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This report was prepared at the request of, and under funding from, the
Willamette National Forest to provide a summary of available ¢at§ an soil
erosion by surface and mass erosion processes on Forest Tands. These
data were to be summarized in terms of Soil Resource Inventory (SRI)
units (Legard and Meyer, 1973) and type of management treatment. The
summarization of mainly unpublished data was to be completed in three

" weeks.

In addition to providing the basic data requested, we discuss briefly (a)
the field methods and assumptions involved in generating these numbers,
(b} limitations and qualifications of these estimated erosion rates, (c)
the relationship between measured erosion rates and SRI units, and (d)
some thoughts on how to improve the data base and methods of analysis for
the next round of planning. Also included is a table reviewing data on

soil disturbance by various logging systems in western U.S. and Canada.
SURFACE EROSION
Background

Surface erosion as used here refers to the particle-by-particle downslope
movement of material under the influence of rainsplash, dry ravel,
animal, and freeze-thaw activity. Overland flow has rarely been

observed on other than highly disturbed surfaces in the Forest.
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Surface erosion has been measured in the Willamette National Forest in a
variety of ways in a variety of studies with different research.' ‘
objectives, but there has been no effort to systematically sample surface
erosion by SRI unit and management treatment. Consequently, we can
provide measurements of surface erosion rates for only a few combinations
of SRI units and management histories. Furthermore, the variety of
measurement techniques used adds an extra measure of uncertainty in

comparing values between studies.
Methods and Assumptions

A1l of the studies cited in this report measured surface erosion rates
with collection boxes placed along the hilislope, and periodically
cleaned of the accumulated soil m&teria1. fhe collected material was
separated into an organic and inorganic fraction, dried, sieved, and
weighed, Studies differed as to the size and number of collectors,
periodicity of sampling (table 1), whether the boxes were systematically
distributed across the site or placed to measure specific local rates,
whether the contributing upslope area was bounded or unbounded, and
whether the site itself was modified as part of an experiment or as the

result of standard management activity.
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In all cases, the method of analysis of the raw data was similar. Only
the inorganic fraction was used. The total weight of material
accumulated over the course of each year was determined for ea;h box. On
Watersheds 9 and 10 (streamside) the total weight from all boxes was
used. Whenever data for a particular collection period was misging;
results from the two adjacent periods were averaged and used as an

estimate of the missing period.

For all sites, except Watersheds 9 and 10, the accumulated weight was
divided by the estimated contributing catchment area to give an annual
yield rate per unit area. Since the collectors in Watersheds 9 and 10
were unbounded and located along the stream perimeter, a slightly
different procedure was used. The total annual weight of material
collected was divided by the total length of coliector cpening to give a
weight collected per unit Yength of opening. This result was then
multiplied by the length of the stream perimeter along which the
collectors were placed, yielding the annual delivery of material to the
stream. Dividing this delivery rate by the basin area (21 acres in
Watershed 9 and 25 acres in Watershed 10) yielded an annual yield rate
per unit area. The close correspondence of rates computed in this manner
with rates computed by the local catchment area method suggests that the
two methods are comparable. Weights were transformed into volumes by the
assumption that the specific weight of inorganic sediment was

7 .43

1.5 gr/cmS. Hence, 1 gram equals 8.47x10™" yd~.
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The results, by SRI unit and treatment history, are presented in Table
2. Both best estmates and raw averages are presented. Except in the
case of Watershed 1 studies, results are not areally weighted.' In most
areas, areal weighting would only slightly modify the results. Best
estimates differed from the raw average in those cases where it was felt
that rates from individual boxes were anomalously high and not
characteristic of the site in general, in which case those boxes were
not averaged in with the others. Where this has been done, it is noted

in the footnotes to Table 2.
Results

Summarized values of surface erosion rate are surprisingly consistent
except for some explainable outliers (Table 2). This is true despite
high spatial variability in surface erosion rates in small areas. A
general rate for steep forested conditions is about 0,02 yd3/ac/yr,
0.09 yd3/ac/yr for clearcut and unburned sites, and 0.05 to 0.7

