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Water Storage on Forest Foliage: A General Model

... WILLIAM J. MASSMAN

Biology Department, University of Oregon, Eugene, Oregon 97405

PROPERTY of

A model for the prediction of water accumulation on forest foliage is presented. It is general enough to
include linear, exponential, or logarithmic forms for the buildup of accumulated water and to go from
any one of these three limiting forms to any other in a continuous manner by varying a single dimension-
less parameter. This equation unifies into a single form many other models used to predict water accu-
mulation (from either rain or fog) on forest foliage. An exploration of the underlying assumptions relat-
ing drip rate to interception intensity shows how these other models differ from one another. Evaporation
is included in the model by using another dimensionless parameter which may be very useful in regions
where only an approximate estimate of the evaporation rate is available, However, to include evapora-
tion correctly into the model it is necessary to define the water storage capacity first in order to properly

interpret the model predictions.

INTRODUCTION

There have been several different approaches recently to
the problem of water accumulation from both rain and fog on
tree foliage. For instance, Rutter et al. [1972, 1975] and Rutter
and Morton [1977] used a dynamical model to predict the
amount of water intercepted by trees during rain, whereas a
more empirical approach was taken by Jackson [1975] with
rain and Merriam [1973] with fog when they used logarithmic
or exponential regressions to fit observed data. The purpose of
this note is to present a general equation which is based on
simple dynamical principles and which displays linear, loga-
rithmic, or exponential behavior. This equation unifies the
different approaches taken by the above mentioned authors
and by the proper choice of a single parameter reduces to
forms they used in their works. It is hoped that this discussion
will help illuminate both the physical basis of the storage
process and the nature of the differences in the approaches
that these other researchers have taken. After the dynamical
basis of the model is fully explored, evaporation is included.
Because the model is quite flexible, exact details of the evapo-
ration rate are not critical. Hence the model may be very use-
ful in regions where the evaporation rate is only approxi-
mately known. ' '

DYNAMICAL BASIS

For the purposes of this section, evaporation will not be dis-
cussed, hence the rate of water stored within a given foliage
volume can be written as follows:

ds/dt = I(t) - D(1) )

where § is the amount of stored water, I(f) is the rate of foli-
age interception (henceforth called the interception intensity),
and D(y) is the rate at which water is leaving that volume after
being intercepted (henceforth called the drip rate, which does
not include stem flow); ¢ is time.

The basic assumption is that the drip rate is proportional to
the amount of water stored in the tree such that when the tree
is initially dry, the drip rate is zero, and when maximum stor-
age is reached, the drip rate is equal to the interception in-
tensity. Besides this dependence upon the amount of water
stored in the foliage, the drip rate can be either explicitly or
implicitly proportional to the interception intensity. Explicit
proportionality means that the drip rate is directly propor-
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tional to the interception intensity, i.e., D(f) oc I(¢r). Implicit
proportionality means that the drip rate is not directly propor-
tional to the interception intensity but is influenced by it only
so far as the interception intensity affects the amount of inter-
cepted water. This section assumes the former, and a sub-
sequent section will explore the consequences of the later as-
sumption.

One such form for explicit proportionality is given by the
linear relationship

D(t) = I(1)(S/S.) @

where S, is the maximum storage. However, a more general
relationship is given as follows:

D) = I (——ea(m') = l)

- 6)
Here a is a dimensionless constant which depends on tree spe-
cies and meteorological conditions and will be discussed in
greater detail later. Note that when the foliage is dry the drip
rate is zero and when the tree is saturated the drip rate is
equal to the interception intensity, so that the boundary con-
ditions are met. Also note that as a approaches zero, (3) will
approach the form given by (2). Now assuming that the inter-
ception intensity is constant (denoted by /) and that the tree
is initially dry when the rain begins, the solution to (1) using
the form given by (3) is

S/Sc==aln[(l1 — ™)
“exp (—alt/[S(1 — e} + e @)

The solution, S = S(f), given by (4) is dependent upon the pa-
rameter o in 2 manner which is illustrated in Figure 1. In this
figure, both axes have been normalized. On the vertical axis, S
is expressed in fractions of S, and on the horizontal axis, time
is expressed as ([,/S.)t. The axes have been normalized for
greater generality and to remove the need to discuss particular
events or particular canopies, so that the emphasis can be on
the basic assumptions and dynamics. Note that the independ-
ent variable is actually (/,/S.)¢ and not exactly time. The true
elapsed time required for reaching some given level of satura-
tion is proportional to S,/I,, which is determined by the inter-
ception intensity and the nature of the foliage. In this graph
the dashed upper most curve is a limiting form of the solution
and corresponds to the situation in which the rate of storage is
equal to the interception intensity, and once the foliage is sat-



MASSMAN: INTERCEPTION STORAGE

1.0 r
D r=+8
II
J [ (re+2
[
[
/’ =0
0.8 J
[/
. [/
(Ye-2
c
2
5 06
2
T
v
Ey SIS,
-]
c
o
AV
® 0.4
2
° (r=-8
K]
o
0.2
0.0 . . v . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
(Io/Sc)t
Fig. 1. Water accumulation on foliage without evaporation as

predicted by (4) for various values of a. The stored water, S, is shown
as a function of time and expressed as a fraction of the water storage
capacity S.. The time axis is dimensionless and is expressed in units of
(To/S ). The dashed line corresponds to the most rapid accumulation
of water possible on the foliage.

urated, the excess drips out. This limiting form of (4) corre-
sponds to a ‘cup’ which does not allow water to drain from it

until it is filled, then it overflows. All other solutions are vari-

ous types of ‘leaky cups’ which allow water to flow out as it
accumulates in the cup.

