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Scaling fine-scale processes to large-scale patterns
using models derived from models: meta-models

Dean L. Urban, Miguel F. Acevedo and Steven L. Garman

Introduction

Ecologists and natural resource managers face a common scaling dilemma in many
applications. Our conventional knowledge base is rather fine-scale, but many of
the issues that now face us„are :Of much larger extent, often played out at landscape
to regional scales. As anineexample, consider the potential effects OlarithrO=
pogenic climatic chapstpkrtitests. Our best mechanistic understandirii'19'.. 4,t4e .; '
effects of tempera06:41.044iik:;and CO, on tree growth is at the level of lilant
ecophysiology (i.e*	 40, and perhaps single trees; see Straiii/i4iAtir'el:1:;-,1985; Bazzaz, 199'	essments of these effects are typically:Act eSSe

. 4	
E-

regional or even	 Smith and Tirpak, 1989; IPCC, 19* ,01r,t
and Steffen, 1996V ml ions, while less extreme, do not escape
damental scaling rrusmalc 	 txainple, forest managers now integrate theitAt , -
ides at the level of etoSySterifs and at scales of entire forests (i.e., landscapes); yet
we still work most tomfortabIy at the scales we know best; that is, stand-level
prescriptions carried out on individual trees.

Ecologists are increasingly savvy about scale (Delcourt et al. 1983; Wiens, 1989;
Levin, 1992). The basic scaling rule that trades off spatial resolution and detail for
spatial extent is appreciated: detailed fine-scale studies are carried out on small
study areas, while studies of much broader extent necessarily sacrifice details to
emphasize coarser-resolution patterns. This trade-off comes at some expense;
applications at disparate scales are divorced from one another empirically and some-
times conceptually. For example, many models that address forest dynamics at the
scale of the stand (ca. 1-10 ha) simulate the behavior of individual trees (Botkin et
al., 1972a,b; Shugart, 1984; DeAngelis and Gross, 1992) or are based on field
measurements of individual trees (e.g., FVS: Wykoff et al., 1982; Dixon, 1994).
At intermediate scales, point models are often implemented to represent "average
stands" (e.g., PnET: Aber and Federer, 1992; Century: Parton et al., 1987). These
point models are in fact scale-indeterminate, but arc typically interpreted as if they
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represent homogeneous stands (a few m2 for grasslands, lOs to 100s m 2 for forests).
At a still larger extent, global vegetation simulation models used in climate-change
research simulate plant functional types, cover types, or other abstractions of forests,
and include dynamics that are analogies for plant demography (e.g., VEMAP,
1995). These differences in state variables and dynamics are appropriate as a strict
scaling rule, yet as a result these classes of models do not share a common empirical
basis; nor, in some cases, do they even share a common conceptual model of how
vegetation responds to environmental forcings.

Our goal is to devise a modeling approach that can bridge disparate scales while
preserving a common empirical and conceptual basis across scales. Our approach
begins with a fine-scale model (in this case, a gap model), and then uses it to derive
new models as statistical abstractions of the fine-scale model. The derived models
operate at coarser resolution and hence over larger spatial extent, but they retain
those finer-scale details needed for larger-scale applications. Because the derived
models are statistically derived from the gap model, they are in a sense models of
the fine-scale model: meta-models.

In the following sections an overview is provided of the general approach to
scaling a gap model up to landscapes, and then three models are presented as
illustrations of the meta-modeling approach. Some of the methodological issues of
parameterizing and testing-such models are discussed, and the chapter closes:0th.
a prospectus of where this approach seems to be leading.

Scaling from trees to landscapes: three approaches

Several approaches can be used to extend a fine-scale model to applications at
larger scales. Two of these approaches are rather intuitive: a sampling approach
such as used in distributing a point model over a wide range of parametric condi-
tions; or using a bigger computer to simulate larger areas. It is instructive to review
these intuitive approaches to point out their strengths as well as some shortcomings
that argue against their general use.

A sampling approach

A straightforward way to represent a heterogeneous landscape is simply to simulate
each of the environmental conditions on a case-wise basis. This approach is well
established with point models (e.g., Solomon, 1986; Burke et al., 1990). In this, a
set of parametric combinations is assembled as, perhaps, a factorial stratification
over the parameters that drive the model. Each parameter set is then simulated
separately, and the output of all cases is aggregated to provide a "landscape scale"
integration of the model.

Importantly, this approach is entirely consistent with the way landscapes are
sampled in field studies, for example, by stratifying sample quadrats across a study
area to represent the possible range of combinations of topographic position, soil
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type, and so on (witness the huge literature on gradient analyses e.g., Whittaker,
1956, 1967).

The chief advantage of this approach is simplicity; it requires no special modi-
fications to the basic model. The drawback is that the approach is not truly spatial.
Stratified field samples cannot discover the effects of local spatial context except
via sophisticated statistical techniques (e.g., Legendre and Fortin, 1989); models
distributed as stratified points cannot address these issues at all. Thus, forest
dynamics that reflect nearby conditions, such as upslope area contributing surface
runoff to the water budget, cannot be simulated in this way. Similarly, the spatial
effects of contagious processes such as seed dispersal or disturbance (e.g., fire, pests)
are lost to the sampling approach. A model that merely samples a landscape
removes forest dynamics from their spatial context.

Brute force

Another approach to modeling large areas is to get a bigger computer. Indeed, it
is instructive to trace the recent history of gap models from this perspective. The
original gap model, JABOWA (Botkin et al., 1972b) was undertaken partly as an
experiment in high-performance computing with the sponsorship of IBM.- The
model simulated a single:plot,: 10 m x 10 m in area, that could support as many as
100 individual trees. AAreApstancl was aggregated statistically by simulating4everal 
independent plots	 their output. By contrast, the gap
today, Zelig version; 	 04;below), simulates a forest stand as
grid of as many as 2 	 g, model runs on a UNIX workstation blip
within the computa	 'itteb4i-Way's PCs. Using a distributed queul''
on a UNIX networ#1.	 ), hundreds of model grids are run ro
the time it originally;, 	 A to run a single plot: computing ntfrs
increased by a factor,

An alternative to - brute` force is to use a bit more finesse in applying more
powerful computers to the scaling issue. One especially promising approach is to
reformulate the model to take advantage of parallel processing (Schwarz, 1993).
Because many ecological applications can be framed as parallel problems, this
approach is a compelling means of scaling a model to simulate large areas while
retaining fine-scale details: the application of what we might term elegant force.

Meta-models

A third approach is to derive new models to operate at larger scales — but to do so
in a manner that retains as much of the finer-scale information as required for the
application of interest. Here this approach is illustrated by using a gap model to
generate and parameterize new models that reproduce, as statistical constructs,
selected behaviors of the gap model. The new models are themselves models of
the gap model: meta-models.

There are two compelling features of this approach. First, because the meta-
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model is defined to reproduce the finer-scale model, the two models provide
consistent results across scales. As will be illustrated, this is because they share the
same empirical basis and conceptual foundations. Second, this approach provides a
two-layered modeling package that allows the researcher to use the model that is
best suited to the application. Although there will always be cases where the simpli-
fication implicit in the larger-scale model undermines the application, there is the
finer-scale model to fall back on in these cases. Thus, the fine-scaled model is
available when details are needed, and the coarser-resolution model is available
when some simplification is desirable.

A general approach is described for using a fine-scaled model as a means to
develop a larger-scale, coarser-resolution model (a meta-model). This approach is
illustrated with the example of a cellular automaton, derived from the gap model
Zelig and emphasizing contagious spatial processes as the interactions of interest at
the landscape scale. The versatility of this general approach is then illustrated with
two further examples: a semi-Markovian model that emphasizes transient succes-
sional dynamics, and a stage-structured model developed for applications involving
timber management.

First, there will be an overview of the gap model, and a description of the
approach developed to facilitate performing the large numbers of simulations
required to generate a meta-model.

