By
WALTER H．MEYER
Formerly Silviculturist Pacific Northwest Forest Experiment Station Forest Service

United States Department of Agriculture，Washington，D．C．

筫

Technical Bulletin No. 630 पू

October 1938
Slightly revised April 1961
UNITED STATES DEPARTMENT OF AGRICLLTLRE
WASHINGTON, D. C.

YIELD OF EVEN-AGED STANDS OF PONDEROSA PINE

By Walter H. Meyer, ${ }^{2}$ formerly silviculturist, Pacific Northuest Forest Experiment Station, Forest Service

Ponderosa pine (Pinus ponderosa Dougl.) is one of the most important and most interesting tree species in the western Lnited States, because of its wide geographic range, its excellent timber qualities, and its adaptive silvical characteristics. Its range is an area about 1,000 by 1,400 miles, extending from the western border of the Great Plains to the Coast Mountains and from Mexico north into British Columbia (fig. 1). The ponderosa pine type in all its forms covers more than 50 million acres. The species is commercially valuable throughout its range, and is widely sought. The wood of old-growth trees is whitish yellow, soft, and easily worked; that of young trees is much coarser and more resinous, and therefore under present market conditions less desirable. Like other pines, ponderosa pine is adaptable to different methods of management and regeneration. Lnder natural conditions it most commonly grows in uneren-aged stands, but in general it thrives equally well in even-aged stands.

[^0] Station.

Findings of the national-forest survey now being made by the Forest Service show that the extent of the even-aged second-growth stands is much greater than has been estimated in the past. Some extensive stands commonly thought to be uneven-aged are composites of even-aged groups. In the 10 counties of eastern Oregon and eastern Washington for which survey statistics were available at the time of writing, ponderosa pine stands classified as second growth cover more than $1,340,000$ acres. Young, even-aged stands occupy 639,000 acres of this total; on the remaining 701,000 acres, the stands are even-aged and of advanced development or else have been subjected

Figure 1.-Approximate distribution of forests in which ponderosa pine is the dominant species, and location of plots or groups of plots used In this study.
to heavy selection cutting and now have even-aged understories of pine reproduction. In California, and also in parts of Oregon, Washington, Idaho, and Montana, the even-aged stand is characteristic of old mining cuttings. In the Black Hills even-aged stands have become established on areas that have not been cut over, originating probably after extensive fires occurring in the infrequent years when seed production and the conditions governing germination and survival were favorable. The area of even-aged ponderosa pine forests is constantly increasing, primarily as a result of human activity.

The value of growth and yield studies has been stressed time and time again in forestry literature and probably is fully appreciated by
most foresters. A yield study of even-aged ponderosa pine forests was necessary as a complement to the yield study of selectively cut stands of this species (14), ${ }^{3}$ partly because that study indicated that the reproduction in selectively cut stands is practically even-aged.

Several studies of the yield capacities of even-aged ponderosa pine forests have previously been made, notably in California (11, 22), Idaho (3,4), and British Columbia (5). The results of these studies were limited as to region of application, and were widely divergent. In this study an effort has been made to coordinate the best of the older data and new supplementary data and to derive a set of yield tables applying throughout the range of the species. Some of the older data used were taken as far back as 1910. The new study got under way in 1928; by 1934 the essential cooperation had been obtained in all the regions involved, and thereafter new data were accumulated rapidly. All the new data were gathered under one general work plan and under the direct initial supervision of the project leader. Sample plots were taken in California, Oregon, Washington, Idaho, Montana, South Dakota, and in a single locality in Wyoming. The pine forests of the Southwest were left unsampled, because the South western Forest and Range Experiment Station after a survey of its field concluded that stands of the condition desired were not available. In the field work emphasis was laid on obtaining data on true secondgrowth stands, as distinct from small groups of second growth. The study was confined to fully stocked stands, which furnish the best basis of comparison for stands of all degrees of density.

The old and new data together comprised the records of 848 plots. The major computations of the study were based on data for 450 plots only, 398 plots being rejected because of nonrepresentative plot conditions or of incompleteness of data. Most of these rejected plots were taken for studies in which plot selection was not based on stand normality. Data from many of the rejected plots were used in studying the effect of stocking upon yield.

In this report some mensurational data other than growth and yield statistics are given that will assist in dealing with problems relating to stand development.

Because of the extensive area covered, the number of cooperators involved, and the variation among the stands investigated, the combination of the data into a single coordinated series of tables was not without difficulties. The accepted methods of normal-yield-table construction $(6,7,8,20)$ had to be modified in a number of instances before acceptable results were obtained.

Detailed descriptions of the data and the methods of analysis are given in the appendix.

REGION AND TYPE

The ponderosa pine type has been intensively studied for many years, and several noteworthy publications have been issued dealing specifically with the factors affecting its distribution and describing its silvical characteristics ($1,2,9,16,17,18,19,23,24$). The previous findings, which pertain chiefly to the more common form of ponderosa pine stand, the uneven-aged, will not be reviewed
The general characteristics of the even-aged ponderosa pine stand are its high density, its relatively deep litter and humus, and its high
yield per acre at maturity. All these characteristics are distinctly preferable from the silvicultural standpoint to those existing in un-even-aged stands. Even-aged pine culture is not adrocated, however, except for areas where annual rainfall is about 25 inches or more, considerably above the minimum for the type's existence. If moisture is inadequate, stagnation results and no progress is made in volume production without expensive thinning operations.

Ponderosa pine endures a great range of climatic conditions, which accounts in part for the differences in development discussed in this report. Discussion of the climatic conditions under which it grows is hampered somewhat by the relative sparseness of data. In Oregon and Washington, at least, weather stations are too few and in too many instances remote from timber stands to afford data representative for the type. Baker and Korstian (1) recognized five divisions of the general range of the species, as follows: (1) Eastern Rocky Mountain, including central and eastern Montana, parts of North Dakota and South Dakota, most of Wyoming, a part of Nebraska, eastern Colorado, and northeastern New Mexico; (2) south plateau, including Arizona, most of New Mexico, southeastern Utah, and southwestern Colorado ; (8) central plateau, including most of Nevada, most of Utah, southwestern Wyoming, and southeastern Idaho; (4) north plateau, including Washington, most of Oregon, most of Idaho, and western Montana; and (5) south Pacific, including California and southwestern Oregon. According to available meteorological records as charted by these authors, annual precipitation averages for the different subregions are as follows: Central plateau and eastern Rocky Mountain, about 18 inches; north and south plateaus, 22 inches; south Pacific, 44 inches. The variation about each of these averages is of course wide; in the north plateau, for instance, precipitation varies from 15 inches on the borders between desert and forest to more than 50 inches on the west slopes of the Cascade Range in Washington.

More significant than the amount of annual precipitation is its distribution through the seasons of the rear. A summarization of the data tabulated by Baker and Korstian indicates that the portion of total precipitation occurring within the chief growing season, namely, May, June, July, and August, ranges from 48.8 percent in the eastern Rocky Mountain subregion to 7.0 percent in the south Pacific subregion. On the north, central, and south plateaus $22.1,25$, and 31.8 percent, respectively, of the annual precipitation occurs in the 4 months mentioned. The north plateau has a gradual decrease of precipitation from January to April, a sudden increase in May, further decrease through to August, and then a rapid rise to the end of the year. The curve for the central plateau is similar. The precipitation of the south plateau decreases irregularly through June and has a striking increase in July and August and a mild decrease through to November; thus its curve has two pronounced peaks.

Annual mean temperatures for the first four subregions were found to range only between 42° and $45^{\circ} \mathrm{F}$. The south Pacific, however, has an annual mean of 51°. The temperature averages for the 4 -month
growing season are about 58° to 59° for the first four subregions and 63° for the last

Conditions for pine growth are far better in the south Pacific subregion than in any of the others, although good sites can be found almost throughout the range of the species. The prevailing excellence of site conditions in California is partly explained by comparatively heavy precipitation, even though most of this occurs in off-season months, and by moderately high temperatures.
Although confined to approximately pure stands, this study gives indications as to the associates in even-aged ponderosa pine stands in the different subregions. In California incense cedar (Libocedrus decurrens Torrey is a common associate, usually as an understory species. Other conifers associated with ponderosa pine in California, in descending order of frequency of occurrence, are Douglas fir (Pseudotsuga taxifolia (Lamb.) Britt.), white fir (Abies concolor Lindley), and sugar pine (P inus lambertiana Dougl.). In Oregon the species most commonly found in mixture are lodgepole pine (P. contorta Dougl.), white fir. and Douglas fir; western larch (Larix occidentalis Nuttall) and Engelmann spruce (Picea engelmanni (Parry) Engelm.) are found occasionally. In Washington and Idaho Douglas fir and white fir are sometimes found. In Montana Douglas fir is the chief associate, with western larch a poor second.
As a part of the present study the composition of the minor vegetation has been observed by several investigators in different subregions. The grasses are the most common constituents of the ground cover, but identification of grasses as to species or even genera was seldom recorded. The following tabulation, based on observations made on 350 plots, shows the genera (with species, when known) of the herbs, shrubs, and small trees most commonly found, in five different subregions. The plants are listed for each subregion in descending order of number of plots on which observed. The list is by no means complete; the observations cover at least 75 different genera of herbs and 38 genera of shrubs and small trees. A number of distinctions are apparent, especially between California and the other subregions

Herbs
Trifolium sp .
Pentstemon spp.
Pteridium aquilinum pubescens
Apocynum androsaemifolium.
Vicia sp.
Trientalis europaea latifolia.
Fragaria sp.
Galium sp
Sidalcea sp.
Lupinus spp.
Lathyrus sp.
Potentilla sp.

CALIFORNIA
Shrubs and small trees
Chamaebatiaria foliolosa.
Toxicodendron diversilobum.
Arbutus menziesii.
Rhamnus purshiana
Alnus rubra.
Philadelphus leuisii
Arctostaphylos viscida and other spp.
Ceanothus velutinus.
Rubus spp.
Castanopsis sempervirens.
Lonicera involucrata.
Rosa spp.
Ribes spp

Fragaria spp.
Achillea lanulosa
Lupinus spp.
Lupinus spp.
Chamaenerion angustifolium
Hieracium spp
Geranium
Chimaphila umbellata
Lilium parvum.
Lathyrus spp.
Pentstemon spp.
Pyrola spp.
Vicia spp.
Vagnera liliacea.
A pocynum ambigens.
Fragaria spp
Aster spp.
Arnica cordifolia
Balsamorhiza sagittata.
Lupinus spp.
Frasera montana.
Geranium viscosissimum.
Silene menziesii.
Pentstemon spp.
Chimaphila umbellatn
oregon and washington
Ceanothus uclutinus
Rosa gymnocarpa; R. nutkana Purshia tridentata.
Symphoricarpos racemosus. Arctostaphylos uva-ursi. dostemon repens
Prunus melanocarpa; P. emarginata
Salix spp.
Vaccia corymbosa.
Vaccinium spp.

SOTTHEK MDABO
Spiraca lucida.
Symphoricarpos orcophilus: S. racemosus
Amelanchier alnifolza
Prunus metanocarp
Rosa spp.
Opulaster malvaceus
Vaccinium sp.
Ceanothus velutinus.
Rubus parviflorus.
Arctostaphylos uva-ursi.
northern idaho and montana
Fragaria glauca; F. vesca. Rosa spp.
$\begin{array}{ll}\text { Achillea lanulosa. } & \text { Symphoricar pos racem } \\ \text { Balsamorhiza sagitala. } & \text { Odostemon aquifolium }\end{array}$
Lupinus sericeus; L. burkei: L. wyethii. Amelanchier alnifolia.
Geranium viscosissimum.
Arnica cordifolia.
Apocynum androsaemifolium.
Leontodon autumnale.
Potentilla gracilis.
Galium boreale.
Clarkia pulchella
Antennaria a naphaloides: A. rosea
Chamaenerion angustifolium.
Erigeron sp.
Aster spp.

Apocynum androsaemifolium.
black hills

Achillea lanulosa.
Solidago spp.
Galium boreale.
Vicia americana.
Geranium viscosissimum; G. richardsoni
Fragaria vesca americana.
Monarda mollis.
Antennaria dioica.
Thalictrum sp.
Rosa spp
Rosa spp.
Symphoricarpos pauciflorus.
Prunus virginiana melanocarpa
Spiraea lucida.
Odostemon aquifolium
Juniperus communis.
Lepargyrea canadensis.
Amelanchier alnifolia.
Rubus spp
Ribes spp.
An effort to relate growth capacity of ponderosa pine stands to soils failed to reveal much of significance. The soils recognized in the field included silt loams, sandy loams, clay loams, gravel loams, loamy sands, clays, sandy clays, pumice soils, gravels, and others. All the loams, silt loams, clay loams, and clays were associated with site indexes ranging from 30 to 140 or more. For gravel, loamy sand,

F297007-278075
Fren-age ponderosa pine forests of 70 -year age class on lands differing in site qualit t: A, Stand on area
site index 41 near Brownsille, S. Dak:; St, stand on area of site index 132 near Nevada City, Calif.
and pumice areas the site indexes ranged approximately from 50 to 90. For sandy areas they ranged from 30 to 70 . Within any single group of soils, the darker soils seemed to be associated with higher site indexes. Most of the relations observed, however, were general only. An intensive study of the correlation between site quality and character of soil would include much more than the soil's quality texture, color, and depth. Pearson (17) pointed out that in the Southwest ponderosa pine made its best growth on the more sandy or gravelly soils and reproduced more successfully on clay soils where there was a mixture of rock in the soil to facilitate root penetration. In the present study, also, it was noted repeatedly that plots where a substantial mixture of gravel was present in the soil were of higher site quality

Plate 1 shows even-aged ponderosa pine stands on areas of average site quality in youth and maturity. Plate 2 shows stands of the 70year age class on areas of very poor and very good site indexes.

DEFINITIONS

"Acre.-In this study, as in other normal-vield studies, 43,560 square feet measured on a horizontal projection of the ground surface.

Age of stand.-Average age, in years, of sample dominant and codominant the trees are bored at breast height, to obtain total age in years it is necessary to add to the ring count a number varying from 6 for lands of the best site quality to 16 for lands of the poorest site quality
Average diameter.-Average diameter at breast height, in inches, of an ent trees by their number and converting the quotient to diameter.

