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Abstract

Forest succession is a fundamental ecological process which can impact the functioning of many terrestrial processes, such as water and
nutrient cycling and carbon sequestration. Therefore, knowing the distribution of forest successional stages over a landscape facilitates a greater
understanding of terrestrial ecosystems. One way of characterizing forest succession over the landscape is to use satellite imagery to map forest
successional stages continuously over a region. In this study we use a forest succession model (ZELIG) and a canopy reflectance model (GORT) to
produce spectral trajectories of forest succession from young to old-growth stages, and compared the simulated trajectories with those constructed
from Landsat Thematic Mapper (TM) imagery to understand the potential of mapping forest successional stages with remote sensing. The
simulated successional trajectories captured the major characteristics of observed regional mean succession trajectory with Landsat TM imagery
for Tasseled Cap indices based on age information from the Pacific Northwest Forest Inventory and Analysis Integrated Database produced by
Pacific Northwest Research Station, USDA Forest Service. Though the successional trajectories are highly nonlinear in the early years of
succession, a linear model fits well the regional mean successional trajectories for brightness and greenness due to significant cross-site variations
that masked the nonlinearity over a regional scale (R2=0.8951 for regional mean brightness with age; R2=0.9348 for regional mean greenness
with age). Regression analysis found that Tasseled Cap brightness and greenness are much better predictors of forest successional stages than
wetness index based on the data analyzed in this study. The spectral history based on multitemporal Landsat imagery can be used to effectively
identify mature and old-growth stands whose ages do not match with remote sensing signals due to change occurred during the time between
ground data collection and image acquisition. Multitemporal Landsat imagery also improves prediction of forest successional stages. However, a
linear model on a stand basis has a limited predictive power of forest stand successional stages (adjusted R2=0.5435 using the Tasseled Cap
indices from all four images used in this study) due to significant variations in remote sensing signals for stands at the same successional stage.
Therefore, accurate prediction of forest successional stage using remote sensing imagery at stand scale requires accounting for site-specific factors
influence remotely sensed signals in the future.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Covering nearly a third of the Earth's land area, forests play a
critical role in global terrestrial ecosystems, including, but not
limited to, providing a temporary carbon sink in the global
carbon cycle (Dixon et al., 1994; Goodale et al., 2002; Wofsy
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et al., 1993), preservation of biodiversity (Dobson et al., 1997)
and conservation of soil and water resources (Lal, 1997; Woo
et al., 1997). Moreover, forest successional stages strongly
influence the functions of terrestrial ecosystems (Chen et al.,
2002; Cohen et al., 1995; Foody et al., 1996; Pregitzer &
Euskirchen, 2004; Song & Woodcock, 2003a). Therefore, to
gain greater insight into understanding terrestrial ecosystem
processes, we need to generate accurate information regarding
the extent of forests and forest successional stages.
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Fig. 1. Study area is WRS path/row=46/29 encompassing Western Cascades
(WC), Coastal Ranges (CR), and the Willamette Valley (WV).
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A traditional approach to estimate forest successional stage
is through fieldwork. Although accurate, this approach can be
costly, as well as limited in scope, as it only provides suc-
cessional stage information for a limited number of stands at the
landscape scale. Remote sensing offers the potential to effi-
ciently extend field based measurements of forest successional
stage to large geographic areas in a repeated manner. Although
remote sensing has proven successful in mapping deforestation
due to the dramatic change in spectral reflectance occurring
after forest removal (Cohen et al., 1998; Pax-Lenney et al.,
2001; Skole & Tucker, 1993), mapping forest successional
stages remains a challenge due to the subtle reflectance changes
associated with forest succession in optical imagery. Most
existing remote sensing studies on mapping forest successional
stages are based on classification of a single date image into a
few broad successional classes (Fiorella & Ripple, 1993; Hall
et al., 1991; Jakubauskas, 1996; Kimes et al., 1996). Some
studies have incorporated multiple images in deriving forest
successional stages, however each image was classified
independently and used post-classification comparison to
identify the starting date of forest regeneration (Foody et al.,
1996; Lucas et al., 2002). Therefore, a more synergistic ap-
proach to use multitemporal satellite imagery to predict forest
successional stage distributions could have great merit.

