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Empirical Methods To Compensate for a
View-Angle-Dependent Brightness
Gradient in AVIRIS Imagery

Robert E. Kennedy,* Warren B. Cohen, f and Gen Takao

Aview-angle-dependent brightness gradient was ob-
served in an AVIRIS image of a forested region in Ore-
gon's Cascade Mountains. A method of removing the
vietv-angle effect was sought that would not alter the ra-
diometric integrity of the image, and which would re-
quire minimal ancillary information. Four methods were
tested and evaluated in terms of remaining brightness
gradient and in terms of retention of spectral charac-
teristics. All methods used a quadratic fitting equation to
model the changes in brightness across view angles.
Other descriptive coefficients were calculated to aid in
interpretation. The observed view-angle effect varied
with wavelength in a manner consistent with predictions
of bidirectional reflectance distribution function charac-
teristics for vegetation. View-angle effects were deter-
mined to contain both additive and multiplicative compo-
nents, with multiplicative components being strong in the
chlorophyll absorption region. The view-angle effect in a
given pixel was a function of both an underlying view-
angle response determined by surface structure and the
inherent brightness of that pixel. The most successful
compensation method was the one that best accounted
for broad differences between pixels in these two compo-
nents. Despite the simplifying assumptions necessary for
empirical view-angle correction techniques, they can still
be useful for hyperspectral remote-sensing data in situa-
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INTRODUCTION

The Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) was designed to capture subtle spectral fea-
tures of ground targets using narrow spectral bandwidths
and full-spectrum (0.48-2.50 ,urn) coverage (Vane et al.,
1993). One proposed use has been the discrimination of
tree species by detection of canopy chemistry signatures
(Martin, 1994; Martin et al., 1996). A study was begun
to investigate the feasibility of using AVIRIS data to dis-
criminate species in coniferous forests of the Cascade
Mountains of western Oregon. During preprocessing,
however, a strong brightness gradient was observed that
spanned the cross-track dimension of the image, and
which was associated with variation in sensor view-angle
rather than with a surficial trend or patterning of land-
scape types (Fig. 1). Concerned that the low-amplitude
spectral features necessary for species discrimination
would be masked, we sought a generally applicable
method of correction that would minimize the brightness
gradient in AVIRIS data while retaining the underlying
spectral information. As a preprocessing step, such a cor-
rection method would ideally require little or no collec-
tion of ancillary information.

BACKGROUND

Compensating for Brightness Effects

Theory
Radiometric distortions may be eliminated by modeling
of first principles, by applying a band ratio, or by apply-
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Figure 1. Portion of a 19 July 1994 AVIRIS image (wave-
length 0.55 iim) near the FL J. Andrews Experimental For-
est, Oregon, showing view-angle dependent brightness gra-
dient. Plane of sun is 15.0° from the plane of the scanning
sensor (nearly perpendicular to Hight path of aircraft). Clear-
cuts are lighter than surrounding lOrest. Note that clearcuts
at the bottom of the image (toward the sun; higher column
numbers) are nearly as dark as Forested areas in the top of
the image (lower column numbers).

ing a scene-dependent empirical correction (Irons and
Labovitz, 1982; Leckie, 1987). The former is often im-
practical for investigations where characterization of the
effect is not the final goal. The second option has proven
useful in reducing such effects (Nalepka and Morgen-
stern, 1972; Rover et al.. 1985: Kiernan. 1987; Qi et al.,
1995), but was not desirable in this study because the
original spectral characteristics were desired as output
for other analyses. Thus an empirical route was chosen.

Empirical approaches are based on the following
model of observed radiance:

observed radiancc=target railiance+distortions.

Empirical methods seek to minimize the distortions,
which are a function of many factors. such as sensor view-
angle and altitude. wavelength. and the angle between
sun azimuth and sensor scan plane Irons and Labovitz,
1982; Rover et al.. 1985: Irons et al., 1987; Kiernan,

1987). Many of these remain constant for a single image
and cannot be removed by evaluation of within-scene
variation. The view-angle, however, changes for every
pixel in a scan line. Each increment in view-angle in-
creases the quantity of atmosphere through which the
sensor must view, which in many cases increases path ra-
diance and, consequently, overall brightness at wide view-
angles (Rover et al., 1985; Irons et al., 1987: Lecide,
1987). Each change in view-angle also alters the sun-
viewer—object geometry of the surface objects being
viewed, the effects of which can be modeled with a bidi-
rectional reflectance distribution function (BRDF: Hugh
and Frei, 1981; Royer et al., 1985; Walthall et al., 1985).
For a given wavelength and surface type, BRDF can
cause either increased or decreased observed radiance at
greater view-angles, depending on sun—sensor—object
geometry. It is especially strong when the sensor is scan-
ning in the plane of the sun (Ranson et al., 1994). Cross-
track brightness gradients are considered to be a combi-,_
nation of these two view-angle-dependent effects, that is,

brightness gradient (a)=path radiance (a)+BRDF (a)

where a is the view-angle (Leckie, 1987; Irons et al.,
1991). Empirical compensation for the brightness gradi-
ent does not require that these two components be sepa-
rated, merely that the observed brightness gradient be
modeled and removed.