yd3/ac/yr for clearcut and burned sites.
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Variability within a given SRI unit or individual study site is very high
for the areas sampled. Average rates for each study were strongiy .
influenced by the high volume of material trapped in only one or two
collectors even where the total number of collectors exceeds 30. For
example, during the period 4/02/75 to 4/30/75, a totaT-of 91.47 grams of
sediment were collected from 10 boxes on HJA-9; the average collection
per box was therefore, 9.15 grams. However, the actual weight of
sediment per box ranged from .02 grams to 77.73 grams. Hence, 85% of the
total came from one box while the other nine contributed 15%. This is
not atypical as over the five year period of monitoring in forested
Watershed 9, 30 of the 47 periods sampled had 40% or more of the total
amount contributed by a single box. The siting of collection boxes
relative to local hillslope source areas, such as bare soil from a root

wad, has a great deal to do with the yield rates observed.

There are a few anomalously high yield rates reported in the table,
specifically Sites II and V of the McCorison boxes. If these points are
eliminated from the data set, very consistent yield rates are obtained
for all forested sites (X = .0265 yd3/ac/yr, s = .0202). It is
reasonable to exclude these samples from the description of general
conditions, because McCorison selected his forested Sites 1 to VI to
provide estimates of maximum rates of surface erosion for forested
conditions. These sites had siopes of 80 to 100% and 5 of the 6 had

ground cover of less than 100%.
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Surface Erosion and SRI Units

Surface erosion data are available for only 8 SRI units, so it is not
possible to judge the usefulness of SRI designations of surface eyosion
potential against actual measurements of erosion rate. Furthérmore, the
very high variability within SRI unifs‘observed in several studies
jndicate that a very large number of samples would be needed to
distinguish surface erosion rates for different SRI units. Furthermore,
the available data samples a narrow range of surface erosion potential
classes (table 2) so these data do not provide a good check on surface

erosion potential as a relative measure of surface erosion rates,

A summarization of surface erosion rates in terms of siope gradient and
duff cover (tables 3-5) indicates that these two variables are strongly
correlated with surface erosion rates and could be used as a basis for

estimating surface erosion at sites where no measurements have been

made.

Surface Erosion for Different Management Activities

No data are available for comparing surface erosion for various
management activites. McCorison measured surface erosion from skid
trails in a partial cut unit while other values are for managed areas in
clearcuts where skyline logging was used. These logging systems met with
mixed success in achieving full suspension {ground disturbance for
Watershed 1 documented by Dyrness (1967 in footnote 5, Table 6}, and for

Watershed 10 by McCorison, pers. communication, (Table 6}).
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One way to estimate surface erosion for various treatments would be to

average McCorison's value for skid trail erosion for the percent of area
disturbed by each treatment with an average rate of clearcuts (burned or
unburned as appropriate) for the rest of the area. Table 6 is a summary

of soil disturbance data for the Pacific Northwest.

Time Trends

It is difficult to define variations in the surface erosion rate through
time after treatment because the relevant data are very limited. The
studies in Watershed 1 (clearcut, burned) invoive sampling for about one
year each in two different periods beginning 10 months and 12 years after
burning. Mersereau and Dyrness (1970) remark that they probably missed
60+% of the first two years of erosion because of not sampling the
extremely high rates typically observed during and immediately following
burning (Bennett 1982). When Lienkaemper and Swanson resampled 12 years
Jater, at 7 of the 8 sites, erosion rates had declined to the level
typical of forested conditions. Only at the most unstable site (80%
slope, bare, south aspect) was the rate high, yet this rate was similiar
to rates observed by McCorison on steep (100%) forested slopes. Thus, in
many sites, surface erosion rates following management activity may
decline to rates typical of forested areas within 10 years. Table 2
shows estimates of surface erosion rates for the first decade after
cutting and burning in Watershed 1 (SRI unit 14 = 0.75 yd*/ac/yr; unit
310 = 0.67, unit 331 = 0.053) based on the simple procedure of averaging
the year 1 and year 12 post-burning data. Table 3 shows estimated first
decade estimates for clearcut, burned conditions for three s1operc1asses,

based on methods described in the footnotes.
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Surface erosion rates in Watershed 10 (clearcut, unburned) show a slight,
general decline over the first four years after treatment. If we assume
a2 gradual decrease to the forest rate (0.022 yd3/ac/yr) over 10 years,
the average rate for the first decade would be about 0,056 yd3/ac/yr .

