Young Stand Thinning and Diversity Study: Post-treatment Assessment of Ground-dwelling Vertebrates

258

1

Interim Report, December 1998

Steven L. Garman Dept. Of Forest Science Oregon State University Corvallis, OR 97331

The goal of the Young Stand Thinning and Diversity Study is to evaluate the effects of thinning regimes of young managed, Douglas-fir stands on various ecosystem properties. Pre- and post-treatment assessments of vegetation and avian species have been reported, or are in progress. This interim report documents results from the first year of post-treatment sampling of ground-dwelling vertebrate species. Descriptions of study sites, silvicultural treatments, and pre-treatment analyses of ground-dwelling vertebrates are presented in Hagar (1996).

Methods

Field Sampling

A new sampling design was established for post-treatment sampling. In the pre-treatment (1991-92) sampling effort, a 10x10 grid of Sherman live-traps with an inter-trap distance of 20-m was approximately centered in each stand. Additionally, a separate 5x5 pitfall-trap grid with similar spacing among stations was located away from the live-trap grid. To better handle the spatial variability of treatments, especially the light thin with gap treatments, the regular grid design was replaced by variable length transects. The number of transects in a stand varies with stand shape and size; however, each stand has a total of 100 trapping stations. Transects were spaced 30-m apart and >50-m from a stand edge. Trapping stations on a transect were originally to be spaced 30-m apart. However, to avoid permanent vegetation and mushroom sampling plots, inter-station distances on a transect varied from this spacing by \pm 5-10m. Pitfall traps constructed of two #10 cans were located at every other station on a transect, for a total of 50 pitfall stations per stand. Trap stations were marked with numbered, wire-flags. Hand-drawn maps of transect orientation and approximate trap-station locations were produced for future reference.

During a trapping period, one Sherman live-trap was placed at every trapping station, and pitfall traps were cleared of debris and made functional. All traps were baited with a standard mixture of peanut butter, rolled oats, and sunflower seeds. Polyfiber batting was placed inside each trap for insolation. Sherman traps were placed inside a half-gallon milk cartons for added insolation and to reduce exposure of traps and potential captures to rain water. A pint-sized juice carton was inserted into each pitfall trap for similar reasons. Traps were checked every day. Captures were

identified to species, ear-tagged or toe clipped, weighed, sexed, then released immediately at the site of capture. Dead specimens were removed from the site and stored. Upon termination of a trapping period, Sherman traps were removed; pitfall traps were filled with sticks and rocks.

Trapping of ground-dwelling vertebrates was conducted from 21 September to 10 November 1998. The four stands constituting a geographic block were simultaneously trapped for six consecutive nights.

Data Analysis

Capture rates (number of individuals/100 undisturbed trap nights) of frequently recorded species (i.e., species with >30 recorded individuals across all stands) were qualitatively compared between pre- and post-treatment. A randomized-block ANOVA determined significant differences in mean capture rates of frequently recorded species among treatments in 1998. Statistical differences were interpreted as a treatment effect because pre-treatment mean capture rates were not significantly different for any species among stands assigned to the different thinning treatments. Comparisons of species' capture rates among different habitats can be confounded by age structure and residency status of individuals. For instance, source and sink habitats can have similar densities of a species but the latter would be comprised of primarily younger individuals. Also, habitats used primarily for dispersal would have lower recapture rates of a species compared to primary habitat. To evaluate differences in age structure of a species and residency characteristics in 1998, mean weight of captures (a surrogate for age) and mean recapture rates were compared among treatments with a fixed-effects ANOVA. Weights of individuals suspected of being gravid or that were infested with bot-fly larva were not used. When ANOVA comparisons indicated a significant difference among means, pairwise comparisons were performed using the Least Significant Difference (LSD) method.