The brightness gradient is often modeled by calcu-
lating mean radiance by view-angle [L(a)] and fitting a
quadratic curve fit to the means (Staenz et al., 1981;
Brown et al., 1982; Leckie, 1987):

L(a)=qa2 +Ia+c,	 (1)

where L(a) is fitted mean radiance for a given angle and
q, 1, and c are estimates of the quadratic, linear, and con-
stant fitting coefficients, respectively. Knowing that view-
angle effects are zero when the view-angle is zero (i.e.,
at the nadir), compensation factors can be calculated that
will normalize each view-angle to the nadir view using
an additive or multiplicative compensation factor:

ki(a)=L(a)—L

▪

 (a=0),	 (2)

k,(a)=L(a)/L(a=0),	 (3)

(Leckie. 1987), where L(

▪

 a=0) is the fitted mean radiance
at the nadir and k i (a) and k- 2(a) are the additive and
multiplicative compensation factors, respectively, for a. A
pixel at position ('a,O, where y is the row number in the
along-track dimension of the image, has an observed ra-
diance L,„ , „,. It is assigned a corrected radiance, 	 us-
ing one of the two compensation factors:

L'(a,y)=L'(a,y)—ki(a), 	 (4)

L'(a,y)=L(a.y)/k2(a). 	 (5)

Radiometric Implications
Both additive and multiplicative corrections have been
used previously (Brown et al.. 1982: Staenz et d., 1986;
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Leckie, 1987), but there is disagreement about which
technique is more appropriate. The multiplicative ap-
proach will compress the standard deviation of radiance
at a given a in proportion to the size of 	 If standard
deviation is assumed to be unrelated to mean radiance,
then the standard deviation compression caused by the
multiplicative approach will introduce unwanted error
and should thus be avoided (Irons and Labovitz, 1982).
If standard deviation is assumed to be directly propor-
tional to mean radiance, however, then standard devia-
tion of radiance should be compressed and the additive
approach should be avoided (Rover et al., 1985). Neither
assumption has been tested in the context of applying an
empirical view-angle compensation.

BRDF Considerations
Before a mathematical correction procedure is applied,
a choice must be made about the population of pixels
from which to draw the mean radiance for each view-
angle, L(a). Since the BRDF component of the view-
angle effect is dependent on the type of surface being
viewed (Kriebel, 1978; Cihlar et al., 1994; Deering et al.,
1994), a separate fitting equation [Eq. (1)] is expected
for each type of surface component. Applying the fitting
equation from one surface type to another surface type
can result in inaccurate compensation (Leckie, 1987), the
severity of which would increase as the difference in
BRDF between surface types increases. This can be alle-
viated by limiting research to one type of surface (Treitz
et al., 1985; Leckie, 1987; Johnson, 1994), or by parti-
tioning the image into classes and treating each class sep-
arately (Leckie et al., 1995). Unless extensive measure-
ments are used to calculate BRDF characteristics for all
scene components (Hugh and Frei, 1981), pre-classifica-
tion must be based on theoretical assumptions.

Objectives fin- This Study
As no single empirical view-angle compensation method
is without drawbacks, we decided to test several methods
for our study area. We expected that the study area
would accentuate differences between methods, since it
contained an intimate mixture of surface types with theo-
retically extreme differences in BRDF (i.e., bare-ground
and regrowing clearcuts in a matrix of mature and old-
growth coniferous forest). In the course of testing meth-•
ods, it was hoped that the high spectral resolution of
AVIRIS would contribute to general understanding of
the wavelength dependence of view-angle effects.

DATA ANALYSIS

Preprocessing
The AVIRIS instrument is a hvperspectral, airborne,
whisk-broom type sensor (Vane et al., 1993). Radiance in
224 contiguous wavebands is recorded simultaneousl y for

each pixel in an image. Waveband centers are approxi-
mately 10 nm apart, running from 0.48 pm to 2.5 ,am.
The maximum view-angle from nadir is 15.0°. Pixels rep-
resented an area on the ground approximately 18 m on
a side.

