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Abstract. Geographically extensive forest inventories, such as the USDA Forest Service’s
Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and
mortality records that could be used to develop broad-scale models of forest dynamics. A
limitation of inventory data, however, is that individual-level measurements of light (L) and
other environmental factors are typically absent. Thus, inventory data alone cannot be used to
parameterize mechanistic models of forest dynamics in which individual performance depends
on light, water, nutrients, etc. To overcome this limitation, we developed methods to estimate
species-specific parameters (hG) relating sapling growth (G) to L using data sets in which G, but
not L, is observed for each sapling. Our approach involves: (1) using calibration data that we
collected in both eastern and western North America to quantify the probability that saplings
receive different amounts of light, conditional on covariates x that can be obtained from
inventory data (e.g., sapling crown class and neighborhood crowding); and (2) combining
these probability distributions with observed G and x to estimate hG using Bayesian
computational methods. Here, we present a test case using a data set in which G, L, and x were
observed for saplings of nine species. This test data set allowed us to compare estimates of hG
obtained from the standard approach (where G and L are observed for each sapling) to our
method (where G and x, but not L, are observed). For all species, estimates of hG obtained
from analyses with and without observed L were similar. This suggests that our approach
should be useful for estimating light-dependent growth functions from inventory data that
lack direct measurements of L. Our approach could be extended to estimate parameters
relating sapling mortality to L from inventory data, as well as to deal with uncertainty in other
resources (e.g., water or nutrients) or environmental factors (e.g., temperature).

Key words: Bayesian hierarchical model; dynamic global vegetation model; forest inventory; latent
variable; Markov chain Monte Carlo (MCMC); neighborhood analysis; numerical integration; shade
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INTRODUCTION

Efforts to understand interactions between the carbon

cycle, land use, and climate rely on geographically

extensive models of vegetation dynamics (Foley et al.

1996, Cramer et al. 2001, Hurtt et al. 2002, Sitch et al.

2005, Albani et al. 2006, Friedlingstein et al. 2006,

Moorcroft 2006). A number of ‘‘dynamic global vegeta-

tion models’’ (DGVMs) have been developed that can

reproduce observed broadscale patterns in plant biomass

and net primary production (NPP) (e.g., Foley et al.

1996, Sitch et al. 2003, Krinner et al. 2005). However,

such models lead to widely different predictions regard-

ing the future state of the biosphere, even when forced

with the same climate and CO2 scenarios (Cramer et al.

2001). Allowing for dynamic climate and CO2 leads to

even greater uncertainty due to feedbacks between

climate and the carbon cycle (Friedlingstein et al.

2006). Vegetation plays a major role in this uncertainty.

For example, in a comparison of 11 coupled climate–

carbon cycle models, terrestrial NPP was the largest

source of uncertainty in predicting future atmospheric

CO2 (Friedlingstein et al. 2006, Denman et al. 2007).

Dynamic global vegetation models require numerous

parameters to describe the physiology of plant func-

tional types (e.g., Foley et al. 1996, Sitch et al. 2003,

Krinner et al. 2005). Typically, these parameters are

assigned one of many possible values from the literature.

Rarely, however, are the implied whole-plant perfor-

mances (i.e., growth, mortality, and reproduction)

compared to individual, whole-plant data. In fact, most

DGVMs bypass the individual level altogether and

attempt to scale directly from finer-scale processes (e.g.,

leaf photosynthesis) to ecosystems (e.g., forest NPP)
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(Purves and Pacala 2008). While this approach is

appealing in its simplicity, it is problematic due to the

nonlinear effects of individual-level interactions (e.g.,

height-structured competition for light) on ecosystem

dynamics (Moorcroft et al. 2001, Strigul et al. 2008).

Forest inventories provide a vast source of data on

individual tree performance that could be harnessed to

develop broadscale forest dynamics models that are

parameterized at the individual level using formal,

quantitative methods. Together, inventory data sources,

including systematic government inventories, such as the

USDA Forest Service’s Forest Inventory and Analysis

(FIA) program, as well as other networks of permanent

plots such as those monitored by the Center for Tropical

Forest Science, include on the order of 107 individual

growth and mortality records spanning all major forest

types.

Recently, Purves et al. (2008) showed that a compu-

tationally and analytically tractable forest dynamics

model (Adams et al. 2007, Strigul et al. 2008),

parameterized with FIA data, can accurately predict

long-term (;100 years) community dynamics on differ-

ent soil types in the U.S. Lake States. The model is

mechanistic at the community level, in that it explicitly

accounts for height-structured competition in scaling up

from individual performance. The version implemented

by Purves et al. (2008), however, is phenomenological at

the individual level; i.e., growth and mortality rates of

understory vs. canopy individuals were estimated for

different species on different soil types, without attempt-

ing to explain variation in these rates in terms of

resources (e.g., light, water, nutrients) or other environ-

mental factors (e.g., temperature). This is an important

limitation, because an explicit treatment of physiological

mechanisms is needed to predict vegetation response to

climate change and elevated CO2 (Reynolds et al. 2001).

An obstacle to using forest inventory data to estimate

resource-dependent growth and mortality functions is

that inventories typically lack measurements of individ-

ual-level resource availabilities. In the absence of such

measurements, resource-dependent performance func-

tions could still be estimated if the probability distribu-

tion of resource availabilities were known (or could be

estimated) for each individual. In this paper, we present

a statistical model that estimates the probability that

individual saplings receive different amounts of light,

conditional on covariates (e.g., crown class and neigh-

borhood crowding) that can be extracted from widely

available inventory data. We then show how this light

model can be used to estimate species-specific parame-

ters relating sapling growth to light from data sets in

which growth, but not light, is observed for each sapling.

We test the methods using data from sites in eastern and

western North America.

OVERVIEW OF METHODS

Our goal is to estimate parameters hG relating sapling

growth rate (G) to light availability (L). For example, if

G increases with L according to a two-parameter curve,

then hG might include a high-light growth rate and an

initial slope. Unlike the standard case, in which G and L

are observed for each sapling, our methods are designed

to estimate hG using data sets in which G, but not L, is

observed. Our approach relies on the availability, for

each sapling, of one or more covariates (x), such as a

neighborhood crowding index, that have information

about unobserved L.

