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ABSTRACT

Massman, W.J., 1983. The derivation and validation of a new model for the interception
of rainfall by forests. Agric. Meteorol., 28: 261-286.

A dynamic model and an analytical model derived therefrom for predicting the gross
interception of forest canopies are described. The dynamic model is validated using a
running balance in time between rainfall, throughfall, evaporation and changes in the
canopy storage. The canopy storage is increased by rainfall interception and depleted
by evaporation and drainage. The evaporation rate varies with the amount of water in the
canopy and is estimated by numerical methods because sufficient meteorological data
are unavailable. Drainage rate expressions, similar to Rutter's exponential relationship
between drip rate and water storage, are shown to be inadequate during the period of
rainfall. A new drip expression which explicitly includes the rain rate, in addition to the
stored water, is proposed and tested. This new expression fits the observed drip rate
better and gives significantly better model prediction with fewer empirical parameters
than the exponential form of drip rate. However, because one of the drip parameters in
the dynamic model varied from one storm to the next and is a complicted function of
rainfall characteristics, the dynamic model was simplified to an analytical model for
predicting the gross interception loss. This analytical expression is easier to use because
it is not sensitive to the exact value of the drip parameters; it predicted the total observed
gross interception loss for the 20 storms tested to within 4%. It is suggested that the new
drip expression used in the dynamic model describes better the dislodgement of previously
intercepted rain droplets by falling rain droplets. Finally, a new model for estimating
evaporation rates from forest canopies is proposed and discussed.

INTRODUCTION

Interception and evaporation of rainfall are important hydrologic processes
in forested areas and have been the subject of two types of studies. The first
type I shall term static models. For these models, results are presented as
empirical equations relating gross interception loss to various characteristics
of rainfall events. Gross interception loss is defined here as the depth of
water intercepted by the canopy, then subsequently evaporated (Rutter,
1975). The second type I shall term dynamic models. For these models,
differential equations are developed with the rate of change of water inside
the forest canopy being given by the difference between interception, evap-
oration and throughfall.

*Present address and address for correspondence: Applied Research Corporation,
8201 Corporation Drive, Suite 920, Landover, MD 20785, U.S.A.

0002-1571/83/$03.00	 © Elsevier Science Publishers B.V.



262

There are many examples of static models. Zinke (1967) uses a linear
regression equation of the form
I -= a PG + a 2	(1)

where I is the gross interception loss, PG is the gross precipitation, and al
and a 2 are regression coefficients. This empirical equation was given a sound
physical basis by Gash (1979) who related the regression coefficients to
average rainfall and evaporation rates, and to parameters describing the
canopy structure: the canopy capacity (the amount of water on the canopy
when rainfall and throughfall have ceased and the canopy is saturated), the
free throughfall coefficient (that proportion of the rain which falls directly
through the canopy without striking a surface), and the stemflow coefficient
(that proportion of the rain which is diverted to the trunks). Merriam (1960)
proposed an equation of the form

I -= S [1 — exp ( — PG ISe)] + E 0 T 	 (2)

where S, is the canopy capacity, E 0 is the mean evaporation rate during the
storm and T is the storm duration from the time the rain begins until it
ceases. Kohler (1961) explored the physical basis for this model of gross
interception loss and concluded that evaporation rates must be small com-
pared to interception rates in order for it to be valid. There is also a concep-
tual problem with (2). Consider a storm in which evaporation during the
storm can be ignored, i.e., E 0 = 0, and the gross precipitation is just enough
to wet the canopy: PG = Sc/(1 — p), where p is the free throughfall coef-
ficient. Merriam's model would predict that I = S c {1 — exp [— 1/(1 — p)] 1=
0.655, for p = 0.05. However, I should equal Sc , since it was assumed that
the storm was just sufficient to wet the canopy and evaporation was neg-
ligible. Thus, (2) does not appear to conserve mass, a failing especially
noticeable for small storms. Using observational data for eight small trees,
Aston (1979) derived a new version of (2) which can be expressed by replac-
ing PG in (2) with (1 —p) PG . However, his work does not remove the
conceptional difficulty pointed out earlier.

Czarnowski and Olszewski (1968) used an empirical expression similar
to (2) which is given as follows

I = a i [1 — exp (— a 2 PG)]	 (3)
where a l and a 2 are empirical constants found by optimization techniques.
Bultot et al. (1972) suggested the following equation

I = (a 1 PG + a 2n. )[a 3 /(a4 + R 0 )] (a 5 E 0 + a 6 )	 ( 4)

where a l , . . . , a6 are empirical constants derived by curve fitting using
optimization techniques and Ro is the average rain rate during the storm.
These last two models are less rigorous and more heuristic than either of
the two previous models. Jackson (1975) tested several models and found
that the following semilogarithmic curve fitted his data slightly better than
other models
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I = a l	a2 In Ro a 3 In T	 (5)
where a l , a 2 and a 3 are again empirical constants derived by optimization
techniques. The physical basis for this expression may be found in the
limiting forms of more complex dynamic models (Jackson, 1975; Massman,
1980).

While static models are simple and easy to use, they do not always give
satisfactory quantitative results when the coefficients are empirically deter-
mined by a regression against a set of data (Jackson, 1975). Furthermore,
any empirical results for a specific forest may not be valid for other forests
in other areas (Gash, 1979). Dynamic models, on the other hand, minimize
the hazards of empiricism by relying upon more fundamental physical
reasoning. However, they usually require automated meteorological data
stations with frequent rain rate and throughfall rate measurements, and
frequent meteorologically based estimates of evaporation. These models are
typically expressed as a water balance equation in the form of a differential
equation. There are traditionally two approaches to solving this differential
equation. The first approach involves integrating the mass balance equation
analytically. The models of Merriam (1960), Kohler (1961) and Gash (1979)
are examples of this approach. The second approach uses a computer to
solve the water balance equation numerically. Examples of this second
approach are Rutter's model (Rutter et al., 1971, 1975; Rutter and Morton,
1977), a Swedish model called CANOPY (Halldin et al., 1979; Perttu et al.,
1980), Calder (1977), Massman (1980), and several other models described
by Eriksson and Grip (1979).

Fundamental to these computer models is an expression relating the rate
at which intercepted rainfall drips from the forest canopy to the amount of
water stored inside the canopy. For example, Massman (1980) used the
following (fairly general) expression

Drip Rate = Do [exp (aSIS,) — 1] / [exp (a) — 1]	 (6)

where Do and a are empirical constants to be determined by optimization
techniques and S is the amount of water stored inside the tree. Halldin et al.
(1979) independently proposed a very similar model: Drip Rate = a[exp(bS)
- 1] where a and b are empirical constants determined by optimization

techniques. Often the resulting mass balance equation does not have an
analytical solution and the large amount of detailed observational data
makes a computer necessary. However, analytical solutions are still possible
and Massman (1980) explored the requirements for obtaining them.
Analytical solutions to dynamic models (termed analytical models) have
many of the advantages of static models, without relying so heavily upon
empiricism; further, they do not necessarily require a complex computer
program or large amounts of detailed information.

