
Available online at www.sciencedirect.com

nt 112 (2008) 735–749
www.elsevier.com/locate/rse
Remote Sensing of Environme
Estimating proportional change in forest cover as a continuous variable from
multi-year MODIS data

Daniel J. Hayes a,⁎, Warren B. Cohen b, Steven A. Sader c, Daniel E. Irwin d

a Department of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 USA
b USDA Forest Service, PNW Research Station Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331 USA

c School of Forest Resources, University of Maine, 260 Nutting Hall, Orono, ME 04469 USA
d Global Hydrology and Climate Center, NASA - Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35805 USA

Received 11 January 2007; received in revised form 4 June 2007; accepted 7 June 2007
Abstract

This article describes a series of fundamental analyses designed to test and compare the utility of various MODIS data and products for
detecting land cover change over a large area of the tropics. The approach for estimating proportional forest cover change as a continuous variable
was based on a reduced major axis regression model. The model relates multispectral and multi-temporal MODIS data, transformed to optimize
the spectral detection of vegetation changes, to reference change data sets derived from a Landsat data record for several study sites across the
Central American region. Three MODIS data sets with diverse attributes were evaluated on model consistency, prediction accuracy and practical
utility in estimating change in forest cover over multiple time intervals and spatial extents.

A spectral index based on short-wave infrared information (normalized difference moisture index), calculated from half-kilometer Calibrated
Radiances data sets, generally showed the best relationships with the reference data and the lowest model prediction errors at individual study
areas and time intervals. However, spectral indices based on atmospherically corrected surface reflectance data, as with the Vegetation Indices and
Nadir Bidirectional Reflectance Distribution Function - Adjusted Reflectance (NBAR) data sets, produced consistent model parameters and
accurate forest cover change estimates when modeling over multiple time intervals. Models based on anniversary date acquisitions of the one-
kilometer resolution NBAR product proved to be the most consistent and practical to implement. Linear regression models based on spectral
indices that correlate with change in the brightness, greenness and wetness spectral domains of these data estimated proportional change in forest
cover with less than 10% prediction error over the full spatial and temporal extent of this study.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Complete coverage, accurate and repeated measures of
tropical forest and land cover variables at the regional scale are
being increasingly relied upon for natural resource and
conservation planning, habitat and biodiversity assessments,
and carbon accounting for international agreements on climate
change mitigation strategies. Scientists and practitioners have
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an over 30-year history of using Landsat data to monitor
vegetation at landscape and regional scales. The Landsat data
set has several advantages that account for it being so widely-
used in ecological applications, including a long-running
historical time-series, a spatial resolution appropriate to land
cover and land use change (LCLUC) investigations, and a
spectral coverage appropriate to studies of vegetation properties
(Cohen & Goward, 2004). However, the low repeat frequency
(with recurrent cloud coverage) and small area coverage per
scene preclude its use for large-area monitoring in the tropics.
The current sensor malfunctions with the Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and the unavailability of
Landsat 5 Thematic Mapper (TM) data for some regions, lends
further credence to considering other sources of satellite data for
regional monitoring.
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1.1. Monitoring tropical forest ecosystems with satellite data

Local and landscape-scale monitoring of tropical deforesta-
tion has been accomplished using complete coverage of
regularly updated Landsat data (e.g. Sader et al., 2001a; Skole
& Tucker, 1993). However, in tropical regions, persistent cloud
cover during the rainy season and smoke and haze from biomass
burning during the dry season can preclude the annual or
biennial acquisition of a clear scene of Landsat data for the same
area (Asner, 2001). This problem, along with monetary cost,
data storage, and processing time limitations, is exacerbated
when multiple scenes are required to cover larger areas on
regional and global scales. While a sampling of high resolution
data can serve to validate mapping efforts and provide insight
into processes such as deforestation over a region (FAO, 1993;
Richards et al., 2000), these efforts have critical limitations,
including the misrepresentation of rates and extent of change
because deforestation is often spatially clustered (Fearnside,
1986; Tucker & Townshend, 2000). Techniques need to be
developed for extracting LCLUC data from coarse resolution
satellite data sets, which generally have the advantages of larger
area coverage, greater frequency of acquisitions, and lower cost.

Estimates of forest cover and land cover change have been
carried out over full spatial coverage of tropical regions using
coarse resolution data (1 km or greater) from the Advanced Very
High Resolution Radiometer (AVHRR) (DeFries et al., 2000;
Malingreau & Tucker, 1988; Mayaux et al., 1998). Although
previous studies have demonstrated the utility of multi-temporal
AVHRR data for identifying deforestation ‘hot spots’ or tropical
forest clearing at broad spatial scales along forest/agriculture
boundaries (Lambin & Ehrlich, 1997), finer-scale changes
associated with anthropogenic LCLUC are not directly
detectable at this resolution (Ehrlich et al., 1997). Many of
these land cover changes due to human activities occur at spatial
scales near 250 m or less (Cohen et al., 2003a; Hayes et al.,
2002; Townshend & Justice, 1988). With its improved
radiometric properties, higher spatial and spectral resolutions
and twice-daily coverage, the freely-available suite of products
generated from NASA's Moderate Resolution Imaging Spectro-
radiometer (MODIS) hold the promise of becoming the most
important data source for future land cover characterization and
operational monitoring at regional and global scales (Justice
et al., 1998; Townshend & Justice, 2002).

1.2. Land cover change detection with MODIS data

Despite the potential for monitoring LCLUC at moderate
resolution (250 and 500 m) with MODIS data, the Vegetative
Cover Conversion product is designed to serve only as a global
‘alarm’ system for prioritizing closer inspection of land cover
change (Zhan et al., 2000). Prototype studies of change
algorithms using 250 m MODIS radiance data suggest
satisfactory results for extreme events such as large-scale
flooding and burning, yet the detection of deforestation was less
reliable where forest clearing is patchy (Zhan et al., 2002).
Fewer studies have attempted to characterize forest regeneration
with coarse resolution data, and those based on AVHRR data
have shown similar limitations where the spectral signal of
forests regenerating on small, fragmented clearings was mixed
with other vegetation and land cover types within the same
1.1 km pixel (Lucas et al., 2000a,b). Research is needed to
develop methodologies and models for extracting accurate
information on both forest clearing and vegetation regeneration
from coarse spatial resolution data.

The majority of studies reporting on the use of satellite
imagery to map changes in land cover have employed
traditional classification algorithms that apply a single, discrete
change/no change category to each pixel in a multi-temporal
data set (see Coppin et al., 2004). Other techniques, such as
linear mixture models that estimate the sub-pixel composition
land cover features (e.g. Adams et al., 1995; DeFries et al.,
2000) and regression techniques for modeling biophysical
properties as continuous variables (e.g. Cohen et al., 2003b),
have been designed to more fully exploit the information about
the variability of the features of interest inherent in the spectral
signal of remotely sensed data. These techniques become
particularly important when the processes of interest operate at
scales below the resolution of the sensor, as will often be the
case when studying land cover changes with more coarse
resolution imagery such as that from the MODIS data set.
Because of the advantages involved with mapping sub-pixel
cover, Hansen et al. (2002) speculated that the MODIS-based
Vegetation Continuous Fields products could be used to
measure changes in proportional forest cover over time, yet
few studies have evaluated either this concept or those data in a
change detection context.