Results/Discussion

Ten mammal and five amphibian species were recorded in 1998 (Table 1). This compares with 17 identified mammal and seven amphibian species in 1991-92. Only four mammal and one amphibian species were recorded often enough (>30 recorded individuals) for meaningful assessment of treatment effects in 1998. These same species plus the western red-backed vole and the northern flying squirrel had >30 recorded individuals in the pre-treatment sampling. More individuals were recorded in 1998 than in either of the pre-treatment sampling periods (1654 - 1998, 892- 1991, 1214 - 1992). Of the seven most commonly captured species among all three years, mean capture rates for five species (Pema, Tato, Sosp, Sotr, Glsa) were higher in control plots in 1998 compared to 1991-92 combined (Table 2). Ensatina and western red-backed vole exhibited an opposite trend. Differences in capture rates on the control plots likely reflects natural, inter-annual variability in population levels with possibly one exception. Pre-treatment sampling was conducted in late Fall (10 October - 27 November), and thus may have sampled stands when chipmunks were beginning to hibernate or after a significant portion of the local population had hibernated (M. Hunter, pers. comm.). Sampling in 1998 was purposely conducted

earlier to avoid this potential problem. The 10-fold increase in mean capture rate of this species in control plots and generally higher mean capture rates in the thinned stands in 1998 likely reflects seasonal differences between the pre- and post-treatment sampling efforts.

Data from the first year of post-treatment sampling suggests that thinning treatments had a limited effect on ground-dwelling vertebrates. Compared to control plots, capture rates tended to be higher in the thinned stands for the deer mouse (Pema), chipmunk (Tato), and Ensatina (Enes), and lower for shrew species (Sotr, Sosp) (Table 3). However, only the deer mouse exhibited a statistically significant (P<0.05) response to thinning treatments. Mean capture rates of the deer mouse were about three times as high for thinned stands as for the control plots. A numeric response of the deer mouse to more open conditions would be expected given its preference for shrub and herbaceous vegetation. Although mean capture rate of this species did increase with thinning intensity, rates were statistically similar (P>0.05) among thinning treatments. Based on the 1998 results, it appears that removing at least one-half of the initial overstory density is sufficient for a numerical increase in the deer mouse, but additional overstory thinning does little to enhance habitat conditions for this species.

Analyses of mean weights and recapture rates suggest that the numerical response (or lack of a statistically significant response) of individual species to thinning treatments was not confounded by sink/source habitat or differential dispersal effects. For all species for which samples sizes were sufficient for analysis, mean weights (Table 4) and recapture rates (Table 5) were statistically similar (P>0.05) among treatments.

Future Efforts

Trapping will be conducted Fall 1999. A more extensive analysis of stand-level pre-, posttreatment trends and treatment effects on capture rates of ground-dwelling vertebrates will be conducted after collecting the second year of post-treatment data. Additionally, micro-habitat assessment will be conducted using the post-treatment capture data. This assessment will consist of correlating capture data from every other station, every other transect with habitat features of the corresponding trap stations, which will be collected during Summer/Fall 1999. Habitat features will include tree and snag density, log density, shrub and herbaceous cover, and other ground cover (e.g., percent rock and bareground). The sub-sampling of trapping stations for the micro-habitat assessment is to minimize spatial autocorrelation. Redundancy Analysis is proposed as the primary statistical method for the micro-habitat analysis. The combination of stand-level and micro-habitat assessments will provide a hierarchical analysis of species' habitat use; standlevel responses will indicate general response of species to the gradient of thinning treatments. micro-habitat analysis will indicate the proximate habitat features for individual species. Microhabitat assessments will potentially aid in explaining numerical responses (or lack of) of species among treatments by more closely examining their affinities with small-scale habitat features and thinning-treatment effects on the dispersion of these features.

The post-treatment ground-dwelling vertebrate data base was documented following the OSU Forest Science Data Base (FSDB) protocol (Appendix B). The pre-treatment data currently residing in the FSDB (StudyId WE0081) will be reformatted to match the 1998 data base design. The updated WE0081 data base will be permanently stored in the FSDB prior to Fall 1999 sampling.

Literature Cited

Hagar, J. 1996. Pre-treatment analysis of wildlife-habitat relationships in young managed stands in the Oregon Cascade Range. Report to Cascade Center for Ecosystem Management, Blue River Ranger District, Willamette National Forest. 35p.