The gap model

As the base model for our meta-modeling efforts, we use the gap model Zelig
version Facet (Urban and Shugart, 1992; Miller and Urban in press, Urban et al.
in review). Facet is so named because climatic variables are adjusted for topographic
position. The functional unit is the slope facet (Daly et al., 1994), which is defined
in the model as a grid of homogeneous slope, aspect, and elevation. As a research
tool, the model is continuously evolving; the examples presented here are based
on version 97.3 of the Facet model, or FM 97.3.

Model structure

All versions of Zelig (there are several) simulate a forest stand as a grid of tree-sized
cells. Each cell corresponds to a conventional gap model plot (Botkin et al.,
1972a,b, Shugart and West, 1980; Shugart, 1984; Urban and Shugart, 1992). The
grid is underlain by a raster soils map, with each cell assigned a soil type. Zelig
models allow the grid cells to interact in that trees on a grid cell may shade or be
shaded by trees on nearby cells. This zone of interaction depends on tree height
and latitude (sun angle), but for temperate forest may range over 5-6 cells or more.
Typical applications simulate grids that are 10 x 10 to 50 x 50 cells, corresponding
to stands on the order of — 1-20 ha.

Forest ecosystems can be envisioned as coupled sub-systems, and gap models
can be envisioned as coupled sub-models. There are five conceptual sub-models
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Fig. 4.1. Schematic of system-level feedbacks as implemented in the full version of the gap
model Facet. Each submodel tends to act as a positive (+) or negative (—) feedback on itself.
The sub-models are coupled by physical relationships and by tree species life-history traits

(see text).
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to FM (Fig-„ j.1). These sub-models tend to behave either as positive or negative
feedbacks in the model. For example, as the canopy develops, shading increases and
this retards canopy growth (a negative feedback). In contrast, canopy development
increases litterfall which increases N (nitrogen) mineralization, which further
increases forest growth (a positive feedback). The sub-models are coupled by phys-
ical relationships. For example, litter moisture determined in the soil moisture
sub-model affects decomposition rates and also affects flammability in the fire
model. The sub-models are also coupled by life-history traits encoded as species
parameters. For example, many trees that are shade tolerant are also drought intol-
erant and have high tissue N concentrations, effectively coupling the light, soil
moisture, and decomposition submodels. In the examples used here, the primary
emphases are the light regime, the soil water balance, and the fire model. A seed
dispersal module under revision is not used in the examples presented here.
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The physical template

FM 97.3 simulates the physical environment in terms of temperature, available
light, soil moisture, and nutrient (nitrogen) status. As a Facet model, FM adjusts
temperature and precipitation for elevation using locally regressed lapse rates
(Running et al., 1987; Daly et al., 1994), and adjusts radiation for topographic
position using standard geometric and micro-meteorological methods (Nikolov
and Zeller, 1992). Here, an overview is provided of the light, soil moisture, and
fire submodels, because these illustrate the methods of simplification in devising
meta-models.

Light regime
FM summarizes vertical heterogeneity as height profiles in leaf area and available
light, at a resolution of 1 meter. The crux of the light regime is a leaf-area profile
defined for each grid cell, constructed by estimating total leaf area for each tree on
the plot and distributing this leaf area along each tree's live crown (after Leemans
and Prentice, 1987). The tree height and leaf-area allometries are based on regres-
sions local to a study area (e.g., Gholz et al., 1979; Garman et al., 1995).

The leaf-area profile is used to estimate the light profile for each position (grid
row, column, and height) within the modeled . stand. FM partitions light into
direct-beam and diffuse-sky components, and samples theforest canopy to estimate
each component. This sampling is accomplished by constructing diagonal leaf-area
Profiles by "looking through" the vertical leaf-area array at a specified angle and
direttion. The "look angle" is specified as the height:of a horizontal cross-section
of a cell (i.e., a "slice" of the profile: the steeper, the`look angle, the thicker the
slice). The "look direction" may be in any cardinal direction (N, E, S, W) or
vertical. The direct-beam component is estimated by constructing a diagonal pro-
file to the south, with a look angle derived from mean solar inclination angle as
integrated hourly, daily, and monthly over the growing season (Bonan, 1989;
Urban et al., 1991). The diffuse-sky component is estimated with multiple samples
of the sky, by constructing diagonal profiles at various look angles and directions.
The geometry of these "looks" through the canopy is further adjusted by the
canopy's being draped over terrain.

Light impinging through the diagonal leaf-area profile is attenuated exponenti-
ally. This approach results in a larger zone-of-influence (area shaded by a tree) as
tree size increases or as solar angle decreases (Urban et al., 1991; Urban and Shugart,
1992; Weishampel and Urban, 1996).

Soil water regime
The soil-water sub-model simulates multiple, multi-layer soils, with a soil type
assigned to each cell. A soil type is defined by a number of mineral soil layers,
each defined by its water-holding capacity at field capacity and wilting point. Litter
and duff comprise an organic horizon, which varies in depth for each grid cell
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throughout the course of a simulation as duff accrues through annual litterfall and
subsequently decomposes.

The model uses a Priestley-Taylor estimate of potential evapotranspiration
(PET: Bonan, 1989). Because the PET estimate is driven by radiation and this can
vary with topography, the routine adjusts the water balance for stands of different
slope and aspect. PET is partitioned into two components. Transpiration depends
on leaf area index. The fraction of PET not partitioned to transpiration may be
drawn as evaporation from the litter and surface mineral soil. Actual evapotranspir-
ation (AET) may be reduced from PET for three reasons: (i) precipitation and soil
water storage may be insufficient to meet evaporative demand; (ii) leaf area may
be low and hence limit drawdown to surface evaporation (i.e., deeper soil water
is inaccessible); or (iii) cold temperatures may limit the canopy's capacity to trans-
pire. The canopy does not "transpire" water directly, but does influence AET
through interception (a linear function of woody surface area and LAI) and through
its influence on surface evaporation.

The water balance operates on a monthly timestep, in that temperature,
radiation, leaf area, and total precipitation are simulated per month. Temperature
and precipitation vary stochastically during the simulation, based on interannual
variances estimated from long-term data. Precipitation is partitioned stochastic-
ally into discrete events on a daily timestep; each event occurs either as rain
or snow depending on a locally regressed function of temperature. The model
simulates snow dyriaMics very simply. Snowpack accumulates as long as temper-, _
atures -are . below keiing; when temperatures warm, snow. , is melted at a
constant rate.

Thr-sbil-water	 del accrues a tally of drought-ClaYs- for eatlfstOaye' r. A
drOught-40s a di ' 43r which soil water is at or below Wilting point:4%, tally is

seconcLindear integrated over all soil layers is used to.,ecitaftini-theggowth of
established' trees. In this latter integration, drought-days are.weighted by the frac-
tion of fine roots in each soil layer.

The current working version of the model does not simulate surface runoff nor
lateral subsurface flow between plots. Thus, the model does notiricorporate the
hydrology of topographic convergence or divergence. An extension to the model
toward this end is under development.

iniegrattil;riVer . thC npper soil and used to constralin $eirllineeg	Ininent; a

Tree demographics

Like most gap models, FM simulates the processes of seedling establishment, annual
diameter growth, and mortality for each tree on each cell of the simulated grid.
These processes are simulated with a common logic of specifying the maximum
potential a tree might achieve and then reducing this potential to reflect suboptimal
environmental conditions. Simple multiplier functions are used to describe these
environmental responses.
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Establishment
Seedling establishment is strongly keyed to light available at ground level and to
the moisture status of the topsoil. Establishment probability may also be affected
by litter depth (some species fare better on mineral soil). Each species has a max-
imum possible establishment rate, and in each simulation year species are filtered
by light, temperature, and soil moisture multipliers that reduce the optimum rate.
An environmentally filtered cohort of seedlings is then planted and tracked for a
number of years until the seedlings become eligible to be established as trees.

Growth
Tree growth is modeled deterministically via a function that describes the max-
imum diameter increment that could be achieved by a tree of a given size under
optimal environmental conditions. This function is itself driven by leaf area, with
the result that a tree that prunes under shading naturally exhibits slower growth.

