input our learned spatial model to create the essential graph representing its MEC.
We consider all permutations of orientations for the undirected edges in the essential
graph such that no cycles are introduced. For each DAG generated in this fashion, we
append a set of lag variables, fit the parameters of the combined model as described in
Section 5.4, and score the likelihood of the training data given this new network. We
choose the spatial model that yields the highest data likelihood when combined with
the temporal component.

The first-order Markovian assumption means that we need only consider the state
of the process in the previous time step and observations in the current time slice when
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| Time t-1
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Fig. 8. Time slices are designated by the dashed rectangles. The variables within the dashed area an
abstract representation of the learned spatial model among four sensor variables. A sensor state variable
and an observation variable are attached to each of the four sensor variables in the current time slice.

inferring the posterior distribution over the current state of the process. For example,
to compute the posterior of X4 at time ¢ from the DBN in Figure 7, we need only the
distribution over the previous time step and any observations in the current time step:

t 1 2 t—1 1 2 t—1 1 2 t—1
P (X104|X101’X101’ ""X101’X102’X102’ "”X102’ ""X106’X106’ ""X106) (14)

= P (X0, X i}, X153, X153, X b Xich. X153 (1)

Each variable in our original network now has one additional parent variable and
thus one additional parameter (weight associated with the new parent) to estimate. We
can still apply our MLE technique for estimating the new parameter values; however,
the training set for this model is now a subset of the training set used for our spatial
model. This is because we now must place the additional constraint on our training
data that it consists of contiguous pairs (two consecutive 10-min intervals) where all
sensor observations are present. We discuss how we respect this constraint in our
Experiments and Methodology section (Section 6).

5.3. Incorporating the Sensor Model

The combined spatial and temporal model represents the transition dynamics of the
process over time, as well the correlative structure between the different sensor sta-
tions within a deployment. However, we cannot track the progression of the process
without external observations; to this end, we incorporate a sensor model that repre-
sents the state of the sensor at each time slice and the observation recorded at that
station. We represent the sensor state with a discrete variable, S;, for SensorScope
station i that can assume one of two values S; € {working, broken}. The sensor ob-
servation is represented as another normally distributed variable conditioned on the
state of the sensor and the current estimate of the air temperature as given by our
process model. We will denote the observed variables as O;, where i refers to sensor i
within the deployment. Figure 8 represents an abstract visualization of the combined
spatial, temporal, and sensor models.

We manually set the parameters of the sensor state variables and observation vari-
ables. Again, this manual tuning is necessary because there are no known labels
for the sensor states in any of the SensorScope datasets. For each S;, we set the
P(S; = working) = P(S; = broken) = .5 and for O;

P(Oi|Si = working, Xi =x;) ~ N(xi, 0.1) and (16)
P(O;|S; =broken, X; = x;) ~ N(.0001x;, 10000.0). an

This parameterization stems from the idea that the sensor state must be able to
“explain away” the discrepancy between the observation variable, O;, and the current
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estimate of the true air temperature, X;. That is, if the sensor is believed to be
working, then the observation value should be equal to that of the process model’s
estimate with some small, additional variance (0.1°C); contrarily, if the sensor is
believed to be broken, then the observation has little do with the actual process and
so is much noisier (10000.0°C variance). The zero-mean, large variance distribution
of the broken state approximates a uniform distribution over the possible range of
observed sensor values. If we had ground-truth labels for the sensor state in each
observation, explicitly modeling each fault with a separate distribution would not
help us identify new anomaly types not seen in the training data. However, we could
estimate P(S; = working) as the ratio of the number of working sensor observations
over the total number of observations (and P(S; = broken) = 1 — P(S; = working)).

5.4. Parameter Estimation

Recall that, under the assumption of a linear-Gaussian model, a normally distributed
variable, X ~ N(uy, c2), conditioned on a normally distributed parent, Y ~ N(u,, ayz),
has the following density function (assuming both are univariate):

(x — (w1y + px))*
202 )

PXY) = (18)

1
exp —
oxN 21 P
That is, P(X|Y) ~ N(u, + w1y, s2), where w; is a scalar weight multiplied with an
input, y, drawn from Y’s distribution.

Once our structure learning algorithm has provided each variable in our domain
with a set of parents (including the temporal lag variables), the MLE approach to
estimating the values of the parameters (u;, 02, and w;) reduces to solving a multiple
linear regression problem [Russell and Norvig 2003]. Specifically, we solve

0 = (XTX)_I X'y, (19)

where 0 represents the mean and associated weights of the target variable (the vari-
able whose parameters we are currently estimating), X is a matrix containing the
value of the parents of the target variable in the data set across all samples, and Y is a
vector containing all the values of the target variable corresponding to the inputs in X.

5.5. Inference

Inference is performed in our models using the variable elimination (VE; Dechter
[1996]) algorithm adapted for conditional linear Gaussian models [Lauritzen 1992;
Lauritzen and Wermuth 1989; Murphy 1998]. There are two inference queries made
at each time step, t.

First, we wish to compute the maximum a posteriori (MAP) assignment of the dis-

crete sensor variables, S, given the set of sensor observations, O,
t t t t t t t t t
P(S;. S, ....80{=07,0%=0},..,0.=0]). (20)

This requires marginalization of the the hidden “true” temperatures (continuous vari-
ables) at time ¢ and t— 1. The remaining sensor-state variables (discrete) are contained
in a single potential whose distribution is represented by a table having an exponen-
tial number of entries. Each entry corresponds to one of the 2" possible configurations
of n sensor-state variables; consequently, construction of this table occurs in time expo-
nential with the sensor count. The sensor counts in the deployments discussed herein
were not prohibitively large; however, for deployments containing more sensors, we
could consider approximate inference algorithms, such as Gibbs Sampling [Geman and
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Geman 1984] or other particle filter methods. These algorithms approach the exact so-
lution as the number of samples or particles used increases. While each sample can be
generated in linear time, the number of samples required to reasonably approximate
the true joint posterior may be exponential in the number of sensors. Alternatively, we
could impose a prior on our spatial structures that would encourage learning disjoint
spatial models (i.e., spatial models where one or more of the X; variables is discon-
nected from the remainder). In this case, exact inference would be exponential in the
number of sensors in the largest subgraph.