Basal area.- Cross-sectional area, in square feet, at breast height.
Breast height. - A point of measurement on a tree bole located 4.5 feet above average ground level.
Dominance classes.-In this study, trees are classified on the basis of position in stand and of vigor into five dominance classes. Dominance class can usually be determined from diameter class and diameter growth alone. The classes are as follows:
dense and comp - The largest, tallest, and most vigorous trees in the stand. Crowns dense and comparatively wide and long. Growth rates the fastest in the stand.
Codominant.-Well-developed trees that reach into the main canopy but are subject to some side pressure from neighboring trees. Crowns less wide and dense than those of dominants. Growth rates good, but somewhat less than those of dominants
Intermediate.-Trees of inferior development barely reaching into the main canopy, receiving little top light. Crowns usually narrow and of poor vigor. Growth rates low in comparison with those of dominants and codominants.
Suppressed.-Trees of inferior development, slow growth, and poor vigor below the main canopy, of the same age as those in the main canopy, receiving little direct light either from the top or from the side. Crowns narrow and short, with scant foliage. Growth practically at a standstill.
Understory.-Trees below the main canopy, younger or of different species s to development growth or vigor; often they are in excellent condition for their species. Height curv
elected ages and site indexes.
Mean annual increment.-Average annual volume growth of the stand from ear of origin to age under consideration.
Normal stand, or fully stocked stand.-A stand that, so far as any practical consideration is involved, utilizes its site completely. For ponderosa pine the canopy of a normal stand is less dense than it is for species of more humid climates and is not necessarily complete or continuous, especially if the stand is advanced n age. Maximum stocking is not implied; it practically never exists over a continuous area of more than a few acres

Normal-yield tables.-Tables showing numbers and sizes of trees, total hasal areas, and volumes for normal stands at different ages and on sites of different qualities.
Normality percentage.-Percentage ratio between a basal-area, volume, or other value for a given stand and the value shown by the yield tables for normal stands of corresponding age and site-quality class. This ratio is used to express stocking. Number of trees. - Total number of living trees per acre that are above a specified diameter
Partial stand.-Portion of total stand that is above a specified diameter. In this study two partial stands are dealt with, those of which the minimum breastrepresented by values for the trees 6.6 inches and more in diameter is much more intensive than that followed in the ponderosa pine forests at the present time, but is comparable to that represented in many other yield studies made in the United States. Values for the trees 11.6 inches and more in diameter represent a practical standard approximating that now followed in most parts of the ponderosa pine region.
Periodic annual increment.-Average annual volume growth within a given age interval-in this study, 10 years.
Quadrat.-Portion of acre used to estimate stocking. For even-aged ponderosa pine forests, the size recommended is 9.33 feet on a side, or 0.002 acre.
Rotation age.-In this study, age at which mean annual increment culminates; that is, age at which the periodic and the mean annual increment become equal.
the age of 100 years, used as an indicator of site quality. "Site index 80 " for instance, means that the dominant and codominant trees on the area referred to, average, have averaged, or will a verage 80 feet in height at 100 years.
Site quality. - The site quality of a forest area is its relative productive capacity, determined by climatic, soil, topographic, and other factors; the higher the site quality, the faster is tree growth and the greater is the timber volume produced per acre. Seven site-quality classes, each covering a series of 14 site indexes, are recommended for approximate rating. These classes are indicated by roman numerals.
Stand table.-Table showing distribution of number of trees throughout the range of diameter classes. The distribution is expressed either in percentage for stated average diameters of stand or in number for stated site-quality and age classes.
Stock table.-Table showing distribution of hasal area or volume of trees throughout the range of diameter classes.
Stocking.-Degree to which an area's productivity is utilized by the existent orest stand.
Stand-density index.-Number of trees per acre contained in a stand when its that the stander is 10 inches. "Stand-density index 400 ," for instance, means when averaging 10 inches in diameter.
Volume table.-Table showing the estimated volumes of trees of various diameter and height classes, expressed in total cubic feet or in board feet, log scale, by the International rule or the Scribner rule.

YIELD
Practically all site conditions existing in the ponderosa pine region are represented by the site indexes 30 to 160 . The indexes above 140 are represented practically nowhere in the region except in the vicinity of Nevada City, Calif. Table 1 and figure 2 show the heights for ages less and greater than 100 years that correspond to site indexes ranging from 40 to 160 at intervals of 10 in the table and 20 in the figure. By use of this table or this figure, the site index of any even-aged ponderosa pine stand can be estimated on the basis of the age of the stand and the height of its average-diameter dominant and codominant and trees.

Figicre 2.-Heipht of dominant and codominant trees of average breast-high diameter.
Table 1.-Height of dominant and codominant trees of average breast-height diameter

Age (years)	Height, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Feet	Feet	Feet	Fect	Feet	Feet	Feet	Fet	Feet	Feet	Feet	Feet	Feet
30	11	15	20	26	32	38	${ }_{44}$	51	57	64	70	77	${ }_{84}^{60}$
40.	16	22	28	35	42	49	55	63	70	77	85	93	100
50.	21	28	35	43	51	58	65	73	80	89	97	105	113
60.	26	34			58	66	73	81	90	99	107	115	124
70	30	39	47	56	64	73	80	89		108	116	125	134
80	34	43	52	61	70	79	88	97	106	116	124	133	143
90	37	${ }^{47}$	57	${ }_{6}^{66}$	75	85	94	104	113	123	132	${ }_{1}^{142}$	${ }_{1}^{152}$
100.	40	50	60	70	80	90	100	110	120	130	140	150	160
110.	42	53	63		84	95	106	116	127	137	147	158	168
120	44	55	66	77	88	100	111	122	133	144	154	165	175
130.	45	57	69	80	92	104	116	128	139	151	161	172	182
140.	46	59	71	83	96	108	121	133	145	157	167	179	189
150.	47	60	73	86	99	112	125	138	151	163	173	185	195
160	48	61	75	89	102	116	129	143	156	169	179	191	201
170.	48	62	77	91	105	119	133	147	161	174	184	196	206
180.	49	63	78	93	108	122	136	151	165	179	189	201	${ }^{211}$
190.	49	63	79	95	110	125	139	154	169	183	194	205	${ }^{216}$
200.	50	64	80	97	112	128	143	157	172	187	188	209	220

Seven broad site-quality classes representing the site indexes up to 140 have been in general use in many parts of the ponderosa pine region for some years and were used in this study with only slight change (table 2). These classes can easily be distinguished in the field by the forester well versed in ponderosa pine silviculture.
A problem often encountered in evaluating site quality by tree height and age is the staguated condition in over-dense stands of ponderosa pine on poor sites. To meet this problem in the Inland Empire region Lynch developed adjusted site curves for various levels of stocking. Curves for average-stocked stands which proved to be

Table 2.-Site-quality classification for ponderosa pine, ${ }^{1}$ with corresponding heights at maturity in terms of logs

Site quality class	Site index		Logs in dominant trees at maturity ${ }^{\text {' }}$ (number)
	Central value	Range	
I.	120	${ }^{+113}$	
${ }_{\text {III }}$	106 92	$90-112$ $85-98$	$\begin{aligned} & 8 \text { to } 9 . \\ & 7 . \end{aligned}$
IV.	78	71-84	5 to 6.
V	64	57-70	3 to 4.
VI,	50	43-56	
viI	36	43-	$2-$

${ }^{1}$ The values given for ponderosa pine in a previous publication (14) have bere been changed slightly to make the intervals equal.
i Estimated in terms of 16 -foot logs to 8 -inch top. Maturity is assumed to begin at the age of 250 years.
better suited to the Inland Empire conditions than the present interregional curves were also constructed. These Inland Empire site curves* adjusted for stocking may prove useful in other parts of the ponderosa pine region upon careful checking.

STAND 0.6 INCH AND MORE IN DIAMETER

Tables 3 to 6 and figures 3 to 6 give the yield values for all trees in the stand that are 0.6 inch and more in breast-height diameter. Values are given for number of trees, basal area, average diameter, and cubic-foot volume. These tables and figures are valuable as indicating a site's productive capacity, and the yield trends in stands not yet of merchantable size. They are the standard tables from which all other yield tables of this bulletin were derived and from which still other tables, representing other standards of utilization, may be drawn.

Table 3.-Number of trees per acre ${ }^{1} 0.6$ inch and more in diameter

$\wedge \mathrm{Age}$ (years)	Trees per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	No.	${ }^{\text {No. }}$	No.										
${ }_{30}^{20}$		\% $\begin{aligned} & 7,600 \\ & 8,710\end{aligned}$	4, 4.678	3, ${ }_{\text {328 }}$	${ }_{2}^{2}, 750$	1, 1.718	1,050	${ }_{800}^{970}$	${ }_{64}^{779}$	${ }_{\text {cte }}^{650}$	${ }^{561}$	${ }_{400}^{470}$	
${ }_{80}^{40}$	(6,960	${ }_{2}^{4.020}$	2700		1, 270	${ }_{725}^{994}$	$\begin{array}{r}785 \\ 574 \\ \hline\end{array}$	${ }_{4}^{648}$	539 425	${ }_{373}^{682}$	$\stackrel{405}{432}$	${ }_{238}^{338}$	
${ }_{70}^{60}$	${ }_{2}^{2} 880$	1.780	1. ${ }_{831} 14$	850	${ }_{502}^{602}$	540 415 4	${ }_{3}^{45}$	${ }_{310}^{389}$	${ }_{272}^{34}$	301	${ }_{20}^{290}$	${ }_{204}^{24}$	228 189
80	1,300	1, 275	${ }_{634}^{83}$	${ }_{490}^{630}$	393	${ }_{329} 15$	${ }_{236} 32$	252	225	204	185	174	${ }_{162}^{188}$
	${ }^{955}$		${ }_{498}^{495}$	390 318	${ }_{3}^{316}$	${ }_{278}^{272}$	236 198 1	${ }_{179}^{210}$	${ }_{1}^{189}$	173	1159	${ }_{1}^{139}$	$1 \begin{gathered}140 \\ 123\end{gathered}$
100	744	532	400	318	266	228	199	179	162	150	139	130	123
										131			
${ }_{130}^{120}$	512 435	3388 314 3	231 248	230 203	${ }_{173}^{196}$	171 151 151 1	1132			115			
	${ }_{375}$	230 280	${ }_{219}^{219}$	${ }_{182}^{218}$	153	${ }_{134}$	120	108	${ }_{90}$	92			
	334	248	198	165	${ }^{138}$	120	108	${ }^{98}$	89	83			
180										${ }_{69}^{75}$			
180	${ }_{254}^{274}$	${ }_{191}^{208}$	1152	${ }_{125}^{137}$	$\xrightarrow{115}$	${ }_{92}^{100}$	${ }_{82}^{89}$	${ }_{74}^{81}$	${ }_{68}^{74}$	${ }_{63}^{68}$			
	${ }_{2}^{24}$	${ }_{1}^{176}$		115	${ }_{9}^{29}$	$\begin{aligned} & 85 \\ & 89 \\ & 89 \end{aligned}$	${ }_{76}^{76}$	${ }^{60}$	$\begin{aligned} & 63 \\ & 68 \\ & 68 \end{aligned}$	${ }_{8}^{68}$			
	218	167	130	108	$\ddot{92}$	79	70	${ }_{64}^{\circ \circ}$	58	$\mathbf{E H}_{4}$			

${ }^{1}$ Tc nsarest whole number.

FIGURE 3.-Number of trees per acre 0.6 inch and more in breast-height diameter.

Figure 4.-Basal area per acre of trees 0.6 inch and more in breast-height diameter.

Figure 6.-Cubic-foot volume per acre of trees 0.6 inch and more in breast-height diameter.
Table 4.-Basal area per acre ${ }^{1}$ of trees 0.6 inch and more in diameter

Age (years)	Basal area per acre, by site index-												
	40	50	60	70	80	90	100	110	130	130	140	150	160
	Sq.ft.	Sq.ft.	Sq.ft.	Sq.ft	Sq. ft.	Sq.ft.	Sq.ft.	Ss ft	Sq. fit	Sq. ft .	St jit	Sq.fit	Sq. ft.
20.					58	82	165	17	115	120	12	225	${ }_{237}^{159}$
30 40	123	137	151	165	180	195	${ }_{210}^{10}$	224	238	252	264	22.6	287
50	138	153	167	182	196	211	226	240	255	269	283	296	308
60.	141	155	169	184	198	213	228	243	258	273	288	303	317
70.	141	155	169	184	198	213	228	243	258	273	288	303	318
80	141	155	169	184	198	213	228	243	258	273	238	303	318
90	141	155	169	154	198	213	228	243	258	273	288	${ }^{303}$	318
100	141	155	169	184	198	213	228	243	258	273	288	303	318
110.	141	155	169	184	198	213	228	243	258	273			
120	141	155	169	184	198	213	228	243	258	273			
130	141	155	169	184	198	213	228	243	258	273			
140	141	155	169	184	198	213	228	243	258	273			
	141	155	169	184	198	213	228	243	258	273			
160.	141	155	169	184	198	213	228	243	258	273			
170	141	155	169	184	198	213	228	243	258	273			
180	141	155	169	184	198	213	228	243	258	273			
190	141	155	169	184	198	213	228	243	258	273			
200.	141	155	169	184	198	213	228	243	258	273			-

${ }^{\text {a }}$ To nearest whole number

The tables do not list values for ages 110 and more for site indexes 140,150 , and 160 , because no data were available for these ranges. Curve extensions or extrapolations would. be unreliable in these extremes.

Table 5.-Average diameter ${ }^{1}$ of trees 0.6 inch and more in diameter

Age (years)	A verage breast-height diameter. by site index-												
	40	50	${ }_{6} 6$	70	$8)$	90	190	110	130	130	140	150	160
	Inches	Inches	Jnches	nchas	Inctes	Inches							
30		0.9	1.3	1.9	${ }^{2 .} 4$	3.0	${ }^{3.6}$	4.4	5.2	6.0	6.7	7.6	8.6
41	1.8	25	32	4.2	5.1	6.0	7.0	8.0	9.0	10.0	-9.1	11.9	12.1
50	2.4	3.2	4.2	5.3	6.3	7.3	8.5	9.4	10.5	11.5	12.5	13.5	14.6
60	3.0	4.0	5.1	6.3	7.4	8.5	9.7	10.7	11.8	12.9	14.0	15.1	16.1
70	3.7	4.8	6.0	7.3	8.5	9.7	10.9	120	13.2	14.3	15.5	16.5	17.6
80	4. 5	5.7	7.0	8. 3	9.6	10.9	12. 1	13.3	14.5	15.7	16.9	17.9	19.0
90	5.2	6.5	-. 9	9.3	10.7	!2. 0	13.3	14.6	15.8	17.0	18.2	193	20.4
100	5.9	7.3	8.5	10.3	11.7	13.1	14.5	15.8	17.1	18.3	19.5	20.7	21.8
110	6.5	8.1	9.7	11.2	12.7	14.1	1.6	17.0	18.3	19.6			
120	7.1	8.8	10.5	12.1	13.6	15. 1	1.6	18.1	19.5	20.9			
130	7.7	9.5	11.2	12.9	14.5	16.1		19.2	20.7	22.2			
140	8.3	10.1	11.9	13.6	15.4	17.1	18.7	20.3	21.9	23.4			
15).	8.8	10.7	12.5	14.3	16.2	18.0	19.7	21.4	23.1	24.6			
16,0	9.3	11.2	13.1	15.0	17.0	18.9	20.7	22.5	24.2	25.8			
$1: 0$	9.7	11.7	13.7	15.7	17.8	19.8	21.7	23.5	25.3	27.0			
150	10.1	12.2	14.3	16.4	18.5	20.6	22.6	24. 5	26.4	28.2			
190	105	12.7	149	17.1	19.2	21.4	23.5	25.5	27.5	29.4			
200	10.9	13.1	15.4	17.7	13.9	22.2	24.4	26.5	28.6	30.6			

${ }^{1}$ To nearest 0.1 inch.
Table 6.-Cubic-foot volume per acre, ${ }^{1}$ including stump and tip but not bark, of trees 0.6 inch and more in diameter

Age (vears)	Volume per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Cu.ft.	Cu.ft	Cu.ft										
20				700	1,000	1,350	1,700	2. 100	2,400	2,750	3,350	3,750	4.350
30	500	800	1.100	1.450	1,950	2.450	3.000	3. 600	4.200	4.850	5, 500	6,150	6,850
40	1.050	1,350	1,750	2. 150	2. 750	3. 400	4, 100	4.900	5.650	6,650	7,500	8. 400	9. 350
50	1,450	1,850	2,300	2,750	3,400	4,200	5, 050	6,050	7.000	8,200	9,300	10, 500	11,700
60	1,800	2,250	2,750	3,250	3,950	4,850	5,850	7,000	8,150	9, 500	10.900	12.300	13,700
70	2, 100	2,600	3,100	3,700	4,450	5,400	6, 500	7,800	9. 100	10,650	12300	13, 850	15,450
80	2,400	2,900	3,400	4,100	4,900	5,900	7, 100	8, 500	9,950	11,650	13,500	15,150	16,950
90.	2,650	3,150	3,650	4.450	5, 300	6,350	7,650	9,100	10, 700	12,550	14,550	16,250	18,250
100	2,900	3,400	3,900	4,750	5, 650	6,750	8, 100	9,650	11, 350	13, 350	15, 450	17,200	19,350
110	3,100	3,600	4,150	5,000	5,950	7, 100	8, 500	10,100	11,900	14,050			
120	3,300	3,800	4, 400	5, 250	6,200	7,400	8,850	10, 500	12,400	14,650			
130	3,450	4,000	4,600	5,500	6,450	7,700	9,150	10, 850	12, 850	15,150			
140	3, 600	4,150	4,800	5,700	6, 650	7,950	9,450	11, 200	13, 250	15, 50			
150	3,700	4,300	4,950	5,900	6,850	8,200	9,750	11, 500	13, 600	15,900			
160	3,800	4,450	5,100	6,050	7,050	8,450	10,000	11, 810	13,950	16,250			
1170	3,900	4,550	5,250	6,200	7, 250	8.650	10,250	12. 100	14.250	16.600			
180	4,000	4,650	5, 400	6,350	7,450	8,850	10, 500	12, 350	14.50	16,950			
190	4,100	4, 750	5, 500	6, 500	7,650	9, 050	10,750	12, 600	14.850	17, 300			
200.	4,200	4,850	5,600	6,650	7,800	9, 250	10, 950	12,800	15, 100	17, 650			

The maximum number of trees 0.6 inch and more in diameter per acre in young ponderosa pine stands has not been determined. It must be well over 10,000, and is probably close to 20,000 . At a certain
age it is greater for each successively lower site-quality class. For all site qualities the number of trees decreases with advance in age, rapidly at first and then more slowly. The number per acre at maturity is never more than a few hundred, sometimes less than 100 . On land of site index 80 , for instance, a fully stocked stand has 1,750

trees per acre at 30 years, but only 266 at 100 years and only 92 at 200 years.