Atmospheric effects were addressed with ATREM
(ATmospheric REMoval program for AVIRIS data; Gao
et al., 1993), using aerosol optical thickness estimates
from sun photometer readings taken at the site on the
day of image acquisition. Because no ground-based spec-
trometer measurements were available for validation, ap-
parent surface reflectance derived from ATREM was ac-
knowledged to be only an approximation of true
reflectance. ATREM does not correct view-angle effects.

From the 224 wavebands of the AVIRIS data, 154
waveband images were selected that did not display wa-
ter vapor absorption noise or detector noise problems. In
each waveband, the image had 1288 scan lines with 614
scan angles per scan line. Each scan angle was assigned
a column value; each scan line was assigned a row value.
The brightness effect stretched across dimension of the
614 columns (Fig. 1).

Study Area and Illumination Geometry
AVIRIS imagery included the H. J. Andrews Experimen-
tal Forest and adjacent areas (Table 1). The area is char-
acterized by rugged topography having an intimate mix-
ture of high and low biomass densities: old-growth
coniferous forests, with extremely high biomass (up to
650X 106 g C/ha above- and below-ground pools; Grier
and Logan, 1977) and complex vertical and horizontal
canopy structure, juxtaposed to clearcuts, with little or
no live biomass and significant exposed soil.

Table 1 presents data relevant to sun and view-angle
geometry and aircraft directional characteristics for the
day of the image acquisition. The scanning plane was
nearly parallel to the plane of the sun (Fig. 1), providing
for maximum predicted BRDF effects.

View-Angle Compensation

Strategies To Be Tested
A compensation strategy can use either additive or multi-
plicative compensation, and can derive mean radiance ei-
ther from the whole image or from classified subsets.
From unique combinations of these options arose four
view-angle compensation methods, named hereafter as
the additive-unclassified, additive-classified, multiplica-
tive-unclassified, and multiplicative-classified methods.

Classification
For the two classified methods, the image was parti-
tioned into broad -BRDF classes" chosen based on theo-
retical expectations. In the system of study, two axes of
variation were expected to cause variations in BRDF: 1)
percent of pixel dominated by soil or vegetation (Nor-
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Table 1. Data from AVIRIS Flight over H. J. Andrews
Experimental Forest

Study site location	 44°17'N, 122°18'W
Elevation	 400-1501) in, mean 800 m
Time and date of image 	 12:48 p.m. local time. 19 July 1993
Ground element (pixel size) 	 ^-, 18 m
Aircraft heading' 	 273.5°
Scan angle"
	 3.5° for northern half of image,

183.5° for southern half
Sun angle'	 168.5° azimuth, 23.4° zenith

" Geographic north=0°.

man et al., 1985; Ranson et al., 1985), and 2) degree of
canopy heterogeneity within the vegetative canopies (Li
and Strahler, 1986; Kiernan, 1987, although see Kimes et
al., 1986 for context). Twenty classes were derived from
an iterative optimization classification; these were then
reduced to three classes along these two axes of varia-
tion. Class 1 represented the soil-dominated areas in the
image and was found exclusively in recent clearcuts and
burns. Classes 2 and 3 both occupied the vegetation-
dominated portion of the soil—vegetation axis, but dif-
fered in their canopy heterogeneity. Class 2 consisted of
hardwood and young conifer that would appear relatively
"smooth" within a given pixel element. Class 3 contained
mature and old-growth conifer forests with significant
canopy structural complexity at the scale of the sensor
pixel.

For this image, 11.2% of the pixels were in Class 1,
27.4% in Class 2, and 61.4% in Class 3. The categories
were well distributed across the brightness gradient of
the image.

In both the additive- and the multiplicative-classified
methods, each of the three classes was treated separately
for all of the following view-angle compensation meth-
ods. At the end of the compensation process, the three
groups were recombined into a single image. For both
of the unclassified image methods, all of the following
methods apply.

Fitting the Mean Reflectance Curve and
Calculating Interpretive Coefficients
For ease of interpretation, pixel reflectance values as cal-
culated by ATREM were used in place of radiance for
Eqs. (1)—(5) above. A preliminary test showed that
ATREM had no effect on view-angle characteristics.

Mean reflectances for the 614 columns were fit ac-
cording to Eq. (1) for all 154 wavebands using column
number as a surrogate for view-angle (a). Coefficients of
determination for the fit of the quadratic equation to the
observed means were also calculated.

In keeping with the goal of simplicit y, the effects of
autocorrelation between columns (Irons and Labovitz,
1982) and the potential for using higher-order or physi-
cally based fitting equations were ignored (Irons and La-

bovitz, 1982; Teillet et al., 1985; Walthall et al., 1985).
Addressing autocorrelation or developing physically based
models would be beyond the desired scope of the meth-
odology; determining higher-order fitting equations for
each of 154 hands would be impractical.