The optimal growth increment is further reduced to reflect the effects of shad-
ing, soil moisture, soil fertility (N), and temperature. Shading is modeled by integ-
rating a shade response function over a tree's canopy, using the light regime com-
puted as described above. Soil moisture affects tree growth by slowing growth as
a species-specific maximum drought-day index is approached. Nutrient response
is -simulated in terms of the ratio of N supply to-N .deMaiict for the plot. N supply

ittounted as N mineralized as C is respired iri-14!-44OMposition of litter and
woody- debris. If N supply is adequate, trees are ti Cori 	 otherwise, the

atufe4t*hich species response is low for physiologit teasOti:S; and that this occurs
atigaitaably cold temperatures (i.e., at high elevatiOnki sii,Uisystems). Conversely,
at this latitude the effect of high temperature is largely expressed through its effect
on the water balance - masking any direct effect on iree physiology. Thus, a
one-sided temperature response curve is used that is disabled at warmer temper-
atures, where the soil moisture constraint becomes operative.

Environmental factors interact to constrain tree growth. An interaction is
assumed between above- and below-ground constraints, but it is assumed that
moisture and nutrients are so tightly interrelated that they are inseparable for our
purposes. Thus, the overall constraint is the product of the temperature, light, and
below-ground factors, where the below-ground factor is the minimum of moisture
or nutrients.

gro*If.Of all trees is reduced accordingly.
',-.714kiernperature response in this model assunies% at: re,exists a cold temper--

Mortality
Trees may die for three reasons in the model. There is a low baseline rate of purely
stochastic mortality that is estimated from expected species longevity; this annual
probability is age and size independent. A second cause of mortality is lack of
vigor, which is invoked when a tree fails to achieve a minimum growth threshold
for more than two successive years. Trees of any size may be subjected to chronic
drought stress on severe sites, or acute drought on any site in an extreme year.
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Temperature effects are largely chronic rather than acute, and are a dominant
constraint only on the "cold" edge of the range of a species. A third source of
mortality is fire; crown scorch might kill trees directly through severe damage, or
indirectly if partial crown loss results in loss of vigor.

The fire regime

The fire submodel in FM explicitly couples climate, forest condition, and fire
behavior (Miller and Urban, in press). The sub-model simulates climate effects
on forest productivity and species composition, generates fuel loads from forest
condition, and simulates fuel moisture through the soil water balance, effectively
coupling all other subsystems of the model (Fig. 4.2). Fuels are generated on
a per-tree basis, using species-specific allometric relationships to predict leaf
litter and branch biomass, portions of which are shed each year. Foliage lost
through self-pruning as a stand develops also is added to the litter. Additionally,
episodic inputs of debris are added to fuel classes when an individual tree dies:
its bole, bark, branch, and foliage biomass are added to the appropriate fuel
classes. Thus, unlike previous fire models, the fuels model in FM adjusts itself
dynarm -cally to changing forest composition, and also schedules litter inputs
aeco	 A g to demographic processes.
- Tl 140 moisture model in the fire regime is actuallypart. of the soil moisture

Odelithe litterickifflayer is the uppermost horizon cif the mill'. Thus, soil moisture
bed condition are coupled explicitly in the irk:def. : likewise; decomposi-,

non,	 eLwith.rikmsture, and so the fiielbed's rnaks:and Moistiirej"titent also
affeetA'igiineraligaiion directly.• ‘. P^e..,oectittenOe .. requires an ignition source and afbinnable;:fnell3edeignition

iitochistit;:procOis; frequency of ignition (years between igintiOi4s)4i entered
as a ruri,tiMer.„p*anieter and used to generate an annualprObabitityi-:Ignition
points are, selectedrandomly within the grid. From an ignitiOn,,,poiht, fires
spread contagionsly across the grid. For cells that are "ignited"; fuel load, bulk
density, and moisture are used to predict fireline intensity (Rothennel, 1972;
Albini,	 1976). Cells for which intensity falls below a threshold value "burn
out". For burned cells, intensity is used to predict scorch height, and scorch
height is used to predict tree mortality as a function of the proportion of each
tree's crown that is burned. Fire also reduces fuels, and in the case of the duff
layer, this may influence the ability of each tree species to successfully germin-
ate. Species composition affects these submodels through species-specific litter
production rates, species tolerance to fire (and regeneration after fire), and
importantly, via the packing density of foliage litter which may vary substantially
among species and dramatically affects fire behavior. In FM the fuel bulk
density is tracked as a running average of the litter that accumulates on each
plot, weighted according to species composition on the plot.
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Fig. 4.2. Schematic of the fire model in FM, emphasizing couplings among forest condition,
fuels, and fire behavior as governed by climate. Fuel loads reflect forest condition because
litterfall is a function of tree demographics. Fuel moisture is computed from the soil water
balance, thus coupling fire with climate. Fire frequency is internally generated by the model,
with fire occurrence and fire intensity being functions of this fuel moisture and fuel load. Fire
then affects forest condition via crown scorch (which might be lethal) and seedling establish-

ment.

Extending the gap model to landscapes

There are two steps in our approach to extending a gap model to the landscape
scale. The first step is implicit in the structure of the Facet model, which adjusts
the grid for topographic positions defined by slope, aspect, and elevation (Fig. 4.3).
The second step involves performing the large number of simulations needed to
characterize the range of environmental heterogeneity represented within a land-
scape. For this, a distributed queuing system has been developed.
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Fig. 4.3. Scaling the gap model ZELIG version Facet from the model plot (grid cell), to a
forest stand (grid), to a slope facet on a landscape. Climatic drivers in the model are adjusted
for slope, aspect, and elevation using locally regressed lapse rates for temperature and precipita-

tion, and geometric models for radiation.

The distributed queuing system

A distributed queuing system (DQS) distributes simulations (jobs) to a number of
client workstations in a network. Our system uses the Tcl/Tk tool command
language toolkit (Ousterhout, 1994) to present the user with a series of three
graphic user interfaces that pre-process the session, perform the actual simulations,
and then post-process the collective output. In the first session, the user defines
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the combination of driving parameters for a set of simulations. A single simulation
is defined by a combination of run-time parameters that include input Driver files
(species parameters, climate and soils data), topographic position (slope, aspect,
elevation, and a soils map for the grid), the number of years to simulate, and which
output files to save. Run-time parameters may be held constant or varied according
to a variety of sampling designs (uniform, stepwise incremental, or gaussian). The
parameters are typically distributed, based on empirical distributions estimated from
data in a geographic information system. This initial session results in the genera-
tion of a run list, which is a set of combinations of run-time parameters for each
of a user-specified number of simulations (typically 100-500).

The second session with the DQS then distributes the runs across any number
of client workstations in a network. The master server program on the host
machine sends a job to a client, and when the job is finished the client copies the
selected output file(s) back to a common output directory on the host machine.
Client machines can be selected individually, or scheduled to avoid particular times
of the day (run in background mode during office hours, resuming at night). Using
a network of 15 Sun Sparc workstations we can perform 500 simulations in a few
hours' clock time. This performance improves almost ,inontlily as faster hardware
becomes available.

UNf '.4w scripts, generated internally by the post-pme	 cull user-selected
The final . session with the DQS consists of 	 collated output.

iivyariOles to a new file which is formattqa-fORA**itli	 phics or statistics
packages

TAt;,.c9,1 thus facilitates our conducting the many.sini	 needed to repres-
ent 4:40.i:cape. More to the point here, this also allowstts.'Arerform the range
of simulations needed to build and fully parameterize a metalodel.

Examples of meta-models

To illustrate our approach to building meta-models, the approach begins by
"building" the cellular automaton MetaFor. A brief overview is then provided of
the other two models, as a contrast to MetaFor and to provide some notion of the
range of possibilities for meta-models.

