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Abstract

In Pacific Northwest forests, understory species are important elements of forest structure and composition, providing habitat
and forage for wildlife and contributing to much of the floral diversity. Knowledge of the factors that control the distribution
and abundance of understory species is central to understanding the ecology and dynamics of natural forests and how they will
respond to management. Generalized linear models of the binomial family were used, at two spatial scales, to estimate the
probability of occurrence of shrub species as a function of environmental variables and the cover of mature and regenerating
tree species. Graphical analysis and resampling techniques were used to: II)  examine whether species show unimodal
responses to environmental gradients: (2) explore the scale-dependence of model forms; and (3) predict areas of high
probability of species occurrence within a multi-dimensional environmental space. Results suggest that the concept of
unimodal response to environmental gradients can be used to improve predictions about species' distributions, and to
strengthen the biological interpretation of statistical models. They also demonstrate the scale-dependence of model equations
and the likelihood that key processes influencing plant distributions may change, or appear different, when viewed at different
scales. (0 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The degree to which physical environment shapes
vegetation has been a fundamental theme of ecologi-
cal inquiry (e.g. Watt. 1947: Mueller-Dombois and
Ellenberg, 1974; Whittaker. 1975: Daubenmire,
1978). The distributions of plant species are ultimately
constrained by climate (Woodward. 1987; Woodward
and McKee. 1991). and species are often assumed to
be more robust, and thus more abundant, in the centers
of their ranges (Whittaker. 1975). Multivariate meth-
ods used in community ecology make the particular
assumption that plants show a unimodal response to
environmental gradients (Gaud). 1982; ter Braak and
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Prentice, 1988). This assumption is also implicit in
forest successional models, in which tree growth
increases. and probability of mortality decreases,
toward the center of a species' range (Urban, 1990;
Shu g art and Prentice, 1992).

Successional models and empirical growth models
(e. g . Wykoff, 1990; Hann et al., 1992) generally
assume that an increase in competitive inhibition
produces a monotonic decrease in tree growth. The
response of the understory, however, is likely to be
more complex. For example, moderate overstory
cover may ameliorate extremes in microclimate that
would otherwise be stressful for ground-layer plants
(Hammond Ill. 1969; Cui and Smith. 1991), whereas
dense overstory cover suppresses understory species
regardless of environmental constraints (Alaback,
1982: Carter and Klinka. 1992). Thus, one might
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assume a unimodal response of understory vegetation
to biotic variables, such as overstory canopy cover. In
general, however, modeling difficulties and sources of
variation increase with the addition of understory
layers, and as structural complexity and species diver-
sity increase. Potential interactions among layers
increase, as plants respond not only to large-scale
environmental variation. but also to microclimatic
gradients and multiple sources of competition (Ford
and Sorrensen. 1992).

The difficulties in modeling tree growth and succes-
sion are substantial (e.g. Bruce, 1990; Shugart and
Prentice, 1992; Maguire et al., 1993; Reynolds et al.,
1993). but much progress has been made. This has
been driven by economic incentives to increase timber
production, and the need to estimate species'
responses to climatic change (e.g. Urban et al.,
1993). In contrast, few efforts have been made to
model the distribution or abundance of understory
species (but see Laursen, 1984; Klinka and Chen,
1996). Nevertheless there are practical, as well as
theoretical, reasons for pursuing research in this area.
Understanding the factors that determine the distribu-
tions of understory plants is important for:

predicting understory composition and structure
and its response to natural disturbance, climatic
change, and managerial strategies (Alaback, 1982:
Halpern, 1988; Halpern, 1989; Alaback and
Tappeiner II, 1990; Stein, 1995);
conserving plant diversity (Roberts and Gilliam,
1995). particularly in regions, such as the Pacific
Northwest, in which the understory is significantly
more diverse than the tree flora (Spies, 1991;
Halpern and Spies, 1995); and

3. providing for suitable wildlife habitat and forage
(e.g. Hansen et al.. 1993).