The coefficients of Eq. (1) were manipulated to cre-
ate two new interpretive coefficients. The first, named
the nadir-adjusted view-angle curvature, or q', was de-
signed to allow comparison of curvature of the view-
angle effect (q) between bands. If q is proportional to
the mean brightness of a band, then comparisons of y
between wavebands could be affected more by average
band brightness than by actual curvature of the view-
angle effect. To reduce this potential error and aid in
interpretation, q was divided by the fitted mean reflec-
tance at the nadir (where view-angle effects are zero) for
each band, resulting in the coefficient q'. A second inter-
pretive coefficient was designed to track the interactions
of two predicted BRDF effects (Kimes, 1983; see the
Discussion section for a description). Their relative
strengths alter the column at which quadratic equation
[Eq. (1)1 reaches its minimum predicted reflectance:

—1
X(rnin)— 2y

A final pair of interpretive coefficients assessed the
mathematical validity of using the multiplicative or addi-
tive approaches. For each of the 154 bands, mean re-
flectance for all pixels in each of the 614 columns was
plotted against the standard deviation in reflectance val-
ues for pixels in each of those columns, and a simple
least-squares regression line was fit to the 614 data
points. The slope of the regression line is designated as
inktddo and the intercept as i 1„„ 1,10 . A positive slope with a
zero intercept would indicate a strictly proportional
(multiplicative) relationship between standard deviation
of brightness and brightness, implying that the multipli-
cative correction methods were mathematically valid. A
zero slope, with a nonzero intercept, would indicate no
relationship between the standard deviation of brightness
and brightness, and would support the use of an additive
approach. Because brightness offsets introduced or unac-
counted for by ATREM were unknown, neither in,,„hk,
nor i(,.,,Id,„) could be used as a precision measurement, but
rather as an indicator of trends.

Calculation of Compensation Factors
and Correction of Images
An additive compensation factor k,(x) and a multiplica-
tive compensation factor k- 2 (x) were calculated according
to Eqs. (2) and (3), respectivel y, for x=1-614 columns.
Images were corrected according to Eqs. (4) and (5) for
the additive- and multiplicative-type corrections, respec-
tively. For the two classified methods, only the compen-
sation factor appropriate to a given pixel's BRDF class
was applied to that pixel.

(6)
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Evaluation
The methods were evaluated and compared against
each other according to the following criteria:

Did the image still display a noticeable brightness
gradient?
Was the spectral integrity of image data main-
tained?

The first test was a visual comparison of the spatial
distribution of brightness before and after compensation.
The compensation methods operate on a column-by-
column basis; if average brightness compensation was
achieved by overcompensating some rows within a col-
umn while undercompensating other rows, then the
compensation method was not useful. An image-wide
comparison of all columns and rows would reveal pat-
terns in over- or undercompensation.

The second test evaluated whether spectral shape
was preserved by the compensation procedures. Com-
pensation was performed one band at a time, without
reference to conditions in the preceding or subsequent
waveband. Only if the brightness relationships between
bands were maintained would the spectral information
be preserved. To examine spectral preservation, mean
spectra for nine-pixel test regions at three view-angles
along the brightness gradient were compared before and
after compensation for all three BRDF classes. Spectra
after compensation were compared against the original
spectra for maintenance of low-frequency spectral fea-
tures (general spectral shape). High-frequency spectral
features were examined by comparing pseudo-first-deriv-
atives of spectral response, calculated according to Mar-
tin (1994).

RESULTS

Extracting and Fitting Brightness Curves

Unclassified Image
As can be expected from a forested region, mean reflec-
tances across wavelengths were dominated by the spec-
tral signal of vegetation, with distinctive chlorophyll ab-
sorption evident at 0.68 pm, high reflectance in the near
infrared, and intermediate reflectance in the 1.5-1.8 pin
water absorption region (Fig. 2a). The fit of the qua-
dratic equation to the observed mean reflectances across
columns (Fig. 2b) was good, with r= values greater than
0.9 for all wavebands (data not shown). Interpretive coef-
ficients follow the patterns described in the next section
for Classes 2 and 3 of the classified image.