Hayes and Cohen (2007) reported on the development of a
modeling framework to estimate proportional change in tropical
forest cover as a continuous variable from multi-temporal
spectral data sets. With the ability to detect proportional forest
cover change relatively invariant to the spatial grain size of the
analysis, their results demonstrated the utility of the half-
kilometer MODIS data, which contains short-wave infrared
reflectance — information that when included in these models
improved the ability to estimate forest cover change. The results
showed that spectral response in the Calibrated Radiances
Swath data set followed more closely with the expected patterns
of forest cover change, as compared to the reference data, than
did the spectral response in the gridded Surface Reflectance
product. This result may be attributed to the geolocation offset
problem encountered in gridded MODIS products described by
Tan et al. (2006), which they found to cause “pixel shift” in the
MODIS data when compared against higher resolution
reference data. These authors observed the problem to be
most prevalent with the finer resolution MODIS products
(quarter- and half-kilometer) and suggested that, to improve the
correspondence between the location of reference data observa-
tions and the grid cells, data should be aggregated to coarser
resolutions (i.e. 1 km or greater).

The research described above has shown the potential of
models based on these data for estimating forest cover change at
the landscape scale for a give time interval. The development of
these models in pilot studies for specific regions and time
periods also highlighted some of the challenges and limitations
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in using these data sets, including those related to spatial res-
olution, geometric precision, atmospheric and seasonal normal-
ization and spectral variable selection (Hayes & Cohen, 2007).
Further research is needed to test the utility of these models for
application in a larger spatial and temporal context.

1.3. Objectives

Attributes of the product stream generated by the MODIS
sensor suggest that it is a key data set for monitoring large areas
at high temporal frequency and low cost. This study was
designed to resolve some of the issues involved in expanding a
stand-alone, MODIS-based forest monitoring system, based on
these models, over larger spatial extents and over time. The
primary goal of this study was to develop an accurate,
consistent, and efficient methodology for creating detailed,
full coverage estimates of forest cover change across a large
tropical study site. Specifically, the objectives of this research
were:

1) Model evaluation: compare key data sets within the MODIS
data stream for their utility in predicting tropical forest cover
Fig. 1. Map illustrating the location of the MODIS grid tiles and the reference forest co
of the nations of the Central American region.
change over space and time through evaluation of single,
individual spectral index models at varying spatial grain size
and processing level; and

2) Model selection: identify a regression model, based on
multiple spectral indices, which optimizes the detection of
forest cover change and allows for consistent, practical
implementation over large areas and multiple time periods.

2. Methods

TheMesoamerican region covers approximately 768,990 km2,
stretching from the southern Yucatán Peninsula of Mexico
through Panamá. The Isthmus of Central America is comprised
of more than 20 distinct ecological life zones (Holdridge et al.,
1971) ranging from coral reefs, coastal wetlands, and Atlantic
lowland wet forests to pine savannas, Pacific dry forests, and
montane cloud forests. Much of the region experiences strong
seasonality, with a distinct dry season from December through
April. The strength of this seasonality generally follows a lati-
tudinal gradient, with more extreme dry seasons and seasonally
semi-deciduous forest phenology found at the northern end of
this region. Dry season strength, along with associated forest
ver change study sites (based on Landsat WRS scenes) in relation the boundaries
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fires, is accentuated during strong El Niño affected climate
conditions. The Mesoamerican land bridge connecting the North
and South American continents contains only one-half of a
percent of the world's total land surface, yet its geographic
position and variety of ecosystems combine to harbor about 7%of
the planet's biological diversity (Miller et al., 2001). However, the
rates of deforestation in Central America during the 1980's were
among the highest in the world (FAO, 1993). Rapid population
growth, human migration, and slash-and-burn agriculture have
had detrimental effects on what forest remains as high rates of
deforestation have continued throughout the region in the 1990's
(Sader et al., 2001b).

The calibration and testing of regional scale models of
forest cover change with coarse resolution MODIS data is
based on a series of high resolution land cover change data-
bases developed from multi-temporal Landsat data for 6
selected scenes across Central America (Fig. 1). The analyses
described in this study span a three-year time interval (2000 to
2003) in which MODIS data could be acquired concurrently
with Landsat 5 and pre-scan line corrector (SLC)-off Landsat 7
data. The land cover change is based on the 6 Landsat World-
wide Reference System (WRS)-based study sites and 6 time
intervals (2000 to 2001, 2000 to 2002, 2000 to 2003, 2001 to
2002, 2001 to 2003, and 2002 to 2003), for a combined total of
11 reference scene— time interval pairs (Table 1). The loss of
forest cover observed over the study areas during the time
Table 1
Acquisition dates (given as Julian days) for the images used in this study

Study site Year 2000 Year 2001

Column Row Sensor Date Sensor D

P12 R54 TM 2000081
–a – MOD02 2000084
v08 h10 MOD13 2000081b

v08 h10 MOD43 2000081b

P14 R54 ETM+ 2000045d ETM+ 2
– – MOD02 2000082 MOD02 2
v08 h09 MOD13 2000081 MOD13 2
v08 h09 MOD43 2000081 MOD43 2
P18 R51 ETM+ 2
– – MOD02 2
v07 h09 MOD13 2
v07 h09 MOD43 2
P19 R48 TM 2000088
– – MOD02 2000087
v07 h09 MOD13 2000081

MOD43 2000081
P19 R50 TM 2
– – MOD02 2
v07 h09 MOD13 2
v07 h09 MOD43 2
P20 R48 ETM+ 2000087d TM 2
– – MOD02 2000087 MOD02 2
v07 h09 MOD13 2000081 MOD13 2

MOD43 2000081 MOD43 2
aSwath data coverage is variable and not acquired in predefined tiles.
bMOD13 and MOD43 were acquired for the same 16-day composite period in each
cThe first date of reference data for P18 R51 was acquired in the calendar year 200
dAcquired from NASA's GeoCover Data Set (Tucker et al., 2004).
eGeoCover data used as the geometric/radiometric base-line, but not in change dete
period of interest most commonly included forest harvest,
slash-and-burn agricultural and pasture establishment, forest
burning, insect defoliation and conversion of mangrove forest
to aquaculture. These land cover changes are manifested in
spectral changes in the multi-temporal satellite data record,
which are also influenced by the interannual variation in land
cover condition resulting from seasonal and climatic effects
(Hayes & Cohen, 2007).