First, consider the standard ‘‘observed-L’’ case in

which G and L are observed for i ¼ 1, 2, . . . , N

individuals. The likelihood of the growth data is L ¼
PN

i p(Gi jLi, hG), where p(�) is the probability density of

observed Gi given observed Li and particular values of

hG. We quantify the values of hG that maximize L
(maximum likelihood analysis) or we describe the

probability distribution of hG (Bayesian analysis).

Now, consider the ‘‘unobserved-L’’ case in which G

and x are observed for each sapling, but L is not.

Although we have no direct observations of L, suppose

we know from a previous study the values of parameters

hL that relate L to x. Specifically, suppose we know the

probabilities associated with all possible values of each

unobserved L, given particular values of x. These

probabilities are described by the density function

fL(L j x, hL). To account for uncertainty in unobserved

L when estimating hG, we define the likelihood as

L ¼ PN
i p(Gi j xi, hG, hL), where p(Gi j xi, hG, hL) ¼R 1

0
p(Gi jLi, hG) 3 fL(Li j xi, hL)dLi. Thus, we integrate

each sapling’s likelihood component over the probability

density of unobserved L from zero to full sunlight (L¼1).

We call this the ‘‘uncertain-L’’ method. Alternatively, we

could ignore uncertainty in L and take the expectation of

fL(Li j xi, hL) as a point estimate for each unobserved Li.

We could then treat these point estimates as if they were

observed values and estimate hG as in the observed-L

case. We call this the ‘‘predicted-L’’ method.

Above, we assume hL is known, but in practice, we

must estimate hL from field data and (in the uncertain-L

method) propagate uncertainty in hL when estimating

hG. Thus, our approach involves the following steps: (1)

measure L and x for saplings in stands spanning a range

of forest types and disturbance histories; (2) use

observed L and x from step 1 to estimate hL; (3) using
inventory data sets in which G and x, but not L, are

observed for each sapling, estimate hG by combining hL
with observed G and x.

To test our methods, we measured G for a subset of the

saplings used to estimate hL. These saplings constitute a

test data set for which G, L, and x were all observed. This

test data set allowed us to compare estimates of hG
obtained from (1) the observed-L method, which uses

observed G and L for each sapling, and (2) our

unobserved-L methods (uncertain-L and predicted-L),

which use observed L and x to estimate hL and then

combine hL with observed G and x to estimate hG.
In the following sections, we present the details of the

field methods used to measure G, x, and L, and the
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statistical methods used to estimate hL and hG. Our

methods allow for complete freedom in the functional

forms that relate G to L and L to x, as well as the choice

of covariates x. Thus, the details presented below should

only be viewed as one possible realization of a broad

approach to dealing with unmeasured environmental

factors. Our paper primarily aims to demonstrate that

the approach can be useful, rather than to advocate for

specific functional forms or other methodological

details.

FIELD METHODS

We estimated light availability (L; Table 1) using

hemispherical photographs for 2128 saplings at sites in

eastern North America (ENA) and western Oregon,

USA (WOR), spanning a range of forest types and

disturbance histories. The stands are described in

Appendix A, and sample sizes by species are in

Appendix B. For each ‘‘focal sapling’’ (i.e., each sapling

for which light was measured), we recorded the spatial

coordinates and diameter at breast height (dbh; mea-

sured at 1.37 m above the ground surface) of neighbor-

ing saplings (dbh 2.5–12.7 cm) and trees (dbh � 12.7

cm). We define the neighbors of focal sapling i as all

stems (excluding i ) that would be included in an FIA

subplot that includes i. (Each FIA plot contains 4–10

subplots.) Thus, the analyses presented in this paper are

tailored to FIA data, but minor modifications would

make the methods applicable to other inventories. We

mapped neighbors according to the current fixed-radius

FIA subplot design (Bechtold and Scott 2005), as well as

pre-1999 variable-radius designs (Doman et al. 1981,

USDA 1992) in which the limiting distance that

determines whether a tree is sampled is proportional to

its dbh (Beers and Miller 1964). All analyses in this

paper are based on pre-1999 designs, as this period

includes most of the currently available FIA remeasure-

ment data (i.e., plots with growth and mortality data).

The subplot designs and their implementation at our

field sites are described in Appendix C.

TABLE 1. Glossary of terms.

Term Definition

aN coefficient in Nbr index (Eq. 4); aN is related to ST by Eq. 6
bN exponent in Nbr index (Eq. 4); bN is assumed constant across species
hG vector of species-specific growth parameters
hL vector of light model parameters that determine fq (and thus fL)
q effective leaf area above a focal sapling, defined as �ln(L)/k
q̄ mean (expectation) of q above a focal sapling; q̄, along with Vq, specifies fq (and thus fL)
uG vector of hyperparameters that specify the lognormal sampling distributions for species-specific

growth parameters (hG)
b0, b1 intercept and slope of relationship between ln(aN) and ST (Eq. 6) in models CRN and CRNS (see Table 2

for an explanation)
c0, c1 intercept and slope of relationship between ln(M ) and ST (Eq. 7) in models CRS and CRNS (see Table 2

for an explanation); this relationship applies to overtopped saplings only
CC sapling crown class: overtopped (OT) or sun-exposed (SE)
ENA eastern North America
fq probability density function for q; fq for sapling i depends on parameters hL and covariates xi
fL probability density function for L, obtained by transforming fq (Eq. 1)
FIA U.S. Forest Service’s Forest Inventory and Analysis program
G annual dbh growth increment (cm/yr)
G vector of G values
Ḡ mean (expectation) of G (Eq. 10)
Ḡmax maximum value of Ḡ
k extinction coefficient in the Beer-Lambert equation relating light at a given point in space to the leaf

area index (LAI) above that point: light ¼ e–kLAI

L proportion of above-canopy light that is incident on a sapling’s crown; observed L was quantified for focal
saplings using hemispherical photographs; we assume that L depends on the ‘‘effective leaf area’’ (q)
above a sapling according to the Beer-Lambert equation, L ¼ e�kq, with an extinction coefficient (k) of 0.5