MetaFor: a cellular automaton

A cellular automaton simulates dynamics in a raster grid by positing that the future
condition of a given grid cell depends on its current state and the state of its
neighbors (Hogeweg, 1988; Green, 1989). Neighbors are typically specified to
include the four cells adjacent in the cardinal directions to the focal cell or eight
neighbors (including also the diagonal neighbors); in fact, there is no reason why
the neighborhood cannot be defined by whatever rules make sense for the applica-
tion. Cellular automata are well suited for applications where the behaviors of
interest are contagious processes or neighborhood interactions.
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Table 4.1. Structure of the cellular automaton MetaFor, as state variables, system dynamics, and
parameterization scheme

Component
	 Definition	 Derivation

State variables

Input map files

Input data files

Processes

Cover type
Age class
Elevation
Slope
Aspect
metaSpecies
metaSite
Establishment

Mortality
Fire

Dominant tree species
Simulation timestep (a counter)
Digital elevation model (DEM)
From DEM
From DEM
Parameters derived from Facet
Climate coefficients (from Facet)
Automaton; plus environmental constraint (from
Facet)
Age-related or disturbance (from Facet)
Automaton; conditioned on age and moisture
(from Facet)

Structure and dynamics

MetaFor represents a landscape as a grid wherein each cell is assigned a cover type
(oue of several tree species) and age class (tallied. interms of model timesteps, in
this case, decades). The cover and age maps .are .draped over a digital elevation

• model (DEM) The state dynamics consist of :changes in cover type and age
tlitoSh.time. The model simulates the demographie lprobesses of establishment,

, aging (though nVigrowth), and mortality, as well is4,:disturbance regime (fire).
The contagiciaiiitOcsses ,that are emphasized are ‘seed .. dispersal (which affects
species establiiliinOit)= .4nd fire, both of which are ' implemented as aOtoinata:Addi-
tionally, MetaFOrCOnditions cell-by-cell dynamics according to speciis reiponses
to environmental constraints of temperature and soil moisture, Using the same
response functiors . likd in Facet. Environmental conditions are modeleit 'as funC-
tions of topographic . Position, and are based on regressions of output from the
Facet model's soil moisture module. Thus, MetaFor uses a physical template and
demographics simplified from but consistent with those in Facet (Table 4.1).

Parameterization

Generation of the automaton model comprises several steps at which MetaFor
algorithms or parameterizations are reconciled with the gap model. These steps
include the calibration of the physical template (temperature and soil moisture),
the definition of the neighborhood rules for establishment, and the fire spread
model. Other components of MetaFor are simply reproduced from the gap model
directly (e.g., the environmental response functions and mortality probabilities).
Here, some of these procedures are outlined as illustrations of the general approach.
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The physical template
The climate and soil moisture routines in Facet operate at monthly or submonthly
timesteps, and require as input information on minimum and maximum temper-
ature, precipitation, and radiation, as well as canopy leaf area, and soil texture for
all layers in the soil profile. Long-term patterns in temperature and soil moisture
are summarized by saving a temperature index (growing degree-days) and a mois-
ture index (drought-days) from long-term (100-yr) simulations with a stand-alone
version of the gap model's climate and soil moisture routines. These data are then
used in a regression analysis, to build functions that predict the indices from topo-
graphic data stored in MetaFor. Growing degree-days are predicted from multiple
regression on elevation, slope, and aspect. To incorporate stochastic interannual
variability in temperature we also include the standard deviation of degree-days,
which is predicted from the mean. Each simulation timestep, a random (gaussian)
amount of variation in temperature is added to the mean degree-day index pre-
dicted for each grid cell. Thus, there is spatial as well as temporal variability in
temperature in the landscape model.

Predicting soil moisture is confounded somewhat by the fact that temperature
and moisture are themselves correlated: temperature decreases while precipitation
incre.ases...vglth elevation in mountainous terrain; temperacure is also a main com-
ponent.,,Ogewporative demand. To attend this degree=d4s= are used for a given
year,;feil *iith the stochastic variation added) to partially- pt*tict drought-days.
Atiotnet4axklom deviate is then applied to add stochastit Variation in drought-days
that is iii#4ated to temperature (i.e., that due to year-63,-year variation in
precipitatiOxi),•These relationships are derived by partial regr4sion and used to•.; 
generate temperature and soil moisture surfaces from the DEM;:files used as model
input.

Demographic processes
Cell-based analogs of tree demography include the assignment of a species type to
each unoccupied cell (establishment), the "aging" of these cells simply by accruing
timesteps since establishment, and the clearing of cells after mortality (age-related
or through disturbance). In MetaFor the processes of aging and mortality are quite
simple; establishment is somewhat more complicated.

The colonization of an unoccupied cell by a species is conditioned on two
factors: the physical environment and existing species composition within the
neighborhood of the cell. The physical environment is specified as the cell's
degree-day and drought-day indices, as computed each timestep with some stoch-
astic variation. Species response functions on [0,1] are used to modify establishment
probabilities; these functions are taken directly from Facet. Each species has its
"environmental probability" of establishment calculated as the product of the tem-
perature and moisture multipliers. A cell with an inhospitable environment (e.g.,
a cold alpine site or xeric outcrop) is likely to be unoccupied and will persist as a
gap. The neighborhood effect on establishment, used to mimic seed dispersal, is
estimated by tallying the proportion of the cells in the neighborhood that are
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occupied by each species (including "gap" cells that are unoccupied). The neigh-
borhood is specified by the user and can consist of 4, 8, 12, or 24 cells. The
inclusion of "gap" as a species in the neighborhood forces large gaps such as those
created by fires to be colonized mostly by encroachment from the edges, rather
than being recolonized immediately and entirely the year following a fire. Actual
establishment probabilities are computed as the normalized product of the environ-
mental constraints and neighborhood influences.

In effect, the dynamics of the landscape are rather straightforward after initial
establishment: each cell either "ages" one timestep or it is cleared by mortality or
disturbance.

Disturbance itself is a contagious process that is conditioned on site condition,
specifically soil moisture (a proxy for fuel moisture) and time since establishment
(a proxy for fuel load). At each timestep, fires may be ignited at stochastically
selected points (cells). Fires spread from these ignition points probabilistically. Each
neighboring cell has a probability of burning that is computed as the product of
the moisture and stand age functions. A uniform-random number on [0,11 is drawn
and the cell either burns or does not; if it bums, it is added to an array of cells
comprising the current fire (a cluster of cells). This process is recursive and con-
tinues until a maximum fire size is reached (a computational check) or until no
burnable cells can be found adjacent to the current fire. .

Illustrations
. 	.The automaton generates realisuc patterns in vegetapon cover (Fig. 4.4, , left: see,

color section). In this example; the landscape is a -47 000-ha samploof-§etitioia,
National Park in the Sierra NeVada of California, as a 1024 x 512 gri4,49f -, rri
cells. The model ii'capahle of simulating much larger areas, but in ths-4-46Ve-iie
limited by the availability of climate data (lapse rates are poorly defined east of the
topographic divide).

The question naturally arises, "How well does this match the actual vegetation
in the park?" This question is frustratingly difficult to answer in a straightforward
way. It is known that the gap model matches field data, at least insofar as reprodu-
cing elevational and topographic trends in species basal area (Miller and Urban, in
press; Urban et al., in review). And, because the automaton is defined to reproduce
the gap model, it is easy at one level to claim that the automaton thus also matches
our data. But, in fact, only one image of the Park's vegetation is available, a map
classified from a combination of satellite imagery, air photos, and ground data (Fig.
4.4, right). This map is flagrantly different from the predicted map, and yet any
comparison of the two is misleading; neither map is a particularly valid picture of
reality. The modeled map represents potential vegetation in the absence of any
recent fires and with no other disturbances. The "real" map is a highly aggregated
and interpolated composite of subjective cover types; the apparent homogeneity
of huge expanses of the Park is clearly an artifact of the classification scheme used
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in generating the map. This broaches a quite general issue in landscape models,
which is deferred to a later discussion.