The Ryder Creek studies of the Department of Soil Sciences, Oregon State
University, provide only a 2 year record post-burning. In each of the
three slope classes, surface erosion rates increased from the first to
second year after burning. Predicting a time trend from these

observations must await additional sampling and data analysis.
Qualifications

This report contains data collected with a variety of methods. An
important variation was the use of both bounded and unbounded plots.

Some studies calculated erosion for plots with contributing areas bounded
by natural features (Mersereau and Dyrness 1972) and others used
constructed boundaries to define contributing area. Studies in Watershed
9 and 10 used unbounded plots for which contributing area was not
estimated. The sediment collected by each method can be expressed on an
areal basis, but we are uncertain how comparable the data are. The key
problem is that we do not know rates of downslope movement of soil
particles by surface erosion processes. If we divide the volume of
collected material by an apparent contributing area larger than the
actual contributing area, the surface erosion rate will be |
underestimated. Rates of particle transport (Bennett 1982) and effects
of slope length are very different in the case where overland flow is
unimportant, as on the Willamette National Forest, than in agricultural

lands where overland flow dominates erosion.




Doc. 3408D, Disk 0061D 10

A basic study of mechanics of surface erosion and effects of slope tength
on erosion rate are needed for west-side forest lands. Such a study

would aid interpretation of existing data.

A better evaluation of surface erosion on the Forest would require much
more extensive sampling. D. G. Moore (PNW, Corvallis) is beginning a
study of alternative means of brush control in the western Cascades that
may help provide substantial new data. He is setting up approximately
200 erosion collectors at widely scattered locations with a range of site

treatments, soil types, and slope gradients.
Surface Erosion From Roads

A.Timited number of studies have attempted to document rates of surface
erosion from forest roads. The most detailed analysis of sediment
production from roads in the Northwest is probably Reid's (1981) work in
the Olympic Mountains of Washington where surface erosion was measured as
a function of road type and traffic intensity. The effect of logging
roads on sediment production has also been documented in the granitic
uplands of the Idaho Batholith (Megahan 1978, Megahan and Kidd 1972a,

b). In the Willamette, road erosion studies have primarily assessed
different seeding treatments for reducing erosion on bare cut and

fillslopes {Wollum 1962, Dyrnesss 1975).
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Because of the high variability of site conditions, methods and results,
only those studies carried out in the Willamette National Forest are
reported here (Table 7). While SRI units are listed in the tab1e; the
limited data set makes extrapolation of road-related erosion rates to
other parts of the Forest uncertain. However, it is clear that road
erosion rates are an order of magnitude greater than rates for clearcut
and burned sites. It is also evident from Table 7, that erosion rates
decline as vegetation becomes established on the bare slopes. It appears
that soil erosion rates on roads approach the clearcut/burned rate after

5-7 years.
DEBRIS SLIDES
Background

Debris siides are shallow, rapid mass failures which typically occur
during periods of intense precipitation, often augmented by snowmelt.
Debris slides have been inventoried in six studies in the Willamette
National Forest, using combinations of aerial photographic and field
investigation techniques. Detailed studies in the H. J. Andrews
Experimental Forest (Dyrness 1967, Swanson and Dyrness 1975, Swanson,
unpub. data), Alder Creek (Morrison 1975), and Blue River (Marion 1982)
were done with comparable methods and standards. We use data from these
studies as the basis of this analysis. Chesney (1982), Hicks (1982), and
Lyons (1981) also inventoried slides in alil or part of the Forest, but
data from these studies are not included because methods are sufficiently

