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Comparisons among Vegetation Indices and
Bandwise Regression in a Highly Disturbed,
Heterogeneous Landscape:
Mount St. Helens, Washington

Rick L. Lawrence' and William J. Ripple'

Spectral vegetation indices have been used extensively
to predict ecological variables, such as percent vegetation
cover, above-ground biomass, and leaf-area index. We ex-
amined the use of various vegetation indices and multiple
linear regression using raw spectral bands for predicting
vegetation cover in a landscape characterized by high
variability in vegetation cover and soil properties. We
were able to improve the explanatory value of several
vegetation indices by using regression fitting techniques
including log transformations and polynomial regres-
sions. We expected soil-adjusted indices to perform better
than nonadjusted indices. However, soil-adjusted vegeta-
tion indices based on a ratio of red and near-infrared
bands explained 55-65% of the variability in vegetation
cover, while two nonadjusted indices each explained
70%. An index using six spectral bands explained 40%.
The best multiple regression model used the red and
near-infrared bands and explained 75% of the variability
in vegetation cover. Among the soil-adjusted indices, an
index which used a computed soil line performed best.
Ratio-based vegetation indices were less sensitive to
shadow influences, but this influence was outweighed by
the advantages of multiple regression against original
bands. ©Elsevier Science Inc., 1998
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INTRODUCTION

On 18 May 1980, Mount St. Helens in the State of
Washington erupted with catastrophic, landscape-scale
effects (Lipman and Mullineaux, 1981). In a mere 10
min, an area of approximately 500 sq km was devastated,
with destruction of substantially all above-ground vegeta-
tion (Frenzen, 1992). The ensuing debris, mud, and py-
roclastic flows further transformed the landscape from
one of lush Pacific Northwest forests into a seemingly
barren expanse.

The Mount St. Helens eruptions and subsequent re-
covery have gathered world-wide public attention.
Mount St. Helens National Volcanic Monument remains
one of the most visited natural wonders in the Pacific
Northwest. The attention from scientists has been at
least as great. A compendium published in 1994 listed
637 publications and 69 research abstracts related to the
eruptions and their aftermath (Frenzen et al., 1994).
However, the research opportunities afforded by Mount
St. Helens have gone essentially overlooked by the re-
mote sensing community. The research reported in this
article is part of a program designed to exploit some of
the remote sensing opportunities afforded by this site.

Mount St. Helens provides a nearly unique opportu-
nity to address some of the more perplexing problems in
remote sensing. Since the early days of satellite remote
sensing, scientists have sought to use multispectral imag-
ery to measure assorted ecological variables related to
vegetation amount. Much of this research has attempted
to formulate vegetation indices that can be related to
ecological variables such as vegetation cover, biomass,
leaf area index, and fraction of absorbed photosyntheti-
cally active radiation. Considerable success has been
achieved in this area. However, several problems have
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continued to plague remote sensing scientists. Two of
these problems that are relevant to Mount St. Helens
are: I) As percentage of vegetation cover decreases vege-
tation reflectance signals become increasingly contami-
nated by soil reflectance noise; and 2) Variation in soil
reflectances increase the difficulty in adjusting for soil
reflectance influences.

The area devastated by the eruption of Mount St.
Helens provides the opportunity to address both of these
problems in a relatively small landscape. The eruption
and subsequent recovery have created substantial hetero-
geneity both in substrates and vegetation cover amounts.
Thus, we have been able to formulate and test hypothe-
ses related to these issues within a range of conditions
that might otherwise require regional analysis.

The specific purposes of this study were twofold.
First, we sought to formulate and test hypotheses regard-
ing the relative strength of various vegetation indices that
either have been widely used or were specifically de-
signed to account for substrate influences. Second, we
attempted to determine whether the use of vegetation
indices to measure ecological variables has advantages
over the use of multiple regression against raw, nonin-
dexed spectral hands. We did not attempt to assess the
utility of vegetation indices for other purposes, such as
data visualization and data compression.

OVERVIEW OF VEGETATION INDICES AND
FORMULATION OF HYPOTHESES

The distinctive spectral properties of green vegetation
have long been used by remote sensing scientists to map
ecological variables of interest. Jordan (1969) is credited
with first combining near-infrared and red spectral re-
sponses into a ratio that was then shown to correlate
highly with leaf-area index. Since that pioneering work,
a vast number of spectral band combinations have been
studied as measures of vegetation. These vegetation indi-
ces have been variously proposed, modified, analyzed
theoretically, compared, summarized, categorized, and
criticized. Although it is not our intent to repeat those
efforts here, we will review certain vegetation indices to
the extent necessary to formulate hypotheses regarding
which indices should perform relatively better under the
heterogeneous vegetation and substrate conditions found
within the Mount St. Helens devastated area.

We have generally divided vegetation indices into
two categories, although other categorizations might be
appropriate for other purposes. The first type consists of
ratio-based indices. The most commonly used of these
indices exploit the characteristic chlorophyll absorption
by vegetation in the red portion of the spectrum and
high reflectance by vegetation in the near-infrared por-
tion (Tucker, 1979). Ratio-based indices include the sim-
ple ratio (SR) developed by Jordan (1969), the normal-
ized difference vegetation index (NDVI) developed by

Rouse et al. (1973), and various modified versions of
NDVI designed to address its sensitivity to factors such
as soil variability and atmospheric conditions. The for-
mula for each vegetation index discussed in this article
is presented in Table 1.