Thus, our two objectives in this study are to more fully
understand how the spectral properties of forests change from
young to mature to old-growth stages, as well as to predict forest
successional stages from multitemporal imagery. We accom-
plish our first objective by generating temporal trajectories of
forest succession in the spectral space by coupling a forest
succession model (ZELIG) (Urban, 1990) with a forest canopy
reflectance model (GORT) (Li et al., 1995). These simulated
temporal patterns of forest succession are then compared with
successional patterns based on Landsat imagery and ground
based forest age class data collected by U.S. Forest Service
Pacific Northwest (PNW) Forest Inventory and Analysis (FIA)
program. Finally, we accomplish our second objective by using
multiple regression techniques to study the synergistic value
of predicting detailed forest age classes with multitemporal
Landsat images.

2. Methodology

2.1. Study area and data

The study area is located in western Oregon and falls within
WRS path/row 46/29 (Fig. 1). The area encompasses three
geographic provinces, which include the Western Cascades
(WC), Willamette Valley (WV), and Coastal Range (CR)
provinces (Cohen et al., 2002). Forest stand age distribution
classes were derived from the PNW-FIA Integrated Database
version 1.4 (Hiserote & Waddell, 2004). The FIA ground data
were collected on 2.1 hectare plots in a diamond shape during
the 1995 (1995–1997) periodic forest inventory of western
Oregon. For each plot, stand age was coded into one of 22 age
classes as shown in Table 1. Since FIA plot locations are
confidential, the spectral data for each field plot within our
study area was extracted through special arrangement with the
Pacific Northwest Research Station, USDA Forest Service. The
accuracy of the database with respect to plot locations is
unknown, and is variable among plots. Using level 1G Landsat
data, the digital numbers (DN) for each FIA plot within the
study area was extracted using the average DN of a 22 pixel
window that cover the sampling plot. A total of 2441 FIA plots
fell within Landsat path/row 46/29, however only 1154 conifer
dominated plots with uniform age class condition that fall in
western Cascades and the Coastal Ranges were used in our
study.

Spectral relationships were derived in this study using four
near anniversary Landsat 5 TM images acquired on 04 August
1984, 07 July 1991, 31 July 1994 and 23 July 1997, respec-
tively. Noise effects due to differences in sun angle and phe-
nology were minimized given the similarity in acquisition date
(Song & Woodcock, 2003b).



Table 1
Forest stand age classes as coded in the integrated database version 1.4 compiled
by the Pacific Northwest Forest Inventories and Analysis program

Age class Stand ages (years)

1 0–9
2 10–19
3 20–29
4 30–39
5 40–49
6 50–59
7 60–69
8 70–79
9 80–89
10 90–99
11 100–109
12 110–119
13 120–129
14 130–139
15 140–149
16 150–159
17 160–169
18 170–179
19 180–189
20 190–199
21 200–300
22 300+

Ground data were collected during 1995–1997 for western Oregon.
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2.2. Image preprocessing

Two critical preprocessing steps were applied to the images:
geometric registration and atmospheric correction. Due to the
nature of analysis taken in this study, a high accuracy of image-
to-image registration was required. Thus, we used a semi-auto-
matic image-to-image registration program originally devel-
oped at Boston University. The program minimizes the manual
work in collecting ground control points (GCP) by identifying a
large number of GCPs with low root mean squared error
(RMSE). All the images in this study were registered to a master
reference image with RMSE under 0.3 pixels using 50 or more
GCPs.

Correction for atmospheric effects is a complicated issue.
Though many algorithms have been developed (Chavez, 1996;
Liang et al., 1997; Schott et al., 1988; Song et al., 2001), it is
highly debatable with respect to which atmospheric correction
algorithm produces the most accurate surface reflectance, parti-
cularly for algorithms based on images without in-situ atmo-
spheric data. Here we use the modified dense dark vegetation
(DDV) algorithm based on its effectiveness in a previous study
(Song & Woodcock, 2003b). DDV is based on the theoretical
relationship between the surface reflectance of dense dark
vegetation in TM bands 1, 3, and 7 proposed by Kaufman et al.
(1997) as

fq1 ¼ 0:25q7
q3 ¼ 0:5q7

ð1Þ

where ρ1, ρ3 and ρ7 are the surface reflectance for TM bands 1,
3 and 7. The theory was implemented by Liang et al. (1997) on
a moving window basis. The DDV algorithm was modified
(MDDV) by Song et al. (2001) for operational use. In a
comparative study by Song and Woodcock (2003b), MDDV
produces surface reflectances similar to those produced by the
6S algorithm (Vermote et al., 1997) using observed atmospheric
data as input. The effects of sensor degradation on Landsat 5
images were accounted for using the approach of Song et al.
(2001).