The form of the basal-area curves in figure 4 is unusual in that the maximum value is reached at an early age and then maintained. This trend corresponds directly, however, with that shown by Behre's study of ponderosa pine in Idaho and eastern Washington $(3,4)$.

STAND 6.6 INCHES AND MORE IN DIAMETEF

Tables 7 to 11 give the yield values for all trees 6.6 inches and more in diameter. They show number of trees, basal area, average diameter, cubic-foot volume, and board-foot volume estimated by Inter-

Figure 8.-Board-foot volume (International rule, $\begin{aligned} & 1 / \text {-inch kerf) per acre of trees } 6.6 \text { inchas and more in } \\ & \text { breast-height diameter. }\end{aligned}$
national rule for $1 / 8$-inch kerf to a top diameter of 6 inches inside bark Charts showing number of trees and board-foot volume for this partial stand appear as figures 7 and 8 . Other charts can be plotted from the tabulated data as needed.

The number of trees per acre in this partial stand reaches its maximum at a relatively early age for each site-quality class, but at a later
age for each successively lower class. The maxima vary from 247 to 362 , roughly corresponding to average spacings of 13 to 11 feet

The board-foot values by International rule are much larger than the log scale obtained under present utilization practice, but are believed to approximate the mill scale that will be realized when the logging is conducted according to the highest standard of woods utilization and the lumber is cut with band saws. It is reasonable to assume that this standard of utilization will be attained as soon in the ponderosa pine forests as in mostother forests of the far West, particularly of the Pacific Northwest. At present this table will be useful in making comparisons with yields of other timber species of the United States, since in most of the yield studies thus far made in the West these standards of estimate have been followed.

Table 7.-Number of trees per acre ${ }^{1} 6.5$ inches and more in diameter

Ave (years)	Trees per acre, hy site index-												
	40	50	60	70	0	90	100	110	120	130	140	150	160
	Num-	Num.	Num-	Num.	Num.	Vinm.	八um-	Num-	Num-	Num-	Num.	Num-	Num-
20				ber	${ }_{8}^{\text {Ser }}$	${ }_{20}^{\text {ber }}$	${ }_{61}$	ber 104	ber 156	${ }_{202}$	ber 226	- ber	eer
30			$1 i$	17	100	166	242	290	313	322	320	${ }_{308}^{24}$	${ }^{248}$
40		21	66^{6}	1.51	238	309	319	362	360	346	329	310	284
50	11	72	154	254	318	349	354	3.50	334	315	295	274	253
60	28	126	218	296	326	333	324	310	291	274	252	232	218
70	55	190	250	303	310	301	2at	270	249	232	213	199	186
80	96	236	250	292	22_{2}	2266	249	232	215	197	182	171	160
90	175	252	274	${ }_{2} 27$	253	236	216	200	184	168	157	148	139
100	226	256	259	246	227	205	190	174	159	147	138	129	122
110	244	250	240	224	203	185	166	151	139	129			
120	${ }^{24}$	237	222	202	182	164	146	135	123	114			
130	241	224	20.5	185	1625	146	131	120	109	101			
140	232	212	188	170	148	131	115	107	95	91			
150	222	200	175	157	134	118	$10{ }^{-7}$	97	$\times 9$	83			
160	213	188	163	144	122	108	97	88	81	75			
170	204	178	154	132	113	99	89	81	${ }^{2} 4$	69			
180	196	168	144	122	105	91	82	74	68	63			
190	188	159	134	113	98	85	${ }^{76}$	69	63	58			
200.	150	152	126	106	91	79	70	64	58	54			

To nearest whole number.
Table 8.-Basal area per acre ${ }^{1}$ of trees 6.6 inches and more in diameter

Age (years)	Basal area per acre, by site index-												
	40	50	60	70	s0	90	100	110	120	130	140	150	160
20	Sq.ft.	Sq ft	St.ft.	Sq.ft.	Sq. ff.	Sq. ft.	S7. ft	So. ft	Sq. ft	Sa. ft .	Sq. ft .	Sq.ft.	S7.ft
30			3	15	32	58	94	124	148	172	192	${ }_{210}^{19}$	${ }_{227}^{138}$
40		6	20	51	88	126	161	188	212	235	252	268	2×2
50	3	22	52	96	134	165	195	219	241	260	277	292	306
60.	8	42	81	125	157	15.5	210	231	252	268	285	301	315
70	16	69	106	144	172	195	217	237	255	271	286	302	317
80	30	93	128	157	181	202	222	240	256	272	287	302	318
90	58	109	140	167	187	207	224	242	257	272	287	303	318
100	80	121	149	173	192	210	226	242	257	272	288	303	318
110	93	131	156	177	194	211	227	242	257	273			
120	101	137	160	179	196	212	227	243	258	273			
130	106	141	163	181	197	212	228	243	258	273			
140	110	145	164	182	197	212	228	243	258	273			
150	113	148	165	183	197	212	228	243	258	273			
160.	115	149	166	183	197	213	228	243	258	273			
170	118	150	167	183	197	213	228	243	258	273			
180	121	151	168	183	198	213	228	243	258	273			
190	124	152	168	183	198	213	228	243	258	273			
	126	153	168	184	198	213	238	243	258	273			

${ }^{1}$ To nearest whole number

Table 9.- Average diameter ${ }^{1}$ of trees 6.6 inches and more in diameter

Age (years)	A verage breast-height diameter, by site index-												
	$4)$	50	60	70	80	90	100	110	120	130	140	150	160
	In	$1 n$	In.	In.	${ }_{7.2}{ }_{7}$	${ }_{7.4}^{1 n .4}$	${ }_{7.6}{ }^{\text {n }}$.	${ }_{8.0}^{1 n .}$	$I n$	In.	${ }_{9}^{12}$.	${ }_{9.5}^{1 n .}$	${ }_{10.1}^{\text {In. }}$
30			22	7.5	7.7	8.0	8.4	8.8	9.3	9.9	10.5	11.2	12.0
40		-3		7.9	8.2	8.6	9. 2	9.7	10.4	11.2	11.8	12.6	13.5
50	72	$\therefore 5$	- 8	8.3	8.8	9.3	10.0	10.7	11.5	12.3	13.1	14.0	14.8
60	- 3	\%. 8	4.2	8.8	9.4	10.1	10.9	11.7	12.6	13.4	14.4	15.4	16.3
${ }^{70}$	2.4	5. 2	¢. 6	9.4	10.1	10.9	11.8	12.7	13.7	14.6	15.7	16.7	17.7
80		S. 5	9.1	10.0	10.8	11.8	12.8	13.8	14.8	15.9	17.0	18.0	19.1
90	\div	-9	97	10.6	11.6	12.7	13.8	14.9	16.0	17.2	18.3	19.4	20.5
100	40	9.3	10.3	11.3	12.4	13.6	14.8	16.0	17.2	18.4	19.6	20.8	21.9
110	- 3	93	10.9	12.0	13.2	14. 5	15.8	17.1	18.4	19.7			
120	$\mathrm{S}_{6} 6$	10.3	11.5	12.7	14.0	15.4	16.8	18.2	19.6	21.0			
130	9.0	10. s	12.1	13.4	14.8	16.3	17.8	19.3	20.8	22.2			
140	9.3	11.2	12.	14.0	15.6	17.2	18.8	20.4	22.0	23.4			
150	9.6	11.6	13.2	14.6	16.4	18.1	19.8	21.5	23.1	24.6			
160	10.0	12.0	13.7	15.3	17.2	19.0	20.8	22.5	24.2	25.8			
170	103	12.4	14.2	16.0	17.9	19.8	21.7	23.5	25.3	27.0			
180	10.6	12.8	14.7	16.6	18.6	20.6	22.6	24.5	${ }^{26.4}$	28.2			
190	11.0	13.2	15.2	17.2	19.3	21.4	23.5	25.5	27. 5	29.4			
200	11.4	13.6	15.7	17.8	20.0	22.2	24.4	26.5	28. 6	30.6			.-.

${ }^{1}$ To nearest 0.1 inch
Table 10.-Cubic-foot volume per acre, ${ }^{1}$ including stump and tip but not bark, of trees 6.6 inches and more in diameter

Volume per acre, by site index-

To nearest 10 cubic feet.

Table 11.-Board-foot volume per acre, ${ }^{1}$ International rule (1 s-inch kerf), of trees 6.6 incies and more in diameter

Age (years)	Volume per acre, by site index-												
	40	50	60	70	so	90	100	110	120	130	140	1.50)	160
	Bd.ft.	Bd. ft.	Bd.ft	Bd. ft.	Bd								
30				400	1,100	2,800	5, 400	8.200	12,500	17, 400	23, 200		16, ${ }^{1600}$
40			500	1,900	3,700	7,100	11,900	17,000	23,900	31,400	39, 000	46, 400	55, 200
50		500	1,800	4, 500	7.700	12,700	19,300	26, 400	35,200	44,400	53,400	62,500	72,500
60	100	1,500	3,700	7,600	12,600	19,000	27,000	35,300	45, 400	56,000	66,400	77,000	85.300
70	400	3,000	6, 100	11,200	${ }^{17} 990$	25, 400	34,000	43,200	54, 300	66. 300	78,100	${ }^{90} 200$	102.900
80	1,000	4,900	8, 800	15,000	23, 100	31, 100	40, 200	50, 100	62, 200	75. 400	88,700	102, 300	116. 400
90	1,900	7,000	11,700	18,600	27, 500	36, 100	45, 600	56,300:	-69,300	83,500	98,300	113,300	128.800
100	3,200	9, 200	14,600	22,000	31, 200	40,300	50, 300	61,800	-5,600	90, 800	107, 000	123, 300	200
110	4,600	11,300	17, 400	25,000	34, 400	43.900	54, 500	66, 600	81,300	97, 500			
120	6. 200	13,300	20, 000	27, 700	37, 300	47, 200	58, 200	11,000	86,400	103. 600			
130	7,800	15,200	22,300	30, 200	40, 000	50. 200	61.600	75, 000	191.000	108.900			
140	9,300	17,000	24, 400	32,500	42,500	53,000		88,700	95, 200	113. 200			
150	10,700	18, 700	26, 400	34,600	44, 800	55, 600	67, 800	82, 200	99, 100	118, 200			
160	12,000	20, 300	28, 300	36,600	46,900	58, 100	70,600	85, 500	102, 800	122, 200			
170	13,200	21, 800	30,000	38, 500	48,900	60, 500	73,300	88,500	106, 300	126, 000			
180	14, 400	23, 200	31, 600	40,300	50,900	62, 800	75, 900	91, 300	109, 600	129,600			
190	15, 600	24,600	33, 100	42,000	52, 800	65, 000	78, 400	94, 000	112, 700	133,000			
200	16,700	26,000	34, 600	43,700	54, 700	67, 100	$80,800$	$96,700$	$115,600$	136, 300			

To 6 -inch top inside bark, exclusive of 2 -foot stump, measured to nearest 100 board feet.

Tables 12 to 16 and figures 9 and 10 give values for all trees in the stand that are 11.6 inches or more in breast-height diameter. The tables show number of trees, basal area, average diameter, cubic-foot volume, and board-foot volume estimated by Scribner rule to an 8 -inch top diameter inside bark. The figures show number of trees

Figure 10.-Board-foot volume (Scribner rule) per acre of trees 11.6 inches and more in breast-height
and board-foot volume. The other values can be plotted and curved as noeded.
The maximum number of trees per acre for this portion of the stand varies from 78 to 181 according to site quality. These values represent an average spacing of roughly 24 to 16 feet. The better the site quality, the larger the maximum number of trees. The spacing increases rapidly with advancing age of the stand, because of the reduction in total number of trees of this size range.

The yield values in board feet, Scribner rule, for this part of the stand approximate closely those already realized under current logging practice in well-stocked stands in many parts of the ponderosa pine region. With careful practice substantial overruns will be obtained in the mill.

Table 12.-Number of trees per acre ${ }^{1} 11.6$ inches and more in diameter

Age (years)	Trees per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Num.	Num-	Num-	Num.	Num-	Num-	Num-	Num	Num.	Num	Num-	Num-	Num-
20.						ber	ber	${ }^{\text {ber }}$	${ }_{4}{ }_{4}$	ber	ber		ber
30						3		20	37	66	92	116	${ }_{13}^{60}$
40				3	8	17	36	65	100	127	146	162	${ }_{172}^{133}$
50			3	9	21	41.	84	110	136	155	168	178	181
60.		2	6	18	42	79	109	132	151		171		
70		${ }_{6}$	14	36	73	103	126	143	155	161	163	162	160
so	3	11	27	63	94	117	134	146	152	154	151	149	145
90.	1	18	47	85	107	125	137	143	145	143	138	135	131
100.	11	31	68	96	115	128	135	136	134	131	127	122	118
110.	16	47	81	104	118	126	129	127	123	120			
120.	25	62	90	109	118	123	122	118	113	109			
130	35	73	95	110	117	118	114	109	104	100			
140	48	79	99	110	113	111	107	101	96	91			
150.	57	84	101	109	108	104	100	93	88	83			
160			102	107									
170	68	90	101	104	98	92	86	${ }^{80}$	74	69			
180	72	92	100	100	93	87	80	74					
190.	76	${ }^{93}$	98	96	89	82	75	69	63				
200.	78	93	96	92	85	78	70	64	58	54			

1 To nearest whole number
Table 13.-Basal area per acre ${ }^{1}$ of trees 11.6 inches and more in diameter

Age (years)	Basal area per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Sq. ft.	Sq. ft.	Sq. ft.	Sq. ft.	Sq. ft	Sq. ft.	Sq. ft.	Sq. ft.	Sq. ft	Sq. $f t$.	Sq. ft.	Ss. ft.	Sq. ft.
20										9	16	33	60
30						3	8	18	35	64	95	126	154
40.				3	7	15	34	63	102	138	168	199	228
50			3	8	19	39	83	115	153	186	217	246	272
60		2	5	16	40	78	117	150	185	217	248	273	295
70	1	5	13	34	73	110	145	178	209	236	263	284	305
80	3	10	25	62	100	135	169	199	226	251	273	292	310
90	6	17	45	88	122	155	188	215	239	259	278	297	314
100	10	29	69	106	140	172	200	225	245	264	282	300	317
110.	15	46	87	122	154	183	209	231	249	268			
120.	23	62	101	136	165	192	215	235	$2 \leqslant 2$	220			
130.	34	77	112	146	174	198	219	238	255	272			
140.	47	87	122	154	180	202	222	240	257	273			
150.	57	96	130	160	185	205	224	242	258	273			
160.	66	103	137	165	188	207	226	243	258	273			
170.	73	110	142	169	190	209	227	243	258	273			
180.	79	116	146	172	192	211	228	243	258	273			
190.	85	121	150	175	194	212	228	243	258	273			
	90	125	154	177	195	213	228	243	258	273			

${ }^{1}$ To nearest whole number.