A second type of indices are soil-line based or or-
thogonal indices. These indices are based on there being
a line in spectral space (assuming two dimensions, a
plane in three dimensions, or a hyperplane in higher di-
mensions) along which bare soils of differing brightness
will lie. Vegetation increases perpendicularly to the soil
line. Kauth and Thomas (1976) developed their "Tas-
seled Cap" transformation for Landsat MSS data, the
second component of which has become known as the
greenness index, which is sometimes called the green
vegetation index (GVI). Grist and Cicone (1984) have ex-
tended the analysis to six hands of Landsat Thematic
Mapper (TM) data (excluding the thermal infrared
band). We used the version of this index currently imple-
mented in the Imagine 8.2 image processing software
(ERDAS, 1995).

The reader is referred to the original works cited
above for more detail on the theory and derivation of
these vegetation indices, as well as several excellent re-
views contained in the literature (e.g., Rondeaux et al.,
1996; Qi et al., 1994; Perry and Latenschlager, 1984).
Specific properties of the indices relevant to our study
will be discussed below in connection with hypothesis
development.

Ratio-Based Indices
The two most widely used ratio-based indices are SR and
NDVI. These indices have performed well in many ap-
plications, showing high correlations to vegetation cover,
above-ground biomass (Tucker, 1979; Elvidge and Lyon,
1985; Anderson et al., 1993), leaf-area index (Running et
al., 1986; Spanner et al., 1990), and other ecological vari-
ables (e.g., Cihlar et al., 1991; Myneni and Williams,
1994; Yoder and Waring, 1994; Wiegand et al., 1991).
Coefficients of determination (TO between these vari-
ables and ratio-based indices ranging from 0.60 to 0.90
have been reported in many studies (although some
studies have had lesser or greater degrees of success).
Based on a rational theory for the correlation of SR and
NDVI to green vegetation cover, as well as the empirical
success of other studies, we formulated a baseline hy-
pothesis:

Hypothesis 1: Vegetation cover within the Mount
St. Helens devastated area is significantly correlated
to SR and NDVI.

We called this our baseline hypothesis because it re-
ferred to the simplest of the vegetation indices, and we
formed our further hypotheses relative to Hypothesis 1.

Notwithstanding the observed success of SR and
NDVI, these indices were found to have limitations be-
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Table 1. Formulae for Vegetation Indices Used in This Article"

Index

SR

NDVI

SAW

OSAVI

TSAVI

MSAVI2

GVI

Formula

SR—
Band 4
Band 3

NDVI Band 4—Band 3—
Band 4+Band 3

Band 4—Band .3 
SAVI-1.5

Band 4+Band 3+0.5

OSAVI=1.16 Band 4—Band 3 

Band 4+Band 3+0.16

TSAVI— a'(Band 4—(a"Band 3)—b) 
Band 3+(a.(Band 4—b))+(0.080(1+122))

where a =the slope of the soil line and b=the intercept of the soil line

MSAVI, (2.Band 4)+1—\((2*Band 4)+1) 2 —(8,(Band 4—Band 3))
—

2

GW=—(0.2848.Band 1)—(0.2435.Band 2)—(0.5436.Band 3)
+(0.724343and 4)+(0.08400Band 5)—(0.1800.13and 7)

a Band designations are for Landsat TM bands—Band 1=0.45-0.52 pm, Band 2=0.52-0.60
um, Band 3=0.63-0.69 pm, Band 4=0.76-0.90 pm, Band 5=1.55-1.75pm, Band 7=2.08-2.35
pm. Band 6, used in the bandwise regression analysis, is 10.4-12.5 pm.

cause of their sensitivity to different substrates (Huete,
1988). Several modified versions of NDVI have been de-
veloped, with increasing complexity, to reduce the in-
herent sensitivity of NDVI to varying substrates. The
soil-adjusted vegetation index (SAVI) (Huete, 1988) in-
corporates an adjustment factor, based on the amount of
vegetation, from 0 (for high vegetation) to 1 (for low veg-
etation). In the absence of extrinsic knowledge, an in-
termediate adjustment factor of 0.5 has been suggested
and generally applied. Our study area is highly variable
with respect to vegetation amount, with substantial areas
low in vegetation. Therefore, if the rationale behind
SAVI is sound, it should perform better than NDVI for
Mount St. Helens.

A minor, but potentially important, variation to SAVI
has been proposed by Rondeaux et al. (1996). An ap-
proach to optimizing the adjustment factor for general
applications resulted in a recommended adjustment fac-
tor of 0.16, rather than 0.5. The optimized soil-adjusted
vegetation index (OSAVI) is the same as SAVI with an
adjustment factor of 0.16. Once again, if the rationale
behind OSAVI is accepted, we expect OSAVI to out per-
form SAVI throughout the range of vegetation covers
present at Mount St. Helens. However, because of the
relatively low average vegetation within the study area,
we hypothesized that the higher adjustment factor of
SAVI might result in better performance at Mount St.
Helens than OSAVI.