Logistic or fiscal constraints often compel managers
to take a coarse-scale approach to applied research and
monitoring. Although plant distributions can be site-
specific or inherently stochastic at particular scales.
coarse-scale predictors that are relatively easy to
measure are potentially valuable, but only if they have
reasonable predictive power. If easily measured vari-
ables are effective surrogates for the 'operational
environment' of plants, their predictive power will
be sufficient even if a mechanistic understanding is
lacking.

In this paper. we illustrate an exploratory approach
to understanding the distributions of understory spe-
cies in Pacific Northwest forests — an approach that has
relevance to basic ecological research and to practical
application. In particular, we present empirical models
that predict the probability of occurrence of nine shrub
species that are important structural or compositional
elements of Pacific Northwest forests. Our objectives
are to:

determine whether plant species exhibit a uni-
modal response to environmental gradients;
explore the scale-dependence of model forms and
the relationship of spatial scale to the types of
variables that are significant for predicting plant
responses; and

3. identify, where possible, areas of high probability
of occurrence within a multi-dimensional environ-
mental space.

2. Met hods

2.1. Study sites and ,field methods

Plot-level data were obtained from the Area Eco-
logy program, USDA Forest Service, for the Gifford
Pinchot. Mt. Hood. and Willamette National Forests in
the Cascade Range (Table 1). These forests occupy a
latitudinal gradient from southern Washington to cen-
tral Oregon (Fig. 1). The Area Ecology program has a
wide range of objectives (see Hemstrom et al.. 1982;
Brockway et al., 1983; Halverson et al., 1986: Topik
et al., 1986: Topik et al., 1988; Topik, 1989); here,
we only describe aspects of data collection relevant to
the objectives of this paper.

Circular, 0.2-ha plots were established in selected
stands encompassing a range of elevations, aspects,
and slopes that met the following criteria: (1) >75
years old: (2) relatively undisturbed; and (3) relatively
uniform in vegetation composition. Elevation, aspect,
and slope were recorded at each plot, and ocular
estimates of cover were made for all species. including
herbs. shrubs, regenerating trees (<3.5 m tall), and
mature trees (>3.5 m tall). For modeling purposes,
aspect was transformed into degrees from southwest
(range. 0-180) to represent the environmental gradient
encountered with the change in slope orientation from
SW to NE. Field plots were geo-referenced to UTM
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Table 1
Means and ran ges of environmental characteristics and tree cover for plots in the model database
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Variable Gifford Pinchot NF Mt. Hood NE Willamette NF

Number of plots 859 1219 582

Elevation (m) Mean 949 903 965
Range 229-2030 58-2011 320-1768

Annual precipitation (mm) Mean 2120 1960 1850
Range 1086-3218 439-3629 1125-3386

Slope (%) Mean 32 33 31
Range 0-100 0-83 0-90

Cover of mature Douglas-fir (%) Mean 32 44 24
Range 0-95 0-95 0-80

Cover of mature western hemlock (%) Mean 21 17 12
Range 0-95 0-90 0-80

Cover of regenerating western hemlock (%) Mean 5 5 3
Range 0-80 0-40 0-40

coordinates. The 30-year mean annual precipitation
for each plot was extracted from a GIS coverage
generated by the PRISM model (Daly et al., 1994).

2.2. Data analysis

We had ori g inally intended to develop models at
three spatial scales: all three forests; individual for-

ests; and vegetation zones within each forest, char-
acterized by different dominant tree species.
Exploratory multivariate analysis revealed no gradi-
ents related to species distribution at the smallest
scale, so further analysis within vegetation zones
was dropped. For each species (Table 2), we used a
generalized linear model of the binomial family
(McCullagh and Nelder, 1989) to estimate the prob-

Table 2
Species modeled

Species Common name Family Primary reproductive strategy

Tall shrubs
Acer circinatum Vine maple Aceraceae Layering/basal sprouting
Holodiscus discolor Oceanspray Rosaceae Basal sprouting
Rosa gvmnocarpa Baldhip rose Rosaceae Seed
Vaccinium parvifoliunz Red huckleberry Ericaceae Basal sprouting, layering, seed