In addition to needing a computer program, dynamic models, which use
drip expressions similar to (6), have been criticized because the drip param-
eters, Do	 and a, are possibly site specific (Aston, 1979) and the model
predictions do not always give acceptable results (Aston, 1979; Erickson and
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Grip, 1979). Furthermore, the drip parameters are often determined after
the rain has stopped and hence the drip expression may not be applicable
during rain (Aston, 1979). The ideal model is one which maintains a sound
physical basis like the dynamic models and hence minimizes empiricism, and
yet which incorporates the simplicity of an analytical model. Gash's ana-
lytical model (Gash, 1979) approaches this ideal. However, his model does
not deal with the drip rate, unlike the dynamic models. Therefore, Gash's
model, unlike Rutter's model, does not include detailed information for the
prediction of instantaneous amounts of water inside the canopy. This paper
attempts to formulate a dynamic model having the general features of the
ideal model, but which also includes detailed information on the instan-
taneous amounts of water inside the canopy.

Complementary to the process of interception is the process of evapor-
ation, and just as there are a variety of interception models there are also a
variety of evaporation models. The evaporation of intercepted rainfall from
forest canopies is a complex process caused by the advection of energy from
air passing over the forest, and not by radiation (Stewart, 1977; Singh and
Szeicz, 1979; Pearce et al., 1980). Evaporation is turbulent and spatially
inhomogenous and no present model has dealt with this process in its full
complexity. Nonetheless, there are a variety of methods which have been
used to model evaporation rates from forest canopies. Murphy and Knoerr
(1975) devised an elaborate computer model and Brutsaert (1979) derived a
sophisticated analytical model. Basic to both these models is the mixing
length hypothesis with its many drawbacks (e.g., Legg and Monteith, 1975;
Raupach et al., 1980). A more commonly used model is the Penman-Monteith
equation which is used in conjunction with meteorological data gathered at
frequent intervals. The Penman—Monteith equation is a combination of
energy balance and aerodynamic methods. This paper attempts to formulate
a new method for estimating evaporation rates from forest canopies, but
which is easier to use than these more general models.

Thus, the specific purpose of this paper is fourfold: (1) to examine the
utility of drip expressions similar to (6); (2) to demonstrate a better, less
empirical model for drip rate; (3) to derive an analytical model based upon
this more general dynamic model; and (4) to outline the conceptual frame-
work for a new method of estimating evaporation rates from forest canopies.
This study is a first step in a larger investigation into the influence that old-
growth Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) canopies have
on the input of nitrogen to forest floors in western Oregon, U.S.A. (Carroll,
1980). During rainstorm events, nitrogen (the growth limiting nutrient in
such forests — Heilman and Gessel, 1963; Miller and Fight, 1979) is leached
from the canopy by intercepted rain as it drips to the forest floor. A variety
of biological sources and sinks for nitrogen become active inside the canopy
only when wet. Thus, the study of specific rainstorms and events is strongly
motivated by a desire to eventually quantify nitrogen cycling in old-growth
Douglas fir canopies.
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MATERIALS AND METHODS

I studied a single old-growth Douglas fir — named Minerva - which is
approximately 70 m in height. The lowest branch of Minerva's canopy is
about 31 m above the ground and is slightly more than 7 m long. Thus, the
canopy is about 40 m in depth and about 15 m in diameter. Minerva's
canopy volume is relatively free of branches from any nearby trees: < 1% of
the ground projected area of Minerva's canopy overlaps the ground projected
area of any other nearby tree canopy. Minerva is located in the Andrews
National Forest (approximately 44°N 122°W) on the western slope of the
Cascades in Oregon, U.S.A. at an elevation of about 500 m.

Horizontal wind speed was measured at the treetop with a Weathertronics
micro-response cup anemometer. The air temperatures at the top and
bottom of the canopy were both measured as the average of two wire wound
resistance thermometers manufactured by Fenwall Electronics. At the base
of the tree was a Cognition pressure transducer for determining atmospheric
pressure, which was then used in estimating potential temperature and
atmospheric density. The dry adiabatic lapse rate was used to estimate
potential temperature. The data from these meteorological sensors were
recorded every 10 min on an automated data gathering system. In the case
of the anemometer, the total number of revolutions in every 10-min
sampling interval was recorded and so the anemometer was not simply spot
checked every 10 min. All sensor readings were then averaged over the
duration of the rainfall event.

The treetop sensors were mounted on a 20' vertical spar which was
attached to the trunk of the tree. The sensors at the bottom of the canopy
were mounted on a 20' horizontal spar located near the bottom branch.
The temperature sensors were painted white and shielded from direct
radiation by the way they were mounted on the spar. Obviously these
measurements are prone to errors. For example, the movement of the
treetop may cause errors in the wind speed. Mounting sensors on a tower
would eliminate this problem, but for this study a tower was impractical and
expensive. Sampling errors in the temperature measurements can also arise
due to the horizontal variability of the temperature field, especially with
such a large canopy. However, during rainfall events, the variability in the
temperature field is probably not as great when it is wet, as when it is dry.

Gross precipitation and throughfall were collected in troughs designed
after Best (1976). They are 2 m long, 0.15 m wide and placed slightly more
than 1 m above the ground. The exact height varied somewhat with the
terrain. The troughs sloped slightly to one end where they were connected
by plastic tubing to tipping buckets which rest on leveled concrete blocks.
The bucket volumes were calibrated to be 10 cm 3 ± 0.03 cm 3 . Without the
collecting troughs the resolution of the tipping bucket gauge is 2.54 mm, and
with the trough it is 1/30 mm. There were ten such troughs under the tree
and four in a nearby clear-cut. The exact number of troughs used for pre-
cipitation collections varied from one storm to the next. In earlier storms
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only one clear-cut trough was operative because the others were not in place.
During some storms selected clear-cut and throughfall troughs were used for
precipitation chemistry experiments and were disconnected from the data
logger. Data from two of the clear-cut troughs were lost for a short period
when one of the cables was accidentally cut.

The number of tips for each tipping bucket were accumulated continu-
ously and recorded electronically on digital tape every 10 min by the data
logger. Gross precipitation amounts and rates were averaged over the troughs
under the tree. The resolution of the system as a whole is about 0.1 mm h-1
for a 10-min rate measurement and about ± 0.01 mm for total amounts.
Wetting amounts for the troughs were estimated to be < 0.1 mm.