Second, we treat the MAP assignment as new evidence for the sensor states at time

¢t and compute the updated estimate of the hidden “true” temperatures, Xt

P(X{,..X}Sf=s],...8,=s.,0{=01,..,0} =0}). (21)
Because we now observe the sensor states, computing the posterior over the true tem-
peratures becomes a query over a linear-Gaussian model. Variable elimination takes
cubic time in the number of sensors for this query and so is tractable to perform exactly.
The posterior distribution on the true temperatures is passed forward as a message to
be used in inference at time ¢ + 1. The joint posterior distribution over the true tem-
perature variables can be thought of as an a message in the forward pass of a filtering
algorithm [Rabiner 1990]. If the MAP estimate of the sensors at time ¢ indicates that
sensor I is working (S; = working), then we input its corresponding observation (O;) for
the true temperature’s lag variable at time ¢ + 1; otherwise, we use the corresponding
a message to specify a distribution over the lag’s value. We then repeat this two-step
query procedure for time ¢+ 1.

Our motivation for handling inference in this two-step process is that, in an online
setting, we must make a decision that each sensor at time ¢ is working or broken rather
than postponing this decision and maintaining a “belief state,” that is, 79% working
and 21% broken. Not only is this approximation useful for an online QC system, it
also exempts us from having to maintain an exact belief state that increases in size
after each time step. To clarify, the exact belief state at time # would be a 2% compo-
nent mixture of n-dimensional multivariate Gaussians. Once we have determined the
state of each sensor, we need to propagate forward an ¢ message regarding the true
temperatures X to time ¢+ 1 (computed in (21)). Thus, our approximation is made by
considering only the mixture component corresponding to the MAP of the S; variables
at each time step.

6. EXPERIMENTS AND METHODOLOGY

Our experiments focused on the validation of our learned spatial models across varying
deployments and the efficacy of our complete DBN model as a tool for quality control.
We addressed each issue in turn. We performed the former validation through a series
of hold-one-out prediction tests to determine the relative strength of multiple stations
as a predictor for an individual missing station. Second, we provided a comparative
analysis of the performance of three different QC models as applied to real data from
the SensorScope project. The three models are the spatial, temporal, and spatiotem-
poral models already discussed, each augmented with a sensor model as described in
Section 5.3. The experiments reflected the weaknesses and strengths of each model,
and showed preliminary justification for pursuing a spatiotemporal approach. Last, we
evaluated the performance of our model in terms of type I and type II error rates. This
experiment was performed via the addition of artificial noise to the original datasets
in order to create labels that can be matched against our predictions of the sensor
variable.
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Fig. 9. Left: the portion of the Grand St. Bernard deployment on the Italian side of the mountain pass.
Right: the Swiss side of the Grand St. Bernard deployment, located approximately 2 km east of the Italian
deployment. The stations circled in red denote those stations chosen for purposes of modeling.

All experiments in this section were performed with a dataset spanning from the
beginning of the respective deployment to its end. Because the SensorScope stations
are not necessarily synchronized to sample at the same time, the data was binned and
averaged into 10-min windows consistent across all stations. A training set and test-
ing set were created for each deployment by roughly splitting the data into halves, in
which the first half (representing the first chronological half) became the training data
and the second half became the test set. In all experiments, only training samples
(10-min windows) where readings for all of the stations were present were used, and
so often the training sets were significantly smaller than the testing sets. For exper-
iments containing a temporal model, only those training samples that had a fully ob-
served preceding sample (the last 10-min period) were used. Data for the experiments
came from the FishNet and the Grand St. Bernard deployments. Grand St. Bernard
was a third deployment located in the Grand St. Bernard Pass between Switzerland
and Italy (at an elevation of 2300 m) and was in place from September 13, 2007, to
October 26, 2007. All six sensors were used in the FishNet deployment; however, only
a subset comprising nine of the 23 stations were used from the Grand St. Bernard (see
Figure 9). Because we included only training samples where all sensor measurements
were present, including all stations from the Grand St. Bernard would exclude too
many potential samples.

6.1. Leave-One-Out Prediction

The leave-one-out experiments were performed by withholding a sensor’s observation
and computing the posterior distribution over the hidden sensor value given all other
sensor observations and the learned spatial (Section 5.1) and spatiotemporal models
(Section 5.2). We report results for the FishNet and Grand St. Bernard SensorScope
deployments. In both cases, the spatial model was learned and parameterized us-
ing only the first half of the data (approximately 1400 and 440 training samples,
respectively).

Once the spatial and spatiotemporal models were trained, we processed the testing
data (second half of the collected samples) in an iterative manner. In each iteration,
a single observation, representing the measurement taken at one station at one time
point, was removed. We computed a posterior prediction for the removed value using
the learned spatial model and the observations from all other stations in the case of
the spatial model, and all other stations in addition to all measurements from the
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Fig. 10. Redundancy test for FishNet spatial model. Dashed line indicates the error in predicting the
individual missing sensor. Each bar along the x axis represents the change in error from removing the
additional sensor variable corresponding to that bar. The y axis is the error measured as the cumulative log
likelihood over all test cases of the true value given the predicted distribution.

previous time step in the case of the spatiotemporal model. We computed the mean
squared error (MSE) between the predicted value for the withheld observation and its
actual value in the test set, as well as the variance in our prediction. Let ¢ = 1,..., T
denote the time (sample) index, i = 1, ..., n index the “true” temperature variable X,
and x! the value of the true temperature at station X; at time ¢. The MSE and Variance
for station X; was then computed as

1 T
MSE; = 7 > (E [P(XX\X))] — )%, (22)

t=1

The variance of the posterior estimate of X; depends only on the set of variables that
have been observed (included in the set X\ X;), not on the exact value of those observa-
tions. Thus we needed to examine only Var [P(X I X\X ,-)] for any one of the ¢ samples
above to determine the variance. The leave-one-out error was also measured using
cumulative log likelihood (CLL),

T
CLL; = ) log P(X; = x{|X\X)), (23)

t=1

and is shown as the dashed horizontal line in Figures 10, 11, and 12. We then per-
formed a further computation, removing an additional variable’s observation from the
testing data. We computed the cumulative error over the training data (sum log like-
lihood) in predicting our original target variable with one additional sensor’s observa-
tion missing. Using the same notation as above, we computed this as

T
CLL;; = Y log P(X; = x[X\ {X;, X ;}). (24)

t=1
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Fig. 11. Redundancy Test for Grand St. Bernard Spatial Model. Dashed line indicates the error in predict-
ing the individual missing sensor. Each bar along the x axis represents the change in error from removing
the additional sensor variable corresponding to that bar. The y axis is the error measured as the cumulative
log likelihood over all test cases of the true value given the predicted distribution.