Low shrubs
Berberis nervosa Oregongrape Berberidaceae Clonal spread via rhizomes
GanItheria shallon salal Ericaceae Clonal spread via rhizomes

Sub-shrubs
Chimaphila nzenziesii Little prince's pine Ericaceae Clonal spread via rhizomes
Chimaphila umbellata Prince's pine Ericaceae Clonal spread via rhizomes
Rubus ursinus Trailing blackberry Rosaceae Stoloniferous, seed

Taxonomy and nomenclature follow Hitchcock and Cronquist (1973).
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Fig. 1. Geographic locations of area ecology plots. Dots indicate plots.

ability of occurrence at each plot as a function of	 results similar to logistic re gression, except that a
environmental variables and cover of mature and 	 maximum likelihood method is used rather than
regenerating tree species. This approach produces 	 least-squares estimation. The model takes the follow-
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ing form:	 containing their mean value repeated n times (where
n=number of plots). Thus, for elevation and precipi-

v =	 +	 3,X,	 (1)
	 tation, the linear predictor is calculated by:

i=

where v is the linear predictor, Xi (1=1- • •p) the
predictor variables, and i,s the estimated coefficients.
The logit link function

P(occurrence) = exp ( v)/ ( 1 + exp(v))

then transforms the linear predictor into fitted prob-
abilities.

Wherever possible, we constrained each variable in
the linear predictor to a simple unimodal function to
approximate the theoretical unimodal response to
environmental gradients (Whittaker. 1975; ter Braak
and Prentice, 1988). Thus, with appropriate coeffi-
cients, plots of the response variable against the pre-
dictor variables will appear unimodal within the range
of the data. Unimodal functions were either an ortho-
gonal polynomial of degree two, to minimize multi-
collinearity; or the logarithm plus the square of the
predictor, with coefficients fitted to each term (only if
the linear/logarithmic coefficient was positive and the
quadratic coefficient negative — hereafter indicated
±). We used the Akaike Information Criterion
(Akaike, 1974) and Chi-squared statistics, respec-
tively, to determine the most parsimonious models
and to check for significant reductions in deviance for
each term in the models. Since our objectives were
exploratory in nature, we did not search exhaustively
through all combinations of variables and model
forms. We did, however, calculate the proportional
reduction in deviance (PRD) produced by the fitted
terms for each model. For models not of the Gaussian
family, this proportion roughly corresponds to the
multiple coefficient of determination (R2). Although
neither PRD nor R 2 is a good measure of the predictive
power of a model (Neter et al.. 1990), both provide a
means for comparing the amount of unexplained
variation in models for different species.

We used graphical analysis to display the expected
probability of occurrence of each species with respect
to pairs of predictor variables, focusing on the two
predictors that are particularly relevant to climatic
change, elevation and precipitation. We calculated
the probability of occurrence at each plot, replacing
the vectors of the other predictors with a vector

p
Y	 + /3 i ELEV + •32 PRECIP +	 /3iiiir (Xi)

i=3

where ELEV and PRECIP are vectors from the data, p
the number of predictors, 0, the coefficients, and
ii„(X,) a vector equal to the mean of Xi repeated n
times. This technique smooths the fitted values from
the models so that interpretations from contour plots
can be meaningful. Scatterplots of pairs of predictors
were used to identify areas of two-dimensional envir-
onmental space in which there was a paucity of data,
implying that interpretation of smoothed values might
be questionable.