Classified Image
For Classes 2 and 3 of the classified image, the spectral
character of the coefficients q, q', and x,„,„„ appeared to
be significantly related to vegetation (Figs. 3a, b, and c).
The coefficient q takes the unmistakable shape of a ge-
neric vegetation spectrum (Fig. 3a). The shapes of q' and
x,„,,„, (Figs. 3b and c), while not strictly vegetative, are

characterized by spectral features that correspond to
wavelengths of critical vegetation features, especially the
chlorophyll wavelengths (0.68 pm) and the red—near-
infrared transition (0.68 pm to "0.90 pm). The fact that
the view-angle-dependent curvature existed within the
vegetative classes reconfirms the observation that the
brightness effect was related to view-angle, rather than
to patterning of bright and dark classes on the landscape.
The soil-dominated class (Class 1) behaved differently
for all coefficients (Figs. 3a—c; note that r.,„,,„ ) was mathe-
matically uninterpretable where q approached zero). No-
table is the shape of q', which for Class 1 was a rough
mirror-image from q' from the two vegetative classes.
The values of r2 for the fit of quadratic equation were
uniformly high for the vegetative classes, but poorer for
Class 1, especially at the chlorophyll absorption region
and the two mid-infrared regions (Fig. 4).

The relative strength of the additive and multiplica-
tive assumptions, as indicated by 4,„lik , and mwdo, respec-
tively, also appeared to respond to absorption character-
istics of vegetation, although they were quite variable
between classes and across wavelengths (Fig. 5). A nota-
ble point of agreement between the classes was a peak
in the appropriateness of both the multiplicative and ad-
ditive assumptions at the chlorophyll absorption region.

Summary
Three major patterns emerged from the investigation of
the interpretive coefficients:

The character of the brightness gradient across
wavelengths appeared to be connected to the spec-
tral characteristics of vegetation.
The brightness gradient in the soil-dominated
class (Class 1) was quite different from the two
vegetated classes.

3. The strength of the multiplicative and additive as-
sumptions varied with wavelength; both effects
were present to varying degrees at most wave-
lengths.

Evaluating the View-Angle Compensation Methods

Does the Resultant Image Retain a Visible
Brightness Gradient?
In comparing images after application of the four com-
pensation methods, seven representative wavebands were
evaluated for image contrast and for distribution of
brightness gradient among cover types. The classified
methods performed better across bands than did the un-
classified methods. For both the classified and unclassi-
fied methods, the multiplicative versions performed bet-
ter than their additive counterparts. A cross-track subset
of a green waveband image (0.55 pm) is used as a visual
example, showing the original image (Fig. 6a) and images
from all four of the compensation methods (Figs. 6b—e)
displayed according to the same brightness stretching
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a )

Figure 2. Reflectances by wavelength and image column number for the 19 Jul y 1994 AVIRIS
image (a portion of which is shown in Fig. P. Each column number corresponds to a different
scan angle of the sensor: column numbers greater than 306 the nadir point) are those where
the sensor was aimed towards the sun. a) lean image values taken from 1288 pixels at each
column number. b) The values in a) fitted according to a quadratic equation [Eq. (11], using
column number as independent variable and mean reflectance as dependent variable. Each
wavelength is fit separately. Reflectance \ alues are calculated from raw data using ATREM
(Gao et al., 1993).
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Figure 3. Interpretive coefficients derived from the fit of the quadratic equation for Classes
1, 2, and 3. a) The quadratic term q in the quadratic equation [Eq. (1)]. Higher q indicates
a stronger view-angle effect. b) Nadir-adjusted view-angle curvature q' calculated by dividing
q for a given band by fitted nadir reflectance in that band. This eliminates the effect of aver-
age band reflectance, allowing direct comparison of view-angle effects between bands. c)
The column number where the fitted quadratic equation reaches a minimum, 	 Nadir is
column 306; higher values are on the sun-side of nadir. Because the curvature (q) for Class
1 drops below zero [see part a)], the mathematical assumptions for the calculation of x,„„„,
are invalid for that class and cause x,,„„„ to vary outside the meaningful bounds of this plot.

rules, along with the classified image for reference (Fig.
6f). The least effective method across bands was the ad-
ditive-unclassified method, which consistently overcom-
pensated for the brightness effect in Class 3. The multi-
plicative-unclassified method generally alleviated this

problem, except in the two mid-infrared regions (not
shown), where some undercompensation was evident.
The two classified methods vielded well-balanced images,
with high contrast and no patterns of inappropriate com-
pensation.
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Was Spectral Integrity Maintained in
Representative Test Regions?
Spectra from Class 1, 2, and 3 test regions were com-
pared before and after application of all four compensa-
tion methods. Spectral pseudo-first-derivatives were nearly
identical for all compensation methods (an example is
shown in Fig. 7), indicating that fine-scale spectral fea-
tures were well-maintained by all methods. Broad spec-
tral features were also preserved for the test regions
dominated by vegetation, including all of the test regions
from Classes 2 and 3 (representative data for Class 2
shown in Fig. 8) and bvo of the test regions from Class
1 (not shown). The third test region from Class 1 was
nearly pure soil and responded to the compensation
methods in a manner unlike the other test regions (Fig.
9). For this test region, no compensation method fully
maintained spectral integrity, especially in the transition
from the red to the near-infrared wavelengths, although
the multiplicative-classified method best maintained over-
all spectral shape.