2.1. Reference forest cover change classifications

The reference forest cover change data sets were developed
by multivariate clustering and interpretation of vegetation
index composites created from multi-date Landsat imagery,
aggregated to coarse resolution continuous variables matching
the grid cell sizes of the MODIS data and products. Two-date
Landsat images were paired and classified for each WRS study
site and time interval pair used in this study (Table 1). At each
site location, the Landsat GeoCover image acquisition was
used as the “base-line” for both geometric correction and
radiometric normalization of the corresponding “subject”
Landsat image. The subject images were geo-rectified to the
base-line via the automated selection of image tie-points, as
described in Kennedy and Cohen (2003), and first-order
polynomial resampling. The geometrically corrected Landsat
images retained the original 30 m pixel resolution projected in
Year 2002 Year 2003

ate Sensor Date Sensor Date

ETM+ 2002148d

MOD02 2002148
MOD13 2002145
MOD43 2002145

001031
001031
001017
001017
000361c ETM+ 2002126d

000361 MOD02 2002126
000353 MOD13 2002113
000353 MOD43 2002113

ETM+ 2002261d

MOD02 2002261
MOD13 2002273
MOD43 2002273

001090 ETM+ 2002213d,e ETM+ 2003104
001087 MOD02 2003104
001081 MOD13 2003097
001081 MOD43 2004097
001081 ETM+ 2002076 ETM+ 2003127
001089 MOD02 2002071 MOD02 2003127
001081 MOD13 2002081 MOD13 2003065
001081 MOD43 2002081 MOD43 2003065

analysis.
0, but analyzed as 2001 land cover.

ction.
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UTM (zone 16 or 17). Overall root mean square error (RMSE)
was less than half a pixel (b15 m) for each resampled image.
Digital numbers were converted to reflectance values in the
reference image using the COST model (Chavez, 1996). The
subsequent Landsat scenes were radiometrically normalized,
band-by-band, to the reference scene using linear regression
techniques (Hall et al., 1991). The algorithm was based on the
selection of end-point targets from the wet and dry non-
vegetated extremes in each band at each date, as outlined in
Hayes and Sader (2001).

The atmospherically-corrected Landsat reflectance data were
transformed to the tasseled cap indices at each date using
coefficients derived by Crist (1985) for ground-based spectral
data, as discussed by Cohen et al. (2003b). For each image pair
(each study site and time interval), tasseled cap brightness,
greenness and wetness for each date were combined into a two-
date, 6-layer data set that was transformed to spectrally similar
clusters via the ISODATA routine (ERDAS, 2005). Final
reference LCLUC classifications were arrived at through a
combination of cloud, smoke and haze removal, “cluster-
busting” (Jensen, 1996), visual interpretation, comparison with
ancillary data, and hand-editing. Hayes and Sader (2001)
reported an overall accuracy of 85% (Kappa=0.83) across all
change categories using a similar methodology, based on
clustering of multi-date normalized difference vegetation index
(NDVI) composite imagery, for mapping forest clearing and
regeneration in a tropical study area.

Each classification resulted in four LCLUC categories: 1)
unchanged forest, 2) unchanged non-forest, 3) loss of forest
cover, and 4) regeneration of forest cover. For this study, both
mature forest types and young forests (≥1 year-old) are
considered forest cover, and non-forest includes agriculture and
pasture lands, natural savannas and grasslands, and low shrubs
and wetlands. Forest regeneration within each two-date time
interval was identified on fallow plots, abandoned agricultural
areas, and post-harvest and burned sites. The Landsat-derived
reference LCLUC was aggregated to a continuous variable
representing the net proportional change in forest cover (ΔFC)
to match the different Sinusoidal Projection Swath and Grid cell
resolutions of the MODIS data and products, as described in
Hayes and Cohen (2007).

2.2. MODIS spectral data and products

Amongst the suite of products generated by the MODIS
data stream, this study considered the daily Calibrated Ra-
diances (MOD02) data and the 16-day composite Vegetation
Indices product (MOD13) at half- and one-kilometer spa-
tial resolution (HKM and 1 km, respectively), as well as
the Nadir Bidirectional Reflectance Distribution Function
(BRDF)-Adjusted Reflectance (NBAR) product (MOD43),
which is available at 1 km resolution and 16-day composites.
Collection 4 Terra MODIS data and products were used in
these analyses and acquired from the Earth Observing System
Data Gateway of the USGS Land Processes Distributed Active
Archive Center. These three different MODIS data sets vary in
spectral properties, temporal compositing and spatial resolu-
tion, allowing for analysis of these effects on the ability to
model change in forest cover. The daily or composite dates of
the MODIS data sets were timed to coincide with the acqui-
sition dates of the Landsat imagery used to generate the
reference data (Table 1).

The MOD02 data consist of at-satellite calibrated radiance
values, prior to any atmospheric correction algorithm, and are
available as the original Swath observations with 250 m,
500 m and 1 km cell sizes. Radiance values are collected in the
red and near-infrared (NIR) wavelengths (channels 1 and 2) at
250 m, as well as blue, green, and three short-wave infrared
(SWIR) bands (channels 3 through 7) at 500 m resolution. In
this study, two MOD02 data sets were evaluated: 1) MOD02
HKM in which channels 1 and 2 are resampled to 500 m to
match the other 5 bands, and 2) MOD02 1 km in which all 7
bands have been resampled to 1 km cells. The MODIS Re-
projection Tool for Swath data (MRT Swath) required latitude
and longitude data for geolocation of MOD02, which is
available as part of the MODIS data stream (MOD03) at 1 km
resolution. MOD02 data was output from the MRT Swath in
the Sinusoidal projection to maintain consistency with the
other MODIS products used here, but retained the original
500 m and 1 km cell sizes.

The MOD13 product includes two vegetation indices cal-
culated from MODIS surface reflectance data: the NDVI and
the Enhanced Vegetation Index (EVI), which is a modification
of the NDVI to adjust for soil reflectance and other background
surface properties (Huete et al., 2002). The MOD13 algorithm
applies a filter that computes the indices from the highest
quality surface observation (based on cloud cover, aerosols and
viewing geometry) over each 16 day period. This study in-
cluded these products at half- and one-kilometer spatial
resolution (MOD13 HKM and MOD13 1 km, respectively).
The MOD43 NBAR product is the result of the BRDF
algorithm, which is computed for the MODIS spectral re-
flectance in each of the bands 1 through 7 at the mean solar
zenith angle of each 16 day period, designed to remove the view
angle effects of the original Swath observations (Schaaf et al.,
2002). Unlike the MOD02 Swath observations, the MOD13 and
MOD43 products are resampled to the MODIS Global Sinu-
soidal Grid projection system. The grid has actual cell sizes
of 463.31 m and 926.63 m at the half- and one-kilometer
resolutions, respectively.

2.3. Model development

Models were constructed using a multiple linear regression
approach to predict proportional change in forest cover (i.e.ΔFC)
between two dates as a continuous variable from each multi-
temporal MODIS spectral data set. Spectral indices (considered
here as independent variables) were derived from two dates of
coarse resolution MODIS data and used to model ΔFC (the
dependent variable), which is based on reference data from the
higher resolution Landsat LCLUC classifications for the same
time interval. The model development methodology, employed
here across the Central American region, follows that detailed by
Hayes and Cohen (2007) for a study site in northern Guatemala.
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2.3.1. The dependent variable
The final referenceΔFC data sets were created by overlaying

a grid matching the location and size of the MODIS pixels on
each 30 m LCLUC classification, which had been re-projected
to Sinusoidal to match the MODIS data geographically. A count
of the relative number of forest loss, regeneration, and no
change pixels was used to calculate the reference ΔFC, which
has a possible range of −100% (total loss of cover on
completely forested land) to +100% (complete regeneration
of forest cover on previously non-forest land) for each grid cell.
Reference ΔFC data sets were calculated according to the grid
cells matching the MODIS spectral data set or product being
investigated, so that separate ΔFC data were individually
created using the Swath cells (for the MOD02) as well as the
Sinusoidal Grid cells (for the MOD13 and MOD43) at both
half- and one-kilometer resolution.