With skewed or otherwise irregular distributions,
mean values or other summary statistics may be
misleading. To check the robustness of our graphical
technique, we developed the following resampling
technique, applied it to the two-dimensional space
of elevation and precipitation at the largest spatial
scale (three forests), and visually compared the gra-
phical output (contour plots) to that using Eq. (2). For
each predictor variable other than elevation and pre-
cipitation, we selected a parametric distribution based
on graphical analysis, and randomly generated a vec-
tor of length n from the selected distributions. Each of
these vectors replaced one of the Xs in Eq. (2) for
v hich the mean values were used. Thus:

Y = /3o + ,3 i ELEV + /32 PRECIP +
	

AR„(Xi)
i=3

where R„(X,) is a vector of random variates from the
distribution associated with variable X. We then used
the mean of 20 realizations of the linear predictor from
Eq. (3) as the input to the graphical displays. If
contour plots of these predictions were visually similar
to those using means of the predictor variables in the
model (no obvious differences in shape), we could
expect that our simpler graphical technique was robust
to distributional anomalies. We assumed that corre-
spondences for elevation and precipitation were indi-
cative of those between graphical output for other
variables, at other scales.
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Table 3
Signs of coefficients for predictor variables in each model database. 0=coefficient not significant. ±, —/—, or T means that a quadratic term
was fit. ± indicates a positive linear or logarithmic term and negative quadratic term. —/— indicates negative—negative, and	 negative—
positive. + is taken to indicate a unimodal response (concave down)

Species Elevation Precipitation Cover of Cover of Cover of Aspect in Slope
(m) (mm) mature

Douglas-fir
mature western
hemlock

regenerating
western hemlock

degrees
from SW

(%)

All three forests
Acer circinatum —I-- + + 0 ± +
Berberis nervosa + ± + 0 ± +
Chimaphila menziesii ± ± 0 ± 0 +
Chimaphila umbellata ± ± ± 0 + — 0
Gaultheria shallon —/— T ± ± 0 — 0
Holodiscus discolor ± ± ± + — 0
Rosa gymnocarpa + ± + + — 0
Rubus ursinus + ± ± —/— — — 0
Vaccinium parvifolium ± ± 0 + + 0 +

Gifford Pinchot NF
Acer circinatum — 0 +/+ 0 0 +
Berberis nervosa 0 ± + + 0 +
Chimaphila menziesii ± 0 + 0 + 0 0
Chimaphila umbellata + 0 0 0 0 0 0
Gaultheria shallon ± ± ± + 0 0 A-
Holodiscus discolor ± + T 0 0 0
Rosa gymnocarpa ± + + 0 0 0
Rubus ursinus ± 0 + 0 0 — 0
Vaccinium panrifolium ± ± 0 + 0 0 0

Mt. Hood NF
Acer circinatwn + ± + 0 0 0
Berberis nervosa + ± + 0 0 0 +
Chimaphila menziesii + ± ± 0 0 0 0
Chimaphila umbellata + + 0 0 0 0 0
Gaultheria shallon ± ± + + 0 0 0
Holodiscus discolor 0 ± ± T 0 0 +
Rosa gymnocarpa ± ± + 0 0 0
Rubus ursinus + + + 0 0 0
Vacciniuni pamfolium ± ± 0 + 0 0 0

Willamette NF
Acer circinatum 0 ± 0 + 0 0
Berberis nervosa ± + + 0 0 +
Chimaphila menziesii + + + 0 0 0 0
Chimaphila umbellata ± ± 0 0 + 0 0
Gaultheria shallon + 0 + 0 0 0
Holodiscus discolor 0 0 ± 0 +
Rosa gymnocarpa 0 ± ± 0 0 0
Rubus ursinus 0 + 0 0 0 0
Vaccinium parvifolium —I— ± 0 0 ± 0 -1

3. Results

Significant predictors varied among species and
forests Table 3). Elevation, annual precipitation, and

cover of mature Douglas-fir were the most frequently
si gnificant. For almost every species at the largest
spatial scale (all three forests), models included a
unimodal function of these three predictors (+ coeffi-
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Table 4
Percent reduction in deviance for all fitted terms in each model

Species All three forests

National forests

Gifford Pinchot Mt. Hood Willamette

Tall shrubs
Acer circinatum 0.305 0.404 0.354 0.142
Holodiscus discolor 0.314 0.332 0.350 0.340
Rosa gyrnnocarpa 0.210 0.342 0.198 0.153
Vaccinium parvifolium 0.352 0.342 0.349 0.285