Rather than using a universal adjustment factor, the
transformed soil-adjusted vegetation index (TSAVI) uses
the slope and intercept of the specific soil line of the

study area (Baret et al., 1989). Although the adjustment
to NDVI is based on the soil line, rather than vegetation
amount, the effect is similar in moving the assumed loca-
tion of the soil line and how vegetation varies from the
soil line. TSAVI specifically adjusts to a given study area.
As a result, we can expect it to perform better than the
"universally" adjusted SAVI and OSAVI. However, we
also note that TSAVI assumes that there is a well-defined
soil line. With the substrate variability present at Mount
St. Helens, this may not be true.

The final ratio-based index we examined was the
modified soil-adjusted vegetation index (MSAVI) (Qi et
al., 1994). MSAVI is designed to correct a weakness in
SAVI in how vegetation responds as it moves away from
the soil line. MSAVI has the same conceptual basis as
SAVI. However, with MSAVI vegetation isolines (lines of
equal vegetation) cross the soil line at varying points.
This is believed to more accurately reflect how vegeta-
tion spectral responses actually behave. Because of this
improvement over SAVI, we expect MSAVI to perform
better than SAVI, OSAVI or TSAVI. (For this study, we
used the second of the proposed versions, MSAVI2,
which does not require an empirically determined soil

Based on the theory presented for each soil-adjusted
index and the results observed by the developers of these
indices, we can present a second, multi-part hypothesis.

Hypothesis 2: For the Mount St. Helens
devastated area, soil-adjusted vegetation indices
a) are highly correlated to vegetation cover, b)
explain more variation in vegetation cover than
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nonadjusted indices, and c) perform in increasing
ability in the order OSAVI, SAVI, TSAVI, and
MSAVI2.

ORTHOGONAL INDICES

Widely used orthogonal vegetation indices are based on
a universally predetermined soil line, rather than the in-
herently assumed soil line underlying NDVI. Therefore,
orthogonal indices have not been subject to modifica-
tions similar to the soil-adjusted versions of NDVI. The
most widely used orthogonal index is the tasseled cap
greenness index, or green vegetation index (GVI). By us-
ing six bands, rather than the two used in ratio-based in-
dices, the Landsat Thematic Mapper version of GVI has
the potential for making greater distinctions in vegeta-
tion. In certain cases, perpendicular indices have been
found superior in correlations to vegetation variables
than ratio-based indices (Huete and Jackson, 1988).
However, much of the variability in vegetation versus soil
occurs in the red and near-infrared portions of the spec-
trum, while variation in soil types is often detected in
middle infrared bands (Lillesand and Kiefer, 1994).
Thus, we postulated that, under conditions of low vegeta-
tion cover and substrate heterogeneity, GVI might be
more sensitive to soils than ratio-based indices, resulting
in reduced ability to distinguish differences in vegetation
cover. This leads us to our third hypothesis.

Hypothesis 3: GVI will explain less variability in
vegetation cover within the Mount St. Helens
devastated area than ratio-based indices.

MULTIPLE REGRESSION APPROACH

Vegetation indices have been advocated for vegetation
analysis because they provide a standardized approach to
analysis. Although this argument has some appeal, we
question its validity when there is a need to estimate or
predict ecological variables (as opposed to using indices
for data visualization purposes, for example). Rather, if
the study requires knowledge of an ecological variable of
interest (e.g., above-ground biomass), the researcher
must ultimately analyze the relationship between the
spectral index used and the ecological variable, generally
through a regression analysis. For example, several stud-
ies have found high correlations between NDVI and leaf-
area index (LAI) (e.g., Running et al., 1986; Spanner et
al., 1990; Chen and Cihlar, 1996). However, the nature
of the relationship varies with each study so that we can-
not say that a certain NDVI generally equals a certain
LAI. For example, when we used the two regression for-
mulae published by Spanner et al. (1990) for two differ-
ent years, and assumed an NDVI value of 0.5, the esti-
mated LAI differed by 5.5% between the two scenes.
Chen and Cihlar (1996) showed that the regression for-
mula can differ between seasons.

The use of vegetation indices would seem to unnec-
essarily constrain the regression analysis. For example,
many studies using NDVI or SR fit both a simple linear
model (of the form y=flo+ flix, where y =an ecological
variable of interest and x=a spectral vegetation index)
and test for a curvilinear relationship by using a log-
transformed response variable [presented either as log
(y)=flo+fl,x or y=floell. However, these models using
vegetation indices are not able to independently model
the red and near-infrared responses. Thus, if the red re-
sponse is curvilinear and the near-infrared is not, a com-
promise fit is necessary. Further, regression model fitting
using hand interactions, polynomial terms, and other
data transformations are similarly constrained because
any function performed on the index affects both hands
proportionately and simultaneously. At least one study
has found regression on individual bands to explain more
variability than regression against NDVI (Ripple, 1994),
although the causes of this effect have not been ex-
plored. This leads us to our fourth, and final, hypothesis.

Hypothesis 4: Multiple linear regression on
individual bands will explain as much or more of
the variability in vegetation cover within the Mount
St. Helens devastated area than any vegetation
index.