different that results should not be merged.
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The study areas analyzed in this report total 33,600 acres or about 3% of

available commercial forest land in the Forest.
Methods and Assumptions

Landslide data for the three study areas were compiled from aerial
photographs and field traverses. Only those inventoried events greater
than 100 yd3 which occurred since first management entry in about 1950
were used in this report. Slide areas and volumes were determined from
estimates of scar width, length, and depth measured in the field. Slides
were assigned to an SRI unit based on their mapped position and were
classed by whether they occurred in natural, managed {clearcut), or
roaded areas!. Data on total acreage in natural and managed condition
and road mileage by SRI unit (as of October 1981) were provided by the
Willamette National Forest. Road acreage was computed as 8 acres per
linear mile; this area was then subtracted from the natural category so

that total acreage in each SRI unit remained constant. While a more

INatural areas consist of: (1) pole stands greater than 63.99 acres,
(2) large and small sawtimber stands, (3) old growth stands, and {4)
noncommercial, rocky, and permanent grass areas. Managed areas consist
of: (1) pole stands less than or equal to 63.99 acres, {2) non-stocked
areas, and (3) areas with established seedlings and/or saplings.
Definitions and areas determined by the Willamette National Forest

Planning Staff.
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accurate procedure might have been to apportion the road acreage between
natural and managed areas, the area in road right-of-way is smaTl so the

results would not change significantly.

Stide frequencies for each SRI unit were determined by dividing the
number of events in each management ¢lass by 30 years (the period of
record) to give an average annual rate. An areal rate was then
determined by dividing this annual rate by the area in each management
class thus giving the frequency of events in terms of events per acre per
year by SRI unit and management history (Table 8). We grouped SRI units
on the basis of (a) the Expected Mass Movement Potential rating from the
SRI table of Erosion and Hydrologic Interpretations (Table 9) and (b) the
slope and rock type characteristic of each SRI unit (Tables 10 and 11} to
yield annual slide frequency per unit area for each SRI group and each

management class.

Annual area and volume rates are also given based on an areal weighting
of the average area disturbed and volume per slide as reported in the

three original studies.
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Results in Terms of SRI Units and Groupings

We report slide frequencies for the 51 individual SRI units in the‘study
areas and by Natural, Managed, and Road conditions (Table 8). The value
of relating slide frequency to SRI unit is that different slope and soil
conditions reflected in the SRI designations have different potentials
for mass failure. SRI units can be used as a basis for transferring
slide frequency data from study areas to parts of the Forest which have

not been investigated.

Even though a large area and 363 slides are in the data set, when these
events aré broken down into 3 condition classes and 51 landscape units,
many condition/SRI unit combinations have too few slides or too little
acreage to give a good measure of slide frequency. Therefore, SRI units
were first grouped into three clasées on the suggestion of Hal Legard
(Willamette National Forest) who was involved with the original SRI
mapping and description of relative stability of different SRI units.

The groupings are {a) Unchanged, (b} Increased and locally increased, and
(c) Greatly Increased (Table 9) as defined in the Expected Mass Movement
Potential ranking of slope stability in the Erosion and Hydrologic

Interpretation table of the Soil Resource Inventory.
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The observed frequencies of slides in the three stability classes
correspond fairly well with the subjective evaluations of relative
stabililty (Table 9). There are successively higher slide frequencies in
Managed and Road conditions for each stability class. The slide ‘
frequencies for each treatment are progressively higher in the more
unstable classes of SRI units for Managed and Road conditions. However,
the Natural slide frequency decreases with the more unstable classes.
Judging from the data in Table 8, it appears that this is due to the
presence of several SRI units rated as "unchanged" with anomalously high
Tandslide rates {notably SRI units 162 and 168). The terminology should
probably be changed because, although the “unchanged" class is most
stable, the frequency of slides does increase with cutting and roading.

We suggest stable, moderately stable, and unstable as replacements for

Unchanged, Increased, and Greatly Increased.