Each bar in Figures 10, 11, and 12 corresponds to the new CLL value after the variable
X has been hidden. The purpose of removing a second variable X is to measure the
contribution of second variable in predicting the value of the first removed variable X;.

Figure 10 (upper left plot) indicates that station 101 was not only the most difficult
to predict (MSE of 0.56°C), but also gained the least from the presence of other sensors.
Additionally, removing the observations of station 104 resulted in the largest increase
in error for station 101; however, even this effect was not particularly significant in
comparison to removing any of the other remaining stations. The likely reason for this
lack of correlation is due to station 101’s position on the south edge of the deployment
(Figure 6), near the wooded border. Station 104, its most similar station, is also lo-
cated in close proximity to a wooded, shady region, which may explain its role as the
strongest predictor for station 101. This example highlights the fact that our “spatial”
learning is discovering more correlation than those just based on spatial proximity as
we might see in a Kriging model [Matheron 1963]. Rather, our model is capturing all
sources of linear correlation between sensors at a given time step, without the use of a
feature set describing each sensor.

Stations 105 and 106 (bottom center and bottom right plots, respectively) appear
to be very highly correlated, as indicated by the dramatic increase in prediction error
when either station is held out while predicting the other. Moreover, we see that when
holding out each station (105 and 106), there is little error in reproducing the withheld
observation given the presence of the other five sensors (MSEs of 0.058°C and 0.074°C,
respectively). The Sensirion SHT75 documentation reports a measuring accuracy of
+0.35°C in operating conditions of 15.21°C (average temperature of the FishNet site
for the testing period).

Figure 11 conveys a similar analysis performed with nine stations selected from
the Grand St. Bernard deployment (Figure 9). The top row of bar plots depicts the
analysis of stations 11, 12, and 17, while the bottom row corresponds to stations 25,
29, and 31. It is apparent from the plot that stations 17 and 29 are the most difficult
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Fig. 12. Redundancy test for Grand St. Bernard Spatiotemporal model. Dashed line indicates the error
in predicting the individual missing sensor. Each bar along the x axis represents the change in error from
removing the additional sensor or lag variable corresponding to that bar. The y axis is the error measured
as the cumulative log likelihood over all test cases of the true value given the predicted distribution.

to predict from the remaining eight sensors. This stands to reason for station 29, for,
though it is located on the Italian side of the deployment with 25 and 31, it is still
separated by a steep hillside dividing the region. We could not ultimately discern the
reason for station 17’s discordant behavior from the remaining sites. The Sensirion
SHT75 documentation reports a measuring accuracy of +1.0°C in operating conditions
of 1.83°C (average temperature of the Grand St. Bernard site for the testing period).

It is interesting to note in Figure 11 that, in all cases, there exists at least one sen-
sor whose removal actually seems to decrease the amount of error in predicting the
hold-out sensor’s value. This trend suggests that our learned model may have overfit
the original training data, and thus poorly generalized to the test set. In the case of air
temperature data measured over 1-2 months (especially during seasonal transitions),
data monitored at the beginning of the observation period can differ significantly from
data measured toward the end of the observation period. This compounds the dif-
ficulty of our work, as now our underlying assumption of a single generative multi-
variate distribution creating our training and testing data is no longer valid. Future
work will need to focus on time-series analysis techniques that can map the test set to
our training set without full knowledge of the trend effects that shape the generative
distribution over time.

Finally, Figure 12 shows the hold-one-out analysis applied to a spatiotemporal
model learned from the Grand St. Bernard data. Recall that this model is simply
the original spatial model with the relevant lag variables appended to its structure,
and the parameters reestimated to account for the additional set of parents. We no-
tice that, in all cases, the hold-one-out error decreases with the incorporation of a lag
effect. Also significant is that, with the exception of stations 17 and 29, the lag effect
has the greatest predictive power for every station. This makes intuitive sense, as air
temperature is unlikely to change significantly over the course of 10 min (the dura-
tion of the lag). Stations 17 and 29 suffer from the same overfitting problem in this
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revised model, as hiding the Markovian variable reduces error in both cases. In fact,
the large magnitude of the gain incurred from hiding the lag variable from station 17
seems to support the theory that the nature of the correlative effect changed drasti-
cally between the training and testing periods. If it had not, then it is unlikely that the
spatiotemporal model would have lent the lag variable such significant weight based
on the training data.

In addition to providing some intuition about the values of parameters and network
structures learned in the spatial component of our QC system, this type of hold-one-
out analysis can be used to identify redundant sensors. For purposes of quality control,
two sensors measuring the same phenomenon (or one able to near perfectly predict the
other’s missing value) are necessary to truly validate recorded observations; however,
for purposes of capturing all the heterogeneity encompassed within a site, it may be
preferable to relocate any sensor considered redundant. This analysis can be easily
generalized to hold-two-out in order to detect clusters of three sensors where one sen-
sor can accurately predict the value of the other missing two (redundancy at this level
would even be unnecessary for QC purposes).

6.2. Quality Control Experiments

We begin this section by providing a comparative analysis of the spatial-only and
temporal-only models. Every model type discussed here contains the sensor state
model, as described in Section 5.3, appended to the structure. That is, the spatial-only
model is a learned network structure over the first half of the data collected from the
deployment with a discrete sensor-state variable and a continuous, normally distrib-
uted observation variable added for each sensor. The temporal-only model assumes
independence between all stations, but contains an additional lag variable for each
sensor and is autocorrelated with that lag. Figure 13 demonstrates the performance of
the spatial model as applied to the second half (testing set) of the Grand St. Bernard
deployment data.

The spatial-only model is able to recognize the spiky, anomalous behavior observed
in both stations 17 and 29 between days 21 and 25. Moreover, this QC system detects
the flatline anomaly when station 17’s air temperature sensor reports 0 V, which is by
default converted to a reading of —1°C. The dashed line represents the system’s predic-
tion of the actual temperature value and appears to be consistent with the neighboring
stations of sensor 17. Unfortunately, the lack of a temporal connection means that this
model’s behavior is static over time. The overall mean of each station remains con-
stant, because there is no transition function to allow the mean of the process model to
track the true temperature, nor is there any explicit conditioning on the seasonality or
index in the diurnal cycle. The end result is that, as the mean of the true temperature
begins to decrease to the point where it significantly differs from the learned mean
in the training data, the model labels these new values as anomalous. This begins to
manifest itself at day 35. Each time the average reading from all nine sensors drops
significantly below the training data mean, an anomaly is raised and the model im-
putes the training data mean as the correct value. The large disparity between the
model’s prediction and the actual observations between days 35 and 39 results in most
of the observations therein being misclassified as anomalous, save for daytime high
values.