2.3.2. The independent variables
Several different spectral indices derived from the three

MODIS data sets were evaluated in the model exercises for their
utility and accuracy in estimating ΔFC. The NDVI was used
because of its common application in vegetation studies and its
ease in calculation from the spectral data available in all three
data sets at both half- and one-kilometer resolution. For the
MOD02 and MOD43 data, the NDVI was calculated as:

NDVI ¼ ðBand2� Band1Þ
ðBand2þ Band1Þ ð1Þ

The NDVI is already calculated and available as part of the
MOD13 data set. Similarly, it was also possible to calculate the
normalized difference moisture index (NDMI) for all the data
sets. It was derived by the equation:

NDMI ¼ ðBand2� Band6Þ
ðBand2þ Band6Þ ð2Þ

for the MOD02 and MOD43 data. The bands labeled “NIR”
(near-infrared) and “MIR” (mid-infrared) were used to calculate
the NDMI from the MOD13 data set, in place of Band 2 and
Band 6, respectively. Studies by Wilson and Sader (2002) and
Hayes and Cohen (2007) have demonstrated improved results in
detecting forest cover changes with the NDMI index over the
NDVI.

Several other spectral indices were employed in the
modeling effort: the EVI from the MOD13 product and the
Tasseled Cap brightness (TCB), greenness (TCG), and wetness
(TCW) indices from the MOD43 data set. The EVI has been
shown to be more responsive to vegetation canopy structure
and is less subject to saturation in high biomass environments
than the original NDVI (Huete et al., 2002). The Tasseled
Cap indices were calculated for the MOD43 data set according
to the transformation coefficients developed by Lobser and
Cohen (in press). The TCW index has been shown to be
sensitive to the moisture content and structural characteristics
of vegetation (Cohen & Spies, 1992), as well as a good index
for detecting changes in forest cover (e.g. Healey et al., 2005).
Currently, Tasseled Cap transformation coefficients have not
been developed for the other MODIS data sets. For
comparison, surrogate variables of the EVI and Tasseled Cap
indices were calculated from the MOD43 spectral bands in the
model selection process. The EVI is essentially a standard
measure of greenness that attempts to remove background
brightness by subtracting reflectance in the blue band from the
NDVI. This was simulated with the MOD43 bands by in-
cluding a change in band 3 index (ΔBand3) along with
ΔNDVI in step-wise regression analyses. Similarly, MOD43-
derived indices ΔBand3, ΔNDVI, and ΔNDMI represent the
changes in the “brightness”, “greenness” and “wetness”
spectral domains of these data, respectively, and thus can be
compared with the change in Tasseled Cap indices for the
ability to estimate ΔFC.

2.3.3. Model structure
The relationship between reference ΔFC and the change in

spectral response between two dates was investigated for each
data set, spectral index, and time interval using a Reduced
Major Axis (RMA) approach, a class of orthogonal regression
models (Curran & Hay, 1986; Van Huffel, 1997). The use of
RMA in the modeling of biophysical variables with remotely
sensed data is discussed by Cohen et al. (2003b) and dem-
onstrated in a change detection context by Hayes and Cohen
(2007) for a study site in Central America. The regression
models evaluated here used the approach of this latter study, in
which models are constructed based on stratified random
samples of spatially independent grid cells for each study site
and time interval. In this study, a simple thresholding of the
spectral change index values from the set of the sample cells is
used so that the two model sets (forest regeneration and forest
clearing) could be separated easily and consistently for ex-
panded ΔFC modeling in the absence of detailed initial ref-
erence data. For instance, any particular sample was included
in the forest regeneration model set if its spectral change index
value was greater than the mean of that index for all samples,
or modeled as forest loss if it had a value less than the sample
set mean.

The number of samples used in constructing the models
varied by spatial resolution, with the higher resolution data
(HKM) having more potential sample cells, as well as by the
data set. The MOD13-based models had lower number of
samples used because only the “best” data were used in model
construction, as per the quality assurance (QA) files available
with this product. The same criteria were used in sample
selection for the models using MOD43 data, although the QA
criteria for this product differ from that of the MOD13,
primarily because of the differences in the compositing algo-
rithms. As a result, the MOD43 data tended to have fewer poor
quality pixels masked from analysis. The MOD02 data are
single-day acquisitions and not composited, and therefore do
not contain QA information that can be readily used to remove
data from the potential data set. This was done manually,
through unsupervised clustering and hand-editing for cloud
removal (see Hayes & Cohen, 2007). The MOD02 models
generally had the highest sample size as a result.
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2.4. Model evaluation

The model evaluation process (Table 2) included four steps
of analysis: 1) individual study areas and time intervals were
analyzed by scene–by interval; 2) multiple study areas were
combined and analyzed across scenes–by interval; 3) mul-
tiple time intervals were combined and analyzed by scene–
across intervals; and 4) multiple scenes and multiple time
intervals were combined and analyzed across scenes–across
intervals. The step 1 analysis involved all 11 Landsat scene
and time interval pairs available in the reference data used in
this study, with results summarized using each pair as an
analysis unit. While the step 1 analysis involved developing a
unique model for each individual scene/interval pair, the
analyses in steps 2, 3 and 4 were based on models developed
from pooled sample points generated from scene and interval
pairs organized by spatial and temporal coverage. Step 2 used
scenes (P12 R54, P19 R48, P20 R48) that were available for
the same time interval (2000 to 2002), while step 3 evaluated
models from a single scene (P20 R48) across 3 time intervals
(2000 to 2001, 2001 to 2002 and 2002 to 2003). Step 4 used
the full set of 11 scene and time interval pairs as with the step
1 analysis but compared models built from the pooled sample
points rather than summarizing the site-by-site results.

The first step in model evaluation was to analyze the model
predictions and test statistics amongst the different data sets
Table 2
The Landset-based reference data used in this study, organized by the 4 steps of ana
indices, described in Section 2.4

Analysis step Analysis units

Step 1: by scene–by interval
Landsat scene and time interval pairs
(n=11)

Step 2: across scenes–by interval
Pooled MODIS-derived sample points
(n varies by data set)

Step 3: By Scene– Across Intervals
Pooled MODIS-derived Sample Points
(n varies by data set)

Step 4: across scenes–across intervals a

Pooled MODIS-derived Sample Points
(n varies by data set)

a The reference sample points produced in Step 4 were also used in the “Model Eva
in Table 7 and Fig. 3 (n=1208 based on the pooled MOD43 sample points).
and spectral indices on an individual basis, for each study site
and time interval. There were 11 individual reference data
sets, by scene–by interval, which served as sample units for
summarizing model test statistic results among the various
data sets and spectral indices considered in this study. In
addition to assessing their accuracy in predicting ΔFC at
individual study sites, the different MODIS data sets and
spectral indices were also evaluated in terms of their potential
for expanded modeling over larger spatial extents. Samples
from reference scenes that covered the same time interval
were grouped into a new, multiple scene sample set for which
the data sets and spectral indices could be evaluated across
scenes–by interval. For this study, the time interval of 2000 to
2002 had three reference scenes available: 12/54, 19/48 and
20/48.