After conversion of DNs to surface reflectances, we further
transformed the 6 TM bands for each image to brightness, green-
ness and wetness using the Tasseled Cap transformation (Kauth &
Thomas, 1976). We used the coefficients of Crist (1985) in the
transformation. Since multispectral remotely sensed data are
typically correlated across bands there is a tremendous amount of
information redundancy contained within the six reflective TM
bands. Thus, the Tasseled Cap transformation can be used to
significantly reduce the amount of data processing, particularly for
multitemporal images, without significant loss of spectral
information for the forest conditions of interest (Cohen et al.,
1995).

2.3. Simulation of forest succession in optical imagery

To gain a theoretical understanding of the manifestation of
forest succession in optical imagery, we first simulated the
changes in spectral properties over the course of forest suc-
cession. The simulation was accomplished in two steps. First,
the ZELIG model (Urban, 1990) was used to simulate the
growth of a stand with time. Second, canopy structure was then
extracted from the stands generated by ZELIG and used as input
to the GORT canopy reflectance model (Li et al., 1995).

ZELIG is a generalized version of a large group of models,
referred to as gap models. The size of the plot simulated by a
gap model is equivalent to the size of the canopy of a full grown
individual. At this spatial scale the model emphasizes the eco-
logical roles of gaps produced by the death of existing
individuals. JABOWA was the first gap model originally
developed by Botkin et al. (1972). JABOWA was modified to
become FORET by Shugart and West (1977). JABOWA and
FORET have since become the basis for dozens of other gap
models developed for different forest ecosystems, including
ZELIG. ZELIG simulates three critical ecological processes in
forest ecosystems at an annual time step: growth, establishment
and mortality, each of which is constrained by light availability,
temperature, soil moisture and fertility. The growth of each
individual within a plot without environmental constraint, i.e.
optical growth, is simulated as

dD
dt

¼ GDð1−DH=ðDmaxHmaxÞÞ
274þ 3b2D−4b3D2

ð2Þ

where G is a species-specific growth factor. Dmax and Hmax are
species-specific maximum diameter at breast height (DBH) and
maximum height. D is the current DBH, and H is the current
height. The species-specific parameters of b2 and b3 are used
to estimate tree height as: H=137+b2D−b3D2, and they are re-
lated to Dmax and Hmax as: b2=2(Hmax−137) /Dmax and b3=
(Hmax−137) /D2

max. The actual growth of DBH in ZELIG is



Table 2
Canopy structure parameters extracted from stands simulated by ZELIG used as
input to GORT to simulate canopy reflectance as the stand develops

Symbols Values

h1 Upper boundary of crown center height (m)
h2 Lower boundary of crown center height (m)
R Average crown horizontal radius (m)
λ Stem density (trees/m2)
FAVD Foliage area volume density (m2/m3)
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optimal growth after environmental constraints applied as:
ΔD= f (L)*min( f(M), f(F))* f(T )*ΔDopt, where f(L), f (M), f
(F) and f(T ) are scalars between 0 and 1 due to suboptimal
conditions from light, soil moisture, soil fertility and temper-
ature, respectively. Establishment of new individuals is simu-
lated stochastically based on species-specific potential
establishment rate modified by environmental constraints similar
to optimal growth. Tree mortality is also simulated as a
stochastic process, arising from two sources: natural mortality
and that from environmental constraint. Natural mortality is
simulated based on the assumption that 1% of individuals
survive to reach the species-specific maximum age. Mortality
caused by stress is based on the assumption that only 1% of the
stressed individuals will survive for 10 years.