STUDY AREA

The 1980 eruptions of Mount St. Helens may be the
most heavily documented volcanic eruptions in history.
In one sense, the 18 May eruption may be viewed as a
single catastrophic event. However, for most ecological
purposes it is best viewed as a related suite of distur-
bance events that resulted in a complex mosaic of dis-
turbed patches. Although minute-by-minute accounts of
the events have been presented (e.g., Lipman and Mulli-
neaux, 1981), one paragraph by Franklin et al. (1985, p.
201) provides a thumbnail sketch:

The 18 May 1980 eruption began at 0832 PDT
when a large earthquake triggered a massive
avalanche of debris involving the entire upper
portion of the mountain. Movement of this mass
unroofed the core of the mountain where
superheated groundwater flashed to steam,
unleashing a blast of steam and rock debris in a
180° arc to the north. Mudflows rampaged
through the valley-bottom forests to the west and
southeast. Volcanic ash rained from the sky to the
northeast of the mountain from the morning of
18 May into the next day. In early afternoon of
18 May and during the subsequent eruptions,
pumiceous pyroclastic flows (flows of hot gases
and pumice) spilled northward out of the newly
formed crater across the deposits left by the
avalanche.
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The effects were clearly devastating throughout the af-
fected area. Disturbed areas were generally well defined
depending on the type of disturbance affecting them.
Thus, the resulting landscape is a mosaic of deposits from
the debris avalanche, pyroclastic flows, mudflows, downed
timber, scorched vegetation, and airfall tephra. Each of
these deposits has distinctive characteristics regarding
thickness, deposit temperature, and substrate composition
(Franklin et al., 1988). As a result, potential spectral prop-
erties of the substrate and potential rates of vegetative re-
covery vary significantly throughout the area.

The specific selection of our study area was dictated
by the larger study of which this research is a part. The
larger study is examining the natural recovery of the area
devastated by the 1980 eruptions. Therefore, the study
area was limited to that portion of the devastated area
that has not been reforested following the eruption.
Large water bodies within the area were also excluded.
Figure 1 is a false color composite of the study area us-
ing the TM image acquired for this study. The study area
consisted of approximately 25,400 ha, or approximately
42% of the area devastated by the eruption.

Vegetation structure and types are not readily sum-
marized for the study area because plant cover is highly
variable, within site plant diversity is often high, and suc-
cessional changes are, in some cases, rapid, making pre-
vious reports rapidly obsolete. Early reports of vegetation
in blowndown forests reported 0.2% mean canopy cover
in 1981, with dominant species primarily herbaceous, in-
cluding pearly everlasting (Anaphalis margaritacea), this-
tle (Cirsium spp.), fireweed and willowweeds (Epilobium
spp.), ryegrass (Lolium spp.), and groundsel (Senecio
spp.) (Franklin et al., 1985). By 1992, these species had
completely covered portions of the landscape (Frenzen,
1992). In subalpine study sites, substantially different re-
sults have been reported (del Moral and Bliss, 1993). Re-
covery has varied depending on the nature of the distur-
bance, with less than 1% cover reported on pyroclastic
flows, under 5% on mudflows, and over 40% on adjacent
tephra covered sites. Although there is significant overlap
in species composition among these sites, dominance var-
ies greatly. Most abundant species in order of importance
in 1990 included on tephra sites bentgrass (Agrostis die-
goensis), prairie lupine (Lupinus lepidus), spreading phlox
(Phlox diffusa), and Newberry fleeceflower (Polygonum
newbemji), and on a mudflow Newberry fleeceflower,
prairie lupine, and Cardwell's penstemon (Penstemon car-
dwelli). However, there was significant change in the rel-
ative importance of species on the mudflow site between
1988 and 1990, emphasizing the rapid changes taking
place within the area. Although tree species are not yet
of significant influence within the Mount St. Helens dev-
astated area, in some areas late snowpacks at the time of
the eruption protected mountain hemlock (Tsuga mer-
tensiana), and Pacific silver fir (Abies amabilis), scattered
alder (Alnus spp.), and Douglas-fir (Pseudotsuga menzie-

sii) have appeared throughout the area, and some roots
of willows (Salix spp.) and black cottonwood (Populus
trichocarpa) that were up-rooted by mudflows and the
debris avalanche happened to come to rest at the surface
and resprout (Frenzen, 1992).

METHODS

Data Acquisition
The study area was extracted from a 19 August 1995 TM
scene (path 46, row 28). We received the data rectified
to a Universal Transverse Mercator (UTM) grid using a
cubic convolution resampling method.

The study area was subset using a mask created
from four GIS layers. The Gifford Pinchot National For-
est (GPNF) provided a layer defining the boundaries of
the Mount St. Helens National Volcanic Monument (the
Monument). Areas outside the Monument were subject
to reforestation and were masked from the study area. A
stand data layer provided by GPNF was used to exclude
the few stands within the Monument that were refor-
ested. A disturbance map prepared by the USGS (Lip-
man and Mullineaux, 1981) was manually digitized and
used to delineate those areas within the Monument that
were devastated by the eruptions. Finally, an unsupervised
classification of the study area portion of our Landsat
scene, using the ISODATA algorithm (ERDAS, 1995),
was used to identify large water bodies and exclude them
from the study area. The resulting study area image is
shown in Figure 1.

Reference data were provided by interpretation of
true color aerial photographs (1:15,840) loaned to us by
the Monument. The aerial photographs were acquired in
late June through late July 1995. Ground visits to the
study area were conducted with copies of aerial photo-
graphs during summer 1996. During these visits, we de-
lineated examples of different cover conditions on the
aerial photographs as an aid to aerial photo interpre-
tation.