L vector of L values
L̄ expectation (mean) of L (Eq. 2), which depends on covariates x and parameters hL
L̃ predicted value of L
M minimum value of q̄ (Eq. 5)
Nbr neighborhood crowding index (Eq. 4)
Q random effect for stand ‘‘quality’’ (Eq. 10) that accounts for stand-level differences in G
Q vector of Q values
r species-specific responsiveness of G to Q (Eq. 10)
R2 proportion of observed variation that is explained (Eq. 16)
Sq slope of q̄ as a function of Nbr (Eq. 5)
SG initial slope of Ḡ as a function of L (Eq. 8)
ST shade tolerance index: proportion of saplings that are in understory (Appendix E: section II)
u gamma-scale parameter for q
Vq variance of q, which is assumed to be proportional to q̄: Vq ¼ uq̄
WOR western Oregon, USA
x vector of covariates (CC and Nbr) for a focal sapling
X matrix of covariates for all focal saplings
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Light availability

We estimated L for each focal sapling using

WINSCANOPY (Regent Instruments, Sainte-Foy,

Quebec, Canada), which includes a remotely triggered

camera (Nikon Coolpix 4500, Melville, New York,

USA), a hemispherical lens, a self-leveling camera

mount, and image analysis software. We used an

extendable pole to position the camera over the center

of sapling crowns ,11 m in height (.90% of the

saplings at our sites). For taller saplings, we used an

extendable tower constructed from aluminum ladder

segments. This larger device was used at all sites except

for Highlands and Haliburton (Appendix A), where we

did not estimate L for saplings taller than 11 m.

We used the gap light index (GLI) (Canham 1988,

Canham et al. 1994), referred to in WINSCANOPY as

‘‘Total Site Factor,’’ to estimate L (the proportion of

above-canopy radiation, integrated over the growing

season, that reaches the top of a sapling’s crown).

Estimates of GLI from WINSCANOPY were calibrated

with a set of photon sensor measurements (J. W.

Lichstein, unpublished data) to minimize bias in L.

Growth

For 579 of the 2128 focal saplings, we estimated G

(annual dbh increment) from increment cores or stem

cross-sections (see Appendix D for details). Nine species

were targeted, including shade-intolerant and -tolerant

species in ENA and WOR: Pinus ponderosa, P. strobus,

P. taeda, Pseudotsuga menziesii, Tsuga canadensis, T.

heterophylla, Acer rubrum, Liquidambar styraciflua, and

Liriodendron tulipifera. Sample sizes for G by site and

species are in Appendices A and B, respectively.

STATISTICAL METHODS

Modeling sapling light availability

The focal-sapling data from our field sites were used

to develop a model for unobserved L in forest

inventories. Covariates (x) can provide information

about unobserved L, but considerable uncertainty about

the true value may remain. Thus, rather than estimating

a single value for each unobserved L, we quantify the

probabilities associated with all possible values of L.

These probabilities are specified by the conditional

probability density function fL(L j x) (Fig. 1). Because

L depends on both the density and spatial arrangement

of canopy leaves (Kira et al. 1969, Horn 1971, Breda

2003, Monsi and Saeki 2005), we define the ‘‘effective

leaf area index’’ above a sapling as q [�ln(L)/k, which
we obtain from the Beer-Lambert equation, L ¼ e�kq.

We assume k ¼ 0.5, which is close to many empirical

estimates (White et al. 2000); but our results do not

depend in any important way on k, as long as it is a

positive constant. In this paper, we are concerned only

with the proportion of above-canopy radiation (I0) that

reaches a sapling’s crown, but it would be straightfor-

ward to account for variation in I0 via the product I0L.

We model L via q because (1) the logarithmic scale

emphasizes differences between small values of L, which
are biologically important (Bazzaz 1979, Givnish 1988,

Kobe et al. 1995); (2) the transformation requires no
extra parameters (assuming fixed k); and (3) in our

experience with this problem, parameter estimates
converge more quickly when we work on the trans-

formed scale. We assume that q is gamma-distributed
with density function fq(q j x), and we obtain fL by a

standard change of variables (Fig. 2):

fL ¼
dq
dL

�
�
�
�

�
�
�
� fq ¼

fq
kL
: ð1Þ

It is straightforward to show that, if q is gamma-

distributed, then the mean (expectation) of L is as
follows (Lichstein 2007):

L̄ ¼ ð1þ kuÞ�v ð2Þ

where u [ Vq/q̄ and v [ q̄2/Vq are the gamma scale and

shape parameters, and q̄ and Vq are the mean and
variance of q.

We assume that the variance of q is proportional to its
mean:

Vq ¼ uq̄: ð3Þ

Allowing for a power law relationship between Vq and q̄
yields similar results. We considered four candidate

models for q̄ that included different combinations of the
following covariates (Table 2): neighborhood crowding,

crown class, geographic region, and species identity of
focal saplings and their neighbors.

1. Neighborhood.—We adopt the following neighbor-
hood index for sapling i:

Nbri ¼
X

hj.hif g
aNh

bN

j =areaj ð4Þ

where hj is the height of individual j; fhj . hig is the set
of individuals in i ’s subplot taller than i; aN depends on
j ’s species identity; bN, for simplicity, is assumed

constant across species; and areaj, the sample area for
j, reflects the variable-radius FIA subplot designs

(Appendix C). Measured heights are often unavailable,
so we estimated species-specific height–dbh allometries

for all U.S. tree species using FIA data (Supplement 1),
and we propagated uncertainty in the individual heights

through our light model (Appendix E: section I).

We assume that q̄ increases linearly with Nbr:

q̄ ¼ M þ SqNbr ð5Þ

where M is the minimum and Sq is the slope. We allow

for M . 0 to account for sampling and process errors;
e.g., saplings may be shaded by trees not included in Eq.

4, so Nbr ¼ 0 does not imply q ¼ 0 (full sunlight).
Replacing Eq. 5 with a saturating curve yields qualita-

tively similar results (Lichstein 2007).
2. Crown class.—We assigned each focal sapling in

our field sample to one of two crown classes (CC)
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according to FIA definitions (USDA 2005, 2006):

‘‘overtopped’’ (which includes the FIA’s overtopped

and intermediate classes) or ‘‘sun-exposed’’ (all other

FIA classes combined).