GORT is a hybrid of geometric optical and radiative transfer
models, simulating reflectance of forest canopies for a given
illumination and viewing geometry (Li et al., 1995). The
geometric optical model (Li & Strahler, 1985, 1992) accounts
for the discrete nature of forest canopies based on stem density,
tree crown size and shape. The geometric optical model
provides careful quantification of single scattering of photons
in the canopy and captures the fundamental properties of forest
canopy bidirectional reflectance distribution function (BRDF).
Multiple scattering between canopy elements, which is highly
simplified in the geometric optical model, is simulated by the
model based on radiative transfer theory. Therefore, GORT is
capable of accounting for varying degrees of discreteness in the
forest canopy. The discrete nature of forest canopies is rep-
resented by two types of gaps in GORT: the between- and
within-crown gap probabilities. The between-crown gap
probability is modeled based on Boolean set theory (Serra,
1980) as

Pðn ¼ 0jh; hÞ ¼ e−kV ðh;hÞ ð3Þ

where n is the number of tree crowns that a beam of sunlight
passing through; h and θ are height and sun zenith angle. V(h,θ)
is the volume of tree crowns that sunbeam passes through a thin
layer at height h from zenith angle θ. The within-crown gap
probability is based on the path length that a sunbeam passing
through tree crowns, and is simulated as

PðnN0jh; hÞ ¼
Z l

0
Pðsjh; hÞe−sðhÞsds ð4Þ

where s is the path-length of a sunbeam passing through the
crown at height h and zenith θ. The extinction coefficient from
zenith θ is estimated as: τ(θ)=KL /H, where K is the attenuation
of a unit leaf area index contained within a unit canopy depth. L
is the leaf area index, and H is the average canopy depth. P(s|h,
θ) is the probability distribution function of path-length at
height h and zenith θ.

Canopy structure parameters derived from ZELIG used as
input to GORT are given in Table 2. They include the upper and
lower boundaries of crown center heights, stem density, average
horizontal crown radius, and foliage area volume density. The
simulation of stand development in ZELIG starts from bare
ground and proceeds up to 250 years following Urban et al.
(1993) for H. J. Andrews Experimental Forest (HJA). The
simulation is conducted for 50 independent plots, and the
canopy structure parameters are extracted from all trees within
the 50 plots. Due to the complexity of forest canopies for mature
and old-growth forests, a single layer canopy cannot adequately
represent the stand structure. In this study, we used two layers to
represent the canopy: the overstory and the understory. The
overstory is composed of individuals that add up to 80% of total
crown volume in the top of the canopy, while the remaining
individuals belong to the understory. Separate canopy structural
parameters (Table 2) are extracted from the individuals
belonging to each layer. The canopy reflectance of the under-
story layer is simulated first. The understory canopy reflectance
is then used as the background reflectance when simulating
canopy reflectance for the overstory. Due to the fact that forests
in this region are predominately coniferous, we also assume that
all trees in the plots are conifers sharing the same elongated
ellipsoid crown shape as the current version of the GORT model
does not support mixed crown shape in a stand.

In addition to the structural complexity associated with the
spectral manifestation of stand successional stages, the canopy
spectral properties also change according to the presence of
dead leaves and branches, mosses and lichens present in the
upper canopy (Cohen et al., 1995). Unfortunately these impacts
on canopy reflectance are not explicitly incorporated in GORT
since leaves within a tree crown are treated as a turbid medium.
Thus, to more accurately account for the effects of dead leaves,
branches, mosses and lichens in the canopy we change the
“leaf” spectral properties gradually so they more realistically
resemble the changes associated with forest succession. The
“leaf” spectral properties for old-growth forests were derived
from an old-growth stand identified from the TM image. We
then linearly interpolated the leaf spectral properties from a
young closed canopy to those of old-growth stands between 51
and 250 years old.

2.4. Statistical analysis

We conducted a statistical analysis to understand whether
multiple images facilitate our ability to predict successional
stage information derived from Landsat imagery. The following
multiple linear regression model was used to assess the rela-
tionship between stand age classes and multitemporal spectral
measurements:

y ¼ b0 þ b1x1 þ b2x2 þ :::þ bnxn þ e ð5Þ



Fig. 3. Simulated trajectory of brightness, greenness and wetness of Tasseled
Cap transformation with stand age. The succession of the stand was simulated
with ZELIG, and the output of ZELIG was used as input to the GORT model to
simulate the canopy reflectance in six reflective bands of Landsat TM sensors.
The simulated TM reflectance is processed with Tasseled Cap transformation.