Sampling Procedure
Prior to sampling the data, we determined the number
of samples necessary to detect differences in vegetation
indices of significance. We intended to estimate vegeta-
tion cover from the aerial photos in increments of 10%.
Therefore, we needed sufficient samples to detect, with
95% confidence, half-width differences of this incre-
ment, or 5%. Using the procedures outlined in Mont-
gomery (1991), we determined that 95 sample points
would be adequate for all the vegetation indices we ex-
amined. This sample size was confirmed by applying the
same procedures to our estimates of vegetation cover
after our aerial photo interpretation was completed. We
acquired 200 sample points to account for the possibility
of having to screen out some points and potential curvi-
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Figure 1. False color composite of study area from Landsat TM image. Band 4 (near
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displayed in blue. White portions represent areas excluded because they were either 1)
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Figure 3. Estimated vegetation cover for the study area based on the application of
the final bandwise regression model: Percent vegetation cover=106.00-5.50 (Band
3)+0.048 (Band 3) 2 +1.36 (Band 4)-0.0051 (Band 4) 2 . p-value<0.0001. Multiple

= 0.75.
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linear relationships between indices or raw TM bands
and vegetation cover.

A random set of sample points was generated for the
Landsat image using Imagine 8.2 image processing soft-
ware's accuracy assessment program (ERDAS, 1995). Ac-
tual sample plots included a 3X3 pixel area with the
sample point at its center. We selected this plot size be-
cause we were confident we could accurately locate plots
of this size on the 1:15,840 scale aerial photos. We elimi-
nated 32 points for the following reasons: 1) 17 points
because they were affected by snow cover, generally
within the volcano's crater; 2) eight points because they
were too close to the edge of the study area to obtain a
three-by-three pixel plot; 3) five points because the aerial
photograph was missing; 4) one point because the plot
was partially covered by a pond; and 5) one point be-
cause it duplicated another point. The final set of 168
points was used for all statistical analysis reported in
the article.

For each sample plot we recorded the average digi-
tal number (DN) values for each TM spectral band. SR,
NDVI, and GVI were computed from these DN values.
For the soil-adjusted indices, DN values were trans-
formed to exoatmospheric reflectance units prior to com-
puting index values (Markham and Barker, 1986).

Each sample plot was located on the aerial photos
using landmarks identifiable on both the photos and the
Landsat image. Plots were marked, labeled, and inter-
preted. For each plot, we made visual estimates of the
percentage of the plot covered by 1) green vegetation
and 2) shadow. All estimates were made in 10% incre-
ments because we felt this was the reasonable limit of

differentiation possible with visual interpretation. Thus,
estimates of 1-10% cover were classified as 5%, 11-20%
as 15%, and so on. In addition, estimates of 0% cover
were recorded.

Statistical Analysis
Prior to performing any regression analysis, and to assist
in the selection of regression models, we examined explor-
atory graphs of the data. Boxplots (Fig. 2) of NDVI, soil-
adjusted indices, and GVI showed no significant depar-
tures from symmetry. Both SR and percentage of green
vegetation cover (Veg Cover) as interpreted from the ae-
rial photos showed some degree of skewing, indicating the
potential advantages of data transformation, such as a log
transformation. Plots of Veg Cover versus individual bands
and indices revealed no unexpected trends, other than
some possible curvilinear relationships.

Simple linear regression was used to initiate analyses
of individual vegetation indices. For each index, analysis
of residual plots and exploratory data plots was used to
guide potential improvements in the regression fits. Ex-
tra-sum-of-squares F-tests were used to evaluate the sig-
nificance of additional predictor variables, and coeffi-
cients of determination (R2 ) were examined to determine
the amount of variability explained by the best fitting
models. To avoid infinite values, for log transformations
of variables containing 0 values, a value was added to the
variable equal to 0.01 times the smallest incremental
value of the variable. (For example, for vegetation cover,
which was recorded in integer increments, a value of
0.01 was added to each entry, so that, for a sample plot
with no vegetation, we used a value of log 0.01).

Figure 2. Boxplots for vegetation
indices used in this study and per-
cent of green vegetation cover as in-
terpreted from aerial photographs.
Plots do not show substantial devia-
tions from symmetry, except for SR
and percent of vegetation cover,
which are skewed toward lower val-
ues, indicating possible advantages
of data transformations.
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Forward and backyard stepwise regression was used
with all seven TM bands to provide guidance as to which
bands might he significant in predicting Veg Cover. As
with vegetation indices, residual and exploratory data
plots were used to guide further regression analysis and
select the best fit.

RESULTS

Vegetation Indices
Regression models for the vegetation indices using simple
linear regression and models with a log-transformed re-
sponse variable (log-transformed models), as has been tra-
ditionally used in vegetation index studies (e.g., Anderson
et al., 1993; Chen and Cihlar, 1996; Fried] et al., 1995;
Jordan, 1969; Spanner et al., 1990; Yoder and Waring,
1994), were all statistically highly significant (p-values<
0.0001). Table 2 sets forth R2 for each of these models.
NDVI performed best (best R 2 =0.65), followed by TSAVI
(best R2 =0.62), SR (best R 2 =0.60), OSAVI (best R2=
0.59), MSAVL (best R2 =0.55), and SAVI (best R2=0.55).
GVI performed substantially worse (best R2=0.40).