3. Region.—We allow for region-specific (ENA or

WOR) parameters in Eq. 5 to account for differences in

sapling light environments that are not captured by Nbr

and CC. Compared to our ENA sites, our WOR sites

have greater tree stature and a higher proportion of

conifers. We did not account for latitudinal differences

in understory light (e.g., Canham et al. 1990) due to the

limited latitudinal range of our sites.

FIG. 1. Probability distributions of light availability, fL, and histograms of observed light for overtopped and sun-exposed
saplings in eastern North America (ENA) and western Oregon, USA (WOR). Results are shown for all species 3 crown class
combinations with n � 30 observations. Within each combination, separate histograms are shown for saplings with relatively low
(below median) vs. high (above median) values of the neighborhood crowding index (Nbr). The number at the top of each
histogram is its median Nbr value, at which fL is plotted. Lack of fit occurs because the model (model CRNS; see Table 2) was not
optimized for each species separately. In each panel, fL is scaled so that its integral equals the histogram area.
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4. Species identity.—Species may differ in the amount

of shade cast by individuals of a given size (i.e., different

values of aN or bN in Eq. 4), as well as the amount of

light received by saplings given CC and Nbr (i.e.,

different values of M or Sq in Eq. 5). This latter effect

arises if CC and Nbr only partially explain interspecific

differences in L, so that a species-level bias remains.

Because inventories include species not included in

our field sample, we used a non-species-specific ap-

proach to account for species differences in shade cast

and light received. Our approach is based on the

observation that both effects are correlated with species

differences in shade tolerance: The amount of shade cast

by a tree of a given size tends to increase with shade

tolerance (Horn 1971, Canham et al. 1994, 1999).

Conversely, the amount of light received by a sapling

tends to decrease with shade tolerance (Clark and Clark

1992, Davies 2001, Poorter and Arets 2003). Thus, if an

appropriate shade-tolerance index (ST) were available

for each species, we would need only to estimate a few

parameters that relate the parameters in Eqs. 4 and 5 to

ST.

We define ST as the proportion of saplings (2.5–12.7

cm dbh) that are in the understory (as opposed to the

canopy). We estimated ST for each U.S. tree species

using FIA data (Supplement 1), and we propagated

uncertainty in ST through our light model (Appendix E:

section II). Shade-tolerant species with high understory

survivorship (Kitajima 1994, Kobe et al. 1995) should

have proportionately more understory saplings (higher

ST) than less tolerant species (Davies 2001, Wright et al.

2003). The shade-tolerance index ST corresponds closely

to a widely used shade tolerance classification (Burns

and Honkala 1990) (Appendix E: Fig. E1).

For simplicity, we allowed only one parameter in each

of Eqs. 4 and 5 to vary with ST. Specifically, we assumed

that ln(aN) and ln(M ) are linearly related to ST:

lnðaNÞ ¼ b0 þ b1ST ð6Þ

and

lnðMÞ ¼ c0 þ c1ST: ð7Þ

Modeling sapling growth

Ultimately, we intend to combine our light model with

inventory data to fit mechanistic (i.e., physiological)

whole-tree growth models (e.g., Friend et al. 1997). In

this paper, however, we restrict our analysis to a simple,

phenomenological growth model in order to focus on

FIG. 2. Examples of probability density functions fq and fL
for effective leaf area (q) and light (L), respectively. Curves with
the same style (solid, dashed, or dotted) in panels (A) and (B)
are related by Eq. 1. The distributions are for eastern species
from model CRNS (see Table 2) and are plotted at the median
Nbr value among all eastern overtopped or sun-exposed
saplings. In model CRNS, fL for overtopped saplings depends
on the species shade tolerance index (ST) via the parameter M
(Eqs. 5 and 7). Pinus taeda and Acer saccharum have relatively
low and high ST, respectively (see Fig. 3 and Appendix B). See
Table 1 for an explanation of variable abbreviations.

TABLE 2. Candidate light models.

Model Description

CR Four values of q̄, one for each CC 3 region combination.
CRN q̄ depends on Nbr according to Eq. 5. There are four values of M and Sq in Eq. 5, one for each CC

3 region combination. To set the scale for Nbr (which is poorly constrained), Sq was arbitrarily fixed
at 1 for overtopped saplings in ENA.

CRS For overtopped saplings, q̄ ¼ M, which depends on ST according to Eq. 7. There are two values of q̄
for sun-exposed saplings, one for each region.

CRNS Same as model CRN except that M for overtopped saplings depends on ST (Eq. 7), rather than on region.

Notes: The probability distribution of sapling light availability depends on the mean effective leaf area, q̄. The letters C, R, N,
and S, respectively, indicate inclusion of the following effects on q̄: crown class of focal saplings (CC; overtopped or sun-exposed),
region (eastern North America or western Oregon, USA), neighborhood crowding (Nbr), and shade tolerance (ST) of focal
saplings. See Table 1 for explanations of variable abbreviations.
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the problem of unobserved L. Due to the limited dbh

range in our sample (2.5–12.7 cm), we assumed that G

(in centimeters of dbh per year) was size independent.

Our function relating expected growth, Ḡ, to L is derived

from the Michaelis-Menten (M-M) function (e.g.,

Pacala et al. 1994, Wright et al. 1998): Ḡ ¼ AL/[(A/SG)

þL], where A is the asymptote and SG is the slope at L¼
0. Because Ḡ at L ¼ 1 (full sunlight) may be much less

than A, A may be poorly constrained by the data.