A total of 43 storms were observed and recorded from November 1980
to December 1981. Typical rainfall rates measured with this system are

2 mm h -1 , with brief and very rare extreme values of — 15 mm h-1.
The corresponding throughfall rates are about two-thirds of these rates. For
old-growth Douglas fir trees stemflow is insignificant (Rothacher, 1963) and
can be ignored.

Tipping bucket gauges are quite simple, reliable and very accurate for
low to intermediate rates. However, they are known to underestimate the
precipitation amounts at higher rates because of splash during the movement
of the bucket (Marsalek, 1981). For this study, even with the enlarged
orifice, the precipitation rates are probably accurate to within a 2% error for
all rainfall rates < 10 mm h -1 . As the rainfall rate decreases so does the error,
so that at 2 mm h-1 the error is probably < 0.5%. These estimates were
based on an expression derived by Marsalek (1981) for estimating the
splash error. To employ this method the tipping time (the time required
for one bucket to begin moving until it tipped over and came to rest) was
measured and found to be very short, — 0.25 s.

Tipping buckets also change calibration with time due to surface tension
of the water passing through the bucket, the drainage of residues from the
lip of the buckets and for a variety of other reasons (Marsalek, 1981). By
periodically recalibrating buckets in the laboratory, the calibrations were
found to change by 10-20% for individual buckets. Except for one or two
tipping buckets, this was a systematic error and the rates and amounts of
precipitation were always underestimated. Errors can also occur due to
horizontal winds blowing rain droplets past the collecting troughs. However,
for this study, these wind errors are not considered because of the very low
wind speeds (< 0.4 ms -1 at the clear-cut and under the tree).

To examine the influence that the splash and calibration errors caused, all
storms were reanalyzed with another calibration value derived from the
laboratory recalibration results and Marsalek's (1981) splash equation. It was
found that all the major conclusions of this work held, although some slight
changes occurred in specific parameter values for the models. The major effect
was that the recalibrated data predicted amounts in the tree that exceeded
those amounts predicted without the recalibration by 0.1-0.4 mm. This
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translates into a 10 -15% difference. The exact calibration error for any
given storm is not known; furthermore, it probably changes with time and
the nature of the storm. Thus, I will use the original data without recalib-
ration, acknowledging a possible error of — 15%, and outline, where appropri-
ate, how these errors influence the results.

The rest of this paper is divided into five sections. The first section
describes attempts to validate the drip expression given by (6) with data
collected by the system for this study. The next two sections outline the
new interception model: first in its dynamic form and then in its analytical
form. The fourth section derives a new method for estimating evaporation
rates and the fifth section contains concluding remarks.

DATA ANALYSIS

The initial step in the analysis was to determine the canopy capacity and
the free throughfall parameter. The saturation amount is inferred from plots
of total throughfall (denoted PN ) vs. PG for all storms which completely
saturate the (initially dry) tree (Leyton et al., 1967). Figure 1 is a plot of
PN vs. PG for all such storms recorded. The straight line for the saturated
storage gives a value of 1.5 mm for S, (the saturation amount). The recalib-
rated data suggest a value of 1.6 mm. Obviously, such a method is crude and
prone to errors which arise because evaporation is not considered. Further-
more, the saturation amount may vary from one storm to another according
to a variety of factors: wind, temperature, and size and momentum of rain
droplets (Leonard, 1967; Jackson, 1975). However, direct observational
evidence by Hancock and Crowther (1979) does validate the concept of a
saturation amount.

The value of 1.5 mm for S, was checked by an independent method based
upon a detailed description of the amount and type of foliage and epiphytes
contained in the tree canopy. From laboratory misting studies of needles,
twigs and epiphytes (Perkins and Carroll, University of Oregon, unpublished
data), and a first round tree description of Minerva (e.g., Pike et al., 1977),
the total estimated water holding capacity of Minerva's canopy is about
300 kg of water or S, = 1.75 ± 0.4 mm when distributed over the ground
projected area of Minerva's canopy. This estimate for Sc probably represents
a maximum value, because the percentage of foliage surfaces covered by
water is likely to be higher in laboratory misting experiments than during
rainfall.

Like Sc , the free throughfall parameter, p, is usually estimated from plots
of PN vs. PG , except that only those storms which do not saturate the tree
are used (Rutter et al., 1971). However, this method could not be used, since
only one such storm occurred. Therefore, p was estimated by computing the
ratio of throughfall and rain rates for each storm during the time between
when the storm began and when the first measurable amounts of through-
fall were recorded. The value obtained was p = 0.05 ± 0.03. For a canopy of
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Fig. 1. Gross precipitation, PG , vs. total throughfall, PN , for storms between November
21, 1980 and December 10, 1981 for a single old-growth Douglas fir tree. The straight
line gives an approximate value of 1.5 mm for the saturation amount of this tree.

such depth this method may work well because intercepted throughfall
should be delayed, however, a data sampling interval shorter than 10 min, as
used here, would probably give a more reliable result. Recalibrating the data
had a negligible effect on this value of p. Aston (1979) suggests that p can
be estimated from the leaf area index (LAI). His relationship, given approxi-
mately as: p = 1.0--0.05 (LAI), combined with a value of 19.2 for total
needle surface index for Minerva (Massman, 1982), predicts p = 0.04. Such
close agreement between the two methods is encouraging, but it may be
coincidental.

The amount of water inside the canopy during each 10-min sampling
interval, denoted S, was estimated by a running balance between rain,
throughfall and evaporation. The evaporation rate was parameterized after
Rutter et al. (1971) as follows

{E0 S/S,,	 when S Sc
E(t) =

E0	 when S Sc
(7)

where E(t) is the evaporation rate as a function of time, and E0 is a constant
evaporation rate for the period between when the rain begins and when the
drip ends. The assumption that evaporation rates are proportional to S/Sc
whenever S <S, was made arbitrarily by Rutter et al. (1971). However,
since that time Hancock and Crowther (1979) have given it observational
verification and Shuttleworth (1978) has shown that it leads to a theoretically
reasonable description of an unsaturated wet canopy. However, eq. 7
is not the only way of parameterizing E(t). More recently, Sellers and
Lockwood (1981) have proposed that E(t) = E 0 [a(SIS,)2 + c(SISc )+ q] is
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more realistic for the evaporation rate whenever S S. This latter expression
has fostered some debate (Shuttleworth and Gash, 1982) and is still under
investigation (Sellers and Lockwood, 1982). Thus, it seems premature to use
Sellers and Lockwood's evaporation model at this time.

The evaporation rate, E0 , was computed numerically using (7) and a
computer program. The program began with an initial value of E0 and then
estimates S for every 10-min data interval from the time the rain began until
the tree stopped dripping. If the amount left in the tree at the end of this
time was not equal to S, ± 0.005 mm, then E0 was adjusted and the
computation re-done. This procedure was repeated until the final value of S
converged to Se ± 0.005 mm.