Figure 14 shows the performance of the temporal-only model on the same Grand
St. Bernard data. This model is equivalent to n disjoint Kalman Filter models [Kalman
1960], with an additional discrete sensor-state variable that explains away any dis-
crepancy between the observation and predicted value of the air temperature. Of im-
mediate note is that the —1°C flatline in station 17 is no longer properly flagged as
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Fig. 13. Quality control performance on Grand St. Bernard using the spatial-only model. The solid line
indicates the actual temperature recorded at each station. The dashed line indicates the posterior predic-
tion made for that station. The vertical hash marks at the base of each graph indicate a value labeled as
anomalous (i.e., S; = broken) by our system for that time period. The x axis denotes the day (the vertical
dashed line depicts midnight) since the deployment began, and the y axis denotes temperature in degrees.
Corresponding station names appear on the right side of the graph next to the stream they depict.

anomalous. A few nominal observations near —1°C beginning on day 25 confuse the
temporal model into tracking this flatline behavior. If the transition between tempera-
ture observations over time is gradual enough, the temporal-only model will track the
temperature signal through periods of anomalous readings caused by sensor malfunc-
tion. Without external observations from correlated stations, the independent sensor
cannot differentiate between slow changes in the observations due to a change in the
process signal (warming or cooling trends) or the breakdown of the sensor. In cases
where the observed value disagrees with the model’s predicted value (the model loses
tracking), future predictions drift toward the training data mean. This can be seen at
station 11 on day 34 when the signal is completely lost, or at station 17 on day 35 when
an erratic spike followed by a drop in temperature throws off the model.

The temporal model’s ability to track the process even as it drifts away (albeit
slowly) from the trained mean gives it an advantage over the spatial-only model. We
can see this in stations 12, 18, 20, 25, and 31, where a slow cooling effect does not
disrupt the model’s ability to track the process during the second half of the train-
ing period. Unfortunately, the assumption of complete independence between stations
means that the model cannot accurately reconstruct the true value of the temperature
at stations diagnosed as broken, as seen in stations 11, 25, 29, and 31. To this end, we
turn to the spatiotemporal model.

The performance of the spatiotemporal model (Figure 15) appears robust to the
weaknesses in the spatial-only and temporal-only models. In particular, it is able to
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Fig. 14. Quality control performance on Grand St. Bernard using the temporal-only model. The solid line
indicates the actual temperature recorded at each station. The dashed line indicates the posterior predic-
tion made for that station. The vertical hash marks at the base of each graph indicate a value labeled
as anomalous (i.e., S; = broken) by our system for that time period. The x axis denotes the day (vertical
dashed line depicts midnight) since the deployment began, and the y axis denotes temperature in degrees.
Corresponding station names appear on the right side of the graph next to the stream they depict.

both detect and reconstruct the anomalous values from flatlined senors (station 17,
days 25 to 33) and missing values (station 29, days 35 to 42). Further, the model per-
mits some drift in the original learned distribution of the process model, as indicated
by its accurate tracking of the air temperature from days 35 through 39, with few ap-
parent false positives. Like the spatial and temporal models, the combined model is
able to diagnose the obvious spikes in air temperature that are also indicative of sensor
malfunctions (station 17, days 35 to 41). The overall false positive rate seems minimal
(save for the midday periods on days 36-38 at station 20, where the predicted esti-
mates are slightly higher); however, without ground-truth data, we cannot determine
the true type I and II error rates.

Unfortunately, in cases where GPRS is lost (either due to a required reboot, or
a failure at the station) and all station signals are lost, our spatiotemporal model
cannot recreate the missing values. This is apparent in the FishNet dataset, where
GPRS outages were relatively frequent (Figure 16) compared to Grand St. Bernard. In
cases where no sensors are providing observations, the variance over the joint pos-
terior of the current process state grows. This is because a lack of evidence about
the state of the process means that we are becoming increasingly uncertain about
its current value. Eventually, the variance will grow so large that almost any ob-
served value will seem likely, and so our process will begin to retrack the observa-
tions. When the sensor readings resume, the very first observation is recognized as
nonanomalous and causes the spatial and temporal components to shift the process
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Fig. 15. Quality control performance on Grand St. Bernard using the spatiotemporal model. The solid
line indicates the actual temperature recorded at each station. The dashed line indicates the posterior
prediction made for that station. The vertical hash marks at the base of each graph indicate a value labeled
as anomalous (i.e., S; = broken) by our system for that time period. The x axis denotes the day (vertical
dashed line depicts midnight) since the deployment began, and the y axis denotes temperature in degrees.
Corresponding station names appear on the right side of the graph next to the stream they depict.

model to that observed value for all correlated sensors. For example, during the out-
age beginning on day 18.5 and lasting until day 19.75, there was a single observation
around day 19.5 that caused the collective temperature prediction for most stations to
shift down 4°C. Otherwise, during these periods of prolonged GPRS outage, the predic-
tion will drift toward the mean for each station while variance on the prediction grows
larger.

Without knowledge of neighboring observations within a site or a sufficiently high-
order Markovian model, there is little the current model can do to correctly track the
air temperature during periods in which all sensors fail to report. One potential so-
lution would be to introduce a baseline calculation that represents prior knowledge
about the air temperature at a given site for each time of day and time of year. In
the absence of evidence to correct this baseline estimate, the model would default to
the baseline values. While the baseline may be inaccurate given the temporal con-
text (warmer/cooler than usual, storm effect, etc.), it would likely guide the process
model such that it was closer to the actual signal when observations recommenced.
Formulation of this baseline and its performance in a long-term stationary QC domain
was reported in Dereszynski and Dietterich [2007]. The problem remains that, in the
short-term ecological monitoring setting, it may be difficult to estimate this baseline
in the absence of a full cycle of the observed phenomenon (1 year in the case of air
temperature).
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Fig. 16. Quality control performance on FishNet using the spatiotemporal model. The solid line indicates
the actual temperature recorded at each station. The dashed line indicates the posterior prediction made
for that station. The vertical hash marks at the base of each graph indicate a value labeled as anomalous
(i.e., S; = broken by our system for that time period. The x axis denotes the day (the vertical dashed line de-
picts midnight) since the deployment began, and the y axis denotes temperature in degrees. Corresponding
station names appear on the right side of the graph next to the stream they depict.