Mosaic: a semi-Markov patch transition model

Another common way to model landscape dynamics is to simulate the transitions
among discrete patch types, for example seral stages or land cover types (Johnson
and Sharpe, 1976; Weinstein and Shugart, 1983; Baker, 1989). A Markov chain is
a well-studied formalism for such models (Usher, 1992). In a first-order Markov
model, the transitions depend only on the current state (i.e., history does not
matter). A more complex and realistic model includes time lags making the trans-
itions dependent on history; this extension renders the model semi-Markovian.
The gap model Zelig has been used to generate and parameterize various versions
of a semi-Markov model called Mosaic (Acevedo et al., 1995a,b, 1996).

The state space of a semi-Markov model is a set of n patch types; the state
dynamics are transitions or conversions among these patch types. The heart of the
model is the n x n transition matrix, the elements of which are the probabilities
that a patch of a given type will undergo a transition to . some other type. The

'7 :	 ';	 •transition will occur, however, after a time lag characteristie ciOach pair of states.
In the wragate, a Markov chain models the proportion of 1 study area that is'	 14g 4	 '
in each WItte -ftates at a given time For spatial applications,:	 model is imple-
mented by applying the transition probabilities on a per-cell basis on a raster map.
The resultjs,a4ime series of new maps of the landscape, eaCht map a stochastic
realization of the model:

An issue in generating a semi-Markov model is how to estate the transition
probabilities and delays. If the number of patch types is large, orif some transitions
are uncommon, it may be quite difficult to estimate these parameters. For complex
transitions among landscape elements that undergo change over time scales of
decades or longer, there may be no feasible way to measure these rates directly
from readily available data. Our approach has been to use the gap model to estimate
these parameters.

Structure and dynamics

The Mosaic models used are structured by defining a mosaic tile on the landscape
as a homogeneous unit of arbitrary area (-1-10 ha). The state variable for the tile
is not its dominant patch type, but rather, a frequency distribution of gap-sized
elements within that tile that are in each patch type (Table 4.2). For example, a
1-ha tile would have 100 gap-model cells of 10 m x 10 m within it. The state
dynamics of the model are the changes in the frequency distribution of within-tile
types through time. Thus, some information is tracked on the within-tile hetero-
geneity of forest stands but without tracking the location of each gap-scale element
within the larger the (Fig. 4.5).
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Table 4.2. Structure of the semi-Markov model Mosaic, as state variables, system dynamics, and
parameterization scheme

Classified by user (application specific), typically
dominant species and/or age (size) class

Digital elevation model (DEM)
From GIS coverages, imagery
Fitted parameters (from Facet)

Semi-Markovian; biased by environment (from
Facet)
Age-related or disturbance (transitions to 'gap')
(from Facet)

State variables	 Frequency
distribution of
cover types
within tile

Input map files	 Elevation
Initial conditions

Input data files	 Transition
probabilities and
transition delays

Processes	 Establishment,
succession
Mortality

Fig. 4.5. Schematic of the structure of the semi-Markov model Mosaic. Continuously varying .
species composition and age structure are classified to discrete cover types for each gap-scale
element (cell) within a larger, 25 cell , 	tile (in bold); the frequency distribution of these

types within each mosaic tile to ihe lardscape . comprise the state of the system.

Type

Parameterization

Building a semi-Markov model consists of defining the patch types, and then
inserting a "patch type classifier" into the gap model. In the models we use, the
types have been variously defined: by dominant species only (Acevedo et al., 1996),
or by combinations of dominant species in each of two height classes (Acevedo et
al., 1995a). The gap model is then run, and at every timestep each model plot is
classified to patch type. As any model plot changes from one type to another, the
transition is tallied. In the simple case of a first-order Markov chain and one model
plot, these tallies can be used to derive the transition matrix directly. For semi-
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Markov models, the calibration is more complicated. In the models developed,
transitions may have fixed lags (latencies) concatenated with distributed delays, thus
providing more realistic successional dynamics. This requires the estimation of
several parameters for each transition (duration of the latency, if any, and para-
meters of the delay density function). These parameters are estimated by statistical
analysis, including non-linear estimation procedures.

Illustrations

The first version of Mosaic was based on functional roles of trees, and was motiv-
ated in part by a desire to develop a tropical forest model that incorporated
dynamics similar to that of a gap model while conceding that there was a lack of
the life-history data to be able to parameterize a simulator as detailed as a gap
model (Acevedo et al., 1996). This example is less applicable to landscape-scale
applications, but it does highlight an important consideration for meta-models: if
the model is sufficiently simple, there may be a tractable analytic solution. Indeed,

, Acevedo et al. (1996) illustrate a progression of models ranging from the detailed
(and complicated) gap model, to a semi-Markov model that can simulate realistic
successional dynamics but that also yields a concise analytic soluticiut

A second example of the semi-Markovian approach is a more complicated ver-
sion of the model, with patch types defined as two-layered combinatibtis ofdomin-..
ant species in.'dic over- and understory (Acevedo et al., 1995a).° This version of ..
the model was implemented for the forests in the Pacific Northwestern United 
States, where old-growth issues are often framed in terms of the vertical structuring
of forests. In this version; the transition probabilities are also conditioned; on eleva-
tion recognizing a major ecotone between lower elevation forest characterized by
Douglas-fir and western hemlock, and high-elevation forests dominated by true
firs (Fig. 4.6). The model reproduces patterns in species distribution across this
-6300-ha watershed in the central Oregon Cascades, in this example illustrating
the dominance of the western hemlock plant association at lower and middle
elevations (Fig. 4.7: see color section).

ZelStage: a stage-structured model

ZelStage was developed to investigate the effects of forest management and natural
disturbances on stand dynamics and landscape patterns in the Oregon Cascade and
Coastal mountain ranges. An important consideration in the development of this
model was the ability to realistically simulate long-term stand dynamics for land-
scapes under alternative forest management practices. This argued for a modeling
approach that tracked stem densities by species (the common currency of forest
management), but further required an approach computationally modified for
efficient, simultaneous simulation of multiple stands over a landscape.
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Fig. 4.6. Transition diagram forforests in a Pacific Northwestern version of the semi-Markov
model Mosaic (after Acevedo et al., 1995a). Patch types are (1) gap, (2) young Douglas-fir/
hemlock, (3) mature Douglas-fir/hemlock, (4) young true fir, and (5) mature true fir. The

function of elevation, f(E), splits the model into two domains.

Elevation

34--■-1 52	 1

Structure and dynamics

ZelStage is a deterministic model made up of a stage-structured framework, statist-
ical functions of growth and mortality, and algorithms taken directly from the gap
model. The stage-structured tOinponent is the basis for tracking stems. Instead of
dealing with individualsilaThige tracks the number of stems per hectareofitach
species in 3-cm diametef -e*th_stages (size classes). This simplification. reduiCes,., -
both storage requirements'aritt*otint of processing with only a nominal reductioti,t
M detail given the S,rnall size lice interval (Fig. 4.8).

Growth of stems arioinpize tlasses is modeled using transition functions derived;
from simulation expenments with the gap model (Table 4.3, and see below).
Transition functions formithted as linear and non-linear regression equations pre-
dict the proportion of stems advancing from one size class to another given the
current size class, crown ratio, and cumulative leaf area index above the base of
the crown. Mortality functions determine the proportion of stems that die from
natural causes during a time step. Ingrowth is calculated using an approach similar
to the gap model, but is deterministic.

ZelStage uses raster-based data layers to represent several levels of spatial organ-
ization of the forest as well as the environmental field for a landscape. An initial
stand map indicates the stand code for each cell or group of cells of the landscape.
This code is used as an index to the input stand table that designates the initial
structure and composition of each stand. For forest management considerations, a
harvest unit map is used to delineate aggregates of cells treated as unique manage-
ment units. The spatial grain of input maps can be any size above 0.3 ha (this
lower size is imposed for computational reasons explained below).

To implement forest management, ZelStage contains an event scheduler that
allows the user to implement a range of stand-level treatments at any time during
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Input map files
Input data files

State variables.