Obviously, this approach assumes that E0 is constant throughout the
storm. Thus, E0 does not include diurnal variations in the evaporation rate.
However, because advection of energy drives evaporation rather than
radiation (Singh and Szeicz, 1979; Stewart, 1977; Pearce et al., 1980), the
diurnal variations may not be significant. Furthermore, Pearce et al. (1980)
found that night-time evaporation rates are equal to daytime evaporation
rates during rainfall periods for at least one evergreen mixed forest. There-
fore, the assumption that E0 is constant during the length of a rainstorm
seems reasonable even at this field site, where the rain storms are often
about 24 h long.

The next step in the analysis was to validate the drip model given by (6)
by plotting these estimated values of S vs. their corresponding values of the
observed drip rate, D(t). The drip rate, D(t) is the total throughfall rate
minus the direct throughfall rate. A non-linear regression program was used
to compute optimal values of Do and a from (6) by a least squares opti-
mization technique. Figures 2 and 3 are examples of the data and curve fits
for the February 23 and June 7, 1981 storms, respectively. Figure 2 shows
one of the better fits and Fig. 3 one of the poorer fits. The results of this
analysis and other pertinent data for each of the 20 test storms are tabulated
in Table I. The recalibrated data show very similar results for Do and a
values. The R 2 for each fit was computed according to the following
formula: R 2 = 1 - SSQR/SSQT where SSQR is the residual sum of squares
of the regression curve and SSQT is the original variance of the data.

The results as shown in Table I are rather unsatisfactory. The parameter
values Do and a vary considerably from one storm to the next and the
quality of the fit (R 2 ), range from very good to very poor. It is possible that
wind has some influence on ce (Perttu et al., 1980; Massman, 1980) which
might account for its large variability. However, this explanation is not
entirely convincing. Winds are usually very light during storms at this site
typically < 1 ms -1 at the treetop). Furthermore, Perttu et al. (1980) found
that the drip rate was only weakly dependent upon wind speed even for
relatively high wind speeds (up to 7 ms-1).

Another possible explanation for these unsatisfactory results is that drip
expressions similar to (6) are not valid during rainfall. Both Rutter et al.
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WATER AMOUNT ON FOLIAGE - 5(mm)

Fig. 2. The observed drip rate of intercepted rainfall vs. the estimated amount of water
held inside the canopy of a single old-growth Douglas fir tree, S, for every 10-min interval
during the February 23, 1981 storm. The curve gives the best fit of the observed data
with the drip expression given by eq. 6. The R 2 of this fit is 0.58.
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Fig. 3. The observed drip rate of intercepted rainfall vs. the estimated amount of water
held inside the canopy of a single old-growth Douglas fir tree, S, for every 10-min interval
during the June 7, 1981 storm. The curve gives the best fit of the observed data with the
drip expression given by eq. 6. The R 2 of this fit is 0.13.



TABLE I

Observed and modelled storm characteristics with Rutter-like drip model (eq. 6) and new drip model (eq. 8)

Storm date PG
(mm)

PN
(mm)

Rainfall
duration
(h)

Ro
(mm h 1 )

Drip duration
after rainfall
has ceased
(h)

E0
(mm h -1 )

Eq. 6
Do
(mm h 1)

Eq. 6	 Optimal	 R2
a	 predictions (eq. 6)

of PN
(eq. 6) (mm)

R 2

(eq. 8)

Feb. 23 14.83 11.67 9.67 1.53 4.33 0.12 0.16 1.55	 12.16 0.58 0.83
Mar. 3 13.53 10.32 19.33 0.70 3.17 0.08 0.17 2.21	 9.83 0.20 0.54
Mar. 7 2.30 0.82 5.67 0.41 1.50 0.00 0.16 - 0.72	 0.88 0.09 0.58
Mar. 15 30.53 25.08 31.33 0.97 0.33 0.13 0.31 1.32	 24.58 0.30 0.61
Mar. 19 5.07 2.90 7.00 0.72 0.67 0.11 0.31 2.69	 2.64 0.21 0.63
Mar. 21 22.67 19.08 23.67 0.96 0.50 0.10 0.28 1.86	 18.32 0.39 0.79
Mar. 24 23.80 20.98 17.17 1.39 1.00 0.09 0.65 1.41	 21.26 0.76 0.87
Mar. 28 59.27 50.85 57.67 1.03 3.00 0.12 0.48 - 0.67	 50.66 0.04 0.55
Apr. 15 2.77 1.13 8.00 0.35 3.33 0.02 0.13 - 3.61	 1.25 0.14 0.69
Apr. 20 4.50 2.60 11.33 0.40 1.50 0.04 0.19 - 7.08	 2.61 0.02 0.52
May 14 28.13 18.32 38.00 0.74 3.67 0.22 0.37 0.98	 18.88 0.03 0.62
May 23 29.90 25.52 39.00 0.77 1.83 0.10 0.56 0.89	 25.13 0.73 0.80
June 5 9.07 3.42 10.50 0.86 1.67 0.43 0.024 4.12	 2.59 0.42 0.79
June 7 106.05 79.42 57.67 1.84 1.00 0.45 0.70 - 0.42	 81.94 0.13 0.81
July 6 17.67 12.92 25.17 0.70 1.17 0.15 0.14 1.93	 13.66 0.65 0.69
Sep. 18 9.93 6.70 9.00 1.10 1.83 0.25 0.096 2.98	 6.90 0.80 0.93
Oct. 2 7.70 5.13 4.00 1.93 2.33 0.18 0.16 4.21	 4.81 0.54 0.85
Nov. 11 31.92 25.28 20.00 1.60 1.17 0.25 0.49 0.93	 25.07 0.25 0.81
Dec. 5 139.29 136.16 53.50 2.71 3.00 0.03 - -	 - - -
Dec. 9 18.82 16.55 22.17 0.87 2.00 0.03 - -
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(1971) and Aston (1979) fit their drip expressions with data taken only after
the rain had stopped and their resulting parameter values presumably showed
much less variability, however, no mention is made in either paper of the
quality of the fit or the variability in the drip data. By direct observation,
Aston (1979) found that the Rutter drip expression allowed S to be over-
estimated during periods of rainfall. Furthermore, the results of this study
show that the use of any single pair of optimal values of Do and a could
introduce substantial and unacceptable errors into predictions of throughfall
amounts for any given storm and, eventually, for yearly totals. Eriksson and
Grip (1979) concluded that the Swedish model, CANOPY, which uses drip
expression similar to (6) and was validated in a similar manner to that used
in this work (i.e., including drip data when rain was falling, Perttu et al.,
1980), lead to unacceptably high values for interception loss. They, like
Aston, found that the predicted amounts of water retained by the canopy
were too high. Thus, to employ expressions similar to (6), it may be more
realistic to choose parameter values on a seasonal basis rather than using
individual storms and this approach is explored in a later section.