Table 14.-Average diameter ${ }^{1}$ of trees 11.6 inches and more in diameter

Age (years)	A verage breast-height diameter, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Inches												
30						12.7	12.8	12.9	13.2	13.4	13.7	14.1	14.6
40				12.7	12.8	12.9	13.1	13.3	13.7	14.1	14.5	15.0	15.6
50			12.6	12.8	12.9	13.2	13.5	13.8	14.3	14.8	15.4	15.9	16.6
60.		12.6	12.7	12.9	13.2	13.5	14.0	14.4	15.0	15.6	16.3	16.9	17.6
70	12.6	12.7	12.9	13.1	13.5	14. 0	14.6	15.1	15.7	16.4	17.2	17.9	18.7
80	12.7	12.8	13.1	13.4	13.9	14.5	15.2	15.8	16.5	17.3	18.2	18.9	19.8
90	12.8	13.0	13.3	13.8	14.4	15. 1	15.8	${ }^{16.6}$	17.4	18.2	19.2	20.0	${ }^{21.0}$
100	12.9	13.2	13.6	14.2	14.9	15.7	16.5	17.4	18.3	19.2	20.2	21.2	22.2
110	13.0	13.4	14.0	14.6	15.5	16.3	17.2	18.3	19.2	20.2			
120	13.1	13.6	14.4	15.1	16.0	16.9	18.0	19.1	${ }^{20.2}$	${ }^{21.3}$			
130	13.2	13.9	14.7	15.6	16.5	17.6	18.8	20.0	${ }^{21.2}$	22.4			
140	13.4	14.2	15.0	16.0	17.1	18.3	19.5	20.9	22.2	23.5			
150	13.6	14.4	15.4	16.4	17.7	19.0	20.3	21.8	23.2	24.6			
160	13.8	14. 6	15.7	16.8	18.3	19.7	21.1	22.7	24.2	25.8			
170	14.0	14.9	16.0	17.3	18.9	20.4	22.0	23.6	25.3	27.0			
180	14.2	15. 2	16.4	17.8	19.5	${ }^{21.1}$	22.8	24.5	26.4	28.2			
190	14.4	15. 7	16.8	18.3	20.0	${ }_{22}^{21.7}$	${ }^{23.6}$	25. 5	${ }^{27.5}$	${ }^{29.4}$			
200	14.6	15.7	17.1	18.8	20.5	22.4	24.4	26.5	28.6	30.6			

To nearest 0.1 inch
Table 15.-Cubic-foot volume per acre, ${ }^{1}$ including stump and tip but not bark, of trees 11.6 inches and more in diameter

Age (years)	Volume per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Cu.ft.	Cu	Cu.ft.										
30							200	470	${ }_{970}^{120}$	1280			
40				30	120	340	820	1,740	2. 770	3,990	5,230	6. 580	7.950
			30	150	410	970	2,060	3, 230	4,600	6,170	7 7,670	9,260	10,780
60		30	120	400	990	2,040	3,280	4,710	6,320	8,080	9,830	11,520	13,
70		90	310	870	1,870	3,090	4,440	6,110	7,910	9,730	11, 590	13, 380	15, 080
8	50	220	710	1,650	2,720	4, 110	5,540	7,310	${ }^{9} 210$	11, 100	13,030	14.880	16.640
	110	470	1,310	2, 400	3, 520	5,010	6. 520	8,310	10, 280	12,230	14, 200	16.110	17,940
100	240	870	1,960	3,100	4, 270	5,790	7,310	9, 130	11, 140	13, 140	15, 160	17, 430	19.020
${ }^{110}$	460	1,370	2,560	3,710	4,890	6.420	7, 950	9,780	11,800	13,900			
120	780	1,820	3, 060	4,220	5,410	6,950	8,490	10, 330	12.360	14.540			
130	1,140	2, 210	3,460	4,640	5, 850	7,400	8,950	10, 800	12,840	15,070			
140	1,450	2,550	3,810	5,000	6,230	7,780	9,340	11, 200	13, 250	15, 500			
150.	1,720	2,840	4,110	5,320	6, 560	8,120	9,680	11, 550	13, 600	15, 850			
160	1,950	3, 080		5,600	6, 840	8,420	9,990	11,850	13,950	16,200			
170	2.160	3,300	4,590	5,840	7,090	8,680	10, 270	12,150	14,250	16, 550			
180 190	21360	3,510 3 3	4,810	6,060					14,550	16.900			
190	${ }_{2}^{2} 5350$	3, 3 300	5, 220	6, 6170				12,650 12,850	14, 150	17, ${ }^{17,600}$			
	2730		5,220	6, 470	7,730	9,340	10, 950	12,850	15, 100	17,600			

${ }^{1}$ To nearest 10 cubic feet.

Table 16.-Board-foot volume ${ }^{1}$ per acre, Scribner rule, of trees 11.6 inches and more in diameter

Age (years)	Volume per acre, by site index-												
		50	60	${ }^{1} 0$	so	90	100	110	120	130	140	150	160
	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft	Bd.ft.	Bd.ft.	Bd. ft.	Bd. ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft.
30						200	1,000	2. 500	5,100	8,400	1,900	3,800 16,000	
40				100		1,900	4, 300	7. 500	12. 100	17.600	23, 100	29, 200	36, 500
50			100	700	2,300	5,000	9,200	14,000	20, 300	27,400	34,600	42,500	51,300
60			${ }_{600}$	2.200	5,100	9, 100	14, 800	21,000	28,400	37,000	45,800	55, 300	65, 400
${ }_{80}^{70}$		300	1.800 3.500	4.300	8, 500	13,800	20, 500	27, 800	36,400	46.200	56. 500	67. 300	78, 800
80	200	2.000	S. 500	10.000		13, 18.000	31. 200	34. 200 40 200	50, 53000	54, 800			91,300 103,000
100	400	3. 400	7. 800	13, 100	19, 700	27,200	36, 100	45, 800	57, 100	70, 000	8i, 400	99, 100	113,900
110	800	5.000	10, 200	16.200	23. 100	31, 100	40,600	50.800	62,900	76,700			
120	1,500	-.000	12,500	19,000	25, 200	34, 700	44.600	35, 400	\|68, 200	82. 800			
130	2. 500	8. 900	14.700	${ }^{21 .} 500$	29, 000	38,000	48, 300	59.600	73.000	88,300			
140	3,800	10. 700	16, 700	23. 700	31, 500	40,900	51, 700	63, 400	77,400	93. 200			
150	5,200	12. 400	18,500	25,700	33, 800	43, 600	54, 800	66,900	81,400	97, 600			
160	6. 600	13. 900	20. 100	27.500	35.900	46, 100	57, 600	70, 100	84,900	101, 500			
170	7.900	15.300	21. 600	29. 200	37.800	48, 400	60. 100	73, 000 \|'	88,000	105.000			
180	9.000	16. 600	23, 100	30.900	39.600	50. 500	62.400	75. 600	90.900	108, 200			
190.	10,000	1-, 800	24, 500	32,500	41,300	52, 400				111. 200			
200	11,000;	19.000	$\mathrm{I}^{25,800}$	34, 000	43,000	54, 200	66,700	80, 200	96, 100	114, 100			

\because In 16 -foot \log to 8 -inch top, exclusive of 2 -foot stump, measured to nearest 100 board feet.
comparison with previous findings
As has been mentioned, studies have previously been made of the yield of even-aged stands of ponderosa pine in several different portions of the range of the species. Reports on studies of this kind have been written by Gallaher, ${ }^{4}$ Show. (22), Alexander (5), Behre (3, 4), Dunning and Reineke (11), and Reineke. ${ }^{5}$

Of the six studies listed, Gallaher's showed the highest volumes for given site indexes and ages, Alexander's the lowest. The small part of California to which Gallaher's data refer is unsurpassed for pine production throughout the ponderosa pine region. The even-aged stands near Nevada City and Grass Valley greatly excel any otherstands, even on comparable sites, in volume production. However, the reasons for the high values obtained by Gallaher are not fully evident. His measurements were taken more than 25 years ago, and it is possible that some of the best stands represented by them have since been destroyed. Repeated surface fires have been set since that time to improve range conditions, and have reduced the stocking of the stands. Alexander's yield values, for British Columbia, are extremely low owing to the fact that stocking has been greatly reduced by repeated surface fires throughout the pine region of British Columbia and that the comparatively high ratio of stocking normality exhibited by the plots measured in the United States was nowhere duplicated in that Province.
Cubic-foot yield tables were included in all the reports but Gallaher's and Alexander's. Yields indicated by these tables for site indexes 80 and 120 are shown in table 17. Snme of the values shown in the table

can be read directly from the original tables; the others have been interpolated as exactly as possible.

Table 17.-Ponderosa pine yiclds per acre indicated by findings of different investigators ${ }^{1}$ in the United States

Age (ycars)	Site index 80				Site index 120		
	Meyer	Behre	$\begin{aligned} & \text { Dunning } \\ & \text { and } \\ & \text { Reincke }, \end{aligned}$	Show	Meyer	Bebre	$\begin{aligned} & \text { Dunning } \\ & \text { and } \\ & \text { Reineke } \end{aligned}$
30	cut.ft.		$\begin{gathered} \text { cu. ft. } \\ 1,650 \end{gathered}$	Cu.ft.		Cu. ft. 3,080 cose	Cu. ft. ${ }_{2,650}$
(4)	$3,9.50$ 5.300	3.590 4.640	5.300 78.850	5, 820	8,150 10 10	6,720 8670 8	
130	6. 290	5. 610	9,900	9.970	12.400	10, 4.50	15.900
15).	6. 8.50	6, 560	11. 600	12,020	13,600	12,240	18.400

Sources of values shown: Meyer, present publication; Behre (s); Dunning and Reineke (11); Show (28) ${ }^{2}$ Values are for stands in which heights of dominants and codominants a veraged 69.5 feet at 50 years.

The values given in the table vary widely, even though the upper and lower extremes of the range of yield values shown by individual studies are not included. Meyer's and Behre's values are fairly comparable. For ages 90 years and more Reineke's values and, with one exception, Show's values are far higher. Reconciliation is.well-nigh impossible. The values presented by Reineke, which were based on data gathered by him and by Show and other investigators, are not supported by the newer California data. Show's values represent chiefly yields of even-aged groups in a generally uneven-aged forest, and hence may connote a long initial period of highly competitive growth conditions or of suppression.

In view of the fact that in application of yield tables the values are adjusted to existent stand conditions, by means of normality percentages, differences between two sets of yield values are not disturbing so long as they are consistent, like the differences between Reineke's values and those of the present study. After adjustment the two may be identical. The chief difficulty with high values is psychological; many practicing foresters, familiar with average stand conditions, cannot put faith in yield tables showing values greatly exceeding average actual yields.

NORMAL MORTALITY

The enormous reduction in number of trees in a stand between early youth and maturity involves elimination of much volume that is seldom utilized under the present crude forestry practice but that will probably be utilized more commonly in the future in favorable situations and times. The trees that are normally lost through mortality should be removed in thinnings before they die.

Normal mortality as computed in this study is shown in table 18 The values tabulated were not obtained through long-term studies of mortality in single stands but were computed from the statistics obtained in the study of live stands, by a method explained in the appendix. They are uncurved, and are presented as approximate only. On land of site index 80 , for example, 980 trees 0.6 inch and more in diameter die out between the ages of 20 and 40 years, 608 during the next 20 -year period, 269 during the third, and so forth;
table $\mathbf{1 8} 8$ shows that the volume of the first lot of trees is only 101 cubic feet, because of their small size; that of the second is 552 cubic feet; and that of the third is 605 cubic feet. The cumulative totals for the ages 20 to 100 years, for site indexes $40,80,120$, and 160 , are 1,212 , $1,723,2,695$, and 4,360 cubic feet, respectively. These totals are 42 , 30,24 , and 23 percent, respectively, of the live volume for these site indexes at 100 years. It is seldom appreciated that the volume lost by a forest stand through normal mortality is such a large portion of the total production.
Table 18.-Normal mortality, by 20-year periods, for all trees 0.6 inch and more in breast-height diameter
PERIODIC VOLUME LOSS PER ACRE

Age period (years)	$\begin{gathered} \text { Site } \\ \text { index } \\ 40 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 60 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 80 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 100 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 120 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 140 \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { index } \\ 160 \end{gathered}$
$20-40$	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu. ft.	Cu.ft.
$40-60$	391	556	552	613	601	741	868
$60-80$	499	507	605	601	893	1,267	1.719
80-100.	322	427	465	722	1.095	1.344	1. 700
100-120.	221	307	409	727	865		
120-140	179	248	427	710	1.088		
${ }^{140-160}$	144	189	425	767	1,224		
$160-180$	88	${ }_{2}^{225}$	490	${ }_{7}^{699}$	1,073		
180-200	107	217	347	765	961		

Cumulative volume loss per acre

$20-40$		194	101	130	106	99	73
$20-60$	391	750	653	743	707	810	941
$20-80$	890	1,257	1,258	1,344	1.600	2. 107	2. 660
$20-100$	1,212	1,684	1,723	2,066	2.695	3, 451	4. 360
$20-120$	1,433	1,991	2.132	2,793	3. 360		
$20-140$	1,612	2,239	2,559	3,503	4,648		
$20-160$	1,756	2.428	2,984	4,270	5.872		
${ }^{20-180}$	1,844	${ }^{2} .653$	3.474	4.969	6.945		
20-200	1,951	2,870	3.821	5,734	7,906		

In understocked stands volume loss by mortality is less than in normal stands, absolutely and perhaps relatively.

application of yield tables

In applying normal-yield tables constant emphasis must be placed on the necessity of determining as accurately as time and cost will allow the true conditions of age, site, area, and stocking. For small tracts precise determination of each of these factors is feasible; for large areas, approximate or average values must often suffice.
It is especially fruitless to predict yield for nonforested land on the assumption that a satisfactory reproduction stand will be obtained without silvicultural measures. Only when a stand has been established and age, stocking, and site conditions are known should predictions of growth rate and yield be attempted.

age determination

To estimate the average age of dominant and codominant trees, inexperienced fieldmen should make increment borings in at least 15 to 20 trees or should count the rings on that many stumps. With
experience and practice it becomes easy to dispense with some of the borings or stump counts. To convert age determined by boring at breast height to total age, it is necessary to make an addition varying with site quality as follows: I, 6 years; II, 8 years; III, 10 years; IV, 12 years; V, 14 years; VI and poorer, 16 years. These allowances are for free-growing dominant seedlings, not for seedlings subjected to severe competition; the time required by seedlings of the latter description to grow to breast height is much greater. For a large area, often it is impracticable to classify age of stand more closely than to within 20 years.

SITE-QUALITY DETERMINATION

An area's site index, as was previously explained, is obtained by determining the age and height of representative dominant and codominant trees. Caution must be observed to get not the maximum height for these dominance classes but the average. The most accurate way is to construct a height curve for the stand (which incidentally may be used for other purposes, such as volume computation), compute the average diameter of the dominant and codominant trees from a stand tally, and read from the curve the height corresponding to this diameter. The site index can then be read from figure 2 . The usual tendency in estimating site quality without following this procedure is to overestimate.

With experience and practice it is found possible to rely more and more upon direct ocular estimates of site quality-especially if use is made of the system of seven general site-quality classes defined in table 2.