Therefore, we solved the M-M function for Ḡmax [ Ḡ
when L ¼ 1 and re-parameterized the function in terms

of Ḡmax:

Ḡ ¼ ḠmaxSGL

Ḡmax þ LðSG � ḠmaxÞ
: ð8Þ

We assume that G is normally distributed with mean Ḡ
and variance proportional to the mean:

VG ¼ aGḠ: ð9Þ

Assuming that VG is a power law of Ḡ leads to similar

results. To account for unmeasured site effects (e.g.,

edaphic conditions), we introduced a random effect (Q)

for each stand in Appendix A and modified Eq. 8 as

Ḡ ¼ ḠmaxSGL

Ḡmax þ LCSG � ḠmaxÞ

� �
expðrQÞ

1þ expðrQÞ

� �

ð10Þ

where r is a species-specific parameter that determines

responsiveness to variation in Q. The values of Q were

assumed to be independent and normally distributed

(Appendix F: section V). Growth variance (Eq. 9) was

calculated from Ḡ after applying Eq. 10. Including stand

effects in our analysis shifts the growth–light curve up

or down by a species- and stand-specific multiplier that

ranges from zero to one. Thus, Ḡmax is now mean

growth rate in full sunlight (L ¼ 1) on good sites (Q �
0, assuming r . 0). For typical stands (Q ¼ 0), Ḡ ¼
Ḡmax/2 when L¼ 1. For poor stands (Q� 0), Ḡ ’ 0 for

all L.

For each species, we estimated hG¼ (Ḡmax, SG, aG, r)
using the ‘‘observed-L’’ method and two ‘‘unobserved-

L’’ methods (Table 3), which were implemented using

each of the candidate light models (Table 2).

1. Observed-L method.—The probability density of

observed Gi for sapling i, given observed Li and

unknown hG and Q (the vector of stand effects) is

pðGi j Li; hG;QÞ ¼ normalðGi j Ḡi;VG;iÞ ð11Þ

where Ḡ and VG are given by Eqs. 9 and 10.

2. Uncertain-L method.—Here, G and x are observed

for one set of saplings (‘‘inventory data’’), and L and x

for another set of saplings (‘‘calibration data’’) that

constrain the light model parameters hL. (In the test case

presented here, the first set of saplings is a subset of the

second set.) The covariates x include the dbh measure-

ments of a sapling’s neighbors (which combine with

height allometry parameters and hL to determine Nbr)

and CC. The joint density for observed Gi and

unobserved Li for sapling i is

pðGi; Li j xi; hL; hG;QÞ ¼ pðGi j Li; hG;QÞ3 fLðLi j xi; hLÞ

where p(Gi jLi, hG, Q) is Eq. 11, and fL is defined by

Eq. 1. The marginal density of Gi is then

pðGi j xi; hL; hG;QÞ ¼
Z 1

0

pðGi j Li; hG;QÞ3 fLðLi j xi; hLÞdLi:

ð12Þ

3. Predicted-L method.—The uncertain-L method

accounts for uncertainty in L by integrating over fL. A

simpler alternative is to use a point estimate for

unobserved L. Thus, the predicted-L method proceeds

exactly as in (1) (Observed-L method ), but we replace

observed L with L̃, the expectation of L (Eq. 2)

evaluated at the posterior medians of hL. Defining L̃ as

the posterior mean of the expectation of L (Appendix F:

section VI) yielded very similar results.

Bayesian posterior estimation

Because there is no analytical solution to Eq. 12, we

used Markov chain Monte Carlo (MCMC) methods

(Gilks et al. 1996) to effectively integrate over fL without

having to repeatedly evaluate Eq. 12 (Appendix F:

section III). We used the Metropolis-Hastings algorithm

(executed with a program written in C) to simulate three

parallel MCMC chains until the marginal posteriors for

hL and hG converged according to standard criteria

(Appendix F: section I). For all parameters, we assumed

uniform priors on a finite range that included the

biologically reasonable values (Supplement 2).

TABLE 3. Summary of methods used to estimate parameters hG relating growth (G) to light (L).

Method Description

Observed L uses observed L for each sapling, as in standard analyses

Unobserved L

Uncertain L accounts for uncertainty in L by integrating over fL for each sapling (Eq. 12)
Uncertain-L validation same as uncertain-L method, but excludes light data for Liriodendron and Pseudotsuga

when estimating fL
Predicted L replaces each observed L with a point estimate, L̃, which is treated as if it were

an observed value
Predicted-L validation same as predicted-L method, but excludes light data for Liriodendron and Pseudotsuga

when estimating L̃

Note: All of the methods require observed G for each sapling. See Table 1 for explanations of variable abbreviations.

JEREMY W. LICHSTEIN ET AL.690 Ecological Applications
Vol. 20, No. 3



All species-specific parameters (i.e., the elements of

hG: Ḡmax, SG, aG, and r) were modeled hierarchically

(Gelman et al. 2004, Clark 2005, Ogle and Barber 2008).

We assumed a lognormal sampling distribution for each

of the four populations of parameters. This assumption

implies nonnegative values, as must be the case for Ḡmax,

SG, and aG. In principle, r could be positive or negative,

but visual examination of growth data indicated positive

r for all species (i.e., a good site for a given species was a

good site for all co-occurring species).

We now outline the posteriors for each analysis. We

refer to parameters that specify the sampling distribu-

tion of other parameters as ‘‘hyperparameters,’’ and we

refer to their priors as ‘‘hyperpriors’’ (Clark 2005, Ogle

and Barber 2008). We assumed uniform hyperpriors

with range sufficiently wide so as not to affect the

posteriors. For simplicity, the presentation below

ignores uncertainty in individual heights and ST, but

our analysis does account for these sources of uncer-

tainty (Appendix E).

1. Light model.—The likelihood of the light observa-

tions is

LL ¼
YNL

i

fLðLi j xi; hLÞ ð13Þ

where NL ¼ 2128 and other terms are defined as in Eq.

12. The joint posterior is

pðhL jL;XÞ} LL 3 pðhLÞ

where L is the vector of NL light observations, X is the

covariates matrix for the NL focal saplings, LL is as in

Eq. 13, and p(hL) is the joint prior.

2. Growth: observed-L method.—The likelihood of the

growth observations is

LG ¼
YNG

i

pðGi j Li; hG;QÞ ð14Þ

where NG ¼ 579 and p(Gi j � ) is as in Eq. 11. The joint

posterior is

pðhG;uG;Q jG;LÞ} LG 3 pðhG juGÞ3 pðuGÞ3 pðQÞ

where uG is the vector of hyperparameters for hG; G is

the vector of NG growth observations; L, here, is the

vector of NG light observations for the saplings with

observed G; LG is the likelihood (Eq. 14); p(hG juG) is the

joint prior for hG given uG; p(uG) is the joint hyperprior

for uG; and p(Q) is the joint prior for the stand effects,

Q.