A NEW APPROACH

Since the results in the last section were unacceptable, a new approach
was tried. Massman (1980) suggested that the drip parameters Do and a
may also be influenced by the rain rate; this section explores the possibilities
of incorporating the rain rate directly into drip expressions similar to (6).

In addition to scatter diagrams of drip rate, D(t), vs. S, as shown in Figs. 2
and 3, drip rates vs. rain rates for each storm were also plotted. Figure 4 is
the scatter diagram of D(t) vs. R(t) for the February 23, 1981 storm. Only
those data which were recorded between the times when the rain began and
when it ended are plotted. There are 58 such data points for the February 23
storm. However, because of duplication of certain points this plot appears to
have only 48 points. The correlation coefficient between drip rate and rain
rate in this figure is 0.75, which is significant to a level > 99.95%. In fact,
the correlation coefficients between drip and rain rates were significant at
levels > 99.95% for all storms tested. Furthermore, the drip rate was more
strongly correlated to rain rate than to S, which suggests that the rain rate
should be explicitly modeled into the drip rate expression.

One possibility which might explain the high correlation between rain and
drip rates is that the free throughfall coefficient, p, was underestimated;
however, this does not appear to be the case. Old-growth Douglas fir trees
tend to have extremely closed canopies and a high value for p is to be
expected. Even so, the correlation coefficients were recomputed assuming a
value of 0.09 for p and the results were virtually the same. The p value
would have to be increased to somewhere between 0.25 and 0.50 before it
could begin to account for such high correlations. Such a p value is
impossibly large. It is also possible that p is a function of rainfall rates and
other storm variables. Aston (1979) found that p increased as the rain rate
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Fig. 4. A scatter diagram of observed drip rates of intercepted rainfall vs. the observed
rainfall rates for every 10-min interval during the February 23, 1981 storm for a single
old-growth Douglas fir tree. The correlation coefficient between these drip and rainfall
rates is 0.75 which is significant at the 99.95% confidence level.

decreased. However, our data does not show any significant variation in p
either with rain rate or season of the year. It is worth noting, however, that
rain rates at our study site tend to be much lower than those simulated by
Aston (1979).

The drip model which was tried next is a simple expansion of (6) and is
given as

D(t) =- (D + do R(0){[exp (aS I S c ) —1] /[exp (a) — 1]}	 (8)
where do is a model parameter. Conceptually, it is more realistic to use a
term proportional to the interception rate such as 4(1 — p) R(t) rather than
doR(t). However, for our purposes do will just subsume the (1 — p) factor.
The drip parameters, Do , a, and do , were determined for each of the 18 test
storms using non-linear optimization techniques in a manner similar to that
employed with (6), except that now the rain rate is explicitly included.
The R 2 values for this new model are shown in the last column of Table I
and there is substantial improvement in the quality of the fit in all storms.
The R 2 values of this new drip model are often double or triple the R2
values for the original model. Thus, much of the observed variability in the
drip rate is directly attributable to the variability in the rain rate. This
suggests that the drip rate is controlled in some manner by the interaction of
rain rate and storage inside the canopy.

The specific parameter values corresponding to (8) are not shown
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because it is only an intermediate model. The model (8) is presented here only
as motivation for the later model and to show that there is a connection
between the original model, (6), and the model to be discussed later. The
parameter values corresponding to (8) did vary from storm to storm;
however, both Do and, especially a, showed less variability than with the
original model. The variability in the parameters was still too high to be
completely satisfactory. However, the values of the parameters a did suggest
that the model could be simplified by replacing [exp (ceSIS,)-1]/[exp
(a) — 1] with S/Se (equivalent to a = 0). With this simplification and further
testing, the following model was formulated

D(t) = [Do + do R(t)][SISJ	 (9)

where Do has been fixed at a value of 0.12 mm h a and do is determined for
each storm by the following equation

T

do = (PN PPG	DoTi SIS,)1{	 [R(t)SIS,] dt}	 (10)

where T 1 is the length of time between when the storm begins and when the
canopy drip ceases; and S is the average amount of water inside the tree
canopy during the Ti time period. A derivation of (10) is given in the
appendix. Choosing do in this manner guarantees that the model predictions
for gross interception loss will coincide exactly with the observed values of
PG PN . The results from this model are tabulated in Table II. Use of the
recalibrated data showed little effect upon do or the R 2 values. Besides the
18 test storms already discussed, Table II also shows the results of fits for
two other storms which were chosen to independently verify the results of
the other, earlier storms. For these two storms, the recalibrated data were
used. These are expected to be quite accurate because the tipping buckets
were recalibrated shortly after the storms were recorded. The R 2 values for
these last two storms are 0.89 and 0.75, respectively. A comparison of the
R 2 values between the original drip model, (6), and this simpler model, (9),
shows that the fits with the later model are significantly better than with the
original model and with essentially no empirically determined constants.

The exact numerical value of Do had remarkably little effect on the
quality of any individual fit providing do was adjusted according to (10).
Thus, Do can be reasonably chosen as the minimum drip rate which the data
gathering system is capable of detecting, as Rutter et al. (1971) originally
proposed. The Rutter model seems inconsistent on this point because in a
later version of the model (Rutter et al., 1975) it is suggested that Do is site
specific and depends upon LAI. Aston (1979) likewise criticizes the Rutter
drip model for being site specific. A value of 0.12 mm	 for Do was judged
to be close enough to the theoretical resolution of the system in this study
(0.10 mm h -1 ) to be satisfactory. Results using Do = 0.10mm h.'	 gave
slightly poorer results.

The exact value of do is obviously dependent upon individual storm
characteristics. It does vary from one storm to another and is neither simple
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TABLE II

do and R 2 values for drip model given by eqs. 9 and 10

Storm date do R2R

Feb. 23 0.27 0.75
Mar. 3 0.36 0.46
Mar. 7 0.14 0.42
Mar. 15 0.38 0.40
Mar. 19 0.41 0.56
Mar. 21 0.42 0.58
Mar. 24 0.48 0.75
Mar. 28 0.18 0.28
Apr. 15 0.04 0.25
Apr. 20 0.25 0.41
May 14 0.23 0.46
May 23 0.50 0.55
June 5 0.12 0.74
June 7 0.16 0.75
July 6 0.26 0.54
Sep. 18 0.28 0.60
Oct. 2 0.40 0.80
Nov. 11 0.37 0.75
Dec. 5 0.11 0.89
Dec. 9 0.33 0.75

nor constant. Without the aid of a computer program and some extensive
instrumentation, accurate estimates of do for use in a dynamic model at the
level of individual storms may be quite difficult. However, accurate estimates
of do at the level of individual storms may not be entirely impossible.
Detailed studies of whether S and the interaction term, foT1 [R(t)S/Sc ] dt,

are related to more easily observed storm characteristics must be made first.
Another possible approach would be to estimate a single value of do by
adjusting it so that the total gross interception loss over an entire season or
year could be accurately simulated. However, this latter approach would
probably not predict individual storms very well and may be dependent
upon the data set used to validate the approach. Thus, this latter approach
may not be easily generalized to other forests. For the purposes of this work
these possibilities will not be explored. However, there is an alternative
approach worth exploring. It is outlined in the following section, where the
dynamic model will be simplified to an analytical (or static) model. In the
analytical model, the numerical complexities introduced by (10) are virtually
eliminated.