6.3. Noise Injection Experiments

To obtain a quantitative assessment of the accuracy of our quality control methods,
we performed a series of experiments in which we injected noise into the SensorScope
data. Initially, all readings were assigned to be nonanomalous. Then any missing val-
ues or 10-min average of exactly —1.0 degrees °C were labeled as anomalous. Finally,
synthetic faults were introduced by taking each data point and, with probability 7,
adding a noise value drawn from a normal distribution with zero mean and variance
2. Each synthetic fault was labeled as anomalous.

We report the results of the noise injection experiments for both the FishNet and
Grand St. Bernard deployments. The experiments were performed using values of o2
ranging from 3°C to 30°C in increments of 3°C and values of # ranging from 5 to 50% in
increments of 5%. Thus, we evaluated 100 different variations on the testing data for
each dataset, and recorded the results in terms of the number of true positives (TP,
number of anomalous data values classified by our system as such), true negatives
(TN, the amount of clean values that were not flagged by our system as anomalous),
false positives (F'P, misclassified anomalies that were actually clean), and false nega-
tives (F'N, values that were actually anomalous, but not detected by our system). The
results are summarized in terms of Cohen’s « statistic (the rate of agreement between
our classifier and the true labels correcting for chance agreement [Cohen 1960]), pre-
cision (the total number of true positives divided by the number of true positives plus
false positives), and recall (the total number of true positives divided by the number
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noise level and saturation.

of true positives plus false negatives). Cohen’s x reflects the degree to which our algo-
rithm reproduces the true labels as created by our noise injection process corrected for
chance predictions [Cohen 1960; Viera and Garrett 2005]. It is calculated as

P(O) - P(E)
" T 10-PE (25)
TP+TN
TN+FP TN+FN FP+TP FN+TP
P(E) = N X N + N X N 27

where P(O) is the observed probability of the classifier agreeing with the true label,
P(E) is the expected probability of chance or coincidental agreement, and N is the
total number of samples in our testing data. Regarding the latter two statistics, pre-
cision provides a sense of how many of the values we labeled as anomalous are truly
indicative of sensor faults, while recall summarizes what percentages of the total gen-
uine sensor faults we detected in the data. In this application, we were interested in
achieving as much precision as possible at high levels of recall. In other words, we
wanted to make sure we detected most of the sensor faults, even if this led to some
false alarms (false positives).

Let us consider what results we should expect from injecting noise. First, we would
expect that, as the magnitude of the noise (¢2) increases, the noise will become easier
to detect, because it will be clearly distinct from nearby values in time and space.
Increasing the amount () of noise should not decrease our ability to detect it; however,
fewer nonnoisy values will make tracking short-term changes in the air temperature
(due to storm effects, cold/warm fronts, etc.) more difficult. For this reason, we expect
that larger values 5 will result in more false positives in cases where the model loses
tracking and its predictions drift away from the true air temperature. Ultimately,
the best data-anomaly detection performance will be obtained when there is a small
amount of very obvious noise in the data (small 5 and large o).

Figure 17 shows the x rates of our model applied to the FishNet (left) and Grand
St. Bernard (right) deployments. The value of « is displayed on a color scale, with
higher values shown in darker shades of red and lower values shown in darker shades
of blue. As expected, larger values of 52 resulted in better x scores for both the Fish-
Net and Grand St. Bernard data sets. Data anomalies drawn from a higher variance
distribution are more evident to our classifier; consequently, there is more genuine
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Fig. 18. Precision as a function of both noise variance (y axis) and percentage of data points modified by
noise (x axis). The shading of each grid cell reflects the degree of precision (on a scale of 0% to 100%) for that
configuration of noise level and saturation.

agreement. In the of case FishNet, x increases from .527 to .826 as we increase o2
from 3 to 30, and from .440 to .755 in the case of Grand St. Bernard (at n = 20%). In-
teresting to note is that more noise in the data does not have an adverse effect on our
x scores until more than 25% to 30% noise is introduced. In fact, the « scores for both
data sets increase up to this point. As more anomalies are introduced into the data and
correctly identified by our algorithm, the likelihood of coincidental agreement (P(E))
decreases; however, there appears to be a threshold at approximately 25% noise where
x begins to decrease. This suggests a tradeoff where further abundance of anomalies
in the data makes them appear haphazard rather than systematic.

Precision results in Figure 18 further support our hypothesis regarding the effect of
larger values for 62. The true anomalies are more disparate from the normal data, and
so the ratio of true positives to false positives increases directly with magnitude of the
noise (fewer false positives result in higher precision scores). Further, as we increase
the amount of noise in the data, any value we classify as anomalous has a higher
chance of actually being so due to a greater proportion of the data containing noise.
When there are few anomalies in the data (5% injected noise), our scores suffer due to
the presence of relatively many false positives. Consider our false positive rates (per-
centages of all “good” data missclassified as anomalous) shown in Figure 19. Though
we achieve very low false positive rates at this level of noise (average of 1.01% at Fish-
Net and 3.08% at Grand St. Bernard for = 5%), there are too few synthetic anomalies
in the data, causing the false positive counts to dominate the precision scores. In addi-
tion, while some of these false positives are “good” values misdiagnosed as anomalies
by our system, it is likely that many of these errors came from suspicious values that
we did not preflag as existing anomalies due to a lack of domain expertise (for example,
sensors 17 and 29 of Grand St. Bernard on days 22 through 25 in Figure 13). Thus,
even though our model is catching these likely faults, each is being labeled as a false
positive.

There are cases where poor performance is caused by multiple sensor streams being
affected by noisy values simultaneously. Consider the QC model applied to the noise-
injected data in Figure 20 (y = 50, 02 = 15). Beginning on day 36, a cooling trend
affects all stations in the deployment and reduces the true air temperature below 0°C.
Incidentally, station 29 flatlines at exactly —1.0°C during this period. As the true sig-
nal dips below —1.0°C, we notice that all stations begin predicting values hovering
near this boundary until the cooling trend ends around day 39. Furthermore, instead
of recognizing the values reported from station 29 as anomalous for this period (as in
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Fig. 19. False positive rates as a function of both noise variance (y axis) and percentage of data points
modified by noise (x axis). The shading of each grid cell reflects the degree of precision (on a scale of 0% to
50%) for that configuration of noise level and saturation.
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Fig. 20. QC results for Grand St. Bernard data with 50% added Gaussian noise with variance of 15°C. The
vertical hash marks depict a sensor diagnosis of broken for that particular value. Corresponding station
names appear on the right side of the graph next to the stream they depict.