DISCUSSION

Context of the Study
Because of its potential for improving canop y inversion
models, the BRDF remains a subject of continued fruitful
research, especially as the availability of variable look-angle
sensors increases (Irons et al., 1991; Abuelgasim and
Strahler, 1994). For single-pass, nadir-viewing instnnnents,
however, the effects of BRDF and other view-angle ef-
fects can hinder processing. Building on work by other
investigators using other instruments, this study evalu-
ated four related empirical methods of compensating for
view-angle effects in AVIRIS imagery. The conclusions
of this study will be useful for situations where the
brightness gradient is severe enough to mask variation in

the original data, and where some means of compensa-
tion is required that both will be efficient and will cause
minimal radiometric distortion.

Limitations and Potential Error Sources
The methodologies tested here have several limitations
and limiting assumptions.

They compensate for view-angle effects only, not
for sun-angle effects that would vary between im-
ages acquired at different times.
Although they brighten dark areas, they will not
change the lower signal-to-noise ratio in dark
areas.
They make no explicit accounting for topogra-
phy; however, there are no topographic features
in this landscape that function at the scale of
the swath-width of the sensor, so topographic ef-
fects likely explained some variation around the
general view-angle trend but not the trend itself.
They assume that a quadratic curve is the appro-
priate model for the brightness gradient; high 1-2
values indicate that this was a reasonable assump-
tion except for Class 1, which will be discussed
in the subsection on BRDF predictions below.
The multiplicative methods require the zero
point on the reflectance scale to be absolutely ac-
curate; without ground measurements, this was
not testable.

Interpretation of View-Angle Effects

General Observations
From the investigation of the interpretive coefficients [q,
q'	 ikord, several general trends are evident.
First, all noticeable trends in the data appear to be related
to vegetation's spectral features, not to atmospheric path
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Figure .5. Coefficients for determining whether the standard deviation of reflectance is dependent on
mean reflectance. For the 614 columns in each waveband, the former was plotted against the latter, and
a linear regression line was fit to the relationship. The slope m(,„1,10 and y-intercept iw ddo for the linear
regression line are shown by wavelength. A nonzero slope indicates that standard deviation is partially
proportional to mean brightness. A nonzero y-intercept indicates that some portion of the standard devia-
tion is independent of mean brightness.

radiance effects, which are greatest in the blue wave-
lengths and gradually decrease as wavelength increases
(Leckie, 1987). Although path radiance is additive and
may be responsible for the observed additive relationship
in view-angle effects R,tdd,li, it clearly does not explain
the bulk of the behavior of the view-angle effect. Sec-
ond, the curvature of the view-angle effect is strongest
in spectral regions where vegetation strongly absorbs radi-
ation, and is weakest where vegetation scatters and trans-
mits radiation. Finally, Class 1, with minimal vegetation,
behaves uniquely in its response to view-angle changes. All
three of these observations point to surface BRDF as the
primary determinant of the view-angle effect.

BRDF
Kimes (1983) suggests that the BRDF for vegetated can-
opies is defined by the interaction of two effects. As

view-angle increases from nadir, the probability of the
sensor gaining a direct line of sight to dark, lower canopy
components decreases, and the proportion of bright, up-
per canopy components in view increases. This causes a
minimum reflectance at nadir with symmetric curvilinear
increases in reflectance as view-angle increases in both
directions (i.e., a quadratic curve). We refer to it as Ef-
fect 1. Effect 2 results from the sensor viewing forelit
surfaces when looking away from the sun and viewing
backlit surfaces when looking towards the sun. Unlike
Effect 1, it causes a nearly linearly decreasing reflectance
as view-angle moves from forelit to backlit surfaces. The
combination of the two effects will produce a quadratic
curve with a minimum point offset in the direction of
backlighting, i.e. towards the sun.