Processes

Diameter frequency
distribution by
species
Stand map
Environmental
parameters
Stand condition
Establishment

Growth to next size
class
Mortality

Binning continuous distribution into
discrete classes

GIS database
GIS-based models and coverages

GIS-linked data tables
Constrained by stand condition and climate
(from Zelig)
Regression (from Zelig)

Regression (from Zelig)

Scaling up fine-scale processes with models

Fig. 4.8. Schematic of the stage-structured model ZelStage, in which the state variables are
3-cm diameter classes for each tree species.

Species C

Species B

Species A
Diameter class

Table 4.3. Structure of the stage projection model ZelStage, as state variables; system dynamics,
and parameterization scheme

the simulation. Commands are read from an ASCII script, and specify the year,
type, and parameters of an event. Event parameters define the removal and reten-
tion of basal area, volume, and density, and planting of stems. Command schedul-
ing arguments specify the harvest unit or individual stand to be effected, the species
and size classes to consider, and the retention/removal strategy (e.g., from top

89
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down, bottom up, or proportional to the existing size-class distribution). Addition-
ally, basic algorithms were incorporated into ZelStage so that harvest units can be
selected to simulate dispersed and aggregated harvest patterns (from the Cascade
model, Wallin et at, 1994).

Parameterization

Data for the generation of transition functions are derived from controlled simula-
tion experiments with a modified version of Zelig. An initial requirement was the
calibration of the gap model for the environmental conditions of the area of inter-
est. Field data sets for over 2000 stands in western Oregon were used for calib-
ration. A data base of weather conditions (monthly means, variances of precipita-
tion, temperature, solar radiation) has been developed for all of Western Oregon
and was used to determine environmental inputs for a simulation area.

For a given environmental field, the modified gap model simulates annual dia-
meter growth of a stem for a 5-year period, given an initial diameter, crown ratio,
and cumulative leaf area above the base of the crown. Mortality and weather
conditions are simulated as stochastic processes, thus annual variability of stem
growth and mortality are taken into account. Because the model is stochastic,
replicates are used to derive samples of potential growth and mortality. The
weather information specified in the simulation essentially defines the etrviron.;
mental domain of the asiiltiir 'transition functions. For a user-selected species, the`',
gap model automa
range of diameters etc:Ta
lated 5-yr diameter
leaf area index are'04to*
replicates for a species.An

tes growth and mortality for stems oVer:a..bilitid
•cs, and leaf area indices. The initial diametet-,1•Si

occurrence of mortality, initial crown ratio, in
:analysis. A post-processing program conibindr,O,
,*rinines the initial 3-cm size class of a stem,

proportion of stems that grew into a larger size class and the corresponding 3--cm.
size interval, and the proportioti of stems that died.

For each species, transition and mortality functions are derived from step-wise
linear and non-linear regression analysis of the proportion tallies. Variables consid-
ered for inclusion in a model include first- and second-order terms of mid-point
diameter, leaf area index, and crown ratio, and all possible two-way interactions
(Fig. 4.9). Separate transition functions are derived for predicting advancement to
one, two, and three size-classes, if necessary.

Illustrations

An initial prototype of the ZelStage model was implemented for a mid-elevation,
—3000-ha watershed in the Oregon Coast Range. Transition functions for the four
dominant tree species (three conifer, one hardwood species) were developed to
handle growth and mortality of stems <120 cm in diameter. Average environ-
mental conditions of the watershed were used to generate a single set of transition
functions. Vegetative cover types of the watershed were derived initially from
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Fig. 4.9. Examples of transition functions predicting the growth and mortality of stems in
the stage-structured model ZelStage. Functions are species- and size-specific, and are modified

further by leaf area and crown ratio.
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Landsat Thematic Mapper imagery. For simplicity, classes were aggregated into six
cover types using a minimum mapping unit of 0.3-ha, for a final total of 1200
individual stands. An existing harvest unit map was used to designate 218 manage-
ment units. Structure and composition of each stand type was initialized from
representative field-plot data. Simulations were run over a 60-year period under a
dispersed harvesting strategy (Wallin et al., 1994), with 10%, 20% and 20% of the
harvest units treated at years 1, 25, and 50, respectively. Stand treatments consisted
of two levels of basal area removal (20%, 60%) with preference for larger stems.
At year 60, stands were classified into hardwood, conifer, or mixed hardwood-
conifer and saved as output cover-type maps.

The simulated landscapes illustrate the model's ability to simulate effects of
overstory thinning (Fig. 4.10: see color section). Compared to the 20% removal,
the 60% treatment resulted in an increase in mixed stands due to more favorable
conditions for hardwood species (i.e., more light, less competition from conifer
species). In general, these results corroborate current understanding of thinning
effects in coastal watersheds, and lends credence to the ZelStage approach. In future
applications, our intent is to develop and use transition probabilities for the suite
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of environmental conditions across watersheds in order to simulate gradient
responses to forest management practices.

Discussion

Thus far the general approach of deriving landscape-scale models from a more
detailed, fine-scale model has been illustrated. Three different models illustrate the
approach, each emphasizing specific aspects of forest dynamics that might be
important for particular applications. The models have complementary strengths
and weaknesses. The automaton is especially appropriate for contagious processes
or neighborhood interactions, and is extremely fast. This comes at the expense of
rather crude representation of demographic processes, and consequently rather
crude temporal dynamics. The semi-Markov model, in contrast, provides transient
dynamics that rival those of the gap model, albeit for discrete patch types. An
additional benefit of the Mosaic model is the inclusion of within-tile variability as
represented by the frequency distribution of gap-scale elements; this approach is
in marked contrast to most landscape-scale models, which assume homogeneity at
the scale of the larger mosaic tile. Within this format, simpler versions lend the
powerful summary and interpretative guide of analytic solutions, while more com-
plex versions provide ::ever more realistic behaviors (at the cost of-analytic ,
simplicity). The stagg4trtictureil model retains nearly all of the inforrratiOd'Con-,
tained in the gap MOOT and thus is capable of reproducing gap-model bthavior
with striking fideht ets4t a computationally convenient form. The cost Ofiihis is
the added burden OCA**terizing the model, which must attend everyi:Siielass
for every species, eiiii*Uoil by various combinations of leaf area aiirf
ratio, and environn‘.' 44iClitions. For each model, there are challengiiigfi;4a4.
meterzation problerricw.pm the practical applications of these modeis:-I30.ti

-oping efficient algorithms for model parameterization will streamline this apprOach‘4.
greatly.

Parameterization issues

The onus of parameterizing these models poses a compelling challenge to the
meta-modeling approach. It should be emphasized that parameterization presents
both statistical and computational challenges, the latter due to the sheer number
of simulations involved. For this reason, we are actively pursuing methods to auto-
mate the parameterization of meta-models. There are, of course, issues that are
specific to each of the model forms we have illustrated.

Automata are largely governed by the rules that bias cell fate according to
neighboring cells, and the specification of the rule set still remains as much art as
science. An issue particular to the Sierran study site is that a model with states
defined as cover types (species) cannot easily simulate surface fires typical of this
area (i.e., fires that burn through an area and leave the canopy intact). We are
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currently developing an automaton capable of simulating surface fires (Chang and
Urban, 1997).

The parameterization of a semi-Markov model strictly requires a matrix of trans-
ition probabilities that are unbiased by the antecedent conditions of a patch type.
In practice, the parameters we have derived may be influenced by preceding seral
stages. A convenient parameterization entails a set of simulations in which each
patch type is initialized by itself (i.e., a pure stand of a single type) and allowed to
undergo transitions from that pure state (Ablan, 1997). This is a much more com-
plicated parameterization scheme and we are currently improving the approach.

The stage-structured approach suffers numerical distractions stemming from the
discretizing of continuous phenomena. These include cases where a tree might
"grow through" more than one size class in a single timestep, an occurrence that
must be attended in the regressions of transition functions. At the other extreme,
stems can become "stuck" within very large size classes due to insufficient growth
over the 5-year timestep. Employing variable size classes or time steps is a possible
solution, but would complicate the model further. Similarly, ZelStage must be
properly scaled to avoid transferring partial stems; the model works in integer trees.
Thus, the minimum spatial resolution of the model is dictated by the stand area
that will support sufficient tree densities to prevent partial stem transfers.

