
Page 13 of 34

Generating EML from a Relational Database Management
System (RDBMS)

- Zhiqiang Yang and Don Henshaw (AND)

The Ecological Metadata Language (EML) is an open metadata specification and
provides a standard syntax (XML) for LTER metadata (Jones 2003). Implementation of
the LTER Metacat, a network-wide data set catalog, demands the creation of EML
documents for all LTER data (Costa 2004). Future data integration activities, such as the
development of the Trends database, will also rely on complete EML documents (Servilla
et al. 2006). Development of EML documents is a data specific process depending on the
existing format and structure of metadata, and there are different approaches that can be
used to achieve this goal. One common means for storing metadata is in structured
relational tables in a relational database management system (RDBMS).

In this short document, a generalized solution for generating EML from an RDBMS is
presented and based on architecture originally developed at the CAP LTER (CES 2002).
Storing metadata in an RDBMS has the advantage of being able to select and output
metadata in various formats including EML. The approach presented here is two-step
process of generating EML from the RDBMS: 1) generate a native XML document for
metadata stored in RDBMS; 2) transform native XML into the EML document (Figure 1).

Figure 1. Data flow of metadata from the RDBMS to EML, e.g., from the local RDBMS

table databases to the EML element: dataset.

Generating native XML

Metadata stored in a site RDBMS are typically organized as attributes in relational tables
without any direct correspondence in structure or naming convention with matching EML
elements. Generating EML directly from these stored metadata is challenging and
cumbersome, and does require a mapping of local site attributes to the corresponding
element in EML. Here, a native XML document is suggested as a connection point
between the RDBMS and EML. For this discussion, native XML is an XML document
which fully encapsulates all the metadata contained in the RDBMS for a specific dataset.
Native XML does not have a predefined schema; the schema of native XML is dependent
on the database schema for metadata, but creation and use of a configuration file allows
specification of RDBMS tables for inclusion into the native XML.

Most RDBMS’s maintain a data dictionary, which is a set of metadata that contains
definitions and representations of data elements stored in the database. For example,
SQL Server has two sources to view the data dictionary: the various system tables and
the INFORMATION_SCHEMA views. Users can query these two sources directly or use
system stored procedures to retrieve information about the database metadata. In the

Page 14 of 34

following examples, the SQL Server system stored procedures, sp_columns, sp_pkeys,
and sp_fkeys, are relied upon to programmatically access table column (attribute)
information, and table primary and foreign keys.

Native XML generation is highly dependent on the data dictionary. To generate native
XML an entry point is needed, which usually is a table representing objects
corresponding to the EML dataset element. Typically, this starting point is a table with
general dataset catalog attributes such as dataset code, title, abstract, and other dataset
level metadata with relational links to other tables such as personnel, keywords, or data
set entities. With a given starting point, all information stored in the RDBMS related to the
given dataset can be retrieved using a standard SQL statement. This process uses
extensively the information in the data dictionary, and native XML is generated by
retrieving all the columns in the database related to the dataset. For example: suppose
there are three tables as shown in Figure 2.

Figure 2. An example of a partial schema (from the Andrews Forest metadata schema).
The entity table might be directly related to a parent dataset catalog table (not shown).

The native XML for an entity with entity_id = 135 would include the content from a single
record in the entity table:

Since the entity table is related to the attribute table through the entity_attribute pivot
table, the native XML generation process will use the referential integrity information in
the data dictionary to iterate through all of the records in both entity_attribute and
attribute tables, resulting in a native XML similar to the example in Figure 3.

Page 15 of 34

Figure 3. Native XML generated for entity_id=135 from the entity table, and using the
entity_attribute table to link to the attribute table to list all of the attributes for that entity

(entity to attribute is a many-to-many relationship, but only one attribute is shown)

This iterative process of metadata retrieval is continued until all the related information for
a given entry point has been exhausted. That is, native XML from all related tables
stemming from the original starting point is included.

However, problems frequently occur while programmatically iterating through the related
tables, as a primary key may loop back to a previously included table. In the example,
entity_attributes will refer back to the entity table creating a loop between tables entity
and entity_attributes. Program code is written to prevent this loop from occurring by
taking advantage of a configuration setting or file. The configuration file, a simple XML
file, is established based on the data dictionary and helps guide the process of native
XML generation. The configuration file is used to prevent the duplication of table
information, describes the hierarchy of related tables, and lists the tables for which native
XML will be generated. The configuration file for the example is shown in Figure 4.

Figure 4. This example is a configuration file which specifies the tables for which native
XML is to be generated.

A more complete configuration file example is included as Figure 5 and hierarchically
represents many other tables associated with the attribute table from the Andrews
metadata schema. This example includes unit of measurement, enumerated code

Page 16 of 34

domains, place domains, taxonomic classification domains and attribute-specific
methodology.

Figure 5. A more extensive example of a configuration file based on the RDBMS data

dictionary that includes the tables desired for inclusion in the native XML.