Fig. 2. Change of overstory canopy structure as simulated with ZELIG model for the H. J. Andrews Experimental Forest over 250 years. The simulation is conducted
for 50 independent plots. The canopy structure parameters shown here are the mean values averaged over all plots simulated.
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Where y is the stand age class obtained from the FIA plots, and
xi are the Tasseled Cap transformation indices. The error term is
ε. Although age is coded in discrete classes in the original
dataset, it can be treated as a numerical variable since the age
class numbers are proportional to stand ages measured on the
ground (Table 1). The coefficients bi of xi represent the rate and
direction of changes in the spectral domain given a specific
stand age. Therefore, the multiple linear regression model as
described in Eq. (5) can capture some nonlinear changes in
spectral properties associated with changes in forest succession
through time. Therefore, it is expected that there will be a
stronger statistical relationship or a higher adjusted R-square
value with Eq. (5) using multiple images than using a single
date image. Here we compare regression outputs using the
adjusted R-square statistic in order to account for the effect of
different numbers of independent variables in the predictive
models. We expect that using more images at different times in
the regression model will result in higher adjusted R-squares as
adding additional independent variables will allow for the
explanation of a higher percentage of variation in successional
stage distribution classes.

3. Results

3.1. Simulated successional trajectories

The change in overstory canopy structure with time as
simulated by ZELIG is shown in Fig. 2. The simulation was not
calibrated to any particular stand, but the available species,
climate and soil were set to conditions typically found at HJA.
The simulation captured the temporal pattern of biomass
accumulation well in the region (Song & Woodcock, 2003a).
The depth of canopy (Fig. 2a), which is the difference between
the upper and lower boundaries of the canopy, increases almost
linearly with time. A similar trend is also found for the mean
crown diameter (Fig. 2b) in the overstory as both are ultimately
derived from DBH. However, the change of stem density with
time is highly nonlinear (Fig. 2c). It increases rapidly with time
to reach a maximum density around 20 years, which approx-
imates the time of canopy closure. At this point in stand
development the self-thinning process begins, which results in a
decrease in the number of individuals found in the overstory
canopy. While leaf area index of the overstory reaches its
maximum value at roughly the same time as stem density
(Fig. 2d), the peak in leaf area index is maintained with only a
slight decreasing trend, while stem density decreases rapidly.
The asymptotic peak observed in leaf area index indicates that
the decrease in stem density is likely the result of small trees
being replaced with fewer larger ones.

Assuming that the simulation by ZELIG provides a general
pattern of canopy structure change over the course of forest
succession, we generated successional trajectories in the



Fig. 4. Observed trajectory of brightness, greenness and wetness of Tasseled Cap
transformation with stand age from FIA plots in the 1997 image. Each point is
the mean value from all plots within the age class, and the vertical error bars are
± 1 SD. The simulated trajectories in Fig. 3 captured the major characteristics of
the observed trajectories here. (a) Regional mean successional trajectory of
brightness; (b) regional mean successional trajectory of greenness; (c) regional
mean successional trajectory of wetness.

Fig. 5. Spectral trajectory of wetness separated for (a) western Cascades and (b)
Coastal Ranges. The decreasing trend of wetness from mature to old-growth is
much clearer when the two ecoregions are viewed separately than view together
as seen in Fig. 4c.
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spectral space with GORT (Fig. 3). All three simulated Tasseled
Cap trajectories change rapidly during early years in succession
(b20 years) and much slower once the canopy closes.
Brightness decreases with stand age rapidly as the simulation
starts on a bright, bare background. The establishment of trees
quickly decreases the brightness of the scene, and once the
canopy approaches closure, the decrease in brightness is much
slower. Greenness increases very fast with establishment of new
individuals on the background, and maximizes around 30–
50 years old, after which it begins to slowly decrease. Wetness
increases quickly to its maximum value, then stays almost at
this maximum with a slight decrease toward the old-growth
stage. The observed decrease in all three Tasseled Cap indices as
the stand matures is the result of the combined effect of both
structural and spectral changes in the canopy. As the stand
becomes older, there are larger and fewer individuals in the
overstory (Fig. 2), creating more shadows in the canopy and
possessing more dead leaves and branches and mosses and
lichens, which causes decrease in Tasseled Cap indices.