STOCEING DETERMINATION

In order to adjust normal-yield-table values to conditions actually existing in an even-aged stand, it is necessary to determine the stand's stocking. The stocking classification recommended for large areas is as follows: 70 percent of normal or more, well-stocked; 40 to 69 percent, medium-stocked; 10 to 39 percent, poorly stocked; and less than 10 percent, nonstocked. Actual stocking percentages should be computed by means of the field examinations.
Many different methods of stocking determination have been developed. None of them is perfect or is in general use. Even if satisfactory for expressing present stocking, they fail to show what changes in stocking may take place in the future. Among the different methods recommended for use on some occasions and in connection with some problems are: (1) Use of a "normality percentage," the ratio between a certain value determined for an actual stand and the value shown in the normal-yield table for the appropriate age and site classes; (2) use of stand-density index; and (3) the stockedquadrat method.

Use of normality percentages, especially that of basal area, has been recommended time and again (19, 15). In this study it has been proved that these percentages are useful as means of predicting total cubic-foot volume, total board-foot volume by International rule, and other values for the complete or nearly complete stand. Some of the correlations between normality ratios of stand factors are listed in table 19, and the more valuable ones are shown in graphic
form in figure 11. The low coefficient of correlation between the normality ratio of basal area and that of board-foot volume by Scribner rule indicates that basal-area ratio is of little use in predicting Scribner volumes. The multiple correlation of the normality ratios of basal area, average diameter, and volume by Scribner rule is higher, but not sufficiently high to be useful. As in other studies, the normality percentage for board-foot volume was found to be correlated fairly closely with that for number of trees above a specified diameter

Figure 11.-Relations of volume normality to basal-area and number-of-trees normality: a, Cubic-foot volume; b, board-volume relations represented are those of stands containing at least 5,000 board feet per acre. For a,b, and c, the independent variable is basal-area normality; for d. it is normality of number of trees 11.6
inches and more in diameter. inches and more in diameter.
The stand-density-index method was devised rather recently by Reineke (21). Ordinarily it requires no knowledge of age or site. The regression line drawn by Reineke for determining stand-density index, which fitted data for a number of species very well, did not fit the data of this study; accordingly a new line was drawn for use with ponderosa pine. A system of parallel curves based on this line appears as figure 12. The relations of normality percentages for various yield values to stand-density index as determined from figure 12 are shown in table 19 and in figure 13.

Table 19.-Correlation of measures of stocking with various yield values

| Relation |
| :---: | ---: | ---: | :--- | :--- |

1 Including only plots having a volume per acre of 5,000 board feet or more.
I Including only plots on which the average diameter of all trees was 8.6 inc
To determine stand-density index by use of figure 12 it is necessary only to know total number of trees per acre and average diameter. If, for instance, a stand has 770 trees per acre averaging 7.5 inches d. b. h., the first step in determining its stocking-normality percentage is to find in figure 12 the intersection representing this density and this diameter. The value of 450 can then be read from the guide lines by interpolation. According to figure 13 this index is associated with a cubic-volume normality ratio of 109 percent. Thus the stand is slightly above normal in volume.
Tests of the yield tables show that there is a slight relation between stand-density index and site index. The higher average stand-density indexes are associated with the lowest site indexes and the highest site indexes. For greatest accuracy, a correlation for site index should probably be introduced when stand-density index is used as a measure of stocking; but the effect is so small that it is justifiable to read indexes directly from figure 12 if they are to be used in connection with figure 13 , about whose regression lines the variation is fairly wide.
The stocked-quadrat method, described by Haig (12) and Cowlin (10), is particularly useful in estimating the stocking of reproduction stands. A quadrat is classified as stocked if it contains one or more seedlings, and if it contains more than one this does not alter the classification of a neighboring nonstocked quadrat. This method gives directly an estimate of the percentage of the total area on which seedlings are present in adequate numbers. Good distribution of seedlings is the silviculturist's aim rather than large number of seedlings per acre, which does not necessarily imply satisfactory stocking.
In some instances the size of the quadrat has been made to correspond with the number of trees per acre desired at the rotation age. For instance, according to table 3 a 120 -year-old atand on an area of site index 80 normally contains 196 trees per acre. If these trees are

FIGURE 12.-Stand-density index, based on a regression line drawn for even-aged ponderosa pine.
evenly spaced, each has 222 square feet, or a 14.9 -foot square, of growing space. Obviously, this spacing is much too wide for best form development of smali seedlings; it will cause excessive limb development and retard shedding of limbs. In other instances quadrat size has been made to represent the growing space of each tree in a fully stocked, evenly spaced reproduction stand soon after the stand becomes established. This has led to use of a quadrat 6.6 feet on the side, corresponding to a stocking of 1,000 evenly spaced seedlings to the acre. In the greater part of the ponderosa pine range the 6.6 -foot spacing is undoubtedly much too close for continued normal development. For the time being the author has compromised by dividing the acre into 500 quadrats. This corresponds to an even spacing of 9.33 feet in each direction. If ponderosa pine seedlings become estab-

FIGURE 13- Relations of volume normality percentages to stand-density index: a, Cubic-foot rolume b, board-foot volume, International rule; c, board-foot volume, Scribner rule
lished in this density they should grow well, without risk either of stagnation or of excessive limb development. This should by no means be taken to imply that an average density of 500 trees to the acre is adequate for planting, or that natural seedling reproduction averaging 500 trees per acre can be expected to develop into a satisfactorily dense stand of timber. On a ponderosa pine area where each one five-hundredth acre contains at least one established seedling, the total number of such seedlings per acre is likely to be 2,000 .

Of the many ways of applying the stocked-quadrat theory, one of the more practical is to record the stocking of groups of four quadrats each at some definite interval, such as 1 chain, along survey lines evenly spaced through the area. Stopping at the end of each chain or other chosen interval, the estimator considers himself in the center of a block of four 9.33 -foot quadrats. He looks in the first quadrat until he finds an established seedling or assures himself that none is
present, then in the second, and so on. The number of stocked quadrats divided by the total number of quadrats examined gives directly the percentage of stocking. It is often desirable to break the total runs into definite units, such as 20 chains, in order to localize variations in stocking.

Number of seedlings per stocked quadrat increases with computed stocking. In reproduction surveys in pine stands of south-central Washington, for instance, in which groups of 4 quadrats were examined at 1 -chain intervals along 20 -chain strips, average total number of seedlings per stocked quadrat varied with stocking percentage as follows: 1 to 10 percent, $1 ; 11$ to 28 percent, $2 ; 29$ to 42 percent, 3 ; 43 percent and more, 4 .
For second-growth ponderosa pine stands basal-area ratio or standdensity index is the most useful method for determining stocking in terms of cubic-foot volume and board-foot volume by International rule; number-of-trees normality ratio is the only valid method for determining stocking in terms of board-foot volume by Scribner rule; and the stocked-quadrat method should be used for determining stocking of reproduction.
yield-SURVEY PROCEDURE
A yield survey involves getting stand tallies as in a valuation survey and gotting the necessary data on age of stand, site quality, and stocking for each portion of the area. The exact methods of a yield survey will not be defined in detail; they have been described in a number of previous publications, particularly the report on the study of yield of Douglas fir in the Pacific Northwest (13).
For greatest efficiency the field work of the survey should be done by a party of three men-one to run the line and make the map, one to estimate, and one to make increment borings, measure heights, and keep account of variations in age and site class. A forester working on a yield study of ponderosa pine soon learns to estimate heights ocularly to the nearest 10 feet with occasional checks by instrumental measurement, and eventually learns to estimate age to the nearest 20 years. For the purpose of site-index determination it is better to estimate numerous heights within 10 feet than to measure a few accurately with instruments. For extensive work it is almost imperative that the forester train himself to recognize age of stand and quality of site without much effort. Lack of such training causes undue delay in the conduct of a yield survey.
The survey maps and statistics should show divisions of area by age of stand, site quality, and stocking class. In the office the stand tallies are worked up, the map is perfected, and the areas are planimetered and tabulated. The terms in which the estimates are made, and the rotation age, vary with needs. Sometimes estimates of current grow th are needed, sometimes estimates of total volume at future dates-with or without reference to rotation age; at still other times, it is necessary to calculate the best time to cut for products of specific sizes. Each of these needs and many others are met by use of the yield tables.
An instance of extensive use of yield tables is the growth calculations for the entire Douglas fir region of Oregon and Washington. ${ }^{\circ}$ Similar

[^1]calculations will be made for the ponderosa pine region of these States by means of the yield tables presented in this bulletin.

INCREMENT AND ROTATION

Mean annual and periodic annual increments computed from the yield tables are given in tables 20 to 25 . Rotation ages for the three volume measures are summarized in table 26. For cubic-foot volume production, they range from 40 to 70 years; for board-foot volume production estimated by the International rule, from 60 to 160 years or more; for board-foot volume production estimated by the Scribner rule, from 90 to much more than 196 years. The poorer the site quality and the less complete the utilization, the greater is the rotation age.
Lands of the poorest site qualities, those for which the indexes are 40 to 60 , apparently are totally unfit for lumber production because of the long rotations involved. For production of fuel wood and other small-sized material, they undoubtedly have their use.
In many respects the rotation ages stated in table 26 are unsatisfactory, since they were calculated without regard to amount invested, carrying costs, prospective returns, or other financial considerations. Calculations in which these values are taken into account are necessarily of local and temporary application only. Methods of making such calculations are described in most forest-management textbooks. Calculations of this character made in the course of this study have indicated rotation ages much lower than those shown in the table, especially when high rates of compound interest were assumed. Discounting of final net financial rield to the present time to find the present value of an immature stand further reduces rotation age.

Table 20.-Periodic annual cubic-foot increment per acre of trees 0.6 inch and more in diameter

Age (years)	Increment per acre, by site index-												
	40	50	60	70	${ }_{80}$	90	100	110	120	130	140	150	160
	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft	Cu.ft	Cu.ft	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.
25.						110	130	150	150	210	215		250
35	55	55	65	70	so	95	110	130	145	180	200	${ }_{2} 22$	${ }_{2}^{250}$
45	40	50	55	60	65	80	95	115	135	155	180	210	235
55	35	40	45	50		65	80	95	115	130	160	180	200
	30	35	35	45	50	55	65	80	95	115	140	155	175
75.	30	30	30	40	45	50	60	70	85	100	120	130	150
85	25	25	25	35	40	45	55	${ }_{5}^{60}$	75	80	${ }_{9}^{10.5}$	${ }_{95}^{110}$	110
95	25	25	25	30	35	40	45	55	65	80	90	95	110
105	20	20	25	25	30	35	40	45	55	70			
115	20	20	25	25	${ }^{25}$	30	35	40	50	60			
125	15	20	20	25	25	30	30	35	45	50			
135	15	15	20	20	20	25	30	35	${ }_{4}^{40}$	40			
145.	10	15	15	20	20	25	30	30	35	35			
155	10	15	15	15	20	25	25	30	35	35			
165.	10	10	15	15	20	20	25	30	30	35			
175.	10	10	15	15	20	20	25	25	30	35			
185	10	10	10	15	20	20	25	25	30	35			
195	10	10	10	15	15	20	20	20	25	35	--		

Table 21.-Mean annual cubic-foot increment per acre ${ }^{1}$ of trecs 0.6 inch and more in diameter

Age (years)	Increment per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
20	Cu.ft.	Cu.jp.	Cu.ft.	Cufit	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft	Cu.ft.	Cu.ft	Cu.ft.
30	17	27	37	35 48	${ }_{65}^{50}$	688	r 85	105 120	140	1338	${ }_{183}^{168}$	188	218
40	26	34	44	54	69	85	102	122	141	166	188	${ }_{210}^{205}$	223
50	29	37	46	55	68	84	101	121	140	164	186	210	234
60.	30	38	46	54	66	81	98	117	136	158	182	205	228
70	30	${ }^{37}$	44	5_{51}^{53}	64	77	93	111	130	152	176	198	221
80	30	${ }^{36}$	42	51	61	74	89	106	124	146	169	189	212
190	${ }_{29}^{29}$	35	${ }_{39}^{41}$	49	59 56	${ }_{68} 71$	85	101	119	139	162	181	203
100	29	34	39	48	56	68	81	96	114	134	154	172	194
110	28	33	38	45		65	77	92	108	128			
120	28	32	37	44	52	62	74		103	122			
130	27	31	35	42	50	59	70	83		117			
140	26	30	34	41	43	57	68	80	95	111			
150.	25	29	33	39	46	55	65	77	91	106			
160.	24	28	32	38		53							
170	23	27	31	36	43	51	60	71	84	98			
180	22	${ }^{26}$	30	35	41	49	58	69	81	94			
190	${ }_{21}^{22}$	25	${ }_{29}^{29}$	${ }^{34}$	40	48	57	66		91			
200	21	24	28	33	39	46	55	64	76	88			

${ }^{1}$ To nearest cubic foct
Table 22.-Periodic annual board-foot increment, International rule ($1 / 8$-inch kerf), per acre of trees 6.6 inches and more in diameter

Age (years)	Increment per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	60
	Bd.ft.	Bd.ft											
35				150	260	${ }_{430}^{260}$	480	680 880	970 1.140 1	1,290	1,590	1,800	1.970 1900 1
45			130	260	400	560	740	940	1,130	1,300	1,440	1,610	1,730
55.		100	190	310	490	630	770	890	1,020	1,160	1.300	1,450	1. 580
${ }_{75}^{65}$	30	150	240	360	530	640	700	790	890	1,030	1,170	1,320	1.460
75	${ }^{60}$	190	270	380	520	570	620	690	790	910	1.060	1,210	1. 350
85	90	210	230	360	440	500	540	620	710	810	960	1.100	1. 240
95	130	220	290	340	370	420	470	550	630	730	870	1,000	1,140
105	140	210	280	300	320	360	420	480	570	670			
115	160	200	260	270	290	330	370	440	510	610			
${ }^{125}$	160	190	230	250	270	300	340	400	460	540			
135	150	180	210	230	250	250	320	370	420	490			
145	140	170	200	210	230	260	300	350	390	440			
155	130	160	190	200	210	250	280	330	370	400			
165	120	150	170	190	200	240	270	300	350	380			
175	120	140	160	180	200	230	260	280	330	360			
185	120	140	150	170	190	220	250	270	310	340			
195	110	140	150	170	190	210	240	270	290	330			

Table 23.-Mean annual board-foot increment, ${ }^{1}$ International rule ($1 / 8-$ inch kerf), per acre of trees 6.6 inches and more in diameter

Age (years)	Increment per acre, by site index-												
	40	50	60	\%0	80	90	100	110	120	130	140	150	160
	Bd.ft.	Bd.ft.	Bd. ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft	Bd.ft.	Bd.ft.	Bd.ft.	Bd ft.	Bd.ft.	Bd. ft.
${ }_{30}$				13	37	${ }_{93}^{10}$	180	273	${ }_{417} 14$	580	$\stackrel{363}{\square} 7$	${ }_{960}$	1,207
40			12	48	92	178	298	425	598	785	975	1,160	1.380
50.		10	36	90	154	254	386	528	704	888	1,068	1,250	1,450
6n.	2	25	62	127	210	317	450	588	757	933	1.107	1,283	1,472
70	6	43	87	160	256	363	486	617	776	947	1,116	1. 289	1,470
80	12	61	110	188	289	389	502	626	778	942	1.109	1,279	1,455
90	21	78	130	207	306	401	507	625	770	928	1.092	1,259	1,431
100	32	92	146	220	312	403	503	618	756	908	1.070	1,233	1,402
110	42	103	158	227	313	399	495	605	739	886			
120	52	111	167	231	311	393	485	592	720	863			
130	60	117	172	232	308	386	474	577	700	838			
140	66	121	174	232	304	379	463	562	680	813			
150	71	125	176	231	299	371	452	548	661	788			
160	75	127	177	229	293	363	441	534	642	764			
170	78	128	176	226	228	356	431	521	625	741			
180	80	129	176	224	223	349	422	507	609	720			
190	82	129	174	221	278	342	413	495	593	700			
200	84	130	173	218	274	336	404	484	578	682			