An alternative somewhat more gquantitative approach to grouping SRI units
would be to rank them in terms of slope and bedrock conditions described
in the SRI with minor modifications based on slide frequency data (Table
8). In this way we defined three groupings: stable units with gentle
slopes (less than 40%) of any rock type, moderate slopes (40-60%) with
hard rocks (basalt and andesite flows), and rock outcrops with Tittle or

no soil; moderately stable units with steep slopes (60+%)/hard rocks and

moderate slopes/soft rocks (tuffs, brecias); unstable units with steep
slopes/soft rocks. SRI units 13 (earthflow areas) and 15 (streamside
areas) probably belong in the moderately stable class, because, although
they have gentle slopes, localized steep areas are quite prone to
sliding. Assignment of stability classes for sampled SRI units are

listed in Table 8.
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Based on the above slope and rock type criteria, we assigned a11'SR{
units in the Forest to stability classes (Table 11). In several cases we
changed the stability class because of observed slide frequency

" characteristics of sampled units; any changes and reasons for them are
noted in the Comments column in Table 11, For SRI compiex units we
assigned the stability class of the major unit in the complex, except
where the two stability classes were U and S, we assigned M to the

complex.

This system appears to give more realistic stability groupings (Table 10)
than Expected Mass Movement Potential (Table 9) because (a) for natural
conditions it shows higher slide frequency in the more unstable SRI
units, and (b) it makes greater distinctions between stability groups,.as
reflected in greater differences between stability groups for a
particular condition. Stability groupings could be improved

substantially with additional slide frequency data.
Time Trends

In a sample of 26 debris slides inventoried in clearcut areas in the H.
J. Andrews Experimental Forest, 88% took place in the 10 years after
cutting. In terms of a general value, it is reasonable to assume that

90% of slides in clearcut areas occur in the first decade after cutting.
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Based on a sample of 74 road-related events in the H. J. Andrews, 68%
occurred in the first 10 years after construction and there were no road
failures from roads more than 20 years after construction. E1sewhére,
slides from road segments older than 20 years have been observed where
decomposition of slash buried in fills caused a slow Toss of stability.
We believe that perhaps 80% of slides from roads built to current Forest

Service standards occur in the first decade and 20% in the second.

There is some uncertainty in the representativeness of these numbers
because the history of cutting, roading, and slide-triggering storms has
not been optimal for getting a clear measure of the relative timing of

slides and management activities.
Qualifiers

Time constraints and available data have necessitated a number of
shortcuts in this analysis. Basic assumptions and computational
shortcuts are described in the Methods and Assumptions section; here we

identify some broader scale qualifications.
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The use of slide frequency data for forested areas as a "natural"
rate probably underestimates the true natural rate, because ﬁeniodic
wildfire in the pre-management period probably triggered episbdes of
greatly increased sliding. We have some data on frequency of
wildfire in the Forest, but no information on slide activity
following fire. If we assume a natural crown fire frequency of 200
years and acceleration of sliding similar to that after clearcutting,

the actual natural rate might be 20% higher,

Two major storms in Dec. 1964 and Jan. 1965 caused many of the
slides. The 1964 storm may have had a return period in excess of 100
years, so it was over-represented in the 25 to 35 year study periods
used here. This has the probable effect of giving us an overestimate
of long-term slide frequency. However, this may not change the

estimates of effects of clearcutting and roads.

Some of the road failures included in this analysis were on roads
built with techniques and located in landscape positions no longer
used. Estimates of future sliding frequency might, therefore, be
adjusted downward to reflect improved construction methods, Tocation

of roads in more stable areas, and better road maintenance.

Further refinement of this slide inventory system could yield
estimates of slide frequency from roads with different constru;tion
standards. This would provide a better estimate of future slide
frequency from roads and a basis for judging benefits in terms of

reduced sliding from roads with different construction costs.
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4.