3.2. Observed successional trajectory

To evaluate how well our simulated spectral trajectories
capture changes associated with forest succession in the real
world, we now develop spectral successional trajectories for
stands with age data collected by FIA. Since FIA ground plots
were measured over the course of 3 years (1995–1997) (Hiserote
& Waddell, 2004), we elected to use the 1997 image, as it best
matches with the recorded age information. In addition, we have
to use stands at different ages at different locations, i.e. substitute
time with space, in order to construct a successional trajectory
from young to old-growth as it is impossible to do so with a
single stand. Since topographic effects have been found to
impact successional trajectories developed from satellite
imagery (Song et al., 2002), we eliminate stands on steep slopes
(N30°) and high elevation sites (N1000 m) from the analysis.
Because the ZELIG simulation was not calibrated to any one
particular stand, we cannot directly compare the simulated
successional trajectories at the stand level. Thus, we pooled all
the FIA plots and calculated mean Tasseled Cap trajectories



Table 3
Results of multiple regression analysis between age classes and brightness (B),
greenness (G) and wetness (W) indices from 1984, 1991, 1994 and 1997
Landsat 5 TM images for all plots after screening

Variables R2 Adj R2 P-value

B1 0.2615 0.2600 0.0001
B2 0.2785 0.2755 0.0001
B3 0.2951 0.2906 0.0001
B4 0.3104 0.3046 0.0001
G1 0.2895 0.2879 0.0001
G2 0.3222 0.3193 0.0001
G3 0.3344 0.3302 0.0001
G4 0.3437 0.3382 0.0001
W1 0.0249 0.0229 0.3086
W2 0.0646 0.0607 0.0517
W3 0.0996 0.0939 0.0006
W4 0.1308 0.1235 0.0001
(BG)1 0.3103 0.3074 0.0001
(BG)2 0.3378 0.3322 0.0001
(GG)3 0.3529 0.3447 0.0001
(BG)4 0.3660 0.3553 0.0001
(BGW)1 0.3218 0.3175 0.0001
(BGW)2 0.3491 0.3409 0.0001
(GGW)3 0.3675 0.3579 0.0001
(BGW)4 0.3888 0.3682 0.0001

The numbers following the B, G, and/or W (e.g. B1, B2, etc.) indicates the
number of images used. The statistics for R2, adjusted R2 and the P-value are the
average of all possible combinations at a given number of images for the
regression. The total number of plots used is 481 for stands ranging from 20 to
300+ years old. We removed the first two age classes for analysis because the
stand age classes do not apply to the 1984 image.

Fig. 6. Spectral history for age class 1 stands in the brightness/greenness space in
the 1984 image, indicating that some stands were clear cut between 1984 and
1991. Stand age classes 1 and 2 in the FIA dataset will not apply to the 1984
image. Similar problem can occur to some plots in other age classes in 1997
image because such change could happen during the time between FIA data
collection and image acquisition. These stands can be identified and removed
from statistical analysis.

Table 4
Results of multiple regression analysis between age classes and brightness (B),
greenness (G) and wetness (W) indices from 1984, 1991, 1994 and 1997
Landsat 5 TM images for all plots after screening

Variables R2 Adj R2 P-value

B1 0.4674 0.4662 0.0001
B2 0.4944 0.4920 0.0001
B3 0.5118 0.5083 0.0001
B4 0.5242 0.5197 0.0001
G1 0.4573 0.4560 0.0001
G2 0.4929 0.4906 0.0001
G3 0.5051 0.5015 0.0001
G4 0.5114 0.5067 0.0001
W1 0.0694 0.0597 0.0307
W2 0.1146 0.1104 0.0002
W3 0.1598 0.1538 0.0001
W4 0.2018 0.2018 0.0001
(BG)1 0.4875 0.4850 0.0001
(BG)2 0.5151 0.5105 0.0001
(BG)3 0.5287 0.5219 0.0001
(BG)4 0.5382 0.5293 0.0001
(BGW)1 0.4983 0.4947 0.0001
(BGW)2 0.5318 0.5245 0.0001
(BGW)3 0.5449 0.5350 0.0001
(BGW)4 0.5564 0.5435 0.0001

The numbers following the B, G, and/or W (e.g. B1, B2, etc.) indicates the
number of images used. The statistics for R2, adjusted R2 and the P-value are the
average of all possible combinations at a given number of images for the
regression. The total number of plots used is 424 for stands ranging from 20 to
300+ years old. We removed the first two age classes for analysis because the
stand age classes do not apply to the 1984 image, and the plots with change
occurred during the period from ground data collection and image acquisition.
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according to stand age (Fig. 4). The decreasing trend in bright-
ness with stand age derived from FIA plots is obvious (Fig. 4a),
however we do not see a rapid decrease in brightness during the
early years of succession as observed in our simulation. This
difference between the real and simulated trajectories is likely a
result of the simulation trajectories starting on a bright, bare soil
background, while the youngest FIA stands (class code 1, ages
0–9) could have varying amounts of vegetation already
established. In addition, the decadal averaging in the observed
succession trajectories also reduced the rate of change with time.