Figure 15), these values are the only ones labeled as nominal. This behavior occurs
because the amount and degree of injected noised in the data makes it unlikely that
a set of observations at time ¢ will be consistent with the spatial component of the QC
model, and makes it even less likely that two sets of contiguous observations (times
t and ¢ + 1) will be consistent with the temporal transition component. During this
period, station 29 behaves very consistently from a temporal perspective (its obser-
vations are constant from day 34.5 to 40.5), and the variance of the injected noise is
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Fig. 21. Recall as a function of both noise variance (y axis) and percentage of data points modified by
noise (x axis). The shading of each grid cell reflects the degree of recall (on a scale of 0% to 100%) for that
configuration of noise level and saturation.

enough to bring the observed signal from the other stations within close proximity to
the flatline value. The end result is that station 29 becomes the standard for nominal
behavior until the true temperature deviates from the flatline by a margin larger than
the magnitude of added noise.

In the above-mentioned scenario, increased values of both 7 and ¢ negatively af-
fect the precision score. As 7 increases, the likelihood of all sensors encountering noisy
values simultaneously also rises. Noisy observations drawn from a wide-variance dis-
tribution are more likely to strongly disagree with the QC model’s predictions and, as
a result, this frequently causes the model to ignore such observations. This kind of sce-
nario becomes more probable in cases where there are relatively few, highly correlated
sensors that are prone to simultaneous malfunctioning.

Recall values, displayed in Figure 21, are largely invariant to changing values of
n. Increasing the amount of noise in the original data has no significant effect on
our ability to find all data anomalies. This is unsurprising. As per our discussion of
precision, an abundance of anomalous values may introduce tracking problems that
leads to misclassifying normal values as anomalous; however, false positive values do
not factor into recall scores. An increase in the magnitude of the noise distribution
directly benefits our recall scores, which is again consistent with our hypothesis. In
both data sets, we are able to achieve greater than .70 recall once the variance of the
noisy data reaches 15°C. For the FishNet deployment, we can simultaneously reach
a precision score of .87 while keeping our false positive rate at 4.6%. At Grand St.
Bernard, we operate at .78 precision with a false positive rate of 7.0%. Again, Grand
St. Bernard’s worse performance is partially due to the presence of suspicious values
that we did not preflag as data anomalies before injecting noise.

Last, we provide an individual analysis of the effects of increasing the frequency and
magnitude of noise in each of these datasets. Figure 22 shows the average «, recall,
and precision for the FishNet (left) and Grand St. Bernard (right) deployments, as a
function of only 7 (top) and only o2 (bottom). In the case of the top graphs, each value
on the vertical axis represents an averaging over all values for ¢ 2; likewise, each value
on the vertical axis for the bottom graphs is an average across all values for 7.

Increasing the amount () of anomalous values in the data resulted in a increase of
precision for both datasets. The effect seems less pronounced for the FishNet dataset
(.778 to .875) compared to Grand St. Bernard (.535 to .833) as # varies from 5% to 50%.
Again, this is likely attributable to the existence of many suspicious values in the
Grand St. Bernard dataset that were not preflagged as data anomalies. Prior to any
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Fig. 22. Left: precision, recall, and « for the FishNet noise injection experiments as function of percentage
of noise (top) and degree of variance (bottom). Right: precision, recall, and « for the Grand St. Bernard noise
injection experiments as function of percentage of noise (top) and degree of variance (bottom).

Gaussian noise being added, these values would appear anomalous to our model and
would be classified as data anomalies. When 7 is small, it is unlikely our noise injection
process will target these observations and turn them into true cases of data anomalies.
The end result is these observations become false positives. As 7 increases, more of
these suspicious values are rightly cast as data anomalies during noise injection. x
increases initially with more noisy values injected into the data; however, as discussed
with the x results, we see diminishing returns and an eventual loss in x as 7 grows
over 25% for both the FishNet and Grand St. Bernard datasets.

The lower portion of Figure 22 shows a definite gain in overall precision, recall,
and x as the degree of noise in the data (s2) rises from 3°C to 30°C. Specifically, «
increases by approximately .3 in both data sets, recall increases by .34 in FishNet and
.36 at Grand St. Bernard, and precision increases by .06 at FishNet and .08 at Grand
St. Bernard. In regards to recall and «, this is because as the added noise in the data
becomes more obvious (higher variance), it becomes easier for our model to detect it.
The increase in precision is less pronounced than the increase in recall and «, which
could be caused by our QC model having too a great a sensitivity to anomalous values
(too small of a variance for the sensor observation variable when the sensor state is
believed to be working).

6.4. Noise Injection and Model Comparison

In this section we use our noise injection methodology to validate that learning a spa-
tial model provides superior performance than arbitrarily choosing a spatial structure.
We examine four spatiotemporal QC models.

— Best. QC model having the highest-scoring (best) spatial structure as returned from
the algorithm described in Algorithm 1.

— Worst. QC model having the lowest-scoring (worst) spatial structure with equal con-
nectivity (smallest vertex cut) to the Best model.

— Full. QC model having a spatial structure that is fully connected (% edges among
n Sensors).

— Empty. QC model having a completely disconnected spatial model. This is identical
to a temporal-only QC model.
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These QC systems are compared in terms of their x, precision, and recall scores as
a function of 62 as in the bottom portion of Figure 22. The results can be seen in
Figure 23.

In both the FishNet and Grand St. Bernard datasets, our learned QC Model (best
model) clearly outperforms the other 3 QC models in x and precision. The difference
in performance is most pronounced in the FishNet deployment. Recall scores are com-
parable for both FishNet and Grand St. Bernard across all levels of 6?2 and all four
model types. The full model performs slightly better than the worst model in ¥ and
precision. This suggests that, though there are disadvantages to assuming full spa-
tial connectivity, assuming a densely connected spatial model incurs less error than
assuming a spatial model with few or no connections (as in the empty model). The
performance gain of the best QC model over the full model is less significant in the
Grand St. Bernard dataset. We suspect this stems from the models being trained on
data observed in mid-September and tested on data from mid- to late October (a sea-
sonal transition period). Both our learned spatial model and the fully connected model
will fit the test data poorly, because the training data has little resemblance to the test
data. Thus neither model has a clear advantage over the other.