In this study, the coefficients q' and	 are de-
signed as indicators of Effect 1 and 2. The curvature
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wavelem rth 0.53 tnu b—e , fina, re swaths resultant from the lour view-angle compensation methods. 	 The
classified image used for both the additive- and multiplicative-classified compensation procedures. Collinin
number as used in previous figures) increases from bottom to top of the image: the nadir line runs horizon-
tally across the middle of the image. The top portion of the image is on the backseatter side or nadir.
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Figure 7. Spectral first derivatives for an example test site before and after application of compensa-
tion methods. The test site was from Class 2 on the forward scatter side of nadir (see Fig. 8c for
associated spectra). There is essentially no difference between post-compensation and original-image
first derivatives, indicating that fine-scale spectral information was retained by all compensation
methods.

measured by q' should respond directly to Effect 1. The
coefficient x,„,;„ ) measures the interactions between Ef-
fects 1 and 2. As Effect 2 becomes stronger relative to
the quadratic influence of Effect 1, the slope of its linear
view-angle effect increases and the minimum point of
the quadratic curve [x(„,,, ) ] moves further from nadir. This
may occur either when Effect 2 strengthens or when Ef-
fect 1 weakens. Consequently, Effect 2 must be interpre-
ted by examining trends in both (/ and x(„,„).

Examining BRDF Predictions
Using q' and x ( „th) we can infer whether the predictions
of Effect 1 and 2 adequately describe the brightness gra-
dient. At wavelengths where canopy absorption is high,
lower canopy components will be much darker than up-
per canopy components, and the higher contrast should
accentuate Effect 1. Effect 2 should be driven by the
relationship between leaf transmittance and reflectance:
When leaf transmittance is low compared to reflectance,
the backlit sides of leaves will be relatively dark, and Ef-
fect 2 will be strong; when transmittance and reflectance
are on a par, Effect 2 will be weaker.

For vegetated classes (Classes 2 and 3) and for the
unclassified image (with proportionally little soil), these
predictions are accurate. Effect 1, as measured by q', is
greater at wavelengths where vegetative absorption is
higher [the chlorophyll region (0.68 pm) and the minor
water absorption regions (1.5-1.8 pm)] and weaker
where vegetative absorption is minimal [the near-infra-
red region (0.80-1.1 gm); Fig. 3b]. Differences between
reflectance and transmittance for conifers are relatively
small at most wavelengths (Daughtry et al., 1989: Wil-
liams, 1991), so the strength of Effect 2 should vary little
across wavelengths. This appears to be the case here: Be-
cause x,„,,„ ) changes in nearly direct opposition to q' (Fig.

:3c), it appears that it is being altered strictly by changes
in Effect 1 and that Effect 2 is relatively stable across
wavelengths.

In the sparse canopies of Class 1, Effect 1 would be
expected to play a lesser role than Effect 2. The changes
in brightness with view-angle are therefore poorly de-
scribed by a quadratic fit (low r2 values, Fig. 4). Addition-
ally, descriptive coefficients which assume a quadratic cur-
vature, (q, q', and x„,1„), only describe that portion of the
brightness gradient attributable to vegetation, making it
impossible to say how well Effect 2 describes soil BRDF.
Nevertheless, it is quite clear that BRDF in Class 1 is
quite different from that in the vegetated classes.

BRDF in Sparse versus Dense Canopies
The stark contrast in BRDF characteristics between
Class 1 and the vegetated classes indicates that for this
scene, at least, the soil—vegetation axis caused more dra-
matic variations in BRDF than did the vegetative struc-
tural complexity. This is consistent with the conclusion
of Kimes et al. (1986) that homogenous closed canopies,
whether forest or grassland, should manifest BRDF ef-
fects that are similar to each other and different from
soil-dominated regions of any type.

Evaluation of Compensation Methods

Validity of the Additive and Multiplicative
Compensation Techniques
The coefficients	 and irstddo were intended to mea-
sure the validity of using the multiplicative or additive
approaches. Their statistical robustness was questionable
in Class 3 due to the presence of two distinct clusters of
pixels in standard deviation/brightness space (not shown).
Nevertheless, Class 1 and 2 did not show subclasses, but
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Figure 8. Extracted spectra for test regions in the original image and in images resultant from all four com-
pensation methods. Each spectrum represents the average from nine adjacent pixels. Plotted are spectra from
Class 2 a) in the backscatter region of the image, b) near nadir, and c) in the forward scatter region of the
image.
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Figure 9. Extracted spectra for a nearly-pure soil test region from Class 1. Note that all compen-
sation methods fail to adequately maintain spectral shape in the 0.6-0.9 pm region.

did display quite marked variations with wavelength in
the magnitudes of both mwddo and i ( „dd) (Fig. 5). If data
from those two categories are accepted as indicators of
underlying view-angle properties, then it was evident
that neither the assumptions of the additive nor multipli-
cative compensation methods were exclusively valid
across wavelengths.