The basic purpose of this and the preceding section has been to establish
that the drip expressions similar to (6) are inadequate. The failure of these
drip expressions (at least for this study) is probably due to the fact that they
assume that the drip rate is determined solely by the amount of water stored
in the tree canopy and they do not explicitly account for the influence of
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the rain rate. Furthermore, I suspect that problems incurred in using drip
expressions similar to (6) which other researchers have had, i.e., Aston
(1979), Eriksson and Grip (1979), Perttu et al. (1980), are caused for the
same reason: they do not explicitly account for the influence of the rain rate
upon the drip rate.

I further propose that there is a basic physical effect (the dislodgement of
previously intercepted rain droplets by falling rain droplets) which is better
described by models similar to (8) and (9) than by (6). Thus, the following
process is envisioned: after some critical amount of water has been inter-
cepted by foliage surfaces near the top of the tree further interception at that
level would dislodge some portion of the stationary droplets which would
then fall out of the tree or be intercepted at lower levels. At lower levels the
process would be continued. Calder (1977) emulated this cascade process
with a model of a layered canopy and found that his model gave better
predictions. Thus, during rainfall the drip may be controlled by a cascade of
water droplets falling through the tree as they alternately fall and impact
upon lower surfaces. Such a cascade process would probably be strongly
regulated by the momentum of the rain droplets just above the canopy.
Jackson (1975) also reasoned that the momentum of raindrops could have
an influence upon storage and drainage. One gross measure of this
momentum is the rain rate. It is this cascade effect which may give rise to
interaction terms related to R(t) S IS, in models (8) and (9).

Whether cascade models similar to (8) and (9) can improve predictions in
other forests is difficult to tell without further study. Other factors which
may be important to consider are the type of foliage and canopy structure.
This process may be important in forests which have large amounts of foliage
near the top of the canopy as is the case with old-growth Douglas fir trees
(Massman, 1982). It may also be important in areas where high rain rates are
frequent; however, it is noteworthy that even for the low rain rates reported
here the cascade process would appear to be very important.

This concludes the discussion on the dynamic model. The next section
derives an analytical model from the dynamic model discussed in this
section. The analytical model contains much of the physical reasoning
behind the dynamic model, but it is much easier to use, much less sensitive
to the exact numerical values used in the dynamic model and still gives quite
accurate results for each storm.

ANALYTICAL MODEL

By reformulating the dynamic model using a constant rain rate, R 0 , in
place of a variable rain rate, R(t), the dynamic model can be integrated
exactly to give an analytic model which predicts gross interception loss.
Thus, the dynamic model is given as follows
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dS =	 (1 - p)Ro - [Do + d 0 R 0 ]SIS, -E0 S/S,	 when S Se (11A)

dt	 (1 - p)R 0 - [Do + doR 0 ]SIS, -E0	 when S> Se (11B)

the gross interception loss is defined as PG 	 = Sevap Sc where Sevap
is the amount of water evaporated between when the storm begins and the
drip from the canopy ceases. I shall assume that the storm is sufficient to
wet the canopy in a finite time, t 1 . Therefore, Sevap is given as follows

tl

Sevap =	 (Eo S/S c )dt + Eo(Ti	 t1)
	

(12)

From (11A) it follows that

S/Sc = {1 exp [ - A (1 - p)R 0	 }/A
	

(13)

and

t 1 = - Se ln (1 -A)/[(1 - p) RoA]
	

(14)

where A = (Do + doRo + E0 )/[(1	 p)R 0 ]. Thus, the assumption that the
storm be sufficient to saturate the tree is equivalent to the inequality:
A < 1, and hence t 1 is finite. Substituting (13) and (14) into (12), the inter-
ception loss is given as

I = Sevap + Se = Se {1 —1.3E 0 /[(1 - p)Ro] + EoTi	 (15)

where 13= [A + (1 - A) ln (1 - A )] /A 2 . Thus, the specific drip dynamics
have been incorporated into 13. However, because 13 obeys the following
inequality: z < < 1, the specific drip dynamics are far less important than
in the original dynamic model. A proof of the inequality is fairly simple
and is given in the appendix. It should be re-emphasized that (15) is valid
only when A < 1, which requires that E0 < (1 - p)Ro. In the event that the
evaporation rate, E0 , exceeds the interception rate, then A > 1 and the tree
will never reach complete saturation.

This analytical expression for I is rather simple. It incorporates many of
the more empirical models described earlier, but it is based on more
fundamental physical reasoning. Furthermore, (15) predicts that the gross
interception loss will increase as the rain rate increases, which agrees with the
observations of Jackson (1975), Schulze et al. (1978), and Aston (1979).
Proof of this prediction follows from establishing that ariaR o > 0 for all
values of Ro and is also given in the appendix. To test whether I increases as
R 0 increases the correlation coefficient, r, between the observed interception
loss (PG - PN ) and the mean rain rate (R 0 ), was computed for the data
presented in this study. The results showed that r was positive, but not
statistically significant. Thus, the data presented here do not clearly sub-
stantiate that I is positively correlated to R0.

The parameter 13 does vary from one storm to the next, however, the range
of values it takes on is quite small. For the storm data in this study: 0.57
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-<13‹ 0.77. To test the utility of (15), 13 was fixed at a value of 0.75 (the
data suggest that (3 = 0.67 would be more appropriate, but 0.75 was chosen
because it is the average of 0.50 and 1) and the observed and predicted gross
interception losses were compared for several of the storms. The results are
shown in Table III. The first column of this table gives the observed gross
interception loss with the 95% confidence limits in parentheses for each
storm tested. The second column gives the predictions for I with the new
model (eq. 15 with ( = 0.75). The third column gives the predictions for I
using the exponential drip rate model (eq. 6 with Do = 0.10 mm h -1 and
a = 1.40).

For the new model, eq. 15, the total predicted gross interception loss for
all storms is — 4% above the observed loss. Most of the overestimate (— 90%
of it) is associated with the 4 summer storms (June 5—September 18), when
evaporation rates were high. This suggests that (15) is quite sensitive to the
evaporation rate and underscores the need for an accurate estimate of Eo.
The recalibrated data showed a 3% overestimation of the observed data.