Low shrubs
Berberis nervosa 0.437 0.518 0.420 0.417
Gaultheria shallon 0.309 0.378 0.315 0.318

Sub-shrubs
Chimaphila menziesii 0.083 0.136 0.140 0.077
Chimaphila umbellata 0.160 0.184 0.225 0.230
Rubus ursinus 0.211 0.242 0.167 0.200

cients). At the smaller scale (individual forest), eleva-
tion was most consistently significant, and the most
consistently represented by unimodal functions,
except for Mt. Hood NF, in which annual precipitation
was significant and consistently unimodal for all
species. Aspect in degrees from southwest (SW)
and slope never produced significant quadratic terms,
and never contributed much to the reduction in unex-
plained variation. The proportional reduction in
deviance for the sub-shrubs Chimaphila menziesii,
C. umbellata, and Rubus ursinus was much lower
for all four databases than for low shrubs and tall
shrubs (Table 4). In general, models for the Gifford
Pinchot NF had the highest percent reduction, and
models from the Willamette NF the lowest. Models
incorporating the entire database (all three forests)
were intermediate in PRD. Model forms were more
similar among species at the larger than at the smaller
scale (Table 3). At the smaller scale, species'
responses to each variable were not consistent across
forests (Table 3).

The graphical analysis proved to be robust to dis-
tributional anomalies. In every case at the larger
spatial scale, predicted contours from the resampling
method appeared very similar to those from the simple
method (examples in Fig. 2). The range of predicted
values from the smoothing method corresponded clo-
sely to that of fitted values from the models except for
one species, Holodiscus discolor, for which the dis-

tribution of fitted values was highly skewed due to the
low proportion of occurrences in the database.

In every case where the signs of coefficients were ±
(Table 3) for elevation and precipitation, contour plots
displayed an enclosed region of high probability
within the range of data (example in Fig. 3). Results
were the same when Douglas-fir cover was substituted
for elevation or precipitation (not shown). In other
cases (i.e. signs other than A.: or insignificant quadratic
terms), contour plots either revealed linear trends
(Fig. 4) or suggested bimodality (Fig. 5). Most spe-
cies had variations in model forms and predicted
contours amon g forests and between spatial scales
(Figs. 6 and 7): on the Willamette NF in particular,
enclosed areas of high probability appeared to extend
outside the ran ge of the model database (Fig. 6(d) and
Fig. 7(d)).

4. Discussion

Both mechanistic and statistical approaches are
useful for understanding the factors that affect the
distributions of understory plants in a forested land-
scape. When predictions are desired at larger spatial
scales, empirical/statistical methods can be used to
identify coarse-scale variables that integrate the multi-
plicity of factors that shape species' distributions. To
be effective surro gates. these variables must be:
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Berberis nervosa - Mt. Hood NF
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Fig. 3. Area of high probability in two-dimensional environmental space for Berberis nervosa.
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relatively easy and economical to measure at large
scales, with large sample sizes;
biologically meaningful — i.e. in theory, they
should be related to factors whose mechanistic
influence on plants is well understood. For exam-
ple, cover of mature Douglas-fir can be a surrogate
for time since disturbance or reduced levels of
light; and

3. capable of producing models with reasonable pre-
dictive power.

Our analyses suggest that the concept of a unimodal
response of plant occurrence or abundance to envir-
onmental gradients is useful for infusing individual-
species empirical models with biological meaning.
The theory behind this concept is well developed
mathematically (ter Braak, 1987), and is widely
applied in multivariate analysis of plant communities
(e.g. the complex environmental gradients associated
with correspondence analysis, ter Braak and Prentice,

1988; Hill, 1991). Here, we have applied it to indivi-
dual environmental variables, and in most cases found
that unimodal functions of predictor variables con-
tributed significantly to the explanatory power of the
models. As a result, we may identify a region in
environmental space where each species has a high
probability of occurrence.