${ }^{1}$ To nearest board foot.
Table 24.-Periodic annual board-foot increment, Scribner rule, per acre of trees, 11.6 inches and more in diameter

Age (years)	Increment per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Bd.ft.	Bd.ft.	Bd ft.	Bd. ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft	Bd ft.	Bd.ft.	Bd. ft
${ }_{35}$						170	330	240	470	${ }_{920}^{750}$	1.130		1.410 1.510 1
45.				60	170	310	490	650	820	980	1.150	1,330	1,480
55			50	150	280	410	560	700	810	960	1.120	1. 280	1.410
65			120	210	340	470	570	680	800	920	1.070	1,200	1,340
75.		60	170	270	370	470	550	640	750	860	1,000	1,130	1,250
85	10	110	200	300	350	450	520	600	690	790	930	1,060	1,170
95.	20	140	230	310	370	420	490	560	630	730	860	990	1.090
105.	40	160	240	310	340	390	450	500	580	670			
115.	70	200	${ }_{230}^{230}$	280	310	360	400	460	530	${ }_{6}^{610}$			
125.	100	190	220	250	280	330	370	420	480	550			
135	130	180	200	220	250	290	340	380	440	490			
145	140	170	180	200	230	270	310	350	400	440			--
155.	140	150	160	180	210	250	280	320	350	390			
165	130	140	150	170	190	230	250	290	310	350			
175.	110	130	150	170	180	210	${ }_{2}^{230}$	260	290	320			
185	100	120	140	150	170	190	${ }_{210}^{220}$	240	${ }_{250}^{270}$	300 200			
195.	100	120	130	150	170	180	210	220	250	290			

Table 25.-Mean annual board-foot increment, ${ }^{1}$ Scribner rule, per acre of trees 11.6 inches and more in diameter

Are (years)	Increment per acre, by site index-												
	40	50	60	70	80	90	100	110	120	130	140	150	160
	Bd.ft.	Bd ft.	Bd.ft	Bd.ft	Bd ft.	Bd.ft.	Bd.ft.	Bd. ft	Bd. ft	Bd.ft	Bd.ft.	Bd.ft.	Bd.ft.
30						7	33	83	170	280	${ }_{393}^{95}$	${ }_{533}^{190}$	365 713
40.				2	15	48	108	188	302	440	578	730	912
50			2	14	46	100	184	250	406	548	692	850	1,026
60.			10	37	85	152	247	350	473	617	763	922	1.090
70		4	26	61	121	197	293	397	520	660	807	961	1.126
80		11	44	88	152	231	325	428	549	685	831	982	1.141
90	2	22	61	111	178	256	347	447	564	697	842	991	1, 144
100	4	34	78	131	197	272	361	458	571	700	844	991	1,138
110.	7	45	93	147	210	283	369	462	572	697			
120	12	58	104	158	218	289	372	462	568	690			
130	19	68	113	165	223	292	372	458	562	679			
140	27	76	119	169	225	292	369	453	553	666			
150.	35	83	123	171	225	291	365	446	543	651	...		
160.	41	87	126	172	224	288	360	438	531	634			
170	46	90	127	172	222	285	354	429	518	618			
180	50	92	128	172	220	281	347	420	505	601			
190.	53	94	129	171	217	${ }_{271}^{276}$	340	411	493	585			
200	55	95	129	170	215	271	334	401	480	570			\cdots

${ }^{1}$ To nearest board foot

Table 26.-Rotation ages for even-aged stands of ponderosa pine, by cubic-foot and board-foot measure

Site index	$\begin{gathered} \text { Cubic- } \\ \text { foot } \\ \text { measure } \end{gathered}$	Board-foot measure		Site index	$\begin{gathered} \text { Cubic- } \\ \text { foot } \\ \text { measure } \end{gathered}$	Board-foot measure	
		Inter- national rule	Scribner			$\begin{gathered} \text { Inter- } \\ \text { national } \\ \text { rule } \end{gathered}$	$\begin{gathered} \text { Scribner } \\ \text { rule } \end{gathered}$
40.	Years	Years	Years	120.	Years ${ }^{39}$	Yeats ${ }^{76}$	Years ${ }_{107}$
${ }_{80}^{60}$	54	161		1400	41	70	97
100	40	${ }_{90}$	124	16.			

STAND and STOCK TABLES

Table 27 is a stand table for average ponderosa pine conditions throughout the portion of the range of the species covered by this study. Table 28 shows the results of applying the percentages shown in table 27, or interpolated values, to the number-of-trees yield table for total stand (table 4). If desired, comparable values can be computed for other ages and site conditions. Since there is a decided variation from one region to another, distributions for four representative sets of local conditions are given in table 29, namely, those of the west slopes of the Sierra Nevada, of Oregon and Washington, of Idaho and Montana, and of the Black Hills.

Table 27.-Percentage distribution of total number of trees per acre by diameter class in stands of different average breast-height diameters, for range as a whole

Diameter class (inches)	Treas per acre, by average diameter of stand													
	$\begin{aligned} & \text { 듬 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { \#. } \\ & \stackrel{0}{a} \\ & \stackrel{\sim}{2} \end{aligned}$		$\begin{aligned} & \text { y } \\ & \text { de } \\ & \text { : } \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { y } \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{0}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$					苋
1.	$\begin{aligned} & \text { Pct. } \\ & 80.0 \end{aligned}$	$\begin{gathered} P+0 \\ 480 \end{gathered}$	Pet. 19.0	Pcte 120	$\begin{aligned} & \begin{array}{c} c t . \\ 880 \end{array} \end{aligned}$	$\begin{gathered} P c t . \\ 4.6 \end{gathered}$	$\begin{gathered} P c t . \\ 3.3 \end{gathered}$	Pct_{2}	$\begin{gathered} P c t . \\ 1.5 \end{gathered}$	Pct. 0.7	Pct.	Pct.	Pct.	Pct.
2-3	19.1	46.5	57.0	44.0	32.5	25.4	17.7	13.1	9.5	66	4.1	2.5	1.5	1.0
$4-5$. 9	5.0	20.0	30.0	31.5	28.0	25. 5	20.0	16.5	132	10.1	6.7	4.5	3.1
6-7			3.5	10.7	177	22.0	23.0	22.5	20.5	17.5	15.8	12.8	9.8	7.5
$8-9$. 5	2.7	7.4	12.0	15.5	19.0	19.0	19.0	18.5	16.5	14.2	11.9
10-11				. 6	2.2	5.6	8.8	11.7	15.2	17.0	17.0	18.0	17.0	15.0
12-13					. 7	1.7	3.9	6.4	9.0	12.0	13.5	15.5	16.5	16.5
$14-15$. 7	1.6	3. 1	5. 0	7.3	10.0	12.1	14.0	15.0
16-17							. 7	1.3	2.4	3.9	5.8	7.6	9.8	12.0
18-18								. 5	1.4	1.8	3. 0	4.6	6.5	8.5
20-21										1.0	1.4	2.2	3.6	5.1
${ }_{24-25}^{22-23}$. 8	1.0	1.6	2.7
$\begin{aligned} & 24-25 \\ & 26-27 . \end{aligned}$													1.0	$\begin{array}{r}1.1 \\ \hline .6\end{array}$
28-29.														
30-31.														
32-33-														
${ }_{36-37}^{34-35}$														
38-39.														
Diameterclass(inches)	Trees per acre, by average diameter of stand													
														$\begin{aligned} & \text { む } \\ & \stackrel{5}{0} \end{aligned}$
	Pct.	Pet.	Pct.											
	0.6	0.5												
	5.0	1.5	1. ${ }^{1} 5$	2.2	2.5	2.0	1.7	1.4	1.2	1.0				
8-9	${ }^{9.3}$	7.4	5.6	4. 5	3.4	2.7	2.0	1.7.	1.3	1.2	1.9	1.7	1.5	1.4
${ }_{12-11}^{10-13}$	13.0 15.0	10.3		7.5 10.2	${ }_{8.6}^{6.0}$	4.8 7.5			2.5			1.4		
${ }_{14-15}^{12-13}$	15.0	14.0 15.5	11.5	10.2 13.0	8.6 11.5	7.5 10.0	6.0 8.5	4. 4	4.1	3.3 5.4	4.5	2.4	1.9 3.2 1	1.7 2.7
16-17	13.5	14.5	15.0	15.0	13.0	11.5	11.0	9.5	8.0	7.0	6.4	5. 5	4.7	3. 9
18.19	10.8	12.5	13.0	13.5	14.5	13.5	13.0	12.0	10.5	9.5	8.6	7.2	6.0	5. 5
20-21.	7.2	9.3	11.2	12.0	13.5	13.5	13.5	13.5	13.0	11.5	10.0	9.5	8.5	
22-23	3.9	5.7.	7.9	9.6	10.5	12.0	12. 5	12.5	13.0	${ }^{13.0}$	12.0	11.0	10.0	9.5 11.5
24-25-	2.0	3. 0	4.5	6.0	8.1 4.8 	10.0 6	10.7 8.3							
${ }_{28-29}^{26}$	1.1	$\begin{array}{r}1.4 \\ \hline\end{array}$	${ }_{1.1}^{2.3}$	3.3.	4.8	6.7 3.7	8.3 5.2	7.6	10.6 8.6	11.5 9 9	11.5 9.9 5	12.0	12.0 12.0	12.0 11.5
$30-31$. 6	1.2	1.6	2.6	3.9	5.3	7.0	8.6	9.7	9.7	${ }^{10.0}$
${ }_{34}^{32-33}$							1.2	$\begin{array}{r}1.5 \\ \hline\end{array}$	2.6 .9	4.1.7	5. ${ }_{2.4}$	7.3 4.0	8.8 5.5 5.	9.7 7.2
${ }_{36-37}^{34}$ -									. 9	1.7	${ }^{2.8} 8$	1.5	2. 4	3. 9
$38-39$. 6	1.2

The numbers of trees shown in these stand tables for given breast-height-diameter ranges do not invariably check with the values shown in yield tables 7 and 12; vastly differing techniques were used in deriving the two kinds of tables, and little attempt was made to adjust the results.

Table 28.-Distribution of total number of trees per acre by diameter class in stands of different ages and site indexes, for range as a whole

SITE INDEX 40

Table 28.-Distribution of total number of trees per acre by diameter class in stands of different ages and site indexes, for range as a whole-Continued.

$$
\text { SITE INDEX } 100
$$

1) iameter class inches)	Trees per acre, by age class									
	$\begin{gathered} 20 \\ \text { years } \end{gathered}$	$\begin{gathered} 40 \\ \text { years } \end{gathered}$	$\begin{aligned} & 60 \\ & \text { years } \end{aligned}$	$\begin{gathered} 80 \\ \text { years } \end{gathered}$	$\begin{gathered} 100 \\ \text { years } \end{gathered}$	$\begin{gathered} 120 \\ \text { years } \end{gathered}$	$\begin{aligned} & 140 \\ & \text { years } \end{aligned}$	$\begin{aligned} & \text { yen } \\ & \text { years } \end{aligned}$	$\begin{gathered} 180 \\ \text { years } \end{gathered}$	$\begin{gathered} 200 \\ \text { years } \end{gathered}$
	Number									
2-3.	634	137	35	i	2					
4-5.	320	196	${ }_{85}^{63}$	19		${ }_{5}^{2}$	1	\cdots		
$8-9$	$\stackrel{20}{90}$	121	85	34 49	${ }_{22}^{12}$	${ }_{9}$	4			
10-11		68	11	50	27	15	8	4	2	
12-13.		35	47	44	31	20	11	7	4	
14-15.		13	32	36	32	${ }_{2}^{23}$	14	1	${ }_{6}^{6}$	3
16-17.		5	13	23	25	22	17	11	8	5
18-19.			6	13	19	20	17	13	${ }^{9}$	
20-21			4	7	12	16	16	13	10	8
22-23-25				3	7	10	13	12	11	9
26-25					${ }_{2}^{3}$	${ }_{3}$	9	8	$\begin{array}{r}10 \\ 8 \\ \hline\end{array}$	9
22-29						1	1	5	6	
30-31							1	2	4	
34-35								1	2 1	${ }_{1}$
36-37.......										
Total	1,280	78.5	445	286	199	152	120	98	82	70

Table 28.-Distribution of total number of trees per acre by diameter class in stands of different ages and site indexes, for range as a whole-Continued

SITE INDEX 140

Diameter class (inches)	Trees per acre, by age class									
	$\underset{\text { years }}{20}$	$\begin{gathered} 40 \\ \text { years } \end{gathered}$	$\begin{gathered} 60 \\ \text { years } \end{gathered}$	$\begin{gathered} 80 \\ \text { years } \end{gathered}$	$\begin{gathered} 100 \\ \text { years } \end{gathered}$	$\begin{gathered} 120 \\ \text { years } \end{gathered}$	$\begin{aligned} & 140 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 160 \\ & \text { years } \end{aligned}$	$\begin{gathered} 180 \\ \text { years } \end{gathered}$	$\begin{aligned} & 200 \\ & \text { years } \end{aligned}$
	Number									
1-3	${ }_{111}^{24}$	17	2							
4-5.	146	44	8	3						
6-7	129	65	19	6	3					
89	81	75	32	${ }^{13}$	4					
10-11	42	${ }_{6}^{67}$	39	${ }_{2}^{16}$						
	19		45	22	14					
16-17	2	23	32	27	17					
18-19		11	24	26	19					
20-21.		5	14	18	18					
22-23			7	$\begin{array}{r}14 \\ 8 \\ \hline\end{array}$	13					
${ }_{28-27}^{24}$			2	4	8	-				
28-29				1	4					
32-33					1					
Total	561	405	269	185	139					
SITE INDEX 160										
$2-3$	42	5								
4-5	75	15								
6-7	83	32	${ }^{9}$	${ }^{3}$	2					
$10-11$	53	54	23	10	4					
12-13.	32	53	31	14	6					
14-15	15	43	35	19	9					
16-17	7 3	30	${ }_{28}^{32}$		12					
20-21.	1	11	21	21	18					
22 -23.		5	13	17	15					
24-25		2	7	${ }^{13}$	13					
26-27			3 2 2							
28-29			2	1	8					
32-33-					3					
Total.	394	316	224	162	123					
	394									

Table 30 is the stock table for cubic-foot volume and table 31 for board-foot volume by Scribner rule. These tables represent average conditions and also conditions in individual subregions. No attempt is made here to present stock tables for selected ages and site indexes.
Stand and stock tables have many different uses, chief among which is prediction of the sizes of trees producible in future times. For the purposes of many calculations it is essential to know exactly how many trees of certain diameter classes will be obtained or how many years will pass before certain numbers of trees attain specified diameters. These tables are especially valuable in calculation of logging costs and profits. Often it is necessary to introduce tree size into computations of net costs and to deduce from these what silvicultural treatment is preferable.
The methods by which the stand and stock tables were constructed are described in the appendix.
diameter class, in stands of different average breast-height diameters, for range as a
whole and subregions
ENTIRE RANGE

Table 31．－Percentage distribution of Scribner board－foot volume by diameter class in stands of different average breast－height diameters，${ }^{1}$ for range as a whole and subregions
entire range