In the chlorophyll absorption region, the strength of
a multiplicative relationship [m („ddol rose (Fig. 5a) as the
strength of Effect 1 (q', Fig. 3b) increased, suggesting
that Effect 1 may be a multiplicative effect. This sugges-
tion is supported by the theory which states that Effect
1 is driven by the difference in brightness between the
upper and lower canopy. Because brightness in a canopy
likely follows an exponential extinction rule, the bright-
ness at a given depth in the canopy will always be related
in a proportional manner to the brightness at the top of
the canopy, and hence the strength of Effect 1 should
also be proportional to the brightness at the top of the
canopy.

Comparing Results from the Four Methods
The compensation methods tested here represent four
strategies to reduce error in reported radiance caused by
view-angle-dependent phenomena. As has been shown in
this study, the view-angle effect exhibited in a pixel in a
given waveband image will depend on that pixel's view-
angle, its surface structure, and its brightness. We can
express this conceptually in a simple formula:

v(a,y)=[bxf„,(a)] +Cryi„,

where v(a,y) is the brightness effect for a particular
pixel, b is some measure of that pixel's inherent bright-
ness, ftyp,(a) is a function describing the response to
changes in view-angle for surface type equal to type at
view-angle a, and C„„. is the additive component of view-
angle effect for type. An ideal compensation method

would account for all variations across an image b, fty,„(a),
and C„,. In practice, however, average values must be
used, and thus error in compensation for a pixel will be
determined by the separation between the averaged
compensation factor and the true view-angle effect for
that pixel.

The four methods differ in how they average these
values. For the additive methods tested here, b was an
average value for the whole scene. Error in compensa-
tion for a given pixel will increase as that pixel's bright-
ness increasingly departs from this average brightness.
This error is especially evident in the minority soil-domi-
nated class (Class 1) in this vegetation-dominated scene,
but also appears in the vegetated classes . because Class
2 and 3 differed in average brightness. Multiplicative
methods alleviate this problem by using the pixel's start-
ing brightness as an estimate of b. Therefore, the multi-
plicative-unclassified method performed better than the
additive-unclassified method, although Class 1 still suf-
fered in the chlorophyll absorption region.

The latter observation is explained by the averaging of
f,„p,.(a) and C,,i, in the multiplicative unclassified method.
Unclassified methods treated the whole image as a single
type. Because vegetation dominated the scene, both fype(a)
and C„, were average values heavily influenced by vegeta-
tion. When these were applied to Class 1, which showed
unique view-angle responses in all of the interpretive co-
efficients, the compensation was inaccurate. By classify-
ing into three groups, the gross variations in ftyp,(a) and
C„„ were accounted for and the errors introduced from
compensation were lessened.

Because the multiplicative-classified method allowed
the most variability in b, f„„(a), and C hip, theoretically it
should have been the most successful method. While this
appears to be true, especially in the maintenance of
spectral integrity, the distinctions were minimal between
it and the additive-classified and multiplicative-unclassi-
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fled methods. Only the additive-unclassified method dis-
played blatantly inappropriate brightness compensation.

Summary of Results
Given the results of this study, several general state-
ments can be made about view-angle brightness effects:

1. Surface BRDF is the primary determinant of
view-angle effects in this scene. In theory, atmo-
spheric path radiance should play some role; in-
deed, the presence of an additive component in
the view-angle response hints at the presence of -
path radiance. However, most of the wavelength-
dependent changes in view-angle response are
attributed to surface characteristics.
Kimes' theory (Kimes, 1983) of BRDF describes
the view-angle responses. For closed vegetative
canopies, Effect 1 dominates, and there is little
variation between closed canopies of high and low
structural complexity. For open or sparsely vege-
tated canopies, Effect 2 dominates.
In terms of view-angle compensation, the mani-
fested view-angle effect for a given surface is a
function of both the brightness of the surface and
the magnitude of Effects 1 and 2 for that surface,
all of which vary considerably from surface to sur-
face. A successful compensation method will ac-
count for these variations across an image, al-
though gross approximations appear to perform
adequately.

CONCLUSIONS

For most of the surfaces involved in this study, the use of
empirical view-angle compensation strategies appeared to
unmask the information content in this vegetation-domi-
nated scene. Because soil and vegetation have quite differ-
ent BRDF effects, it is expected that this technique may
be less effective in environments with substantial subpixel
soil/vegetation mixing.

Although several simplifying assumptions were needed
to conduct this study, they do not appear to have prevented
adequate view-angle brightness compensation. Inaccura-
cies in curve-fitting caused by spatial autocorrelation, in-
sufficient degrees of polynomial fitting, or inaccurate at-
mospheric correction algorithms could not be quantified,
but the success of the methods appeared to indicate that
their role was subordinate to other factors. When used
intelligently, then, these fairly simple empirical methods
can be efficient preprocessing tools in situations where
view-angle effects mask information content.
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