We found that we could improve on several of these
models by including polynomial terms in the final regres-
sion models. Other transformations, including additional
log, inverse, and square-root transformations, did not im-
prove model results. Table 3 sets forth for Veg Cover
regressed against each vegetation index the final regres-
sion model selected and the multiple R2 representing the
amount of variation explained by the model. Although
some of the final models selected may be more complex
than may be desirable for the additional amount of varia-
tion explained over the simple models, only by fitting the
best regression model can the indices be objectively
compared. Choosing a simpler model involves subjective
judgments as to what level of model complexity is worth-
while and compromises an objective comparison. The ex-
tra-sum-of-squares F-test is a rigorous standard for the
addition of predictor variables and only allows the addi-

Table 2. Results of Linear and Log-Transformed
Regressions of Percentage of Vegetation Cover against
Vegetation Indices"

Index

Linear
Regression

R2
Log-Transprined

Regression R2
SR 0.6002 0.3502
NDVI 0.6539 0.5900
SAVI 0.5515 0.5001
OSAVI 0.5912 0.5535
TSAVI 0.6184 0.5796
MSAVI2 0.5546 0.4782
GVI 0.3261 0.4025

"Log transformations did not improve any regressions, except for GVI.
NDVI explained the most variation (65%) and GVI explained the least
(40%).

tion of variables that are significant when considered
with other variables already in the model.

All final regression models were statistically highly
significant (all p-values<0.0001). R2 for the final regres-
sion models for the ratio-based vegetation indices ranged
from 0.55 to 0.70. Final models for SAVI and MSAVL
were simple linear regressions. OSAVI and TSAVI in-
cluded third-degree polynomials, while NDVI included a
fourth-degree polynomial. SR was the most complex
model and included a log transformation of SR and a
third-degree polynomial.

The final regression model for GVI explained sub-
stantially less variation than the ratio-based indices, with
an R2 of 0.40. This model included a log-log transforma-
tion and no polynomial terms.

Bandwise Regression Models
Simple linear and log-transformed regressions of individ-
ual bands against Veg Cover were performed to deter-
mine the basic relationships between our variable of in-
terest and the bands. Table 4 sets forth the slopes,
p-values, and R2 for these regressions. Veg Cover varied
inversely with all bands except Bands 4 (near-infrared)
and 5 (middle-infrared). Each band individually in a sim-
ple regression was able to explain at least one-forth of
the variation in Veg Cover, except Band 6 (thermal infra-
red), which explained 18% of the variability, and Bands
5 and 7 (middle-infrared), which explained 2% and 6%
of the variability, respectively. Only Band 5 performed
better in a log-transformed model, with 11% of variabil-
ity explained.

Forward stepwise regression on all seven TM spec-
tral hands against nontransformed Veg Cover resulted in
a model including Bands 3 (red), 4 (near-infrared), and
6 (thermal infrared). All three bands were highly signifi-
cant (all p-values<0.01), the model was highly significant
(p-value<0.0001), and the multiple R2 was 0.69. How-
ever, a review of the residual plots from the regression
showed potential curvature in the fit. Review of residual
plots, exploratory data plots, and stepwise regression in-
cluding polynomial terms was used to guide further
model fitting. The final fitted bandwise regression
model was:

Veg Cover=106.00-5.50 (Band3)+0.048 (Band 3)2
+1.36 (Band 4)-0.0051 (Band 4)2.

The regression model and each model term were
highly significant (all p-values=0.0135), and the multiple
R2 was 0.75.

Effect of Shadows
We regressed each vegetation index and the final hand-
wise regression model against the percent of shadow
cover in each plot from our aerial photo interpretation
to determine the relative sensitivity to shadow influence.
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Table 3. Final Regression Models for Percentage of Vegetation Cover Estimated from Aerial Photos against Individual
Vegetation Indices"

Index	 Regression Model
	

Multiple R2

SR
NDVI
SAVI
OSAVI
TSAVI
MSAVI2
GVI

Veg Cover=29.53+312.63 (log SR)+33.18 (log SH) 2 -64.12 (log SR)3
Veg Cover=9.78 + 45.35 NDVI+105.11 NDVI 2 + 510.84 NDVV-725.10 NDVI'
Veg Cover= -1.91+143.77 SAVI
Veg Cover=3.86-20.50 OSAVI+ 436.40 OSAVI2 - 327.86 OSAVI3
Veg Cover=3.34-33.74 TSAVI+ 540.63 TSAVP - 423.81 TSAVI3
Veg Cover= -0.68+124.65 MSAVI2
log (Veg Cover)= -0.73+0.066 log (GVI)

0.6982
0.7040
0.5515
0.6166
0.6476
0.5546
0.4025

" Variables were tested for significance using extra-sum-of-squares F-tests. Ratio-based indices that have not been soil adjusted (SR and NDVI)
explained the most variation (70%), f011owed by soil-adjusted indices (55-65%). GVI explained substantially less variation (40%).

Most shadows were the result of topography and stand-
ing dead trees. Live vegetation was rarely tall enough to
cause substantial shadowing. Shadow was not significant
for any of the ratio-based indices (all p-values>0.5).
However, percent of shadow was marginally significant
for GVI (p-value =0.13) and highly significant for the
bandwise model (p-value=0.003). Of our 168 plots, 44
had at least 5% shadow coverage.