3. Growth: uncertain-L method.—The likelihood of

the growth observations is

LG ¼
YNG

i

pðGi j xi; hL; hG;QÞ ð15Þ

where p(Gi j � ) is as in Eq. 12 and other terms are as

defined in subsections 1 (Light model ) and 2 (Growth:

observed-L method ). The joint posterior is

pðhG;uG;Q; hLjG;X;LÞ} LG 3 pðhGjuGÞ3 pðuGÞ

3 pðQÞ3 LL 3 pðhLÞ

where L, here, is the vector of NL light observations used

to parameterize the light model; LG is as in Eq. 15; LL is

as in Eq. 13; and other terms are as previously defined.

Estimating the posteriors for hL and hG simultaneously

is a convenient way to propagate uncertainty in hL. A
potential drawback of this approach is that the growth

data could influence hL, but this effect was weak in our

analysis (see Results).

4. Growth: predicted-L method.—This analysis is

identical to that in subsection 2 (Growth: observed-L

method ), except observed L are replaced by predictions

obtained from subsection 1 (Light model ).

Explained variation

Residuals for each G and L observation i were

calculated as ei ¼ yi � ỹi, where y and ỹ represent

observations and predicted means, respectively.

Methods for calculating ỹ are described in Appendix

F: section VI. We calculated the proportion of explained

variation in light and growth resulting from each

candidate light model as

R2 ¼ SSexplained

SStotal

¼ SStotal � SSresidual

SStotal

¼ 1�

X

i

e2
i

X

i

ðyi � ŷÞ2

ð16Þ

where SS is sum of squares, and ŷ is the sample mean of

observed L or G. Because R2 is based on predicted

means, it may be misleadingly low for skewed distribu-

tions (e.g., Fig. 2B). Also, large residual variance does

not necessarily indicate lack of fit in our light model,

where the aim is to quantify the distribution of L, rather

than to precisely estimate L. Nevertheless, R2 provides

an easily interpretable index of model performance that

we use for informal model comparisons.

Model validation

In future applications, our light model will be used to

estimate growth–light parameters from inventory data

in which G, but not L, is observed for each sapling. In

this case, the saplings in the growth analysis (the

inventory data) would be distinct from those in the

light analysis (our calibration data), and we must rely on

our light model (parameterized from a limited set of

species and stand conditions) to estimate fL for each

sapling in the larger inventory data set. In contrast, in

the test case presented in this paper, the saplings in the

growth analysis are a subset of those in the light

analysis. Therefore, we performed a validation exercise

in which we excluded light data for one eastern

(Liriodendron) and one western (Pseudotsuga) species.
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Thus, we estimated hG for these species using hL
estimated from other species’ light data, as would be

necessary in analyses of inventory data. We chose

Liriodendron and Pseudotsuga because their parameters

in the observed-L growth analysis are well constrained,

which makes comparisons with parameter estimates

from the unobserved-L methods relatively straightfor-

ward. In addition to validating the growth analysis, this

exercise provides a test of the robustness of the light

model itself, because a substantial fraction of the light

data is comprised by Liriodendron and Pseudotsuga

(146/1183 and 180/945 saplings in ENA and WOR,

respectively).

RESULTS

Posterior 95% credible intervals (Supplement 2)

spanned a small part of the prior ranges for all

parameters except for two (SG for Pinus strobus and

Tsuga canadensis), indicating that the analyses were

well-constrained by the data.

Light-model parameters (hL)

Estimates of hL were similar whether hL was fit in

isolation or simultaneously with hG (Supplement 2).

Thus, the growth data exerted little leverage on hL.
Estimates of hL presented in this section were obtained

in isolation from the growth data.

All four candidate models (Table 2) explained a large

proportion of the variation in L (R2¼ 0.72–0.79; Table

4). The high R2 values were due primarily to CC (i.e.,

the large difference in L between overtopped and sun-

exposed saplings; Fig. 1). The R2 values were lower

when calculated within CC (R2 ¼ 0.09–0.39 and 0.02–

0.16 for overtopped and sun-exposed saplings, respec-

tively; Table 4).

The amount of shade cast by neighbors and the

amount of shade received by overtopped saplings both

increased with ST (Figs. 2 and 3). These effects were

significant (i.e., 95% credible intervals for b1 and c1
excluded zero) in models CRN and CRS (which only

included one of the two effects) and in model CRNS

(which included both effects). Together, ST and Nbr

accounted for much of the interspecific variation in L

(Figs. 1 and 2).

Growth parameters (hG)

Among the four candidate light models (Table 2) and

two unobserved-L methods (Table 3), model CRNS

with the uncertain-L method was most similar to the

observed-L method in terms of estimated hG (Fig. 4),

predicted growth curves (Fig. 5), and growth R2 values

(Table 4). Uncertainty in hG tended to be higher in the

unobserved-L methods compared to the observed-L

method, and some parameter estimates differed consid-

erably between the unobserved-L and observed-L

methods (Fig. 4 and Supplement 2).

The predicted-L method yielded negative R2 values

for some species; i.e., the predicted curves did not fit the

data as well as the mean. In most cases, these negative

R2 values were associated with concave-up growth

curves that overestimated high-light growth (e.g., Fig.

5; Pinus ponderosa, Pseudotsuga, and Liquidambar).

Excluding light data for Liriodendron and

Pseudotsuga had little impact on the uncertain-L

analysis (compare uncertain-L vs. uncertain-L valida-

tion in Fig. 5, Table 4, and Supplement 2), but had a

noticeable impact on the predicted-L analysis. The

tendency for the predicted-L method to overpredict

high-light growth (resulting in negative R2) was exag-

gerated in the predicted-L validation analysis (e.g.,

Pseudotsuga in Fig. 5).

A latent-variable integration approach to the uncer-

tain-L method (Appendix F: section III) yielded very

similar results (Fig. 5 and Supplement 2) to a more

computationally demanding, direct integration ap-

proach (Appendix F: section IV), in which the integral

in Eq. 12 is estimated numerically for each growth

observation at each MCMC step.