The MODIS data sets and spectral indices were further
evaluated for their consistency and accuracy in model
predictions over multiple time intervals. All of the reference
sample data for the three time intervals available for the 20/48
study area (2000 to 2001, 2001 to 2002 and 2002 to 2003) were
combined for the by scene–across intervals analysis. Ulti-
mately, the combined effect of expanding the models over both
time and space was investigated by developing and testing
models based on the MODIS data sets and indices using a
pooled reference data set from all of the study sites and time
intervals and analyzed across scenes–across intervals.
lysis that make up the “Model Evaluation” of the MODIS data sets and spectral

Landset scene(s) Time interval(s) Results presented in…

11 scene/interval pairs from 2000 to 2003 Table 3
P12 R54 2000–02

P14 R54 2000–01
P18 R51 2001–02
P19 R48 2000–02
P19 R50 2001–03

2000–01, 2000–02, 2000–03
P20 R48 2001–02, 2001–03, 2002–03
3 scene/interval pairs from 2000 to 2002 Table 4
P12 R54 2000–02

P19 R48 2000–02
P20 R48 2000–02
3 Scene / Interval Pairs from 2000 to 2003 Table 5
P20 R48 2000–01

P20 R48 2001–02
P20 R48 2002–03
3 scene/interval pairs from 2000 to 2003 Fig. 2
P12 R54 2000–02

P14 R54 2000–01
P18 R51 2001–02
P19 R48 2000–02
P19 R50 2001–03

2000–01, 2000–02, 2000–03
P20 R48 2001–02, 2001–03, 2002–03

luation” process, described in Section 2.5 and the results of which are presented
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At each step, models (based on each data set and spectral
index) were compared on the basis of the variability in their
parameters, the accuracy in separating forest cover loss from
regeneration by thresholding the spectral index (threshold
accuracy %), the correlation (R) with ΔFC for each the forest
loss and forest regeneration model sets, and the amount of
variation explained (the coefficient of determination, R2) by the
spectral change index. Model results were compared based on
% error, the error in the model predictions as a percent of the
range of observed ΔFC (see Hayes & Cohen, 2007). Percent
error was based on the RMSE of the prediction versus observed
data set, calculated using cross-validation of the sample set (see
Cohen et al., 2003b), divided by the range of values in observed
ΔFC for that sample set.

2.5. Model selection

After evaluating the models based on individual spectral
indices for their consistency and accuracy in modelingΔFC over
time and space, the next step was to develop a regression model
that incorporated multiple spectral indices. The data set used in
this analysis was comprised of anniversary dates of MOD43
acquisitions, corresponding to the 16-day composite period
ending on the 81st day of each year in this analysis. These models
optimized the relationship to ΔFC and the prediction accuracy
while simultaneously demonstrating a consistent and practical
methodology for futureΔFC modeling in the absence of detailed
reference data. Model selection and development involved a
combination of intentional variable selection, based on the rela-
tionships of the different indices and ΔFC evaluated here, and
step-wise regression to select additional significant variables for
modeling ΔFC. A variable set including the spectral change for
the 7 MOD43 bands, the NDVI, NDMI, TCB, TCG, and TCW
indices was used in the step-wise regression analysis based on
Bayesian Information Criteria. The different RMA multiple
linear regression models were evaluated according to the stan-
dard errors of the parameter estimates, model R2, and the percent
error of the predictions, as compared to the pooled reference
sample data sets covering all of the study areas and time intervals
(across scenes–across intervals).
Table 3
Results of the by scene–by interval analysis showing the mean RMA regression mo
analyzed in this study

Data set Variable n Threshold accuracy % Regene

MOD02 HKM ΔNDVI 11 91.8% 0.67
ΔNDMI 11 94.6% 0.75

MOD02 1 km ΔNDVI 11 91.0% 0.65
ΔNDMI 11 91.0% 0.73

MOD13 HKM ΔNDVI 11 89.8% 0.64
ΔEVI 11 90.3% 0.66
ΔNDMI 11 81.4% 0.56

MOD13 1 km ΔNDVI 11 88.7% 0.57
ΔEVI 11 90.1% 0.67
ΔNDMI 11 79.8% 0.50

MOD43 1 km ΔNDVI 11 92.2% 0.65
ΔNDMI 11 92.6% 0.68
ΔTCW 11 85.2% 0.63
3. Results and discussion

In addition to 36 channels of spectral information at varying
spatial resolution, there are numerous derived products
designed for specific applications that are available from the
MODIS data stream. A subset of this information relevant to
forest and land cover characterization was considered in this
study as potential primary data sources for a tropical forest
cover monitoring scheme that could be applied over large areas
and multiple time periods. These data were evaluated based on
regression model statistics testing their ability to detect
proportional change in forest cover, including both clearing
and regeneration. These statistics were based on comparing
variable correlation and model predictions against forest cover
change reference data developed by well-established classifi-
cation methods using higher resolution Landsat data. These
classifications do have error, however, and so are used as here as
“reference” rather than being considered “truth”. As such, any
discussion of improvements in the test statistics from one data
set to another, especially marginal ones (e.g. 1 to 3% prediction
accuracy), must be considered within this context. Consequent-
ly, the model selection process used here gives at least equal
weight to other important attributes of these data sets, including
the practical aspects of their implementation, as to the test
statistic comparisons alone.

3.1. Model evaluation

3.1.1. By scene–by interval analysis
The results of the model analysis based on the individual

study sites and time intervals helped to evaluate the perfor-
mance of the different data sets and spectral indices in terms of
estimating ΔFC on a scene-by-scene basis. The different data
sets, spatial resolutions and individual spectral indices were
evaluated by reporting the averages of model test statistics
across the 11 sample units (Table 3). Of the MODIS data and
products evaluated here, models based on the ΔNDMI index
gave good results for the MOD02 and MOD43 data, and the
ΔEVI for the MOD13 data. On average, the better model test
statistics among the different tests on a scene-by-scene basis
del test statistics for each data set, summarized for all scenes and time intervals

ration set R Clearing set R Combined model R2 Model error

0.69 0.57 10.0%
0.73 0.62 8.8%
0.61 0.47 10.6%
0.65 0.55 9.9%
0.52 0.47 13.7%
0.60 0.50 12.4%
0.53 0.45 13.9%
0.59 0.47 12.5%
0.49 0.48 11.5%
0.43 0.46 12.9%
0.54 0.49 10.8%
0.63 0.53 10.2%
0.57 0.50 11.4%
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resulted from using the ΔNDMI index calculated with the
MOD02 HKM data set.

Within the MOD02 data sets, the ΔNDMI outperformed the
models based onΔNDVI, with an approximate increase in error
of 1% when moving from half-kilometer (MOD02 HKM) to
one-kilometer resolution (MOD02 1 km). On the other hand,
models based on the MOD13 ΔEVI index actually showed an
approximately 1% improvement in mean error with the more
coarse resolution product. Compared to the mean test statistics
of the MOD02 models, the MOD13 ΔNDVI had 3.7% greater
combined model error at half-kilometer resolution and 2.5% at
one-kilometer and the MOD13 ΔNDMI error increased by
5.1% and 3.0%, respectively. The MOD43 ΔNDMI model had
only slightly greater error (0.3%) on average than that of the
same index calculated from Calibrated Radiances data at
equivalent spatial resolution (MOD02 1 km ΔNDMI). Rela-
tively good correlations with ΔFC were also found with the
MOD43-derived ΔNDVI and the ΔTCW indices, but the
ΔTCW had generally lower threshold accuracies and higher
combined model errors.