DISCUSSION

Ratio -Based Indices-Hypotheses 1 and 2
As predicted in Hypotheses 1 and 2a, all ratio-based in-
dices were significantly correlated to vegetation cover.
This result was expected based on the known biophysical
relationships between red and near-infrared reflectance
and green vegetation. Further, the variation explained by
the best of these individual indices was substantial (65-
70%) and well within the range found by previous stud-
ies. We expected, in addition to soil variability, several
sources of unexplained variation would prevent higher
values, including 1) the estimation of vegetation cover in
10% increments incorporated variation within these
ranges, 2) phenologic changes in vegetation during the
1-2 months between aerial photo and satellite image ac-
quisition were not accounted for, and 3) vegetation cover
amounts with differing leaf-area indices (LAI) were
treated as equal, although it is known that higher leaf-
area indices can affect spectral responses.

This last source of variability illustrates an important
limitation of the accuracy of vegetation indices. For ex-
ample, two plots might each have 50% vegetation cover.
Within the portion of the plot covered by vegetation, one
plot might have an LAI of 2 while the other has an LAI
of 4. Because the deeper canopy reflects more near-
infrared and absorbs more red, the second plot will have
a higher vegetation index, all other factors being equal.
We expect this variability might be especially noticeable
at high cover amounts, where LAI can continue to in-
crease while increases in percent cover are limited.

All ratio-based indices except SAVI and MSAVL in-
corporated polynomial terms in their best regression fits.
It has been found in previous studies that vegetation in-
dices often have a curvilinear fit to LAI because the
spectral response saturates beyond a certain point (Rip-
ple, 1985). We believe that the effect of varying leaf ar-
eas also results in curvature in our study. We hypothesize
that, as vegetation cover increases, leaf area within
patches of vegetation also tends to increase. For exam-
ple, as vegetation initially invades a barren site, most
patches are made up of annuals or juvenile plants. Fur-
ther occupation of the site may include new invaders,
but will also result from the expansion and aging of
plants already present. This in turn leads to deeper cano-
pies and, especially in the red band, greater absorption
for the amount of vegetation cover. For example, percent
vegetation cover might increase within a sample plot
from 20% to 40%, while in-patch LAI increases from 2

Table 4. Results of Linear and Log-Transformed Regressions of Percentage of
Vegetation Cover against Individual Spectral Bands'

Linear Regression Log- Transformed Regression
TM Band Slope p-Value R2 Slope p-Value R2

Band 1 -1.69 <0.0001 0.4281 -0.17 <0.0001 0.3605
Band 2 -2.64 <0.0001 0.3343 -0.25 <0.0001 0.2495
Band 3 -1.80 <0.0001 0.4363 -0.16 <0.0001 0.3070
Band 4 0.75 <0.0001 0.2729 0.079 <0.0001 0.2517
Band 5 0.19 0.06843 0.01974 0.050 <0.0001 0.1118
Band 6 -1.81 <0.0001 0.1769 -0.16 <0.0001 0.1120
Band 7 -0.70 0.001375 0.05964 -0.019 0.4342 0.003667

Signs of slope terms indicate positive correlations with Bands 4 and 5 and negative correlations
with all other bands. Linear relations provide better fits with all bands except Band 5.
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to 4. In this case, the sample plot LAI increases from
0.4 to 1.6, a four times increase in LAI with a two times
increase in percent vegetation cover. The response is,
therefore, curvilinear.

The simple linear, log-transformed, and final models
do not support Hypothesis 2b, but do partially support
Hypothesis 2c. Both SR and NDVI explained more vari-
ability than any of the soil-adjusted indices. TSAVI did
better than SAVI and OSAVI, as hypothesized, but
MSAVL, did not. Finally, OSAVI performed better than
SAVI, contrary to expectations.

We believe that our results are explained by the par-
ticular soil line present in our study. We estimated the
soil line for the soil-adjusted indices to have an intercept
of —0.02 and a slope of 1.1. Reflectance values used in
calculating these indices range from 0 to 1. Thus, the
intercept and slope are not substantially different from 0
and 1, respectively. These soil line parameters are the
same as inherently assumed for NDVI and SR and might
explain the superior performance of these indices.
TSAVI uses the computed soil line parameters and,
probably for this reason, performed better than other
soil-adjusted indices. OSAVI uses a smaller correction
(0.16) than our implementation of SAVI (0.50), and thus
diverged less from NDVI. We believe that MSAVI might
have performed better if we had used MSAVI,, which
uses computed soil line parameters.

Although for our study area SR and NDVI explained
more variation than soil-adjusted indices, our analysis in-
dicates that the basis underlying soil-adjusted indices is
sound. Adjustment of indices in accordance with soil line
parameters improved results. In our case, these parame-
ters were not substantially different than those assumed
in unadjusted indices. However, these results also point
to the importance of using actual soil line parameters.
When "universally" applicable parameters were applied,
as in SAVI and OSAVI, results were inferior to unad-
justed indices.