DISCUSSION

Geographically extensive forest inventories typically

lack the individual-level measurements of resource

availabilities needed to parameterize mechanistic (i.e.,

physiological) forest models. To overcome this limita-

tion, we developed an approach to estimate parameters

relating individual performance to resource availability

(or other environmental factors) by combining field-

calibrated models of resource availability with inventory

data sets on individual performance.

TABLE 4. Explained variation (R2; Eq. 16) in light (L) and growth data for candidate light models (Table 2).

Model

Light R2 Mean growth R2

All OT SE UL ULV PL PLV
(n ¼ 2128) (n ¼ 1510) (n ¼ 618) (n ¼ 579) (n ¼ 579) (n ¼ 579) (n ¼ 579)

CR 0.72 0.09 0.02 0.40 0.38 0.17 0.11
CRN 0.78 0.38 0.16 0.45 0.46 �0.05 �0.30
CRS 0.75 0.30 0.02 0.48 0.50 0.11 0.01
CRNS 0.79 0.39 0.16 0.53 0.53 0.02 �1.17

Notes: Light model R2 values are the proportion of explained variation among all saplings, among overtopped (OT) saplings
only, and among sun-exposed (SE) saplings only. Mean growth R2 (explained variation in growth data, averaged across species) is
given for the following methods (see Table 3): uncertain L (UL), uncertain-L validation (ULV), predicted L (PL), and predicted-L
validation (PLV). Mean growth R2 for the observed-L growth analysis (Table 3) is 0.63.
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The test case presented in this paper focuses on

estimating parameters hG relating sapling growth (G) to

light availability (L) from data sets in which G, but not

L, is observed for each sapling. Estimates of hG from the

uncertain-L method (which accounts for uncertainty in

L) were similar to those from the observed-L method

(see Table 3 for a summary of methods). Furthermore,

the uncertain-L method was robust to excluding light

data for two common species. This validation exercise

required that we estimate hG for species not represented

in the calibration data, as would be necessary when

applying our methods to inventory data. Compared to

the uncertain-L method, the predicted-L method (which

ignores uncertainty in L) yielded estimates of hG that

were less robust to excluding data and less similar to the

observed-L method.

The predicted-L method sometimes produced unreal-

istic, concave-up growth curves that overpredicted high-

light growth (e.g., Fig. 5, Pseudotsuga). This is likely an

extrapolation problem. The point estimates used in the

predicted-L method are expected values and, therefore,

are never as high as the highest L observations. Thus,

when estimating hG, the predicted-L method never

‘‘sees’’ the highest L values for which growth is

overpredicted. In contrast, the uncertain-L method

integrates over all possible values of L and is therefore

less prone to this type of error.

The uncertain-L method performed well overall, but

there were some differences when compared to the

observed-L analysis. For example, growth curves for

several species were more concave-up (or less concave-

down) in the uncertain-L than in the observed-L analysis

(e.g., Fig. 5, Pseudotsuga). Nevertheless, the uncertain-L

curves always appeared reasonable compared to the

data, even in cases in which R2 was low (e.g., Fig. 5,

Liquidambar). The ultimate test of the uncertain-L

method will be whether or not it leads to improved

broadscale models of forest dynamics. At this stage, we

can only conclude that the method appears promising.

The computational demands of the method are sub-

stantially reduced by a latent-variable approach to

numerical integration that yields very similar results to

a direct integration approach (Appendix F: sections III–

IV).

FIG. 3. Posterior medians and 95% credible intervals from model CRNS (see Table 2) for aN and M vs. the shade tolerance
index, ST (see Table 1 for definitions of terms). The amounts of shade cast by neighbors and shade received by focal saplings
increase with aN and M, respectively. The relationship between aN and ST is determined by b0 and b1 (Eq. 6), and the relationship
between M for overtopped saplings and ST is determined by c0 and c1 (Eq. 7); i.e., aN and M are not free parameters for each
species. (A, B) Values of aN for species with n � 30 neighbor trees or saplings. (C, D) M for species with n � 30 overtopped focal
saplings. Abbreviations are the first two letters of the genus and species names (see Appendix B for full names). Uncertainty in ST
was propagated through the analysis, but for simplicity, ST is plotted at its posterior median value.
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FIG. 4. Posterior medians and 95% credible intervals for the species-specific growth parameters (hG) from models CR and
CRNS (Table 2) using observed-L and unobserved-L methods (Table 3). In each graph, the nine points are the posterior medians
for each of nine species from the observed-L method (y-axis) and an unobserved-L method (uncertain-L or predicted-L; x-axes).
Abbreviations are as follows (see Eqs. 8–10): Ḡmax, maximum expected growth rate; SG, initial slope of growth vs. light curve; aG,
proportionality constant between growth mean and variance; and r, responsiveness of growth to stand effects. The uncertain-L
results use latent-variable integration (Appendix F: section III). The plotted values, along with their species identities, are in
Supplement 2.

!
FIG. 5. Scatterplots of observed growth (diameter at breast height, dbh) vs. light (L) and estimated curves from the observed-L

method (column 1) and the unobserved-L methods (columns 2–6; see Table 3) implemented with model CRNS (see Table 2).
Observed L values are shown in each graph for reference but are used directly only in the observed-L method. For each species,
estimated curves are shown for stands with n � 5 growth observations. Stand abbreviations are: AN, H. J. Andrews Experimental
Forest; ME, Metolius Research Natural Area; BC, Bent Creek Experimental Forest; DU, Duke Forest; HI, Highlands Biological
Station. See Appendix A for a description of the stands. Curves and R2 reflect the posterior medians of the parameters. Observed L
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for Pseudotsuga and Liriodendron were excluded from the validation analyses (columns 3 and 5). The uncertain-L analysis was
performed with both latent-variable integration (columns 4–5) and direct integration (column 6) (see Appendix F: sections III and
IV). Results for Tsuga canadensis (with only 10 growth observations) are not shown.
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Factors affecting sapling light availability

We considered four covariates, available from most
inventory data sets, in modeling L: crown class (CC, the

classification of focal saplings as overtopped or sun-
exposed), neighborhood crowding (Nbr), geographic

region, and species identity (via the shade tolerance
index, ST). The candidate models (all of which

accounted for CC and region) explained 72–79% of the
variation in L, with much of the explanatory power due

to CC. Nevertheless, Nbr, region, and ST also had
important effects.