While more automated and robust approaches to many of these issues are pur-
sued, there remains a set of issues that are general to all approaches to modeling
landscapes. One especially compelling issue is that of model testing.

Testing landscape models

It comes as a tautology that models derived to simulate landscapes are difficult to
test. After all, these models are developed, in part, because sufficient data to pursue
empirical studies at these scales is lacked. Very little has been presented in the way
of formal tests of the models illustrated here, which broaches a problematic issue
in landscape modeling.

Landscape-scale data are typically available in the form of maps of vegetation or
cover types, often classified from satellite imagery, air photos, and limited ground
data. The vegetation map of Sequoia—Kings Canyon National Park (Fig. 4.4, right
panel) is a typical example. Two points must be observed of this figure. First, there
is only one image. This presents the logical difficulty of comparing the result of a
stochastic simulation model to a real map which also can be considered to be a
unique realization of a stochastic process (reality). Thus, even a "perfect" model
should not be expected to reproduce the real map. The likelihood that this might
happen by chance is vanishingly small, and decreases further if there are appreciable
influences from initial conditions (which we probably do not know), or inertia or
legacy effects due to events that happened long ago. Thus, a point-to-point com-
parison of model to data is largely futile. Likewise, in cases where there is another
map of the real landscape, representing a later time period, one might be tempted
to project the earlier map with the model and test it against the latter map. But,
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again, if there is considerable stochasticity to the real landscape, there is no particu-
lar reason to expect the prediction to match reality. One way to avoid this pitfall
is to test the model at a higher level of abstraction than that of the maps themselves.
For example, it is logical to compare the statistics of the model output with the
statistics of the real map. Appropriate metrics might include any of the myriad
metrics of landscape pattern (e.g., O'Neill et al., 1988; McGarigal and Marks, 1995;
Riitters et al., 1995). Using this approach, one might assess the spatial processes in
an automaton by comparing the spatial autocorrelation in model output to that
observed in real maps. While these metrics are readily available and the tests are
straightforward in concept, landscape modelers have been slow to develop appro-
priate tests for these models.

A second point to be made from Fig. 4.4 is that the vegetation cover is classified
from a variety of data sources; that is, the "real" map is itself a model. Importantly,
this model of vegetation typically includes some degree of interpolation and editing
of boundaries of cover types or patches. Thus, there exists in the real map some
(perhaps unknown) degree of smoothing. This means that the sizes, shapes, and
internal homogeneity of patches are probably not realistic. Further, if the vegeta-
tion map has been classified with the aid of ancillary environmental data such as
digital terrain data, tests of environmental patterns generated by the model may
not be independenf(or worse, might be circular). All of these issues may confound
any formal comps ;in of the model output to the classified map.

Some of these r.res may be resolved by remote sensing of data With. higher
information cont4ipi ,Ffieexample, a difficulty in testing many modelOtems.from
the fact that it has-proven very difficult to classify individual specieS fr o
sensed imagery. I-TiViet 'spectral resolution sensors may soon make it hilich.inore

Of •

feasible to classify imageryagery to the species level (Martin et'al., in press); aif a spatial
resolution compatiN6)-with models such as MetaFor. Similarly, neui-l'sampling
designs are being actively devised to gather field data that are spatially=tmtipatible
with landscape models.

This is not to excuse landscape modelers from the burden of formal model
testing, but rather to underscore the importance of devising new and robust
methods for making such assessments. Methods for testing spatial models have been
suggested (e.g., Costanza, 1989; Turner et al., 1989), but landscape modelers have
not yet taken full advantage of these. The use of neutral models might also be
pursued (Gardner et al., 1987) in developing methods for evaluating model per-
formance. Clearly, the credibility of landscape modeling demands further attention
to model testing and evaluation.

Conclusions and prospectus

A typical evolution for models — and landscape models are no exception — is toward
increasing complexity. This is a natural consequence of using a model: by applying
it new things are discovered that might be refined or added to make it a more
useful or realistic model. In our case, it is tempting to let the three meta-models
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evolve toward each other. For example, we might add spatial neighborhood inter-
actions to Mosaic, or seed dispersal to ZelStage; or more realistic transients might
be eked from MetaFor by incorporating elements of the other two models. Thus
far this line of model evolution has been avoided. Instead, ways to build meta-
models more efficiently and more robustly have been focused on. This entails, for
example, devising automated and more streamlined schemes for model definition
and parameterization. This, in turn, will allow more ready building of a greater
number of variations on the models themselves; a larger family of meta-models
geared to particular applications. Recognizing that each such model has its own
strengths and weaknesses, variety allows us to choose the simplest model that will
address the application at hand.

Acknowledgments

This work was supported in part by the National Science Foundation's program
in Computational Biology, through a collaborative grant to Dean Urban
(DIB-9630606 to Duke University), Miguel Acevedo (DIB-9615936 to University
of North Texas), and Steve Garman (DIB-9615937 to Oregon State University).

References

Aber, J. D. and Federer, C. A. (1992). A generalized, lumped-parameter model of
photosynthesis, evapotranspiration, and net primary production in temperate and
boreal forest ecosystems. Oecologia, 92, 463-74.

Ablan, M. (1997). Forest landscape dynamics: a semi-Markov modeling approach. PhD
dissertation, Environmental Science, University of North Texas, Denton. 138 pp.

Acevedo, M., Urban, D. L. and Ablan, M. (1995a). Transition and gap models of forest
dynamics. Ecology Applications, 5, 1040-55.

Acevedo, M., Urban, D. L. and Ablan, M. (19956). Landscape scale forest dynamics:
GIS, gap, and transition models. In GIS and environmental modeling: progress and
research issues, ed. M. F. Goodchild, L. T. Steyaert, B. 0. Parks et al., pp. 181-6.
Fort Collins, CO: GIS World Books.

Acevedo, M. F., Urban, D. L. and Shugart, H. H. (1996). Models of forest dynamics
based on roles of tree species. Ecological Modelling, 87, 267-84.

Albini, F. A. (1976). Estimating wildfire behavior and effects. USDA Forest Service
General Technical Report INT-30.

Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2, 111-
33.

Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO 2 levels.
Annual Reviews of Ecology Systems, 21, 167-96.

Bonan, G. B. (1989). A computer model of the solar radiation, soil moisture, and soil
thermal regimes in boreal forests. Ecological Modelling, 45, 275-306.

Botkin, D. B., Janak, J. F. and Wallis, J. R. (1972a). Rationale, limitations, and

e



96	 D. L. Urban et al.

assumptions of a northeastern forest growth simulator. IBM Journal of Research and
Development, 16, 101-16.

Botkin, D. B., Janak, J. F. and Wallis, J. R. (1972b). Some ecological consequences of a
computer model of forest growth. Journal of Ecology, 60, 849-73.

Burke, I. C., Shimel, D. S., Yonker, C. M., Parton, W. H., Joyce, L. A. and Lauenroth,
W. K. (1990). Regional modeling of grassland biogeochemistry using GIS. Landscape
Ecology, 4,45-54.

Chang, C. and Urban, D. (1997). A cellular automaton extending forest gap dynamics to
landscape behavior. Paper presented at the 12th Annual Landscape Ecology
Symposium, March 1997, Durham, North Carolina (manuscript in prep.).

Costanza, R. (1989). Model goodness of fit: a multiple resolution procedure. Ecological
Modelling, 47, 199-215.

Daly, C., Neilson, R. P. and Phillips, D. L. (1994). A digital topographic model for
distributing precipitation over mountainous terrain. Journal of Applied Meteorology, 33,
140-58.

DeAngelis, D. L. and Gross, L. J. (eds.) (1992). Individual-based models and approaches in
ecology. New York: Chapman and Hall.

Delcourt, H. R., Delcourt, P. A. and Webb, T. (1983). Dynamic plant ecology: the
spectrum of vegetation change in space and time. Quaternary Science Review, 1, 153-
75.