Although our modeling efforts were primarily
exploratory, it may be possible, at spatial scales
commensurate with current management of forest
landscapes in the Pacific Northwest, to identify geo-
graphic areas where common species have a high
probability of occurrence, based on the empirical
niches defined by our graphical analysis. For example,
interpolated probabilities for each species, as outlined
by our contour plots of elevation and precipitation,
could be assigned to pixels on a landscape using
Digital Elevation Models and PRISM coverages (Daly
et al., 1994). However, model equations change with
spatial scale of analysis, without any indications of
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Chimaphila menziesii - Willamette NF
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E
oCo

a
5.

C

(b)(a)

(d)

0.1
0.9

00.5 0.3

0	 500	 1000	 1500	 2000

Elevation (meters)Elevation (meters)

 

all 3 forests	 Gifford Pinchot NF

0	 500	 1000	 1500	 2000	 0	 500	 1000	 1500	 2000

Elevation (meters) 	 Elevation (meters)

Mt Hood NF
	

Willamette NF

Fig. 6. Responses of Vacciniu m pary folium in four models: (a) all three forests; (h) Gifford Pinchot NF; (c) Mt. Hood NF; and (d) Willamette NF.

ln)
us



(c) (d) 0.2	 0.1

E § _

"

-

all 3 forests Gifford Pinchot NF

    

Mr

0

to

0
a

Pro

0
0.

500	 1000	 1500

 

Elevation (meters)

Mt Hood NF

  

Elevation (meters)

Willamette NF

 

0	 500	 1000	 1500	 0	 500	 1000	 1500
Elevation (meters) Elevation (meters)

Fig. 7. Responses of Gaultheria shal/on in four models: (a) all three forests; (b) Gifford Pinchot NF; (c) Mt. Hood NF: and (d) Willamette NF.



0 500 1000 1500 2000

Mt Hood NF Willamette NF

Elevation (meters) Elevation (meters)

0

all 3 forests

Elevation (meters)

Fig. 8. Contrasting responses of Chimaphila umbellata to elevation and precipitation in three different models: (a) all three forests; (b) Mt. Hood NF; and (c) Willamette NF.



306	 D. McKenzie. C.B. Halpern/Forest Ecology and Management 114 (1999) 293-307

changes in predictive power (Table 4), sug gesting that
the notion of a 'best' predictive model is scale-depen-
dent. Likewise model equations change with geo-
graphic location. Thus, distributional maps generated
by models like ours must be carefully validated.

Each species may respond individually to the multi-
plicity of variables represented by a latitudinal gra-
dient. Examining outputs from models developed at
different scales of resolution may lead to different
inferences about the determinants of species' distribu-
tions. For example, Chanaphila umbellata, when
viewed at a large scale, appears to have a unimodal
response to both elevation and precipitation
(Fig. 8(a)). Smaller scale analysis, however, suggests
that it is more likely to be found on drier sites at more
northerly latitudes (Mt. Hood NF) and on moister sites
at more southerly latitudes (Willamette NF) (Fig. 8(b)
and Fig. 8(c)). In the absence of a conceptual frame-
work for understanding how ecological processes
chan ge across scales (Levin. 1992; Reynolds et al.,
1993), empirical models (both multivariate and single
species) should be explored at multiple scales. As
understory components are incorporated into forest
simulation models, we must remain cognizant of the
scale-dependence of model equations and predictions,
and be cautious about applying models at scales
different from those at which they were developed.

5. Conclusions

Our modeling approach suggests that, for common
shrub species in the Pacific Northwest, the concept of a
unimodal response to environmental gradients can be
used to improve predictions about the distributions of
species, and to strengthen ecological interpretations of
statistical models. It also demonstrates the scale-
dependence of model equations, and the likelihood
that key processes influencing plant distributions
change, or at least appear different, when viewed at
different scales. An important application of models
like ours is to delineate a multi-dimensional environ-
mental space with high probabilities of occurrence for
individual species, rather than to make detailed pre-
dictions at small spatial scales. Using existin g meth-
ods that are widely available (e.g. GIS and
geostatistical interpolation (Isaaks and Srivastava,
1989)), output can be mapped into geographic infor-
mation.
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