GVI—Hypothesis 3
GVI was significantly correlated to vegetation cover but,
as predicted by Hypothesis 3, explained substantially less
variation than ratio-based indices. The relatively poor re-
sponse of GVI might be explained by the relatively low
vegetation cover (and consequent high substrate expo-
sure) in the study area, combined with the inclusion of
middle-infrared bands in the calculation of GVI. The
middle-infrared portion of the spectrum is known to be
sensitive to soil mineral content. Our study area is char-
acterized by a heterogeneous mosaic of soils poor in or-
ganic matter. The reflectances of these soils can be ex-
pected to be heavily influenced by mineral content and
other substrate characteristics, which vary throughout the
area (Hoblitt et al., 1981; Ugolini et al., 1991). The influ-
ence of this soil variation on the middle-infrared bands

Table 5.	 Coefficients of Variation
Spectral Band for Bare Soil
Amount of Variability in Soil

Band

for Each Landsat TM
Sample Plots Indicate the Relative
Reflectance for Each Band"

Coefficient of
Variation

Band 1 0.12
Band 2 0.17
Band 3 0.22
Band 4 0.09
Band 5 0.36
Band 6 0.03
Band 7 0.31

"Tim middle-infrared Bands 5 and 7 show substantially more variability
than other bands.

probably added significant noise to the predictor vari-
able, thereby interfering with the relationship that we
observed with the red and near-infrared bands.

To confirm the effects of soil on different bands, we
calculated the coefficients of variation for each band for
all sample plots with no vegetation cover. The results are
presented in Table 5. The coefficient of variation nor-
malizes the variability for each band and reflects the rel-
ative amount of variability in bare soil for each band.
Bands 5 and 7 show substantially more variability in soil
response than other bands. Therefore, the inclusion of
these bands in an index increases the amount of informa-
tion contained in the index that is not related to vegeta-
tion cover.

Bandwise Regression—Hypothesis 4
The results of our regression against the raw, nonindexed
bands supports our hypothesis that this approach has the
potential for out performing vegetation indices. The re-
gression model was highly significant and explained be-
tween 5% and 20% more variation than the ratio-based
vegetation indices. Figure 3 displays the estimated per-
centage of vegetation cover for the study area based on
the final bandwise regression model. An examination of
the bandwise regression model explains why this ap-
proach can be superior to vegetation indices.

The final bandwise regression model includes only
Bands 3 and 4, as do the ratio-based vegetation indices.
Thus, like the vegetation indices, the bandwise model is
a function of these two bands. Further, as with several
of the ratio-based models, the bandwise model includes
a term reflecting a curvilinear relationship (the squared
red and near-infrared bands). However, the relative in-
fluence of the bands and their polynomials is markedly
different. For example, the red band has over four times
the influence of the near-infrared hand, and the squared
infrared band has about one-tenth the influence of the
squared red band. This might be the result of the red
band having a much lower spectral asymptote than the
near-infrared hand (Ripple, 1985). Thus, the bandwise
regression approach allows the decoupling of bands and
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permits the analyst to discover different relationships be-
tween the response variable and each band, including
different polynomials, coefficients, and transformations.
This flexibility is not possible with regression against veg-
etation indices. Further, because different biophysical
mechanisms control different band responses, there is no
reason to believe the relation of individual bands to eco-
logical variables will necessarily be the same.

Using bandwise regression did not require substan-
tial additional time when compared to the use of vegeta-
tion indices. With both approaches, we had to perform
regression analysis to relate spectral responses to our
ecological variable of interest. The only additional step
required for the bandwise regression was the selection of
spectral bands as predictor variables. This step should
take a few hours, at most, which we believe is not a sig-
nificant increase in time for most projects. Further, this
additional step can be eliminated if only the red and
near-infrared hands are employed. Although the exclu-
sive use of these two bands is not unreasonable, consid-
ering our results and those of previous studies, we be-
lieve that testing other spectral bands is prudent. The
success in other study areas of multiband orthogonal in-
dices, as well as indices using middle-infrared (e.g., Du-
sek et al., 1985) and thermal infrared bands (Boyd and
Ripple, 1997), indicates that the optimal selection of
spectral bands might depend on the individual scene and
parameter being estimated.

Models that were not ratio-based (GVI and the
bandwise model) were more sensitive to shadows than
ratio-based indices. However, in spite of a large percent-
age of our plots with shadow influence, the bandwise
model performed better than the ratio-based indices.
Thus, any reduced sensitivity of ratio-based indices to
shadows appears to be outweighed by the other advan-
tages of handwise multiple regression.

SUMMARY AND CONCLUSION

Under conditions of high substrate and vegetation heter-
ogeneity, all vegetation indices were found to be highly
correlated to green vegetation cover. Among ratio-based
vegetation indices, the unadjusted indices (SR and
NDVI) performed best because our soil line was not
substantially different from that assumed by these indi-
ces. As a result, for the soil-adjusted indices, TSAVI,
which used a site specific soil line, explained more vari-
ability in vegetation cover than other soil-adjusted indi-
ces. Indices that incorporated larger soil line adjustments
explained progressively less variation. GVI explained sub-
stantially less variability, possibly because of the influ-
ence of substrate variability on middle infrared bands.
Bandwise multiple regression provided superior results
to the use of indices because it allows the decoupling of
individual hands and the potential for different band re-
sponses.

Although substantial success has been achieved
through the use of vegetation indices to predict ecologi-
cal variables, we believe that bandwise multiple regres-
sion should achieve equivalent or better results without
additional effort. In . order to understand the relationship
between an index and an ecological variable of interest,
it is usually necessary to perform regression or other
analysis to establish the relationship. The use of vegeta-
tion indices unnecessarily constrains the regression analy-
sis. Instead, we have shown that improved results may
be obtained by performing regression on the original
bands and using a range of regression techniques (step-
wise analysis, individual band transformations, polyno-
mial terms) to fit the best regression model.
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