Diameter class（inches）	Volume in diameter class														
					$\begin{aligned} & \text { ö } \\ & \stackrel{0}{\ddot{E}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 』 } \\ & \stackrel{\Delta}{E} \\ & \text { E } \\ & \leftrightharpoons \end{aligned}$			第	吅		\％	g \＃ 兑 a	碳	華
12－13	Pd.	Pct.	$P d$	Pct.	Pct.	Pct.	Pat.	Pct．	Pad	Pct．	$\mathrm{Pat}_{0 .}$	Pct．	Pct．	Pct．	Pct．
14－15	4.0	30.4	33.0	25.0	17.5	12.5	8.6	6.1	4.1	3.2	2.2	2.0	1.5	0.8	
16－17．		9.0	23.3	25.0	${ }^{22.0}$	18.0	14．2	11.0	8． 0	6.0	4.2	3.3	2.5	2.1	1.8
18－19．		1.5	10.2	18.5	21.0	20.0	18.0	14.5	12.0	9.7	7.8	5.7	4.5	3.5	2.7
20－21		1	2.8	9.7	15．4	18.0	19.0	18.0	16．0	13.0	11.5	10.0	7.5	6.6	5． 0
22－23，			． 7	3.6	8.2	12.8	15.0	16.5		16.5	15.0	13.0	11.5	9.0	8.0
24－25				1.0	3． 8	7.4	11.2	14.3		16.5	16.5	16.0	13.5	13.0	11.5
26－27				． 2	1． 3	3.4	${ }_{2}^{6.1}$	9.4 4 4	12.5	14.0	15.5	16.0	16.0	14．0	13.0
$30-31$						$\begin{array}{r}1.0 \\ . \\ \hline\end{array}$	$\begin{array}{r}2.5 \\ \hline\end{array}$	2.6	7.0 3.9		12.0 8.5			13.0	16.0
32－33							． 3	． 7	1.3	2.7	4.2	6.3	8.9	11.0	12.5
34－35									． 3	8	1.6	2.9	4.6	7.3	9.0
36－37．											． 2	8	1.8	3.0	4.5
38－39													． 2	． 7	1.8
															． 2

California

12－13．	98.0	52.0	29.0	17．0	10.8	7.5	5.1	3.9			1.6	1.3	1.0	0.8	
14－15	2.0	35．0	30.0	21.0	15．2	11.0	7.5	5.1	4.0	2.9	2.3	1.7	1.4	1.0	
16－17		10.7	${ }_{12}^{24.0}$	24．0	19.0	${ }^{14.5}$	11.4	8.5	6． 8	${ }^{5.6}$	4．1．	3． 5	2.5	2.0	
18－19		$\begin{array}{r}2.1 \\ . \\ \hline\end{array}$	12．0	18．5	16．0	15．0	13.0 17.0	$1{ }^{10.5}$	9．2	8． 81	${ }_{8}^{6.5}$	7.5	4． 6.1	3． 2	
22－23			1．${ }^{3}$	5.2	10．5	14.5	16.0	16.0	13.0	11． 0	8． 10	9.5	7.8	6． 5	
24－25			． 2	2.2	5.3	11.3	14.0	17.0	18.0	15.0	14.0	12.0	11.0	9.5	
26－27．				5	2.8	5.3	9.8	13.5	17．0	18．0	18.0	16.0	14．0	12.0	
28－29				． 1	8	2.3	4.6	7.8	11.5	15.5	17.0	19.0	19.5	17.0	
30－31．					1	． 6	1.5	3.0	5.0	8.5	12.5	16.0	18.5	21.0	
32－33							． 1	． 7	1.4	2.7	4.6	7.2	10．8	16.0	
－ $36-37$									1	3	9	1.7	3.0	5.5	

12－13	100.0	50.0	28.0	16.9	10.0	6.1		2.7	1.4	1.0					
14－15．		36．0	31.5	22.1	17.0	12.9	8.4	5.6	4.5	3.0	2.4			1.0	0.7
16－17．		13.1	25.8	27.0	22.0	18.5	14.8	11.5	8.3	6.4	4.4	3.8	3.1	2． 3	1． 8
18－19			11.5	20.0	21.5	20.5	17.5	15.2	12.8	10.6	8.6	6.5	4.7	3.7	3.
20－21			3.2	9.4	16.2	17.0	19.0	18.5	16.5	14.0	11.5	10.0	8.5	6.8	5.4
22－23				3.5	8.6	14.0	16.5	16.5	17.5	17.0	15.0	13.5	11.8	9.7	8.
24－25．				1.1	3.6	7.2	11.0	13.5	15.0	16.0	16.5	15.5	14.5	13.0	10.8
26－27．					1.1	2.6	5.7	9.2	11.0	12.5	145	14.5	15.5	15.5	14.5
28－29						1.2	2.6	5． 0	8.0	9.5	11.5	12.5	12.5	13.5	14.0
30－31．							． 7	2.3	3.8	6.8			11.0	12.0	12.
32－33．							．		1.2	3.2				10.5	11.5
34－35									1.2	3.	1.6	3.8	6.0	8.0	10.3
${ }_{3}^{36-37}$													1.6	4.0	6.1
38－39															1.6
															1.6

idaho and montana

12－13	99.8	62.0	31.0	16.0	10.0	6.0	4.0	2.6	1.7				0.2		
14－15	2	32.5	38.0	29.0	18.0	13.0	8.5	5.8	4.3	2.8	2.2	1.5	1.0	0.8	
16－17		5.1	22.5	29.0	26.0	20.0	15.5	11.5	8.0	6.5	4.6	3.6	2.6	1.7	
18－19．		4	6.8	17.0	23.0	22.	19.0	15．0	13.0	10.0	8.0	6． 3	4.7	3.5	
${ }^{20-21}$			1.6	6.8	14．0	18.0	18.0	19.0	16.0	13.5	11.5	9.7	8.0	6.5	
22－23．				2.0	6.4	12.0	16.0	17.0	18.0	16.0	14.0	11.5	10.5	9． 0	
				． 2	2.2		11.0	14.0				15.0	${ }^{13.0}$	${ }^{12.0}$	
20－29					4	2.4	1.8	9． 4.5	$\begin{array}{r}12.0 \\ 7 \\ \hline\end{array}$		18.0	16．0	16.0	15．5	
33031						4	1.8 2	1.1	7.5	10．7	13．0	11.8	14.5	15．5	
$32-33$								． 1	． 5	1.7	3.8	6.6	9.2	11.5	
34－35．											． 5	1.6	3.9	6.4	
30－37													4	1.6	

${ }^{1}$ Trees 11.6 inches and more in diameter．

HEIGHT

Figure 14 presents seven sets of height curves illustrating for representative ages and site indexes the average heights of trees of various

Figure 14a.-Total heights of trees of various diameter classes, for seven sets of representative ages and
site indexes 40 to 100.
breast-height diameters. These curves are based on 10,101 height measurements. They are useful in calculating the volume, growth, and yield of second-growth ponderosa pine forests.

Curves of this sort are a recent addition to yield studies, in spite of the fact that many thousands of heights have been taken in stands of

Figure 148.-Total heights of trees of various diameter classes, for seven sets of representative ages and
many age and site classes in every such study. The reason for this probably lies in the previous lack of a suitable method of analysis.

The method used in this study, which is described in the appendix, is simple and gives fairly accurate results, although it has the fault of subjectiveness. It is to be hoped that further study will lead to development of an objective technique for this purpose.

To apply these height charts, all the information required is age of stand and approximate site index. Heights for age classes not shown in the charts can be interpolated ocularly. Availability of these charts makes it unnecessary for timber cruisers to measure many tree heights. Such measurement has commonly been neglected, because of the time and inconvenience involved.

volume

A volume study is prerequisite to a yield study. In this project, special effort was made to obtain all available stem and taper analyses for second-growth ponderosa pine and these data were supplemented with new material. Table 32 gives cubic-foot volume of the entire tree, including stump and tip but not bark or branches. Table 33 gives board-foot volume by International rule for $1 / 8$-inch kerf, and table 34 gives board-foot volume by Scribner rule.

Table 32.-Cubic-foot volume table for second-growth ponderosa pine, by total height of trees ${ }^{1}$

Table 33.-Board-foot tolume table (International rule, $1 / 8$-inch kerf) for secondgrowth ponderosa pine, by total height of trees ${ }^{1}$

Diameter at breast height (inches)	Volume (board feet in tens) by total-beight class											
	${ }_{\text {feet }}^{40}$	$\begin{gathered} 50 \\ \text { feet } \end{gathered}$	$\begin{gathered} 60 \\ \text { feet } \end{gathered}$	$\begin{gathered} 70 \\ \text { feet } \end{gathered}$	$\begin{gathered} 80 \\ \text { feet } \end{gathered}$	$\underset{\text { feet }}{90}$	${ }_{\text {feet }}^{100}$	${ }_{\text {feet }}^{110}$	$\begin{aligned} & 120 \\ & \text { foet } \end{aligned}$	$\begin{aligned} & 130 \\ & \text { foet } \end{aligned}$	140 feet	${ }_{\text {feet }}^{150}$
	13d fit	Bd. ft .	Bd. ft.	Bd. ft.	Bd.ft.	Bd.ft	Bd. ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd.ft.	Bd fit
10	2	3	4	6	7	9	10	12	13			
12	4	6		10	12	15	17	19		24		
14	6		12	16	19	22	25	28	32	35	38	
16	9	13	17	22	26	30	34	38	43	47	52	56
18	12	17	${ }^{22}$	${ }^{28}$	34	39	${ }^{44}$	50	55	${ }^{61}$	66	72
20	15	22	25	35	42	48		62	70	76	84	91
22		27	35	43	52	60	68	76	85	94	103	111
24		33	42	52	62	72	82	93	102	112	122	131
26			50	62	74	86	98	110	121	132	142	152
28			59	73	87	101	114	127	139	151	162	173
30			69	85	101	117	131	144	158	170	182	194
32			79	98	116	133	148	161	176	190	202	216
34			90	112	130	149	164	179	194	210	224	238
36				125	144	164	180	197	214	230	245	260
38				138	158	179	197	215	234	250	266	283
40				151	172	195	214	234	254	272	289	307
42					187	211	232	253	274	293	312	
44					202	226	250	272	294	315	335	355
4						243	268	291	314	337	359	380
48						260	286	311	335	359	383	406
50						278	306	331	357	382	407	432

1 Data collected in Oregon, California, Montana, Arizona, Colorado, and New Mexico. Basis, 2.865 trees,
Stump height, 1 to 2 feet. Trees scaled in 16 -foot log lengths with 0.3 foot trimming allowance to 6 -inch top Stump height, ${ }^{1}$ to 2 feet. Trees scaled in 16 -foot log lengths with 0.3 foot trimming allowance to 6 -inch top
diameter inside bark. Table prepared by alinement-chart method, 1935 . Aggregate deviation from basic data, -0.10 percent. Standard deviation, ± 18.4 percent.

Table 34.-Board-foot volume table (Scribner rule) for second-growth ponderosa pine by total height of trees

Diameter at breast height (inches)	Volume (board feet in tens) by total-beight class											
	40	50	60	:0	80	90	100	110	120	130	140	150
	Bd.ft.											
10	${ }_{1}^{1}$		2 5	${ }_{6}^{2}$	3 8	$1{ }^{3}$	11	${ }_{12}^{4}$	14	15		
12	4	6	5	11	13	15	18	20	22	24	26	
16	6	10	12	16	18	21	24	27	30	34		40
18.	9	13	17	21	24	29	34	37	41	46	50	54
20.	12	17	${ }_{2}^{22}$	27	32	37	44	48	53	58	64	${ }^{69}$
22		21	27	34	41	47	54	60	67	74	81	89
24		26	33	42	50	58	${ }_{6}^{66}$	74	83	91	100	109
26			41	51	60	69	79	90	100	109	119	129
28			48	59	70	82	94	106	117	127	138	148
30			56	69	81	96	109	122	134	145	157	167
32			${ }_{64} 4$	80	95	110	124	${ }^{138}$	151	163	175	186
34			74	91	109	124	140	154	168	181	194	${ }_{2}^{206}$
36.				104	123	138	156	171	185	199	${ }_{22}^{213}$	${ }_{247}^{226}$
38				117	137	152	172	188	203	${ }_{237}^{218}$	${ }_{252}^{232}$	247
40				130	150	167	188	204	${ }_{28}^{221}$	237	${ }_{273}^{252}$	268
42					163	182	203	221	2238	275	${ }_{293}^{273}$	289 309
44					176	187		238	275	275	293 313	309 329
46						211	234	225	275	${ }_{313}^{294}$	313 333 33	329 350 350
48.						225	249	272	${ }_{311}^{293}$	313	333 333	350 371
50						240	264	289	311	332	3.3	371

[^2] 8 -inch top diameter inside bark. Table prepared by alinement-chart method, 1935. Aggregate deviatio 8 -inch top diameter inside bark. Table prepared by alinement-cha
from basic data, -0.25 percent. Standard deviation, ± 17.8 percent.

The volumes corresponding to given diameters and heights of ponderosa pine trees are commonly considered to vary with site quality. The results of this investigation tend to support this theory; but because the data are in some respects incomplete and unsatisfactory, definite statements as to variation with site quality cannot be made. Instead, the data have been analyzed as a group for variation of volume with form. The expression for form tentatively accepted is the ratio between diameter inside bark at a height of 18 feet up the bole and breast-height diameter outside bark. Use of this quotient takes into account the two most important factors, namely the greater butt swell and the greater bark thickness usually observed on land of the better site classes.
In applying the volume tables to a specific stand these two measurements should be made on 30 or more trees, either after felling or by

Figure 15.-Second growth volume adjustment based on ratio of diameter inside bark at 18 feet to diameter outside bark at breast height: a, cubic-foot volume; b, board-foot volume, international rule; c, board oot volume, Scribner rule.
climbing, the average ratio should be determined, and the corresponding adjustment factor should be sought in figure 15. The correction factors are most accurate for trees 10 inches and more d. b. h. For trees of smaller diameter, the ratio used here is not a good expression of form and use of the correction factors shown in figure 15 is not recommended
If tables 32-34 are to be used frequently for interpolated diameter and height classes, it is advisable to convert them to graphical form, most preferably on double logarithmic paper of the largest cycle obtainable. Logarithmic paper with a cycle approximately 18 by 18 inches, for instance, has been prepared by the Pacific Northwest Forest Experiment Station for its own use and has proved entirely azceptable.

literature cited

(1) Baker, F. S., and Korstian, C. F
1931. suitability of brúsh lands in the intermodntain region for the growth of natural or planted western yellow pine forests. U. S. Dept. Agr. Tech. Bull. 256, 83 pp., illus.
2) Bates, C. G.
1924. forest types in the central rocky mountains as affected by
(3) Behre, C $\underset{\mathrm{F}}{ } \mathrm{chmate}$ and soll. U. S. Dept. Agr. Bull. 1233, 152 pp., illus
1928. preliminary normal yield tables for second-growth western yellow pine in northern idaho and adjacent areas. Jour, Agr. Research 37: 379-397, illus.
(4)
1928. preliminary yield tables for second-growth western yellow pine in the inland empire. Idaho Univ. Bull. 1 (v. 23, No. 20), 19 pp., illus.
(5) British Columbia Department of Lands, Forest Branch.
1922. report of the forest branch of the department of lands,
(6) Bruce, D 61 pp. , illus
(7) 1926

A method of preparing timber-yield tables. Jour. Agr. and Research 32: 543-557, illus.
1929. the use of alinement charts in constructing forest stand tables. Jour. Agr. Research 38: 289-308, illus.
(8) and Schumacher, F. X.
1935. forest mensuration. 360 pp., illus. New York and London.
9) Cooper, A.
1906. sugar pine and western yellow pine in california. U. S. Forest Serv. Bull. 69, 42 pp., illus.
(10) Cowlin, R. W.
1932. SAmpling douglas fir reproduction stands by the stocked-

Doning quadat method. Jour. Forestry 30: 437-439
(11) Dunning D., and Reineke, L. H.
1933. preliminary yield tables for second-growth stands in the california pine region. U. S. Dept. Agr. Tech. Bull. 354, 24
(12) Haig I pp., illus.
1931. THE STOCKED-QUADRAT METHOD OE SAMPLING REPRODUCTION stands. Jour. Forestry 29: 747-749.
(13) McArdle, R. E., and Meyer, W. H.
1930. the yield of douglas fir in the pacific northwest. U. S. Dept. Agr. Tech. Bull. 201, 64 pp., illus.
(14) Meyer, W. H.
1934. GROWTH in selectively cut ponderosa pine forests of the rowth in selectively Cut ponderosa pine forests of the
pacific northwest. U. S. Dept. Agr. Tech. Bull. 407, 64 pp., illus.
(15)
1937. yIeld of even-aged stand of sitka sproce and western hem lock. U. S. Dept. Agr. Tech. Bull. 544, 86 pp., illus.
(16) Munger, T. T.
1917. western yellow pine in oregon. U. S. Dept. Agr. Bull. 418, 48 pp. , illus.
(17) Pearson, G. A.
1923. natural reproduction of hestern yellow pine in the south west. U. S. Dept. Agr. Bull. 1105, 144 pp., illus.
(18) 1931. FOREST TYPES in the southwest as determined by climate and soll. U. S. Dept. Agr. Tech. Bull. 247, 144 pp., illus.
(19) 1935 and Marsh, R. E.
1935. timber growing and logging practice in the southwest and in the black hills region. U. S. Dept. Agr. Tech. Bull. 480, 80 pp., illus.
(20) Reineke, L. H.