			Species		
Block/			-r		
Treatment (TAC)	Pema	Tato	Sosp	Sotr	Enes
Cougar Reservoir					
Control (1)	1.04	1.22	0.80	5.14	0.33
Heavy Thin (2)	4.55	1.85	0.56	3.47	0.00
Light Thin (3)	6.84	2.70	1.40	7.94	1.67
Light Thin/gaps (4)	5.44	2.04	0.90	3.38	0.33
Mill Creek					
Control (5)	5.32	0.51	1.48	3.99	0.00
Heavy Thin (6)	12.03	2.65	0.23	2.09	2.01
Light Thin (7)	17.42	3.99	0.82	3.99	1.67
Light Thin/gaps (8)	16.26	5.96	1.01	4.03	0.44
Christy Flats					
Control (9)	3.60	7.19	1.17	3.39	0.33
Heavy Thin (10)	7.13	4.24	0.34	2.25	1.33
Light Thin (11)	6.87	7.90	0.23	2.49	2.00
Light Thin/gaps (12)	10.65	3.84	0.23	2.40	1.33
Sidewalk Creek					
Control (13)	2.69	2.02	0.45	3.91	0.00
Heavy Thin (14)	8.26	3.20	0.67	1.90	0.00
Light Thin (15)	10.41	0.00	1.02	1.69	0.67
Light Thin/gaps (16)	9.78	1.71	0.57	2.72	3.33

Table 1. Numbers of individuals/100 undisturbed trap nights for ground-dwelling vertebrates, 1998. TAC = Treatment Area Code. See Appendix A for definition of species acronyms.

Incidental captures (No. of individuals): Clca (15), Glsa (3), Negi (10), Mior (15), Scor (2), Tado (1), Amgr (2), Astr (1), Dite (3), Tagr (2)

Table 2. Mean (1 se) number of individuals/100 undisturbed trap nights by thinning treatment for frequently captured ground-dwelling vertebrates. First row for a treatment corresponds to pre-treatment sampling (1991,1992 combined), second row is first year (1998) of post-treatment sampling. See Appendix A for definition of species acronyms.

Species							
Treatment	Pema	Tato	Sosp	Sotr	Enes	Clca	Glsa
Control	2,00,(0.62)	0.28 (0.21)	0.51 (0.12)	1.38 (0.38)	0.81 (0.22)	0.55 (0.22)	0.05 (0.05)
	3.16 (1.03)	2.74 (1.75)	0.97 (0.26)	4.11 (0.43)	0.17 (0.11)	0.11 (0.05)	0.09 (0.10)
Heavy Thin	4.30 (1.25)	0.84 (0.45)	0.28 (0.14)	1.90 (0.53)	0.63 (0.24)	0.89 (0.31)	0.13 (0.10)
	8.00 (1.79)	2.99 (0.58)	0.45 (0.12)	2.43 (0.41)	0.84 (0.58)	0.14 (0.10)	0.00 (0.00)
ight Thin	4.03 (0.72)	0.59 (0.34)	0.45 (0.14)	1.69 (0.41)	0.88 (0.47)	0.83 (0.37)	0.42 (0.26)
	10.39 (2.88)	3.65 (1.90)	0.87 (0.28)	4.03 (1.60)	1.50 (0.33)	0.03 (0.03)	0.04 (0.05)
Light Thin	4.02 (0.99)	1.27 (0.65)	0.40 (0.13)	1.36 (0.48)	0.37 (0.17)	1.00 (0.59)	0.25 (0.16)
with gaps	10.53 (2.57)	3.39 (1.13)	0.68 (0.20)	3.13 (0.42)	1.36 (0.80)	0.09 (0.06)	0.00 (0.00)

6

Table 3. Results of ANOVA comparison of mean capture rates (1 se) of frequently captured ground-dwelling vertebrates among thinning treatments in 1998. Means with same letter in column are not significantly (P>0.05) different. See Appendix A for definition of species acronyms.

			Species		
Treatment	Pema	Tato	Sosp	Sotr	Enes
Control	3.16 ^A	2.74 ^A	0.97 ^A	4.11 ^A	0.17 ^A
	(1.03)	(1.75)	(0.26)	(0.43)	(0.11)
Heavy Thin	8.00 ^B	2.99 ^A	0.45 ^A	2.43 ^A	0.84 ^A
-	(1.79)	(0.58)	(0.12)	(0.41)	(0.58)
Light Thin	10.39 ^B	3.65 ^A	0.87 ^A	4.03 ^A	1.50 ^A
	(2.88)	(1.90)	(0.28)	(1.60)	(0.33)
Light Thin	10.53 ^B	3.39 ^A	0.68 ^A	3.13 ^A	1.36 ^A
with gaps	(2.57)	(1.13)	(0.20)	(0.42)	(0.80)

7

Table 4. Mean (1 se) weight (g) of individuals by thinning treatment, 1998. Means with same letter in column are not significantly different (P>0.05). See Appendix A for definition of species acronyms.