The observed greenness trajectory with stand age resembles
that from simulation, i.e. greenness increases with stand age
initially and then decreases as the stand becomes older (Fig. 4b).
The maximum greenness for a stand is around 30 years of age.
Again the nonlinearity in greenness in the early years of
succession as seen in the simulation is significantly dampened
in the regional mean greenness trajectory. Wetness increases
with stand age rapidly in the early years (Fig. 4c), then we do
not see a clear trend after 40 years. For all three real Tasseled
Cap trajectories, there are high uncertainties associated with
stand age. As the stands get older, the uncertainty tends to
decrease. However, the trajectories of the mean values of all
stands in the region match with the simulation well for
brightness and greenness, but no clear decreasing trend in
wetness as simulated can be seen from the observed data from
mature and old-growth stands. Due to the subtlety in the
decreasing trend of wetness in the simulation from mature and
old-growth stands, the difference in the rate of regeneration for
stands in the Coastal Ranges and western Cascades (Yang et al.,
2005) may obscure the trend. We examined the trend of wetness
with stand age for stands in the two regions separately (Fig. 5).
The decreasing trend of wetness with stand age for mature and
old-growth stands is much clearer when viewed separately for
the Coastal Ranges and western Cascades. Therefore, the
temporal trajectory of wetness index is more sensitive to the
scale of aggregation of ecoregions than brightness and
greenness. This is probably due to the fact that information
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content or percent image variation accounted for by wetness is
much lower than brightness and greenness. Thus the wetness
has a lower signal to noise ratio, making wetness pattern more
sensitive to noise.

3.3. Statistical analysis

Because the FIA data were collected between 1995 and 1997
in our study area (Hiserote & Waddell, 2004), we do not have
age information for young stands prior to the current stand
conditions. Therefore, we excluded the stands in the first two
age classes (i.e. age b20 years old) from our statistical analysis.
This would also eliminate most of the initial nonlinear effects of
stand age on remote sensing signals. We continue to use stands
on sites with slopes less than 30° and below 1000 m of elevation
in the analysis to reduce topographic effects. Table 3 shows the
results of regression analysis between stand age and Tasseled
Cap spectral indices for all 481 plots. Though the overall
adjusted R2 values are relatively low, the relationship between
stand age and the spectral signals are extremely significant,
except for wetness. The low adjusted R2 for wetness is
understandable given the ambiguous pattern observed (see
Fig. 4c). The adjusted R2 values increase steadily with the
number of images for brightness, greenness and wetness. Due to
the fact that surface conditions may change after FIA data
collection and before image acquisition, there still exist stands
whose ages in FIA do not match the actual ages for stands in the
Fig. 7. A linear model fits the regional mean succession trajectories in (a)
brightness and (b) greenness well with the 1997 image. Note points in this
Figure are the same points as seen in Fig. 4(a, b). The large cross-site variation
almost masked the nonlinearity at individual stand scale.
image. These stands can be eliminated based on its spectral
history as seen in Fig. 6. If there is a sudden increase in
brightness and decrease in greenness or sudden increase in both
greenness and brightness for mature and old-growth stands,
these stands are considered as experienced change and are
eliminated from statistical analysis. After eliminating these
stands, we have a total of 424 stands left. Table 4 shows the
results of regression analysis equivalent to Table 3, but the
overall adjusted R2 values increased significantly. The basic
pattern still remains: (1) the more images we use, the higher the
adjusted R2; (2) brightness and greenness have much stronger
relationship with stand age than wetness. The magnitude of
increase in R2 is greatest from one to two images. Further
increase in the number of images has much smaller magnitude
of increase in R2. This may be due to the limited time span in
the four images. Once two of the images are used, an addition of
another image close in time may not add much new information.