The utility of the ΔNDMI index for estimating ΔFC was
consistent with the findings of Hayes and Cohen (2007), who
demonstrated the importance of including information from
SWIR wavelengths in these models. In spite of this, the
ΔNDMI index calculated from the MOD13 data sets performed
comparatively poorly in modeling ΔFC. The MOD13 NDMI
differs from the same index used in the MOD02 and MOD43
data sets in several ways, most noteworthy being the use of band
7 reflectance, as opposed to band 6 in the MOD02 and MOD43,
and the difference in compositing algorithms. The MOD13 EVI,
on the other hand, applies correction factors to the NDVI so it is
more responsive to properties of the vegetation itself by
removing background soil brightness and moisture variation
(Huete et al., 2002). Models predicting ΔFC from ΔEVI
performed best among those derived from the MOD13 data set
tested here.

MODIS spectral indices generally showed good correlation
with ΔFC from the regeneration model set in the by scene–by
interval analysis. Indeed, the summary statistics revealed higher
correlations between spectral indices and ΔFC from the
Table 4
Results of the across scenes–by interval analysis showing the RMA regression mode
sample data for the 3 study areas (12/54, 19/48 and 20/48) from the 2000 to 2002 t

Data Set Variable n Threshold accuracy % Regene

MOD02 HKM ΔNDVI 429 89.4% 0.52
ΔNDMI 429 92.3% 0.69

MOD02 1 km ΔNDVI 342 83.1% 0.41
ΔNDMI 342 83.8% 0.62

MOD13 HKM ΔNDVI 247 77.4% 0.30
ΔEVI 247 89.9% 0.34
ΔNDMI 247 85.0% 0.34

MOD13 1 km ΔNDVI 131 82.4% 0.38
ΔEVI 131 86.8% 0.48
ΔNDMI 131 83.1% 0.47

MOD43 1 km ΔNDVI 266 87.1% 0.45
ΔNDMI 266 88.1% 0.67
ΔTCW 266 84.5% 0.48
regeneration model set than that from the clearing model set.
These findings are consistent with the model results of Hayes
and Cohen (2007), which showed that forest regeneration (the
ΔFC≥0% model set) could be predicted with good accuracy
when developing models for an individual Landsat study site at
a particular time interval. The relative correlations for the
regeneration against the clearing model sets varied with the time
interval, dependent on the spectral response to the interannual
variability in land cover condition.

3.1.2. Across scenes–by interval analysis
Comparing data sets and spectral indices when modeling

over multiple scenes for the same time interval showed similar
results to the by scene–by interval analysis. For example,
Table 4 gives the resulting test statistics for the models based on
the sample set that combined the data from the three scenes that
covered the 2000 to 2002 time interval (12/54, 19/48 and 20/
48). The best model performance was found with the MOD02
ΔNDMI at half-kilometer resolution, which explained a much
greater amount of the variation inΔFC and had lower prediction
error than the same index calculated from the MOD13 data at
equivalent spatial resolution. The MOD13 products are based
on MOD09 data, which has been shown to result in a similar
deterioration of model performance when compared to MOD02
data (Hayes & Cohen, 2007). The lower correlation and higher
error in the MOD13 models, then, may be in part based on the
geolocation offset problem that exists for gridded MODIS
products (Tan et al., 2006).

The analyses of Hayes and Cohen (2007) demonstrated
that MOD02 data, which are available as the original Swath
observations, more closely matched the spatial patterns of
higher resolution reference data than did higher-level products
that had been resampled to the Sinusoidal Grid projection
system (as with MOD09, MOD13 and MOD43, for example).
Other differences between the MOD02 and MOD13 data sets
include the temporal resolution of the data and the level of
atmospheric correction processing. The MOD02 data are a
daily product with no quality screening and consist of at-
satellite calibrated radiances values, prior to the application of
any atmospheric correction algorithm. The MOD13 indices, on
l test statistics for each data set and variable resulting from combining all of the
ime interval

ration set R Clearing set R Combined model R2 Model error

0.64 0.53 10.2%
0.83 0.77 9.2%
0.46 0.46 13.2%
0.76 0.68 11.5%
0.42 0.39 16.2%
0.52 0.46 12.6%
0.44 0.42 14.5%
0.45 0.48 13.2%
0.62 0.40 12.0%
0.43 0.33 13.4%
0.62 0.51 12.2%
0.79 0.71 11.5%
0.57 0.49 12.5%
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the other hand, are based on the surface reflectance algorithm
(from the MOD09 product) and are a result of a 16-day
compositing of the “best quality” samples that maximize the
EVI signal. Tan et al. (2006) found the lack of consistency of
gridded MODIS products with higher resolution data (due to
the geolocation offset problem) to be exacerbated by multi-
temporal compositing.

The results of the study by Tan et al. (2006) further imply
that the geolocation offset problem diminishes as the size of the
grid cell increases, and the authors suggested that better results,
in terms of matching MODIS products to higher resolution data,
may be obtained at 1 km resolution. In this study, the similar
results with respect to model performance between the MOD43
ΔNDMI and the MOD02 1 km ΔNDMI support this con-
tention. If the geolocation offset problem was significant at
1 km resolution, we would expect to see an improvement in
model performance with the MOD02 index, based on Swath
data, over the gridded MOD43 product. It is important to note
that there are other unique properties of the MOD43 product,
particularly the NBAR algorithm and 16-day mean solar zenith
compositing, which distinguish it from the other data sets
evaluated. These differences are likely to account for the im-
proved model performance of the MOD43 when compared with
the same index from the MOD13 data, which are also a gridded
but do not compare as well to the MOD02 data. With an
improved index such as theΔEVI, however, the MOD13 model
at 1 km resolution compared better to MOD02 and MOD43
models at the same spatial resolution. Visual analysis of the
MOD13 ΔNDMI imagery suggests that, in terms of its utility in
predicting ΔFC, this index suffers from artifacts of the
compositing algorithm, which results in spatial discontinuity
with regard to pixel-by-pixel spectral response.

In the previous (by scene–by interval) analysis, we saw that
spectral indices showed good correlation with forest regener-
ation for a given study site and time interval pair. With spatial
variability introduced in the across scenes–by interval analysis,
these correlations decrease. The relationship between changes
in spectral indices and forest clearing appeared to be more
consistent when the models were expanded over space. In fact,
the ability to model forest clearing improved with the addition
Table 5
Results of the by scene–across interval analysis showing the RMA regression mode
sample data from the 3 time intervals (2000–01–02–03) for the 24/48 study site

Data Set Variable n Threshold accuracy % Regene

MOD02 HKM ΔNDVI 462 89.4% 0.35
ΔNDMI 462 92.3% 0.45

MOD02 1 km ΔNDVI 396 83.1% 0.32
ΔNDMI 396 83.8% 0.43

MOD13 HKM ΔNDVI 261 77.4% 0.31
ΔEVI 261 89.9% 0.62
ΔNDMI 261 85.0% 0.39

MOD13 1 km ΔNDVI 142 82.4% 0.48
ΔEVI 142 86.8% 0.65
ΔNDMI 142 83.1% 0.44

MOD43 1 km ΔNDVI 303 87.1% 0.55
ΔNDMI 303 88.1% 0.59
ΔTCW 303 84.5% 0.64
of the larger set of reference sample points created by com-
bining multiple scenes over a larger spatial extent.