Dixon, G. (1994). Forest vegetation simulator, western Sierra Nevada variant (WESSIN).
USDA Forest Service, Western Office Service Center, Fort Collins, CO.

Gardner, R. H., Milne, B. T., Turner, M. G. and O'Neill, R. V. (1987). Neutral
models for the analysis of broad-scale landscape pattern. Landscape Ecology, 1, 19-28.

Garman, S. L., Acker, S. A., Ohmann, J. L. and Spies, T. A. (1995). Asymptotic height-
diameter equations for twenty-four tree species in western Oregon. Research
Contribution 10: Forest Research Laboratory, College of Forestry, Oregon State
University, Conrallis. 22 pp.

Gholz, H. L., Grier, C. C., Campbell, A. G. and Brown, A. T. (1979). Equations for
estimating biomass and leaf area for plants in the Pacific Northwest. Research Paper
41, Forest Research Lab, Oregon State University, Corvallis.

Green, D. G. (1989). Simulated effects of fire, dispersal, and spatial pattern on
competition within forest mosaics. Vegetatio, 82, 139-53.

Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modeling. Applied
Mathematics and Computations, 27, 81-100.

IPCC (Intergovernmental Panel on Climate Change). (1996). Climate change 1995: the
science of climate change. Cambridge: Cambridge University Press.

Johnson, W. C. and Sharpe, D. M. (1976). An analysis of forest dynamics in the north
Georgia piedmont. Forensic Science, 22, 307-22.

Leemans, R. and Prentice, I. C. (1987). Description and simulation of tree-layer
composition and size distribution in a primaeval Picea-Pinus forest. Vegetatio, 69,
147-56.

Legendre, P. and Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio,
80, 107-38.

Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-67.
Martin, M. E., Aber, J. D. and Congalton, R. (1999). Determining forest species

composition using high spectral resolution remote sensing data. latemational Journal
of Remote Sensing (in press).



Scaling up fine-scale processes with models 	 97

McGarigal, K. and Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program
for quantifying landscape structure. Gen. Tech. Report PNW-GTR-351, USDA
Forest Service, Pacific Northwest Research Station, Portland, OR.

Miller, C. and Urban, D. L. (1999). A model of surface fire, climate and forest pattern in
Sierra Nevada, California. Ecological Modelling, in press.

Nikolov, N. T. and Zeller, K. F. (1992). A solar radiation algorithm for ecosystem
dynamic models. Ecological Modelling, 61, 149-68.

O'Neill, R. V., Krummel, J. R., Gardner, R. H., Sugihara, G., Jackson, B., DeAngelis,
D. L., Milne, B. T., Turner, M. G., Zygmunt, B., Christensen, S. W., Dale, V. H.
and Graham, R. L. (1988). Indices of landscape pattern. Landscape Ecology, 1, 153-
62. 	 —

Ousterhout, J. K. (1994). Tcl and the Tk toolkit. Reading, MA: Addison-Wesley
Professional Computing.

Patton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. (1987). Analysis of factors
controlling soil organic levels of grasslands in the Great Plains. Soil Science Society
American Journal, 51, 1173-9.

Riitters, K. H., O'Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H.,
Timmins, S. P., Jones, K. B. and Jackson, B. L. (1995). A factor analysis of
landscape pattern and structure metrics. Landscape Ecology, 10, 23-40.

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland
fuels. USDA Forest Service Research Paper INT-115. 40 pp.

Running, S. W., Nemani, R. R. and Hungerford, R. D. (1987). Extrapolation of
synoptic meteorological data in mountainous terrain and its use for simulating forest
evapotranspiration and photosynthesis. Canadian Journal of Forestry Research, 17, 472-
83.

Schwarz, P. A. (1993). A suite of software tools for managing a large parallel programming
project. Ithaca, NY: Cornell Theory Center.

Shugart, H. H. (1984). A theory of forest dynamics. New York: Springer-Verlag.
Shugart, H. H. and West, D. C. (1980). Forest succession models. BioScience, 30, 308-

13.
Smith, J. B. and Tirpak, D. (1989). The potential effects of global climate change on the

United States. Policy, Planning and Evaluation, PM-221. US EPA, Washington,
DC.

Solomon, A. M. (1986). Transient response of forests to CO 2-induced climate change:
simulation modeling experiments in eastern North America. Oecologia, 68, 567-79.

Strain, B. R. and Cure, J. D., eds. (1985). Direct effects of increasing carbon dioxide on
vegetation. DOE/ER-0238, Carbon Dioxide Research Division, US DOE,
Washington, DC.

Turner, M. G., Costanza, R. and Sklar, F. H. (1989). Methods to evaluate the
performance of spatial simulation models. Ecological Modelling, 4, 1-18.

Urban, D. L., Bonan, G. B., Smith, T. M. and Shugart, H. H. (1991). Spatial
applications of gap models. Forestry Ecology Management, 42, 95-110.

Urban, D. L. and Shugart, H. H. (1992). Individual-based models of forest succession. In
Plant succession: theory and prediction, ed. D. C. Glenn-Lewin, R. K. Peet and T. T.
Veblen. London: Chapman and Hall.

Urban, D. L., Miller, C., Stephenson, N. L. and Graber, D. Forest pattern in Sierran
landscapes: the physical template. (in review)

Usher, M. B. (1992). Statistical models of succession. In Plant succession: theory and



98	 D. L. Urban et al.

prediction, ed. D. C. Glenn-Lewin, R. K. Peet and T. T. Veblen, pp. 215-48.
London: Chapman and Hall.

VEMAP participants Q.M. Melillo and 26 others). (1995). Vegetation/ecosystem
modeling and analysis project (VEMAP): comparing biogeography and
biogeochemistry models in a continental-scale study of terrestrial ecosystem
responses to climate change and CO 2 doubling. Global Biogeochemical Cycles, 9,
407-37.

Walker, B. and Steffen, W., eds. (1996). Global change and terrestrial ecosystems. IGBP
Book Series, No. 2. Cambridge: Cambridge University Press.

Wallin, D. 0., Swanson, F. J. and Marks, B. J. (1994). Landscape pattern response to
changes in pattern generation rules: land-use legacies in forestry. Ecological
Applications, 4, 569-80.

Weinstein, D. A. and Shugart, H. H. (1983). Ecological modeling of landscape dynamics.
In Disturbance and ecosystems, ed. H. A. Mooney and M. Godron, pp. 29-45. New
York: Springer-Verlag.

Weishampel, J. F. and Urban, D. L. (1996). Coupling a spatially explicit forest gap
model with a 3-D solar routine to simulate latitudinal effects. Ecological Modelling,
86, 101-11.

Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains. Ecology Monographs,
26, 1-80.

Whittaker, R. H. (1967). Gradient analysis of vegetation. Biology Review, 49, 207-64.
Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3,385-97.
Wykoff, W. R., Crookston, N. L. and Stage, A. R. (1982). User's guide to the stand

prognosis model. USDA Forest Service Intermountain Research Station, General
Technical Report INT-133. 112pp.



Fig. 4.4 Sample of Sequoia — Kings Canyon National Park as simulated at 30-m resolution by
MetaFor (left) and as a vegetation map created by the Park (right). Cover types do not correspond
between maps, but brown and orange shades are foothills chaparral and hardwoods; bright green,
Ponderosa pine types; darker greens, white and red fir types; teal green, high-elevation conifers; white
and beige, barren ground. The black area in the map on right is missing data. The striking point of
this comparison is that neither image is a true depiction of the Park's &gelation.
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Fig. 4.7. Example simulations of the H.J. Andrews Forest, a —6300-ha watershed in the central
Cascades ofOrego tt, as simulated with the Mosaic model (from Ablan 1997).
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25, and 50,- respektitiely, using a dispersed harvest strategy. Stand-leM freattnent4consisted of
ru,n, ,eing 20% (left panel) or 60% (right) of the overstory basal area. Arrows indicate the tendency

.iuti . rent removal letvls to favor conifers deft, at 20%) or hardwoods (rig/it, at 60% removal).
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