6.5. Discussion

The statistic of principal interest to our quality control problem is recall. If our method
can correctly identify and filter out all nonanomalous data points, then the expert can
save time by considering only those points that our model has marked as anomalous.
We want to filter out as many existing anomalies from the data prior to review by a
domain expert (in order to save time) and prior to publication of the data (in order
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to prevent distribution of invalid measurements). Our noise injection experiments
confirm that the worst case for recall is when there exist low-variance anomalies in
the data. This stands to reason, for if the anomalies we need to detect fall within the
range of noise for the nonanomalous data, they will be nearly indistinguishable from
the real data. Furthermore, if they are frequent, then when the model is fitted to the
data, it will use them to define the normal level of variation.

Nevertheless, we have demonstrated that we can obtain recall rates of .70 when the
average variance of the noise is 15°C and close to .80 for values of 03 > 20°C. While
this may seem unreasonable in terms of noise levels we should expect to encounter in
real-world scenarios, consider that approximately 70% of the additive noise is less than
or equal to one unit of standard deviation (= 8.87°C for ¢2 = 15 and 4.47°C for 52 = 20).
In addition, we are maintaining a low false positive rate (4% to 7%) for most values of
7. In cases where there are fewer complete sensor outages and the temperature data
in the training distribution more closely matches that in the testing distribution, we
would expect these values to further improve.

With respect to creating a sparse representation of the joint distribution of Sen-
sorScope stations, the applied structure learning algorithm resulted in a savings of
parameters in both FishNet and Grand St. Bernard. Each variable (or station) in a
linear-Gaussian model is specified by a scalar mean and variance (two parameters) in
addition to a weight for every parent (one parameter for every arc in the graph). Thus
the total number of parameters for a graphical representation of the joint distribution
is 2n + k, where n is the number of variables in the model and £ is the number of arcs
or edges. The full joint distribution would consist of an n-dimensional mean vector and
an n x n covariance matrix, of which n+ "(" L entries would need to be specified (a total

of 2n+ "(”2 L parameters). The created network structure for FishNet contained 12 arcs
for a total of 12 + 2 * 6 = 24 parameters. The regular full joint distribution would re-
quired 26+ %62 = 27 parameters. The savings in this case was minimal; however, the
FishNet statlon covers a relatively small and homogeneous area compared to Grand
St. Bernard and thus we expect some measurable correlation among all the sensors at
the deployment. The Grand St. Bernard network consisted of 24 edges, so the Bayesian
network representing this model requires 2 x 9 + 24 = 42 parameters. The full joint
distribution would require 2 x 9 + 29~ = 54 parameters to be completely specified. We
see that the savings, in terms of parameters to be estimated, grow very quickly as the
number of sensors increases, and that we can exploit spatial 1heterogeneity to provide
a more compact representation. The number of spatial structures we considered in
determining the best spatial models (size of the MEC for B, in Figure 5) for FishNet
and Grand St. Bernard were three and eight, respectively. This result is consistent
with empirical data obtained by experiments involving the evaluation of MEC class
sizes [Gillispie and Perlman 2002].

Finally, our empirical results also show that sparseness in the spatial model rep-
resents a form of regularization. Figure 23 shows that fully connected spatial models
behave worse or on par with our learned spatial models, which contain fewer arcs. As
we cannot evaluate the entire set of all spatial models for each dataset, we cannot be
certain there do not exist even sparser models that perform better. However, we have
some evidence from the worst and empty models’ performance in Section 6.4 that we
cannot capture all the necessary correlative relationships with fewer edges. The worst
spatial model for FishNet contained 10 edges compared to 12 in the learned model,
and the worst spatial structure for Grand St. Bernard contained 19 arcs compared to
24 in the learned model; neither performed as well as the best model in each dataset.
The placement of the edges in the worst model is an additional contributing factor to
its poor performance.
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7. RELATED WORK

A simple (though common) approach to data-anomaly detection is to provide a visual
representation of the data and allow a domain expert to manually inspect, label, and
remove anomalies. In Mourand and Bertrand-Krajewski [2002], this method was im-
proved upon through the application of a series of logical tests to prescreen the data.
These tests included range checks to ensure that the observations fall within reason-
able domain limits, similar checks for the signal’s gradient, and direct comparisons to
redundant sensors. The ultimate goal was to reduce the amount of work the domain
expert has to do to clean the data, which is consistent with our approach.

Temporal methods evaluate a single observation in the context of a time segment
(sliding window) of the data stream or previous observations corresponding to similar
periods in cyclical time-series data. Reis et al. [2003] used a predictor for daily hos-
pital visits based on multiday filters (linear, uniform, exponential) that lend varying
weights to days in the current sliding window. The motivation for such an approach is
to reduce the effect of isolated noisy events creating false positives or false negatives
in the system, as might occur with a single-observation-based classifier. In a similar
vein, Wang et al. [2005] constructed a periodic autoregressive model (PAR, [Chatfield
2000]), that varies the weights of a standard autoregressive model according to a set of
user-defined periods within the time series. A daily visitation count is predicted by the
PAR model, and if it matches the observed value, then the PAR model is updated with
the observation; otherwise, the value is flagged as anomalous, an alarm is raised, and
the observation is replaced with a uniformly smoothed value over a window contain-
ing the last several observations. A machine-learning-based approach was adopted by
keen Wong et al. [2002] wherein the logical tests, or rules, are learned in an online set-
ting. Past observations (taken from set lag periods representative of current temporal
context) are mined for rules stated as reasonable values for individual, pairs, or tuples
of attributes. The significance of the rules are determined by Fisher’s exact test.

Spatial methods are useful in cases where there exist additional sensors distrib-
uted over a geographic area. The intuition is that if an explicit spatial model exists
that can account for the discrepancies between observed values at different sites, then
these sensors can, in effect, be considered redundant. An example of this approach can
be found in Daly et al. [2005], where each distributed sensor is held out from the re-
maining set of sensors, and its recorded observation validated against an interpolated
value from the remaining set. Each station’s value in the network is given a weight
associated with confidence in its estimate. This confidence value is calculated using a
set of summary statistics based on that station’s latest observation in the context of its
historical record. Unlike our approach, there is no specific attempt to model the joint
distribution between all stations or the overall correlation between sensors in the net-
work. Moreover, this approach relies on a significant historical record for each station
in the network in order to compute the necessary summary statistics for that station.