		Speci	es		
Treatment	Pema	Tato	Sosp	Sotr	
Control	15.9 (0.37) ^A	82.8 (1.79) ^A	6.5 (0.25) ^A	5.6 (0.77) ^A	
Heavy Thin	14.6 (0.21) ^A	82.9 (1.25) ^A	6.0 (0.30) ^A	$4.9(0.08)^{A}$	
Light Thin	15.9 (0.19) ^A	82.2 (0.87) ^A	$6.1 (0.27)^{\text{A}}$	4.9 (0.09) ^A	
Light Thin/gaps	15.3 (0.19) ^A	82.6 (0.88) ^A	$6.8(0.76)^{A}$	$4.7(0.11)^{A}$	

Table 5. Mean (1 se) recapture rate of the deer mouse (Pema) and Townsend's chipmunk (Tato) by thinning treatment, 1998. Means with same letter in column are not significantly different (P>0.05).

Species					
Treatment	Pema	Tato			
Control	$0.49 (0.039)^{\text{A}}$	0.31 (0.132) ^A			
Heavy Thin	0.54 (0.056) ^A	0.38 (0.164) ^A			
Light Thin	$0.54(0.038)^{A}$	$0.31(0.154)^{A}$			
Light Thin/gaps	$0.47(0.082)^{A}$	0.43 (0.066) ^A			

Amgr	Ambystoma gracile	northwestern salamander
Astr	Ascaphus truei	tailed frog
Clca	Clethrionomys californicus	western red-backed vole
Dite	Dicamptodon tenebrosus	Pacific Giant Salamander
Enes	Ensatina eschscholtzii	Ensatina
Glsa	Glaucomys sabrinus	northern flying squirrel
Mior	Microtus oregoni	oregon vole
Negi	Neurotrichus gibbsii	shrew-mole
Pema	Peromyscus maniculatus	deer mouse
Scor	Scapanus orarius	coast mole
Sosp	Sorex spp.	pacificus, sonoma complex
Sotr	Sorex trowbridgii	Trowbridge's shrew
Tado	Tamiasciurus douglasii	Douglas squirrel
Tagr	Taricha granulosa	rough-skinned newt
Tato	Tamias townsendii	Townsend's chipmunk

Appendix A. Definition of species acronyms.

Appendix B - Meta-data for Yound Stand Thining and Diversity Study ground-dwelling vertebrate data base.

* * * * * * * * * * * * * * * * * * * *	******	* * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******
Variable	Format	and	Definitions	WE81TEST	12/27/98
*********************************	******	****	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

Format 1

Small	Vertebrate	Captures

Variable	Coded Null	Format	Unit	Definition
MONTH		12		Month
DAY		12		Day
YEAR		I4		Year
JULIAN		13		Julian Date
TAC	Y	12		Treatment Area Code
BLOCK	Y	12		Block Code
TREATMENT	Y	11		Treatment Code
TRANSECT		12		Transect Number (1998-99)
STATION		12		Trap Station Number (1998-99)
PLOT		A3		Transect/Station Code (1991-92)
TRAPTYPE	Y	A2		Тгар Туре
SPECIES	Y	A4		Species
CAPSTAT	Y	A2		Capture Status
TAG1		I4		Tag #1 Number
EAR1	Y	A2		Ear for Tag#1
TAG2		I4		Tag#2 Number
EAR2	Y	A2		Ear for Tag#2
TOENUM1		I4		Toe Number Assigned in Field
TOENUM2		I4		Re-assigned Toe Number (1991-92)
BODYL		F5.1	CM	Body Length
TAILL		F5.1	CM	Tail Length
WEIGHT		F5.1	g	Weight
SEX	Y	A2		Gender
REPROSTAT	Y	A3		Reproductive Status
LIVE	Y	Il		Live Status
DEAD	Y	11		Dead Status
DEADNUM		A5		Bag Number of Dead Specimen
NOTENUM		15		Note Number (1998-99)
NOTES		A45		Comments