In this analysis we used acreage in Natural, Managed, and Road at a
point about 30 years into the first rotation. As described in )
Swanson et al. (1977, 1981) this may cause an over-estimation of the
frequency in Natural conditions and underestimation of Managed and
Road slide frequenciés. In the case of Managed events, the method

use here treats clearcuts of ages 0 to 30 years the same.

In Swanson et al. (1977, 1981) we suggest a method for keeping track
of the history of slides and management activities on a yearly or
decadal basis and for providing a more realistic analysis of
managgment effects. This system of analysis could, for example, be
used to describe the slide frequency for clearcuts in different age
classes. It would be easy to make this analysis if slide and SRI

data were meshed with the TRI system.

Thoughts on Debris Slides and Future Forest Planning

Slides could very easily and appropriately be dealt with in the regular

context of Forest planning and monitoring. It would be appropriate to do

so because slides are a dominant erosion process in many parts of western

Oregon and because they strongly affect improvements and timber and

aquatic resources. It would be easy to do this by pursuing the track

begun in this analysis and round of planning. The methods of analysis

and a good data base are now available.
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The basic strategy is to use existing slide inventory data to document
the past frequency of sliding for different landuse and landscape units.
These data can then be projected into the future for different maﬁagement
scenarios to predict consequences in terms of Tlandsliding of alternative
types, patterns, and rates of development. The analysis would be
substantially improved with a modest increase in the area and number of

slides inventoried.

A three phase approach can be used by merging slide frequency data with
(a) soil volume moved and percent delivery to channels to predict
sediment production, (b) average area per slide scar and data on
Douglas-fir growth and stocking on slide areas (described by D. Miles, F.
J. Swanson, C. T, Youngberg, manuscript in preparation) to predict
effects on timber production, and (c) percent of slides triggering debris
torrents down stream channels to predict effects on aquatic habitat. The
slide inventory can also be used to examine changing slide frequency
through time for a particular management practice, such as road
construction, to determine the benefits of improved standards in terms of
reduced slide frequency and associated effects on timber and aquatic

resources,
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Slumps and Earthfliows

Background

Large, slow-moving (less than fi/day) mass movement features (s1hmps and
earthflows) are an important part of the Willamette National Forest
1andstape, but their distribution, movement rates, and response to
management activities are very poorly documented. Large portions of some
subbasins in the Willamette Forest have been shaped by earthflow
processes, but these areas are not mapped systematically in the SRI
system. For these reasons, it is not possible to describe erosion rates

by slumps and earthflows in terms of SRI units and management activites.

Available Information

To our knowledge, movement rates are being measured on only four
earthflows in the Willamette (Table 12). Rates vary from less than

1 in/yr to 20+ ft/yr. MWe plan to begin monitoring movement of additional
earthflows in the Willamette in the next few years in an effort to (1)
determine long-term movement characteristics of earthflows of different
sizes, management histories, and geomorphic settings and (2) establish
field criteria for estimating movement rates from degree of vegetation

and ground disruption.
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By Jjoining the results of (2) with maps of large basins showing
distribution of earthflows in various movement classes, it will Be .
possible to estimate sediment production from earthflows in 1arge‘

watersheds.

We know of detailed maps of slumps and earthflows for several areas
within the Willamette: H. J. Andrews Experimental Forest (Swanson and
James 1975) Alder Creek, tributary to Fall Creek (Morrison 1975), and
part of the Middle Santiam area (Hicks 1982).

Considerations and Limitations

It is important to distinguish erosion attributable to deep-seated, slow

mass movements from shallow, rapid slides for several reasons:

1. Influences of management activities are very different--in the case
of clearcutting, root strength strongly controls shallow slides, but
hydrologic influences may be the predominate effect of forest cutting on
deep-seated features. Consequently, the timing and magnitude of
management effects are 1ikely to be different for each type of mass

movement.
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2. The effect of Togging on hydrology has been measured in a number of
studies and the response of earthflow movement to natural variétions in
water availability has also been documented, but the direct 1ink between
movement rate and the change in hydrology caused by vegetation
manipulation has not been quantified. We cannot predict at present how
much, if any, acceleration of earthflow movements will occur if trees are

removed from the watershed.