4. Discussions

Our analysis clearly identified the synergistic value of using
multitemporal Landsat imagery to predict distributions of forest
succession from young to old-growth stages. However, the
overall adjusted R2 values are relatively low. It seems that there
are several reasons for the low adjusted R2 values that are
beyond the control of this study. First, the locational accuracy
for the stands is unknown to us. Because we are working on the
scale of 30×30 m pixels, locational error can cause mismatch of
plots on the ground with the stand in the image, reducing the
goodness of fit between remote sensing signals and stand ages.
Second, the accuracy of stand ages is unknown to us. Errors in
age class can weaken the relationship between remote sensing
signals and stand ages. Finally, there are natural variations in
composition and structure for a given stand age resulting from
variations in site conditions (Fig. 4). Over a large geographic
areas, the natural variation of the physical structure at a given
age class can be significant (Yang et al., 2005). We further tested
whether a linear model as Eq. (5) is a valid model. Fig. 7 shows
that a linear model fits well for the regional mean successional
trajectories for brightness and greenness with the 1997 image.
We also did a comparison of a linear with a nonlinear (regress-
ing age with natural log of brightness) model for brightness
using 1997 data with 424 plots, the two models produced almost
identical R2 values, indicating cross-site variations masked the
nonlinear effects when successional trajectories are constructed
via substituting space for time. Fig. 4c clearly indicates that a
linear model does not fit the trajectory of wetness. Though our
simulation captured the regional average trend of forest
succession in optical imagery, it is far from operational in
mapping forest stand ages on a stand basis with reasonable
accuracy due to the large uncertainties associated with forest
succession trajectories and the relatively low R2 values shown
in Table 4. To make matters more complex, the spectral tra-
jectories produced are applicable to conifer stands only.
Therefore, our approach may not be applicable to broad leaf
stands or stands with significant mixture of broad leaf and
conifer trees.
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Several earlier studies in western Oregon found that the
Tasseled Cap wetness index is the most effective spectral index
for mapping age class information for closed canopy conifer
stands (Cohen & Spies, 1992; Cohen et al., 1995; Fiorella &
Ripple, 1993). Results of our analysis differ from these earlier
observations in that brightness and greenness both have much
higher adjusted R2 values than wetness. This is likely due to
including both open and closed canopy stands in this analysis,
as well as the potential spectral heterogeneity contained within
the FIA plot data. Among the three Tasseled Cap indices,
wetness has the lowest information content (or percent image
variation contained) compared to brightness and greenness
(Cohen et al., 1995). The noise level in the age class information
is perhaps too high to allow the effect of wetness to be captured
from FIA plots. Therefore, our study found that the relationship
between Tasseled Cap indices and stand ages with FIA plots is
more complex than the literature has previously indicated.

5. Conclusions

This study produced successional trajectories from young to
old-growth stages based on ecological principals and radiation
physics by coupling a forest succession model (ZELIG) with a
canopy reflectance model (GORT). The successional trajectories
produced by the ZELIG-GORT simulation captured the major
characteristics of the observed regional mean trajectories for
Tasseled Cap indices. Young closed canopy stands have the
highest greenness and wetness values. Further development
leads to a slow decrease in brightness, greenness and wetness
values from mature to old-growth stages with the decrease in
wetness displaying the smallest magnitude. Though the
simulated successional trajectory of an individual stand is
quite nonlinear, particularly in the first 30 years of development,
a linear model fits the regional average succession trajectory
quite well due to large cross-site variation that masked the
nonlinearity. Our study found that Tasseled Cap brightness and
greenness are much better predictors of forest successional
stages than wetness index is. The temporal pattern of regional
mean wetness trajectory is more sensitive to the scale of
ecoregion aggregation than brightness and greenness. The
spectral history based on multitemporal Landsat imagery can
effectively enhance data quality in monitoring forest succession
with remote sensing. Multiple regression analysis based on
individual stands indicates that multitemporal Landsat imagery
improves prediction of distributions of forest succession from
young to old-growth stages. However, the highest adjusted R2

using all four images in this study is 0.54 for 20 age classes due
to large variation of remote sensing signals at the same suc-
cessional stages. Therefore, site-specific factors influencing
canopy reflectance need to be accounted for in order to predict
forest successional stages more accurately at individual stands in
the future.
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