Appendix B Cont'd

* * * * * * * * * * * * * * * * * * * *	*******	******	****	***************	*****	****
	Variable	Format	and	Definitions	WE82TEST	12/27/98
* * * * * * * * * * * * * * * * * * * *	*******	******	****	* * * * * * * * * * * * * * * * * * * *	*****	******
Format 2						

Trap Status

Variable	Coded Null	Format Unit	Definition
MONTH		12	Month
DAY		12	Day
YEAR		I4	Year
JULIAN		13	Julian Date
TAC	Y	12	Treatment Area Code
BLOCK	Y	12	Block Code
TREATMENT	Y	I1	Treatment Code
TRANSECT		12	Transect Number
STATION		12	Trapping Station Number
TRAPTYPE	Y	A2	Тгар Туре
STATUS	Y	A10	Trap Status

Appendix B Cont'd

*******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****
*******	Variable	2 Code Definitions ************************************	WE81,2TEST 12/27/98
Variable: 1 2 3 4	BLOCK Cougar Reservoir (Blue Rive Mill Creek (McKenzie RD) Christy Flats (Oakridge RD) Sidewalk Creek (Oakridge RI	er RD))))	
Variable: N NE R RE E P RT	CAPSTAT New Capture New Capture/escaped prior t Recapture Recapture/escaped prior to Escaped/capture status unkr Torn ear(s) indicative of t Retagged due to problems wi	to tagging/toe-clipping recording tag/toe number nown tag loss th existing ear tag	
Variable: 1	DEAD Dead		
Variable: R L	EAR1, EAR2 EAR1 corresponds to TAG1, E Right Ear Tagged Left Ear Tagged	CAR2 corresponds to TAG2	
Variable: 1	LIVE Live		
Variable: TD TR L NL U/O	REPROSTAT Testes Descended Testes Recessed Lactating Not Lactating Unknown		
Variable: M F U/O	SEX Male Female Unknown		
Variable: AMGR ANFE ASTR CLCA DITE/DIEN ENES GLSA MILO MIOR MIRI MUER NEGI PEMA SCOR SCOR SCOR SOBE SCOR SOBE SOSP SOTR SPGR TADO TAGR TATO U/UNKN VOLE	SPECIES Ambystoma gracile Aneides ferreus Ascaphus truei Clethrionomys californicus Dicamptodon tenebrosus Ensatina eschscholtzii Glaucomys sabrinus Microtus longicaudus Microtus oregoni Microtus oregoni Microtus richardsoni Mustela erminea Neurotrichus gibbsii Peromyscus maniculatus Scapanus orarius Sorex bendirii Sorex spp. Sorex trowbridgii Spliogale putorius Tamiasciurus douglasii Taricha granulosa Tamias townsendii	northwestern salamander clouded salamander tailed frog western red-backed vole Pacific giant salamander Ensatina northern flying squirrel long-tailed vole oregon vole Richardson's vole ermine shrew-mole deer mouse coast mole marsh shrew pacificus, sonoma complex Trowbridge's shrew spotted skunk Douglas squirrel rough-skinned newt Townsend's chipmunk Unknown	

Appendix B Cont'd

* * * * * * * * * *	*****	************	*****	*******	*******	*********	********
********	****	variable Cod	e Delluitious			WE81, ZTEST	12/2//98
Variable: SPRUNG MISSING NOTSET DESTROYED	STATUS Sprung Missing trap Trap not activated Trap present, but	broken		*****		****	****
Variable: P S T Tor	TRAPTYPE Pitfall Trap Sherman Trap mahawk						
Variable: 1 2 3 4	TREATMENT Control Heavy Thin Light Thin Light Thin/gaps	9					
Variable: 1 2 3 4	TAC Cougar Reservoir Control Heavy Thin Light Thin Light Thin/gaps						
5 6 7 8	Mill Creek Control Heavy Thin Light Thin Light Thin/gaps						
9 . 10 11 12	Christy Flats Control Heavy Thin Light Thin Light Thin/gaps			×			
13 14 15 16	Sidewalk Creek Control Heavy Thin Light Thin Light Thin/gaps						