Despite these arguments for distinguishing between large, slow, and
shallow, fast mass failures, it is important to recognize the Tinks
between tﬁe two classes of events (discussed in Swanson and Fredriksen
1982). Many shallow, rapid slides in the Western Cascades occur on
slumps and earthflows where slow movement results in oversteepening of
head scarp and toe areas, which then fail by debris sliding. In the
Lookout Creek watershed, for example, 41% of slides inventoried on
natural slopes (forest and clearcut areas in contrast with constructed
slopes along roads) are in slump and earthflow terrain. Streamside
slides may be the dominant mechanism of sediment delivery from slumps and
earthflows to streams. If so, one would be tempted to use a detailed
study of streamside slides to judge management effects on sediment
production from slumps and earthflows. However, this approach is
probably not reliable for dealing with a management history of only a few
decades, because cutting may trigger slides from toes of earthflows as a
result of reduced root strength while the potential for sliding may have
resulted from a long history of earthflow movement under forested

conditions. In this case, streamside sliding at earthflow toes is a poor

index of effects of management activities on earthflow movement.
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Desired Information

To estimate the role of earthflows on sediment production in managed

watersheds we need:

1. Maps of earthflows to show degree of linkages between earthflows and

the stream network.

2. Measurement of rates of earthflow movement to identify classes of

behavior {year-to-year variation) and long-term average rates.
3. Estimation of effects of management practices on movement rate.

Maps of earthflows (item 1) are available for a small part of the
Forest. We plan to expand the number of sites where movement is
monitored. This is a task that would very reasonably fall within the
monitoring program of most west-side Region 6 National Forests. The
first step in item 3 is being taken by Marvin Pyles (Depts. of Forest
Engineering and Civil Engineering, 0SU) who is conducting an engineering
analysis of the Lookout Creek earthflow under funding from a PNW

cooperative agreement.
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Table 11--Assignment of stability ranking for all SRI units based on sTope and rocktype
conditions described in SRI. Rules for assigning stability ranking are described in the
text. Comments described reasons for deviating from rules for several of the sampled
5RI units,

SRIF STope Rock Typed Stability Comments .
ClassP .
1 30-100 A,B (r.o.) S
2 Br {r.o.) S
3 steep headwalls talus (r.o.) M
4 0-30 Tava flows S
5 40-80+ cinder cones M
6 gentle-steep marshy, boulders S
7 ridgetops glacial cirques S
8 steep GBr, RBr U
9 steep A,B,Br M
12 0-25 A,B S
13 0-40 Br,T M see text
14 5-35 A,B,Br,T S
15 0-20 Al M see text
16 20-70 A,B,Br,T M
17 0-20 Al M
19 0-45 Br M
21 60-90 RBr,T g
22 0-20 RBr,T S
23 2060 RBr,T M
25 15-40 BR,t M
31 60-90 — T,GBr U—
33 20-60 Ger,T M
35 §5-40 GBr,T M
44 40-80 Br M
54 35-65 Br,A,B M
55 40 Br,T M
56 0-30 A S
57 30-60 A S
61 60-50+ A M
62 0-35 Tava flows S
63 0-35 A,B M raised from S due to slide in
natural condition
64 40-80 AB )
66 . 0-40 A,B S
67 0-40 A,B S
68 30-60 A,B )
69 0-30 A,B S
n 45-90 A,B M
73 0-30 A,B S
74 35-55 A,B S
75 0-35 A,B S
81 40-90+ A,B M
82 0-30 A,B S
85 0-15 A,B S
91 55-90+ A,B M
92 0-35 A,B S
93 0-40 A,B S
94 35-60 A,B,Br S
a5 0-35 A,B,Br S

@Rock type abreviations: A = andesites, Al = alluvium, B = basalts, Br = breccia,
GBr = green breccia, RBr = red breccia, r. o. = rock outcrop, T = tuffs.
bstability classes: § = stable, M = moderately stable, U = unstable,
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