Further study may refine the choice of 13 for these forests. Extension of
(15) to other forests is, of course, possible; however, the parameter i3 may
change with the type of foliage and other rainfall characteristics. More
accurate results could probably be obtained by specific incorporation of the
change in 13 as rain and evaporation rates change for individual storms.
However, our results with a fixed value for (3 seem quite good.

For the exponential drip model, eq. 6, a variety of Do and a values
ranging from Do = 0.10 and a = 1.20 to Do = 0.20 and a = 2.00 were tried.
The total predicted I for the 18 storms tested varied from 4% above the
observed total to 6% below it for these Do and a values. The predictions of
(6) shown in Table III used Do = 0.10 and a = 1.40. For this choice of
parameter values (6) predicted an amount for the total I which was 3% above
the observed amount. Furthermore, this choice of parameter values was
judged to be the best of all those tested because the amount of water
remaining in the canopy when the drip ceased, Sf, was within 0.02 mm of
S, for every storm. The other parameter values produced a much broader
range of values for Sf and in some cases Sf differed from Sc by 0.50 mm.

Unlike the earlier results (cf. Table I) where the ability of eq. 6 to predict
the instantaneous drip rate was judged inadequate, the present results, which
show its ability to predict I for individual storms and yearly totals, appear
to be acceptable. Furthermore, eq. 6 does have the advantage of relative
insensitivity to the exact choice of parameter values (to within a certain
limited range). However, eq. 6 has two important disadvantages.

First, the best choice of parameter values was mostly found by trial and
error using the entire data set, and earlier attempts, using non-linear
regression techniques on a per storm basis, were virtually useless. Hence the
values of Do = 0.10 and a = 1.40 may be valid for this specific data set and
not necessarily valid for any other data det. Second, the best choice of Do
and a values does not resemble any of the optimal values found for individual
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TABLE III

Comparison of observed and predicted gross interception loss

Storm date Observed gross	 Predicted gross	 Predicted gross
interception loss	 interception loss	 interception loss
PG - PN (± 95%	 eq. 15	 eq. 6 with
confidence limits)	 Do = 0.10 mmh 1

a = 1.4
(mm)	 (mm)	 (mm)

Feb. 23 3.16 (±	 6.34) 3.09 2.99
Mar. 3 3.21 (±	 5.02) 3.25 3.25
Mar. 7 1.48 (±	 0.72) 1.50 1.53
Mar. 15 5.45 (±	 8.50) 5.46 5.96
Mar. 19 2.17 (±	 1.58) 2.18 2.48
Mar. 21 3.79 (± 12.16) 3.70 3.81
Mar, 24 2.82 (± 11.74) 2.94 3.31
Mar. 28 8.24 (± 15.17) 8.41 8.65
Apr. 15 1.64 (±	 1.01) 1.65 1.64
Apr. 20 1.90 (±	 2.58) 1.86 1.92
May 14 9.81 (±	 9.40) 10.15 9.24
May 23 4.38 (± 14.42) 5.52 5.89
June 5 5.65 (±	 2.34) 6.14 5.85
June 7 26.63 (± 25.85) 27.79 25.62
July 6 4.75 (±	 4.59) 5.20 4.80
Sep. 18 3.23 (±	 1.34) 3.94 3.56
Oct. 2 2.57 (±	 1.04) 2.53 2.90
Nov. 11 6.64 (±	 9.74) 6.61 7.23
Dec. 5 3.17 (± 67.03) 3.19
Dec. 7 2.27 (±	 2.89) 2.30

storms. Hence, predictions of the instantaneous drip rates, D(t), and the
instantaneous amount of water in the canopy, S, for any single storm can be
greatly in error. Furthermore, the use of a simple pair of optimal values of D0
and a as listed in Table I introduced significant and unacceptable errors in
model predictions for I on the level of individual storms and for the
accumulated I for all storms. The exponential drip model agreed, to within
10% of the observed total I, with only 7 pairs of the optimal Do and a
values; while (6) systematically underestimated or overestimated I for
individual storms and differed from the total I anywhere between 20 and
100% when used with 7 other pairs of the optimal Do and a values. These
results suggest that Do and a values for the exponential drip model are
probably better determined on a seasonal or yearly basis than at the level of
individual storms.

This completes the discussion of the interception process. The next
section outlines a new approach to estimating evaporation rates from forest
canopies which is based on mixing length theory, but which is much simpler
to use than the more general models discussed earlier.
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EVAPORATION

With mixing length theory, turbulent heat transfer inside plant canopies is
expressed as the one-dimensional steady state diffusion equation

d
dz—(KH dz )	 - a(z)CH u(z) (O f - Vi) (16)

where	 is the concentration of sensible heat and equals pCp 0 : p is the
density of the atmosphere inside the canopy; Cp is the specific heat capacity
of air at constant pressure (10 -3 Jkg-1 K-1 ); 0 is potential temperature.
The height above the ground is denoted by z; KH is the thermal diffusivity;
a(z) is the foliage surface area density as a function of height; CH is the
transfer coefficient and is determined by the Reynolds and Prandtl number
(Brutsaert,	 1979); u(z) is the horizontal wind speed profile inside the
canopy; and 1Pf refers to the foliage sensible heat concentration.

The thermal diffusivity is usually related to the momentum diffusity,
Km as: KH = Km /0 where 0 is a stability correction (e.g., Mehlenbacher and
Whitfield, 1977). Thom (1975) discusses various models regarding Km and
u(z) and suggested that virtually any reasonable assumptions regarding Km
could produce a realistic profile of wind speed. Hence, for this work, the
model proposed independently by Thom (1971) and Landsberg and James
(1971) in which Km is assumed constant throughout the canopy will be
used. Thus Km ku* (h - d) where k is the Van Karman constant (0.40);
u * is the friction velocity at the top of the canopy; h is the tree height; and d
is the zero plane displacement. This choice for Km is consistent with the
following wind profile (Thom, 1971; Landsberg and James, 1971): u(z) =
u h (1+ ad (1 -	 )) -2 where u h is the wind speed at the top of the tree, a d is
a constant; and is the normalized height (z/h). Hence, thermal diffusivity is
treated also as a constant. The stability correction 0 should be near unity
during and shortly after rainfall events. Thus, the average heat flux inside
the canopy is

KH dG	 1	 d;/)
(KH)dE

h	 h(1 -	 to

KH (41 ( 1 )	 0(0))	 (17)
h	 1 —

whereo is the value of at the bottom of the canopy, which in this case is
not the ground level.