In summary, the configuration file is used to guide the process of creating native XML in
conjunction with program code and referential integrity information provided by the data
dictionary. The configuration file determines which tables are to be included in native
XML generation allowing the exclusion of tables defined within the RDBMS schema.

Generating EML

XSL Transformation (XSLT) is used to convert native XML to a valid EML document. The
key aspect of this process is to properly map the local metadata stored in the RDBMS to
the corresponding EML <dataTable> elements. The mapping of a database schema to
EML elements requires understanding of both the local RDBMS and the EML schema.
The mapping process can become complex in the common situation where the metadata

Page 17 of 34

database is not directly designed to accommodate EML metadata elements. And while
the authors do not attempt to describe the XSLT language, we do provide a short
example XSLT stylesheet to help illustrate this process of generating the EML
<dataTable> element in Figure 6. For the example given above, the local entity table
corresponds to <dataTable> in EML. The stylesheet illustrates direct mapping of a native
XML element into EML, checks for an empty field before mapping entity_description, and
uses named templates as functions or subroutines to map the native XML into EML
coverage and attributeList elements.

Figure 6. A partial example XSLT stylesheet to generate the EML dataTable element

from native XML.

Summary

While there are many challenges in storing metadata in a RDBMS that begin with the
determination of a RDBMS schema for storing metadata and include loading and
updating metadata into the RDBMS, significant benefits can be gained. Using the
RDBMS to store metadata in structured and relational tables enables flexible
presentation of metadata, including the generation of EML. The described approach
takes advantage of features within the RDBMS for generating native XML including the
use of the data dictionary for creating a configuration file and programmatically
interpreting the underlying database schema. The configuration file is used to help guide

Page 18 of 34

the process of populating native XML with attribute content from local RDBMS metadata
tables. The XSLT stylesheets are used to complete the process of mapping the native
XML into corresponding EML elements, but requires a fairly comprehensive
understanding of both the local metadata tables and the EML schema. In addition to
EML, other metadata document formats can also be easily generated using this
described approach including PDF, HTML, Word, and other formats. Potentially, a
customized script can be developed to map EML files back into the RDBMS, just the
reverse process of the EML document generation described in this document, and we are
exploring this possibility.

References

Center for Environmental Studies. 2002. "Xanthoria: A Distributed query system for XML
encoded data", Arizona State University. Available on-line
[http://ces.asu.edu/bdi/Subjects/Xanthoria/]

Costa, Duane. (2004). "EML Harvesting I: Metacat Harvester Overview and
Management", LTER DataBits, Fall 2004 Issue, LTER Network Office. Available on-line
[http://intranet.lternet.edu/archives/documents/Newsletters/DataBits/04fall/]

Jones, Matthew B. (2003). "A brief overview of Ecological Metadata Language", LTER
DataBits, Spring 2003 Issue, LTER Network Office. Available on-line
[http://intranet.lternet.edu/archives/documents/Newsletters/DataBits/03spring/]

Servilla, Mark, Brunt, James, San Gil, Inigo, Costa, Duane. (2006). "Pasta: A Network-
level Architecture Design for Generating Synthetic Data Products in the LTER Network"
LTER DataBits, Fall 2006 Issue, LTER Network Office. Available on-line
[http://intranet.lternet.edu/archives/documents/Newsletters/DataBits/06fall/]

Page 19 of 34

DataBits: An electronic newsletter for Information Managers ----- [Spring 2007]
Issue ([http://intranet.lternet.edu/archives/documents/Newsletters/DataBits/07spring/])

Featured in this issue:
Welcome to the Spring 2007 issue of Databits! Twenty-two authors or coauthors submitted articles for
this issue, which is a testament to the committment of Information Managers to sharing information.
The articles represent the diversity of interests within the LTER IM community and highlight a number
of current topics. Most notably, there is a discussion about proposed changes in the organizational
structure of the IM committee that would better integrate the GIS working group and the Technology
Committee. Additionally in this issue, several articles focus on Ecological Metadata Language,
describing recent developments and applications. Lastly, a number of LTER sites will be having their
NSF midterm reviews in the coming months. The Baltimore Ecosystem Study was one of the first sites
to be reviewed so Jonathan Walsh provided a list of some things to think about as sites prepare for
these visits. We hope you find this issue of Databits informative and helpful and we thank all those
who contributed articles. Enjoy!

DataBits continues as a semi-annual electronic publication of the Long Term Ecological Research
Network. It is designed to provide a timely, online resource for research information managers and to
incorporate rotating co-editorship. Availability is through web browsing as well as hardcopy output.
LTER mail list IMplus will receive DataBits publication notification. Others may subscribe by sending
email to majordomo@lternet.edu with two lines "subscribe databits" and "end" as the message body.
To communicate suggestions, articles, and/or interest in co-editing, send email to databits-
ed@lternet.edu.

----- Co-editors: John Campbell (HBR), Sabine Grabner (MCR)