3.1.3. By scene–across intervals analysis
Models based on a combined sample that grouped all of the

data from one scene (20/48) over multiple time intervals (2000
to 2001, 2001 to 2002, and 2002 to 2003) give different results
(Table 5), in terms of model performance amongst the different
data sets and spectral indices, than did models based on sample
data from a single time interval. While the best indices for each
data set remained consistent (i.e. ΔNDMI for MOD02 and
MOD43 and ΔEVI for MOD13), the MOD13 and MOD43
models showed results that were similar to, or better than, those
of the MOD02 data when tested against multi-temporal
reference data. Spectral indices calculated from reflectance
data (MOD13 and MOD43) resulted in consistent model
parameters and good overall correlation and prediction accuracy
when modeled over multiple time intervals.

While the MOD02 data provided the best model results when
applied for a given time interval, indices based on radiance data
were not as consistent from year-to-year, which caused the
MOD02 models to degrade over multiple time intervals. As
such, the removal of atmospheric variation and view angle
differences between dates, as with the MOD13 and MOD43
data, was important in building a general model that was
consistent over time. However, the poor performance of the
half-kilometer MOD13 models, relative to the MOD02 HKM,
suggested that the geolocation offset problem still outweighs
any advantage from using the reflectance data over radiances at
this spatial resolution. At one-kilometer resolution, on the other
hand, the MOD43 models showed improvement over those
based on MOD02 data, highlighting the importance of the
NBAR algorithm and mean solar zenith angle compositing in
modeling ΔFC over multiple time intervals.

The addition of temporal variability in this analysis resulted
in a decrease in correlation between spectral indices and ΔFC
(both clearing and regeneration) as compared with the analyses
based on one time interval. Still, the relationship between
change in the spectral indices and forest clearing appeared to be
more consistent over time than that for forest regeneration. In
l test statistics for each data set and variable resulting from combining all of the

ration set R Clearing set R Combined model R2 Model error

0.62 0.44 11.7%
0.68 0.62 9.6%
0.57 0.43 12.9%
0.62 0.61 10.3%
0.44 0.37 16.8%
0.49 0.43 15.7%
0.43 0.38 15.8%
0.50 0.57 10.9%
0.58 0.62 10.3%
0.42 0.39 11.5%
0.65 0.65 8.9%
0.78 0.68 8.8%
0.63 0.64 10.7%
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general, models developed for individual scene and time
interval pairs do better in predicting forest regeneration than
do models expanded over time and/or space. The models based
on the MOD43-derived indices showed the smallest decrease in
correlation for both model sets when the temporal variability
was introduced in this analysis.

3.1.4. Across scenes–across intervals analysis
The scatter of points in each plot illustrating the relationship

of reference ΔFC to the different data sets and spectral change
indices (Fig. 2) indicated that the distinct relationships sepa-
rating forest loss and forest regeneration, apparent in the scene-
by-scene analyses described above and reported by Hayes and
Cohen (2007), was less conspicuous when the sample data from
multiple time intervals and study sites was combined. As such,
the different data sets and individual indices (MOD02 HKM
ΔNDMI, MOD02 1 km ΔNDMI, MOD13 1 km ΔEVI and
Fig. 2. The relationship between referenceΔFC for the pooled sample set and MODIS
C) MOD13 1 km ΔEVI and D) MOD43 ΔNDMI.
MOD43ΔNDMI) were compared on the basis of a single RMA
regression line for all sample data across the range of reference
ΔFC values. The amount of variation explained and the
prediction error in these models fell within the range of the test
statistics calculated for the previous across scenes–by time
interval (Table 4) and by scene–across time intervals analyses
(Table 5), suggesting that a single linear model without thresh-
olding did not significantly affect model performance. These
combined sample set relationships were better illustrated as
single, best-fit RMA lines on scatter plots of the spectral
variables against the reference data than with the tabulated
summary statistics of the relationships in the previous by scene
or by time period analyses.

Comparisons among the model relationships with ΔFC for
the best individual spectral indices from the different MODIS
data sets (Fig. 2) were evidence for the relative effects of the
different spatial, spectral and temporal properties of these data
spectral change indices: A) MOD02 HKMΔNDMI, B) MOD02 1 kmΔNDMI,



Table 6
Important attributes of each MODIS data set affecting its utility as the primary data source in a regional forest cover change monitoring system

Attribute MOD02 MOD13 MOD43

Spatial resolution Quarter-, half-, and one-kilometer Quarter-, half-, and one-kilometer One-kilometer
Projection and geometry Swath data Sinusoidal grid Sinusoidal grid
Spatial coverage Variable Grid tiles Grid tiles
Temporal coverage Daily 16-day quality screened composite 16-day mean solar zenith angle composite
Radiometric properties At-satellite radiance Surface reflectance Nadir-adjusted bidirectional reflectance
User quality assurance None Water and cloud masks, aerosol quality Water and some cloud masking
Bands and indices Visible, NIR, SWIR NDVI, EVI, and blue, red, NIR, SWIR Visible, near IR, SWIR, tasseled cap

Table 7
RMA regression test statistics for the combined sample set (n=1208) based on
the MOD43 anniversary date spectral changes

Model Variables Value SE Model R2 Prediction % error

Model 1 0.6015 10.65%
Intercept −0.0707 0.0063
ΔNDVI 2.3530 0.0552

Model 2 0.6162 9.88%
Intercept −0.0696 0.0062
ΔNDMI 2.2914 0.0521

Model 3 0.3930 13.85%
Intercept −0.1397 0.0092
ΔTCW 3.9664 0.1419

Model 4 0.6182 9.48%
Intercept −0.0815 0.0067
ΔNDVI 2.5240 0.0664
ΔBand3 0.0007 0.0002

Model 5 0.6792 9.00%
Intercept −0.0875 0.0064
ΔBand3 0.0009 0.0001
ΔNDVI 1.1854 0.1347
ΔNDMI 1.4487 0.1287

Model 6 0.6641 9.30%
Intercept −0.0980 0.0073
ΔTCB −1.3047 0.0854
ΔTCG 2.6724 0.0896
ΔTCW 4.0473 0.1077
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on the amount of variation explained and the prediction error in
modeling ΔFC. A reduction in spatial resolution from half- to
one-kilometer for the same data set and spectral index (MOD02
ΔNDMI) resulted in 6% less of the variation ΔFC explained
and a 1.3% increase in prediction error. At one-kilometer reso-
lution, the ΔNDMI based on the NBAR product explained a
similar amount of the variation in ΔFC as did that based on the
radiance data, with an improvement in prediction error of nearly
1%. The best index from the MOD13 data set, on the other
hand, explained less variation in ΔFC with a higher prediction
error than both the MOD02 and MOD43 models. By using the
one-kilometer MOD43 ΔNDMI to model ΔFC for the
combined sample set, only a slight increase in prediction error
(0.4%) occurred in comparison with the best model based on the
half-kilometer MOD02 ΔNDMI.