Including Nbr increased R2 from 0.09 to 0.38 for
overtopped saplings and from 0.02 to 0.16 for sun-

exposed saplings (Table 4; compare models CR and
CRN). The Nbr effects within species were not dramatic

(Fig. 1) because the effects are conditional on CC. These
conditional effects should be weaker than those in

studies in which neighborhood effects were quantified
without controlling for canopy status of focal individ-

uals (e.g., Uriarte et al. 2004).
The amount of shade cast by neighbors and the

amount of shade received by saplings both increased
with ST (Fig. 3). These results are consistent with

observations of increased shading by canopy trees (Horn
1971, Canham et al. 1994, 1999) and decreased light
received by understory saplings (Clark and Clark 1992,

Davies 2001, Poorter and Arets 2003) as shade tolerance
increases across species. Importantly, ST can be

estimated directly from inventory data without the need
for additional calibration data. Other widely available

indices may also prove useful in developing a broadly
applicable light model and should be explored in future

analyses.
The region-specific parameters in our analysis differed

significantly between the eastern and western sites. These
parameter differences do not translate into simple

regional differences in light environments, because M,
Sq, and typical Nbr values (Eq. 5) are all region-

dependent. More sophisticated approaches to neighbor-
hood analysis (e.g., Canham et al. 1994, Beaudet et al.

2002) may account for regional differences in light
environments, which would obviate the need for region-

specific parameters, but would require species-specific
parameters (e.g., canopy transparencies) that are not
widely available. Another potential strategy for devel-

oping a general light model would be to account for the
dependence of leaf area (and thus canopy light-

interception) on site productivity (Grier and Running
1977, Gholz 1982). Until a general, yet simple, approach

to modeling understory light is available, it may be
necessary to calibrate models separately for different

forest types.

Toward a new generation of global vegetation models

A number of dynamic global vegetation models have

been developed that include physiological mechanisms
(e.g., dependence of photosynthesis on light, water,

temperature, and CO2) expected to play an important

role in determining vegetation response to climate

change and elevated atmospheric CO2 levels (Cramer

et al. 2001, Friedlingstein et al. 2006). However, to our

knowledge, only two such models (Friend et al. 1997,

Moorcroft et al. 2001) account for the individual-level

height-structured competition that is a key driver of

forest dynamics, and none of the models have assimi-

lated the vast inventory databases on individual, whole-

plant performance. Existing methods that scale from

individuals to ecosystems (Moorcroft et al. 2001, Strigul

et al. 2008) make global implementation of individual-

based models computationally practical. However,

parameterizing a mechanistic, individual-based forest

model using rigorous, quantitative methods remains a

formidable challenge. The methods presented in this

paper are an important step toward meeting this

challenge.

In simple terms, our approach is to use field-calibrated

statistical models to translate covariates that are

available for individuals in inventories (e.g., crown

class) into resources that are not (e.g., light). The

translation from covariates to resources is a necessary

step to using inventories to inform mechanistic models

of individual performance, which would be components

of a mechanistic forest model (e.g., Friend et al. 1997,

Moorcroft et al. 2001). For example, a mechanistic

growth model might entail: (1) calculating environmen-

tal conditions, including ambient temperature, soil water

potential, and light incident on an individual’s crown;

(2) calculating whole-plant photosynthesis by integrat-

ing a leaf photosynthesis model (Farquhar et al. 1980,

Ball et al. 1987, Collatz et al. 1991, Leuning 1995)

through the crown; and (3) allocating assimilated carbon

to stem, roots, leaves, etc. Estimating the parameters

that determine carbon assimilation (step 2) and alloca-

tion (step 3) would require embedding the mechanistic

growth model within a statistical framework, e.g., our

phenomenological growth model (Eq. 10) would be

replaced by the above mechanistic model. Assuming

inventory data are used to constrain the analysis (i.e., by

comparing the predicted growth rates to those observed

in the inventory), uncertainty in light and other

environmental inputs could be dealt with using the

methods presented here.

Our methods are designed to interpret inventory data

when estimating growth parameters, not to predict light

availability when using the growth parameters in a

dynamic model. Therefore, the utility of our light model

does not depend on whether or not its parameter values

(i.e., the specific relationships between light and

covariates, such as crown class) hold in the future. In

contrast, the utility of the growth parameters does

depend on their generality under changing climate and

CO2 conditions. This generality can only be achieved by

accounting for physiological mechanisms (Reynolds et

al. 2001), which requires explicit treatments of light and

other resources. Non-mechanistic treatments of growth

(e.g., modeling growth as a function of crown class)
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may lead to erroneous predictions in a changing

environment (e.g., because understory light availability
may change). A global vegetation model that includes

the right mechanisms should accurately predict how
individual- and ecosystem-level properties, including
canopy leaf area and understory light, respond to

environmental change. Developing such a model will
require novel statistical approaches to assimilating a

variety of data sources, including forest inventories,
eddy covariance towers (Baldocchi et al. 2001, Friend et

al. 2007), and plant trait databases (Wright et al. 2004).
Our methods open the door to using individual-level

inventory data to inform mechanistic models of
individual tree performance, which could be important

components of a new generation of global vegetation
models.
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APPENDIX B

Sample sizes and shade tolerance indices for species in light and growth analyses (Ecological Archives A020-020-A2).

APPENDIX C

Forest Inventory and Analysis (FIA) subplot designs and implementation (Ecological Archives A020-020-A3).

APPENDIX D

Growth data: sampling protocol and growth measurements (Ecological Archives A020-020-A4).

APPENDIX E

Estimating height–diameter allometries and the shade tolerance index for all U.S. tree species (Ecological Archives A020-020-
A5).

APPENDIX F

Statistical methods (Ecological Archives A020-020-A6).

SUPPLEMENT 1

Posterior means and percentiles for height allometry and shade tolerance parameters for U.S. tree species (Ecological Archives
A020-020-S1).

SUPPLEMENT 2

Priors and posterior means and percentiles for light model and growth parameters (Ecological Archives A020-020-S2).
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