Thus, because KH is a constant it is possible to express the average heat
flux in terms of the boundary conditions OM and 4/( 0 ) instead of resorting
to the more	 difficult approach of solving (16) either numerically or
analytically. Finally, the average evaporation rate throughout the canopy is
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assumed to be directly proportional to the average sensible heat flux.
Therefore, substituting for KH and tl) in (17), the average evaporation rate
from a wet forest canopy can be written as

E = b i b2 u h [0(1) - O ( o)]
	 (18)

where b, = — [b(h — d)k 2 ] /{Oh In [(h — d)lz 0 ] 1 and b 2 = pci,/[X(1 — 	,:, )];
where z 0 is the roughness length; b is the proportionality constant between
the latent and sensible heat fluxes and is related to the Bowen ratio; and X is
the latent heat of vaporization. To express E in terms of uH instead of u * it
is assumed that u h = (u * /k) ln[(h — d)Iz 0 ]. This last relationship is an over-
simplification because the logarithmic profile is usually valid only at heights
much greater than the tree height; but for the purpose of this study it is
assumed to be valid at tree height.

To employ (18), b 1 is assumed to remain relatively constant and that
variability in evaporation rates from one storm to the next is due to
differences in temperatures and wind speeds.

The storms of 5 and 9 December, 1981 were used to estimate b 1 , by
comparing the computed E0 (Table I) with expression 18. For the December
5 storm u h = 0.23 m s -1 and the potential temperature difference was
0.27 K; for the December 9 storm u h = 0.21 ms -1 and the difference in
potential temperature was 0.47 K. Thus, for these two storms b 1	was
estimated to be 0.28 and 0.19, respectively. This close agreement is
encouraging, but it may also be coincidental because the evaporation rates,
E0 , are very nearly identical for each storm. Only further testing and
comparison with other methods will show whether this approach is useful or
not. Furthermore, this method should be tested on other stands and other
tree species since the parameter b 1 may be influenced by stand and species'
characteristics. A tower would also be useful in testing this new method of
estimating evaporation rates, because with a tower direct estimates of b1
could be made.

This completes the discussion on evaporation. The purpose of the section
was to give a brief outline of a new approach for estimating evaporation rates
from forest canopies and some preliminary results.

CONCLUSIONS

The new drip expression presented here explicitly includes the rain rate
and does give a significant improvement over Rutter-like drip expressions.
However, it has only been tested in old-growth Douglas fir forests. If the
model can be extended to other forests, it should give further credibility to
the notion that the impact of falling rain drops upon foliage surfaces, which
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dislodges previously intercepted rain drops, plays a major part in the drip of
intercepted rain water from forest canopies.

The analytical model derived from the new dynamic model is considerably
less sensitive to the exact numerical values of the drip parameters, requires
less detailed information than the dynamic model, and gives good agreement
with observed gross interception loss for a single old-growth Douglas fir tree.
The analytical model, without empirical constants or a computer program,
predicted the gross interception loss for the 20 storms tested to be 4% more
than the observed gross interception loss. The Rutter-like drip-model, eq. 6,
also gave acceptable results for the gross interception loss. However, this
latter model required a computer program and its two empirical constants
had to be determined on a yearly basis rather than at the level of individual
storms. Hence the model parameters may be valid only for the data set used
here. The analytical model assumes that the storm is sufficient to saturate
the tree and, roughly speaking, that the evaporation rate is less than the
interception rate in the forest canopy. At this site, these conditions were
almost always fulfilled with each rainstorm. The adaptation of the analytical
model to other forests should be much easier than with the dynamic model.

Although the evaporation model proposed here also requires further
testing, the initial results are encouraging. This evaporation model was
derived assuming that the thermal diffusivity is a constant throughout the
tree canopy and that the Bowen ratio and other micrometeorological param-
eters can be suitably averaged over the duration of a rainstorm. This new
approach to estimating evaporation rates from wet canopies may be
applicable in forests with deep canopies, where the temperature difference
between the top and the bottom of the canopy is fairly large.
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APPENDIX

This appendix provides 3 mathematical proofs: Proof I gives eq. 10 which
was used to evaluate do for each individual storm tested; Proof II establishes
that the parameter g is bounded i.e., 4 < g < 1; and Proof III shows that
eq. 15 predicts that I increases as Ro increases i.e., a7/aR 0 > 0.
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Proof I
The present model of water storage on foliage surfaces is given as follows

dS/dt = (1 - p)R(t) - [Do + do R(t)]S/S, -E 0 min(S/Sc , 1)	 (Al)

The evaporation rate used here is the same as that given by (7) except that it
has been restated in a more compact form. Integrating (Al) between the
time the storm begins t = 0 and the time the drip ceases t = T i gives the
following equation	

T1

S( T1) — S(0) = ( 1 _P)PG - Do
0

(SIS,)dt - do

T1

J 
R(t)SIS,dt Sevap

0

(A2)

Assuming that the canopy is dry when the rain begins and that the storm
completely saturates the canopy, then: S(T 1 ) = Sc ; S(0) = 0; and

Sevap — PG PN Sc

Substituting these last three equalities into (A2) and solving (A2) for do
gives	 T

do = (PN_ PPG - DoTAS,)I{ f [R(t)SIS,]dt}
	

(A3)
0

Where g = 1/T 1 foT1 Sdt and is the average amount of water stored on the
canopy surfaces during the time T1.

Proof II
From the main text i3 = [A + (1 - A) In (1 A )1 /A 2 , where A = (Do +

doRo + E0 )1[(1 p)R 0 ] and 0 <A < 1. Because A is bounded, In (1 - A)
can be expanded in a Taylor's series. By collecting and cancelling terms

CAD

where appropriate, it follows that 0 = 1/2 + E A' I[(i + 1) (i + 2)] . This
i=1

expression for 0 is monotonically increasing so that 0 is bounded below by
= 1/2. Likewise 0 is bounded above by Aim i3. Using the original expression ±1

to evaluate the latter limit gives: lim 3 = 1. This result immediately follows
A ÷ 1

since (1 - A) In (1 - A) approaches 0 as A approaches unity.
Proof III

From the text eq. 15 gives I = S, (1 — 13E0 /E( 1 --P)R01)+ Eo Ti •
Differentiating this expression for I with respect to R 0 gives: aiyaR o =
{S,E0/[( 1 — P)R o]}{131R o — ao/aR 0 }. Thus, it is sufficient to show that
aiyaR 0 < 0 for all values of R 0 in order to establish that apaR o > 0, which
can be done by employing the following identity: apiaR o = (d(3ldA)
(3,413R 0 ). Using the Taylor series expression for i3 given in the last proof it
follows that df3/dA = E iA i 1 /[(i + 1)(i + 2)] > 0 for all values of A
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since A > 0. Using the definition of A gives aA/aR o = - [d o /(1 -p)]
[(1 - p)Aldo -1]. However, A = do/(1 -p) + (D 0 + E0 )I[(1- p)R 0 ] >
do/(1 - p). Therefore, A> do/(1 - p) which is equivalent to [(1 - p)Aldo

1] > 0. Hence, aA/aR, < o for all values of Ro and so ao/aR 0 < o for
all values of Ro.
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