1927 a modification of bruce's method of preparing timber-yield tables. Jour. Agr. Rescarch 35: 843-856, illus.
(21)
1933. perfecting a stand-density index for even-aged forests.
(22) Show, S. B. Jour. Agr. Research 46: 627-638, illus.
(22) Show, S. B
1925. yield capacities of the pure yellow pine type on the east lope of the sierra nevada mountains in california. Jour
(23) 1926. timber growing and logging practice in the california (Pine region. U. S. Dept. Agr. Bull. 1402, 76 pp., illus 1936. timber growing and logging practice in ponderosa pine in the northwest. U. S. Dept. Agr. Tech. Bull. 511, 92 pp., illus.

APPENDIX

basic data

The data used in constructing the normal-yield tables in this bulletin are measurements taken on 450 temporary sample plots by seven or more investigators and their assistants in five national-forest regions. On more than 300 of these plots the measurements were made under one working plan, with general supervision by the author. Tables 35 and 36 show the distribution of the 450 plots by State, age class, and site-index class. The standard plot sizes in the normal-yield study were 1 acre for old stands and one-quarter acre for young conditions. The distribution of the 450 plots by size was as follows:

> Size (acre):
> $\begin{aligned} & \text { Number } \\ & \text { of plots }\end{aligned}$
> Less than 0.10 8
> 0.10 to 0.24
> 0.25 to 0.49
> 0.50 to 0.74
> $\begin{aligned} & 0.75 \text { to } 0.99 \text { - } \\ & 1.00 \text { or more }\end{aligned}$
> $\begin{aligned} & 184 \\ & 170\end{aligned}$

450
Efforts were made to sample true even-aged-forest conditions; measurement of plots in small patches of timber was not favored.

Table 35.-Distribution of plots accepted in normal-yield study, and their average site indexes, by State

State	Plots	A verage site index	State	Plots	Average site inder
	Number			Number	
Washington...	${ }_{56}^{10}$	73.6 78.5	Montana		65.2 51.0
California.	109	109.2			
Idaho....	125	83.5	Total.	450	

Table 36.-Distribution of plots accepted in normal-yield study by age class and

Age class (years)	30-49	50-69	70-89	90-108	110-129	130-149	150-169	Total
20-20	Number							
$30-49$.	30	30	31	22	11	12	1	137
$50-89$.	11	44	38	18 17	17 5	7	2	137
70-89.		10	19 15 15	15				56 33
110-129	5	4	12	17	2			40
$130-149$		2	8	4				15
$150-189$ $170-189$		8 1	8 2	1				17
190-209			1					1
Total	48	113	138	84	37	27	3	450

Records were available for 398 plots in addition to the 450 accepted in the normal-yield study; some of these records were used to determine the effect of stocking upon yield. No data were a vailable for the Southwest. ${ }^{7}$

Some of the new data were rejected, because they represented stands for which commonly used in yield studies, such as deviation by more than twice the standard error from the average value, were not applied in this study; therefore variation about the yield-table values as expressed by standard errors tends to be greater than usual. Wide variation had to be accepted because true normality had not been clearly defined and opinion in regard to it varied among the investigators themselves.

It may eventually be found necessary to supplement the data for a few subregions, particularly the Black Hills. Existing data for the Black Hills checked closely with those for the other subregions as to cubic volume, but differed from them considerably as to board-foot volume. It is probable that separate yield tables will be required for the Black Hills.

METHODS OF TABLE CONSTRUCTION

yield tables

In the ponderosa pine yield study it was necessary to depart somewhat from the standard methods of yield-table construction developed by Bruce (6), Bruce and Reineke (7), Reineke (20), and Bruce and Schumacher (8).
The success of yield-table construction depends primarily upon correct initial determination of the site quality of the plots. The investigator cannot proceed with the study until he has constructed dependable site curves. In the ponderosa pine study the site curves drawn up by the standard method (6) were obviously wrong. They were too flat in the lower range and too steep in the higher, and did not Attempts curve formed by data taken under site conditions known to be uniform. of variation (8) about the graduating curve led to errors of the opposite nature. A variation (8) about the graduating curve led A new method was therefore used
The plots of each of 11 major subregions were treated as a separate group. The in the subrght of average-diameter dominant and codominant trees for each plot data, and an estimated site index read for the group. The next step was to set up a chart with site index as abscissa and height of average dominant and codominant trees as ordinate, to plot readings of the heights for selected age classes of each of the groups of data, and to curve these readings out by age class. The fit was made easily, the major part of each curve being rectilinear. A little forcing of the curves at the lower extremities was required to make them pass through the $0: 0$ coordinate. The final step was to construct a chart showing height over age for site indexes at intervals of 10 . The results were not subjected to any rigid test, but were found to correspond to height-on-age curves, each representing a single site index, localies faccess of this method conditions.
The succage site quality varied widely upon the availability of groups of data for for the poorest group to 120 for the best. Had the territory covered by the investigation been limited as in earlier studies, probably this method would not have been feasible.

After the site-index curves were constructed, site index was determined for each plot and all the data were sorted on the basis of 20 -foot site-index groups and 10 year age classes. At this stage the standard procedure is to construct graduating curves, with age as the abscissa and the stand value as the ordinate, and read the estimated plot values from the curve. The site-index curves are then drawn on both sides of the graduating curve, at intervals determined by ratio of sums of estimated plot values to sums of actual plot values for each site-index group. (8). These techniques, also, had to be modified. In the first place, for the data taken on land of eod a those taken on average sites it was 190 years. Also, growth stagnation on a large
T It is possible, however, that the yield tables presented here can be applied to the even-aged groups com-
mon in the pine stands of the Kaibab Plateau, through some modification of yield -survey technifue and mon in the pine stands of the Kaibab Plateau, through some modification of yield-survey technique and
study of the relations between values such as number of trees or volume for the Kaibab stands and corre-
sponding values of the normal-yield tables.
number of plots in young stands and the poor site quality of many others tended to warp various sections of the graduating curves. For these reasons each graduating curve was confined to average site-index classes, namely those in the range from 60 to 100 . The curve was anamorphosed, with age as abscissa, and upon the anamorphosed chart the data were plotted by site-index class. The points for each site-index class ordinarily fell in a straight line, which did not pass through the origin. Selected intercepts were then plotted over site index and curved out. Finally, the curved values of the intercepts were used directly to get the spacings of the site-index curves about the graduating curve. The customary cross checks were made among basal area, number of trees, and average diameter.
The yield tables for partial stands were constructed by the usual method (6) with slight modifications. The standard method calls for a single average curve
of a stand value, such as percentage of total basal area included in the partial stand, over average diameter of total stand. The values for site index 40, the stand, over average diameter of totally stand. The values for site index 40 , the and were therefore curved out and dealt with separately. The values for site index 50 were interpolated between the values for site index 40 and those for site index 60 .
After the vield tables were completed checks were made on the fit of the data from different subregions to the yield tables. These resulted in certain minor changes in the tables. On the whole, however, the results were accepted as they stood. Aggregate deviations of subregional groups of data from the final yield tables, and the standard deviations of the entire group, are shown in table 37 . The deviations for certain subregions may at first glance seem inordinately large; but they should not be construed as indicating a weakness in the tables, since rejection of plots was not severe.

Table 37.-Aggregate deviations of plot data from normal-yield values, by subregion

Subregion	Plots	Aggregate error (percent of estimated value) for-				
		Number of trees	$\begin{gathered} \text { Basal } \\ \text { area } \end{gathered}$	$\begin{gathered} \text { Cubic- } \\ \text { foot } \\ \text { volume } \end{gathered}$	Board-foot volume	
					$\underset{\text { Internal }}{\text { Ind }}$ rule	$\begin{gathered} \text { Scribner } \\ \text { rule } \end{gathered}$
California	Number 109	Percent	Percent	Percent	Percent	Percent
Oregon and Washington.	${ }_{66}$	-24.7	${ }_{-3.9}$	${ }_{-6.2}$	+ +.5	+5.3
Idaho ${ }^{1}$-.............	65	-31.1	-5.4	-3.4	$+3.7$	+7.7
Southern Idabo.	42	-6.4	-10.0	-9.0	-9.3	-8.7
Northern Idaho and Montana	137	+7.5	-2.2	-3.6	-8.0	-11.5
Black Hills..........	31	+15.8	+14.6	-2.7	-30.3	-61.0
Total.	450	+. 64	+. 03	-1.25	+. 13	-. 21

${ }^{1}$ Data taken by Behre $(5,4)$.
For several western timber species including Sitka spruce and western hemlock (15), the plotting of yield values over average diameter without reference to site quality or age has resulted in compact curves in which no effect of site or age can which is the Curves of this character have pronounced advantages, chief of diameter alone. In the case of ponderosa pine the curve of yield over average diameter shows a strong residual effect of site and age, which makes its utility negligible.

STAND AND STOCK TABLES

The stand and stock tables of this study were constructed by the graphical method used in a recent study of the yield of Sitka spruce and western hemlock (15). This method is in part a reversion to one used in early stand-table studies. It is simpler than the alinement-chart method (7) or any of the mathematical methods now in use. Its accuracy depends in part on availability of a large quantity of data. In the author's opinion, for use in constructing a series of tables of different kinds it is more accurate than the alinement-chart method or
the mathematical methods; it may be less desirable than one or another of those methods in some instances, but it is believed to be the only method now known that can be applied to normal, skewed, and truncated curves for number of trees, basal area, or volume with equal ease and accuracy. The saving in time is enormous and was a prime factor
First the plots were sorted on the basis of 1 -inch gradations in average diameter. Number of trees (or cubic-foot or board-foot volume) was listed, by diameter class, for each plot. Cumulative sums and percentages from smallest to largest diameter were then obtained for each diameter group and plotted on arithmetic requency paper for successive limiting diameters. For instance, the percentage of total number of trees in the 1 - and 2 -inch classes was plotted on the 2.5 -inch gradation, and that of the $1-, 2-, 3-$, and 4 -inch classes on the 4.5 -inch gradation. eter plimits could be mad and $5,20,50,80,95$, and 98 . These readings were plotted on ordinary rectangular coordinate paper with average diameter as the abscissa and diameter limit as the coordinate paper with average diameter as the abscissa and diameter limit as the
ordinate, and the plottings were curved out by the percentage intervals. Except for the high percentages, these fittings were made easily. This gave the basis for constructing on arithmetic frequency paper a complete set of fitted and coordinated curves, which ordinarily needed little further adjustment. To obtain table 28 , the percentages applying to the successive diameter limits of a stand tally were applied to the yield table for number of trees in total stand (table 3) through the medium of the table for average diameter of total stand (table 5).
In the case of board-foot volume by Scribner rule, the basis of the initial orting was average diameter not of total stand but of trees 11.6 inches and more in diameter. This switch resulted in much stronger curves in the subsequent steps.

height tables

Figure 14, height curves for stands of representative age and site-quality class, as constructed by a method described in reports on yield studies for Sitka spruce and western hemlock (15) and for Douglas fir. ${ }^{8}$ This method is largely graphical and therefore somewhat subjective, but for the present seems to be the only easible technique available for constructing such curves. Multiple curvilinear correlation methods in their present form failed to give a satisfactory solution.
First the plots were sorted on the basis of 1-inch gradations in average diameter and the heights measured on all the plots of each group were listed by diameter. The average heights for individual diameter classes were computed and were plotted over diameter on rectangular coordinate paper. A smooth curve was dro the group of plo at 1 -inch intervals were then expressed as percentages of this height. These percentages were next plotted over average stand diameter and curved out by 1 -inch diameter classes.
Preparation of the site-age height charts began with reading the diameters for elected ages and site-index classes from the normal-yield table for average breast-height diameter of total stand (table 5). The heights of the averagediameter dominant and codominant trees for the same classes were read from table 4 and were converted to height of average tree of all dominance classes by means of a chart not given here. Percentage height values were read for average diameters of selected ages and site indexes, shown in table 5 , and multiplied by average height in feet to get the heights for the full range of diameters.
The accuracy of this method depends upon the availability of a large quantity of data.

mortality tables

The values for the mortality tables were computed through the medium of the number-of-trees table (table 3), the stand table (table 28), the height curves (fig. 14), and the cubic-foot volume table (table 32). The method of computation has been explained at length in a previous yield-study report (15) and will not be described here in full. In brief, it consists in deducing by means of the stand to another. For instance, according to table 4 a stand of site index 80 has at 60

ears 662 trees per acre, and at 80 years only 393 trees, or 269 trees less, per acre rom the stand tables for the two ages (table 28) the differences in number of trees for individual diameter classes, starting from the smallest, are cumulate until the total loss in number is found. In the case cited the loss per acre eighteen 1 -inch trees, sixty-five 2 - and 3 -inch trees, one hundred and one 4- and 5 -inch trees, seventy-four 6-and 7 -inch trees, and eleven 8 - and 9 -inch trees The height for each diameter class, for the lower age class, is read from figure 14 and the volumes are computed. This method gives actually a minimum estimate trees from the berinning of the deade to the time when they fie grow the any large trees.

volume tables

The three volume tables were constructed by the base-alinement-chart method separate base charts were used for each table, and the cubic-foot and board-foo tables were cross-checked by means of board-foot-cubic-foot ratios
The deviations computed after the tables were completed indicated that volume may vary consiotently with site quality, but the dala were too unsatisfactory and unrepresentative for definite conclusions on this point. Many, perhaps most of the present volume data are for young trees in uneven-aged stands; thus it is possible that the data do not fairly represent conditions in even-aged stands. In future investigations in second-growth ponderosa pine emphasis should be given to stuy or stated here When reliable volume data taken in even-aged stands of a good range of age classes on sites of all qualities are finally obtained and analyzed, if these data show variation with site quality the values of the yield tables for volume (tables $6,11,16$) can easily be adjusted.

[^0]: I Submitted for publication November 29, 1937 .
 1 Orateful acknowledgment is made to directors
 ' Grateful acknowledgment is made to directors and staff members of the western forest and range exper iment stations for advice and for assistance in collecting data in connection with this stud. Particularly
 valuable help was received from R. H. Weidman, of the Northern Rocky Mountain station; C. E. Behre valuable help was received from R. H. Weidman, of the Northern Rocky Mountain station; C. E. Behre ton and E. L. Mowat, of the Intermountain station. Other contributors are J. L. Alexander, of the C'ni versity of Washington, formerly of the British Columbia Forest Branch, who took the measurements in the versite ofs Washington, iormerly of the British Col Gambia Forest Branch, who took the measurements in the
 ponderos pine of British Columbia, and W. H. Gallaher, E. N. Muns. S. B. Show, and L. H. Reineke who conducted studies in ponderosa pine in California. For most of the computations in Lolved in com-

[^1]:

[^2]: Data collected in Oregon, California, Montana, Colorado, Arizona, and New Mexico. Basis, 2,80
 and