Belief networks [Pearl 1988] have been employed for sensor validation and fault de-
tection in domains such as robotic movement, chemical reactors, and power plant mon-
itoring [Ibarguengoytia et al. 1996; Mehranbod et al. 2003; Nicholson and Brady 1992].
Typically, the uncertainty in these domains is limited to the sensor’s functionality un-
der normal and inoperative conditions. That is, the processes in these domains func-
tion within some specified boundaries with a behavior that can be modeled by a system
of known equations [Aradhye 1997; Isermann 2005]. Ecological domains are challeng-
ing because accurate process models encompassing all relevant factors are typically
unavailable [Hill and Minsker 2006]; consequently, uncertainty must be incorporated
into both the process and sensor models. Eskin [2000] handled this uncertainty with a
mixture model over the true and anomalous data, which is similar to our observation
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variable once we have marginalized away the sensor state. The distribution parame-
ters are learned iteratively over each sample in the dataset. For each value, the change
in likelihood of moving that value’s membership from the clean to the anomalous dis-
tribution is computed; if the the likelihood increases, the value changes membership,
it becomes anomalous permanently (it cannot rejoin the clean distribution), and the
nonanomalous distribution parameters are updated. Das and Schneider [2007] used
the probabilistic approach in the multivariate setting in which rare cooccurrences of
attribute values are not, in and of themselves, indicative of anomalous values. Here,
pairs or tuples of attributes are probabilistically scored based on their values; how-
ever, they are normalized by the likelihood of the individual values taking on those
assignments independently, as determined by the training data (to add support to low-
frequency events). An entire record (consisting of multiple attribute tuples) is then
scored according to the rarest tuple of attribute values within that record.

Perhaps most related to our own work, Hill et al. [2007] applied a DBN model to
analyze and diagnose anomalous wind velocity data. The authors explored individ-
ual sensor models as well as a coupled-DBN model that attempts to model the joint
distribution of two sensors. The nature of the data-anomaly types in the data appear
to be either short-term or long-term malfunctions in which the wind speed drastically
increases or decreases; consequently, a first-order Markov process is sufficient to de-
termine sharp rates of increase or decrease in wind speed. The joint distribution is
modeled as a multivariate Gaussian conditioned on the joint state of the respective
sensors (represented as a discrete set of state pairs). Our current approach primarily
differs in the scale (number of sensors we are trying to simultaneously monitor) and
because we attempt to discover the correlative structure between the sensors. Instead
of assuming a full covariance matrix over the joint distribution of sensors and com-
puting the MLE parameters for that matrix, we apply structure learning to obtain a
sparse representation of the joint distribution.

8. CONCLUDING REMARKS AND NOTES ON FUTURE RESEARCH

This article has described a new type of dynamic environmental monitoring based on
short-term wireless sensor deployments, as well as demonstrated an accompanying
need for adaptive, automated quality control. We have provided background informa-
tion regarding the SensorScope project and have given examples of the data collected
and the data anomalies contained therein. However, our primary contribution has
been to offer an initial means of automating QC in this domain. Our experimental
results thus far demonstrate that a dynamic Bayesian network approach, based on a
generative model of the deployment site, can diagnose many of the data-anomaly types
present in ecological data. Further, in all but the severest case of a complete site out-
age, the model is able to reconstruct reasonable estimates of missing or corrupted data
from individual sensors or subsets of sensors. We have shown that structure learning
techniques can be successfully applied in this domain to learn a compact representa-
tion of the covariance matrix over the generative distribution, and that this sparse
matrix performs better or comparable to a fully specified covariance structure.

Thus far we have only applied our method to detect data anomalies present in air
temperature sensor streams. We suspect that other environmental data types may
provide more challenges to our approach. For example, wind velocity sensors may
demonstrate significantly less temporal and spatial correlation over the relatively
small geographical areas they are deployed, or surface-temperature data may not be
very spatially correlated if the observation area displays surface heterogeneity. How-
ever, a model that examines the correlation across these phenomena may overcome
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these challenges. Other domains that may be difficult to perform QC on exclusively
(precipitation, soil moisture, solar radiation) may be leveraged with other correlated
phenomena to produce a truly inclusive system for quality control.

With regard to structure learning, the BGe metric and hill-climbing search repre-
sent only one prior-based technique for determining the underlying spatial model. In
learning a compact form of the covariance matrix, there appear to be two primary
methodologies. Standard machine learning approaches focus on the discovery of some
metric to score child/parent configurations and a search algorithm over the space
of DAGs that may penalize nonsparse representations. For example, Tsamardino
et al. [2006] attempted to determine a candidate set of neighbors (the Markov blan-
ket) using a Max-Min Parents heuristic for each variable in the network and then
employed hill climbing over the subset. Schmidt et al. [2007] similarly attempted to
identify a subset of variables to consider as a potential set of neighbors using L1-
regularization. However, both of these methods were developed to address very large
databases containing thousands of variables (gene expression data, etc.) with rela-
tively few samples—situations in which overfitting is a significant concern. While
ecological sensor networks may include dozens of sensors at a deployment, it seems
unlikely that the aforementioned techniques would be necessary due to the quantity
and frequency at which data is collected. The second approach focuses on learning the
covariance matrix directly rather than iteratively. While perhaps not feasible for do-
mains of high dimension, this method does have the advantage of performing a more
global evaluation of the structure, making it more robust to local maxima (unlike hill
climbing). The work of Yuan and Li [2007] is an example of this approach, where
Lasso regression was used as part of an optimization to force off-diagonal elements of
the covariance matrix toward zero. The result was an undirected graph representing
the covariance structure and, as we are not primarily interested in developing causal
models of the sensor correlations, this would be suitable in the current domain. Also
of interest would be a way to integrate our fixed temporal model into the hill-climbing
search for an optimal spatial structure. That is, we would like the scoring function to
take into account that lag variables will be appended to each of the variables in the
graph in a specific manner when evaluating candidate structures.

An additional direction for future work is to extend this model to an online learning
scheme, in which the spatial structure and parameterization are refined over time.
Given that the BGe metric requires a prior network structure as an initialization
point for search, one could conceive of an algorithm in which the network learned
on incremental batches of observations served as the prior for the next network. We
could begin with a very weak assumption on the generative distribution (total indepen-
dence among sensors with each sensor having a univariate normal distribution over
the range of plausible domain values), and use this as our initial QC system. Those
points not labeled as anomalous by this primitive model would then be employed to
train a more sophisticated spatial model, and then the process could be repeated. On a
related note, there may be other metrics for conditional independence that merit explo-
ration, especially if we loosened our assumption on a normally distributed generative
model or on a linear correlative relationship between the variables.
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