3.2. Model selection

The MOD43 data set was chosen for use in estimating annual
ΔFC for the Central American region by weighing the advan-
tages and disadvantages of the different MODIS data sets
evaluated in this study (Table 6). Overall, the MOD43 product
proved to be the most consistent data set, was practical to im-
plement, and showed similar results in terms of predicting ΔFC
to higher resolution models based on the radiance Swath data
(MOD02). The main advantage of the MOD02 data is its
locational precision when compared to higher resolution ref-
erence data, which contributed to its better model performance in
these analyses. However, these data are not corrected for atmo-
spheric conditions and are not accompanied by any user-level
quality assurance information or cloud or water masks. The
higher order products (e.g. MOD13 and MOD43) offer more
extensive and useful quality assurance information designed for
the user. Another difficulty with the repeated use of the MOD02
data is the Swath format for which it is distributed. The spatial
coverage of each Swath is variable on a day-to-day basis and an
extra data set (MOD03 geolocation fields) is required for geo-
metric correction of these data. Both the MOD13 and MOD43
data sets, on the other hand, are available in spatially consistent
Grid tile format and are readily imported into image processing
software as already geometrically corrected images.

Anniversary date acquisitions of MOD43 data sets were used
to develop a general model for application across the Central
American region that estimates annual change in forest cover as
a continuous variable. Here, the emphasis was on choosing the
best combination of spectral variables and indices in multiple
linear regression models for predictingΔFC, developed through
a series of intentional selection and step-wise regression
analyses (Table 7). Among the models based on single
MOD43 indices (Models 1, 2 and 3), the ΔNDMI model had
low standard error of the parameter estimates, explained the
greatest amount of variation in the reference ΔFC, and had the
lowest error in predictions. Compared to the models based on
ΔNDVI and ΔNDMI, modeling ΔFC on the ΔTCW by itself
resulted in a relatively low coefficient of determination and high
prediction error. TheΔBand3 index was a significant variable in
the forward step-wise regression analysis when the ΔNDVI
and/or ΔNDMI variables were first added to the model. Adding
ΔBand3 to the ΔNDVI (Model 4) contributed to a slight
improvement in the amount of variation explained in the model,
as well as in the error in the ΔFC predictions. A multiple linear
regression model including ΔBand3, ΔNDVI and ΔNDMI
(Model 5), all significant variables in the model, had the highest
R2 value (0.68) and lowest error (9.0%) of the six MOD43
anniversary date models evaluated in this exercise. The average
error in the model predictions was distributed relatively evenly
over the range of observedΔFC values, as illustrated in a plot of



Fig. 3. Plot illustrating the relationship between the observed referenceΔFC and
Model 5 predicted values, based on the pooled sample set (n=1208).

747D.J. Hayes et al. / Remote Sensing of Environment 112 (2008) 735–749
model results against reference values in relation to the 1:1 line
(Fig. 3). The three tasseled cap change indices (Model 6) were
all significant variables when included together in the
regression model, which explained 66.4% of the variation in
ΔFC and had a prediction error of 9.3%.

This analysis demonstrated the importance of the “bright-
ness”, “greenness” and “wetness” components of the spectral
domain in detecting and measuring change. From the MOD43
anniversary dates, the variable combination that produced good
predictions against the reference data used here included the
change in Band 3, the NDVI and the NDMI. MODIS Band 3
measures reflectance in the visible blue wavelength region,
which is also used in the ΔEVI index to compensate for back-
ground soil brightness and moisture. The NDVI is a common
measure of vegetation greenness, and the NDMI incorporates
SWIR spectral information and correlates to vegetation
structure and moisture content (Jin & Sader, 2005; Wilson &
Sader, 2002). A similar model, based on the TCB, TCG and
TCW indices gave similar results in terms of model perfor-
mance, as well as in netΔFC estimates and error statistics when
applied at the regional scale and over multiple time periods.

4. Summary and conclusions

An RMA-transformed linear regression model based on
multiple indices calculated from annual anniversary dates of
MOD43 data, applied region-wide in Central America for this
study, demonstrated a practical methodology for estimating
proportional change in forest cover as a continuous variable
with good accuracy. A model incorporating spectral changes in
the NDMI and NDVI indices and the visible blue channel
explained 68% of the variability in ΔFC with a prediction error
of 9%. Taken together, the results of the various analyses
summarized above demonstrated a number of the different
issues involved in using coarse resolution MODIS data and
products to detect land cover change and estimate proportional
changes in forest cover at landscape to regional scales, and over
multiple time intervals. The analyses were designed to allow
evaluation and comparison of model performance over varying
time intervals and spatial extents amongst models based on
different MODIS data sets and spectral indices. With respect to
the research objectives outlined above, some of the key findings
of this study include:

• When estimating change in forest cover at landscape to
regional scales for a particular time interval, the models
based on the half-kilometer MOD02 ΔNDMI index had the
best relationship with the reference data and the lowest
prediction errors. The main advantage of the MOD02 data is
the geometric locational precision of the Swath observations
at 500 m native resolution with respect to the higher
resolution reference data.

• Spectral indices based on atmospherically corrected surface
reflectance data, as with the MOD13 and MOD43 data sets,
produced more consistent model parameters and accurate
forest cover change estimates when modeled over multiple
time intervals.

• The MOD43 product proved to be the most consistent data
set, was practical to implement, and allowed for the com-
putation of a number of important spectral vegetation in-
dices. Models based on these indices showed similar results
in terms of predicting forest cover change to higher reso-
lution models based on radiance swath data.

• The most accurate estimates of forest cover change resulted
from models that included measures of the year-to-year
change in the brightness (e.g. visible bands or TCB),
greenness (NDVI or TCG) and wetness (NDMI or TCW)
spectral domains of the MOD43 data.

Selecting the best data upon which to build a forest cover
change model (objective 1) was realized through comparisons
among three MODIS data sets, each of which had potential
advantages and disadvantages in terms of model performance.
The MOD02 data set has been shown to have a strong
relationship with the spatial pattern and magnitude of forest
cover change (Hayes & Cohen, 2007). However, these data are
not corrected for day-to-day atmospheric conditions, thereby
putting into question the stability of these data over time in the
face of temporal variability. Other MODIS data sets such as the
Vegetation Indices product and the NBAR data set are corrected
based on potentially more consistent surface reflectance
algorithms. Each data set, grain size and spectral index was
evaluated by individual study sites (Landsat scenes) and time
period interval, across scenes by interval, by scene across
intervals, and across all scenes and intervals. Evaluation among
these different data sets based on the strength and consistency of
their relationship with forest cover change for a sample of high
resolution reference data provided the criteria for choosing the
best spectral variables in the model (objective 2). Models that
were practical to implement and produced accurate and
consistent results were suggested for application over the full
regional data set to assess the quality and usefulness of the
forest cover change estimates, and to identify any limitations
and areas for improvement in model development.
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The subject matter of this study is important and timely as
scientists and users are investigating the issues involved in
moving from the use of MODIS data as a global land char-
acterization and productivity sensor to one geared toward more
regional and local investigations. The results presented here
shed light on important MODIS data properties such as the
effects of compositing on the geometric quality of the data, of
atmospheric and BRDF corrections on spectral vegetation
change indices, and on the extraction of detailed, continuous
forest cover change variables from coarse resolution data. This
study provides a foundation for the further investigation of the
use of these data at local and global scales. Site-specific studies
of the spectral and spatial properties of different LCLUC types,
including seasonal, atmospheric and BRDF effects, will inform
future model development for the monitoring of different
ecosystems around the globe. Such models will provide key
data sources for resource management and conservation deci-
sions as well as input to models estimating the drivers and
consequences of global environmental change.
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