LIMITING FORMS

To gain further insight into the nature of (4), several special
limits will be examined. During an initial phase immediately
after the rain begins, all curves on Figure 1 are nearly linear.
As time progresses, all solutions eventuaily approach unity,
but the parameter a strongly influences how these curves ap-
proach this limit. For a large positive value of a (a — +o0),
the solution becomes linear; for a large negative value of a («a
— —oo), the solution becomes logarithmic; and for a small
value of a (« — 0), the solution is exponential:

S/Sc— (Io/S) (a— + o0) (5a)
S/S.— li—l In |af + ﬁ In(I/S)  (a— —o0) (5b)
S/S.— 1 — e~to/Sen (a—0) - (5¢0)

Here |a| is the absolute value of a. Equation (5b) is valid only
for a large but finite value of |aj; otherwise S/S. vanishes for
finite time. Generally, the limiting forms (5a) and (5b) are ap-
proached very closely whenever |af > 4.

Equation (5a) simply means that as « becomes large, the so-
ution will approach the cup solution. Equation (5b) is the
takiest cup solution and is a logarithmic form. Here Iy is the
otal intercepted rainfall in the period ¢. Since the interception
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intensity is usually just some fraction of the rainfall intensity,
Ry, (5b) can be written in the form a + & In 7 + ¢ In R,, which
is the form chosen by Jackson [1975] for rainfall interception.
He found that as the rainfall intensity increased, i.e., at larger
values of R,, the interception increased when the duration re-
mained fixed. He offered several reasonable explanations for
this dilemma, but this result is less surprising when interpreted
in light of (5b), which says that the interception S must in-
crease as R, increases. Hence his result may be an artifact of
the form of the equation he chose to fit the data. Since the log-
arithmic form dynamically corresponds to the leakiest cup so-
lution, it may be more appropriate for hydrophobic foliage
surfaces.

Equation (5¢) is the case a = 0, and this form of the solution
is used extensively in both rain and fog interception studies
{e.g., Merriam, 1973). In that same paper, Merriam states,
‘The exponential decay generally underpredicted the early
buildup (of stored water) on the pine.’ Considering (4), this
means that positive a predicts the accumulation more accu-
rately than a equal to zero. Figure 1 shows that the accumula-
tion rate is greater for a positive than for a equals zero.

Assuming that our approach is realistic, the following inter-
pretation of o can be made. Once the storage capacity S, is
correctly estimated, then all other natural or meteorological
variability in the accumulation of water on plant foliage must
be related to a. It is probably true that a is affected by temper-
ature, wind speed, rain intensity, and foliage characteristics as
well as precipitation type such as fog or rain. The parameter «
may also be a function of time as events with a rainstorm
evolve with time, but an approach based on some free param-
eter may eventually improve our ability to predict water accu-
mulation on plant foliage.

DISCUSSION OF IMPLICIT PROPORTIONALITY

‘The assumption made earlier was that the drip rate is ex-
plicitly proportional to the interception intensity. This section
will assume that the drip rate is implicitly proportional to it.
This means that the drip rate is influenced by the interception
intensity only so far as the latter affects the amount of inter-
ception, S/S.. With this assumption instead of (3), the follow-
ing expression is used:

©

(S/S.) _
D(t) = D, (ea___l_)

e —1

where D, is a constant, termed the drainage constant, which,
like a, may depend on foliage characteristics and meteor-
ological conditions. Expressing the drip rate D(f) in the form
of (6) rather than (3) is the mathematical expression for the
implicit proportionality assumption. For a constant inter-
ception intensity, /o, and the form given in (6), if D, # I,, then
some redefinition of S, may be necessary because S, may no
longer be 2 maximum value for the tree storage capacity.

Figures 2a and 2b show how the drainage constant D, can
influence the interpretation of S.. These figures give the solu-
tion to (1) using (6) for various choices of a and the ratio of
the drainage constant to the interception intensity, Do/I,.
When this ratio is one, the solution is determined by « only
and reduces to that shown in Figure 1. These figures have -
been normalized in the same manner as Figure 1.

Figures 2a and 2b show that the solution is similar to that
shown in Figure 1 except that the asymptotic value of S/S. is
no longer unity but something that depends on the parameter
o as well as the drainage constant D,. The values of D,/I, are
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Fig. 2a. Water accumulation without evaporation on foliage as
predicted using the implicit proportionality assumption, equation (6),
with a = +2 for various values of the ratio Dy/J,. Both axes are the
same as given in Figure 1.

different on each figure because not all combinations of a and
D./1, give acceptable solutions. A more detailed mathemati-
cal discussion of this solution and its asymptotic values is
given in the appendix.

From these figures it is clear that the choice of D, will
strongly affect interpretation of S.. For example, if the ratio
Do/I, is small and « is greater than two, then S/S. tends
asymptotically to something greater than one, which is consis-
tent with the interpretation that the water holding capacity S,
is the minimum amount of water needed, when there is no
evaporation, to cover the tree foliage with a thin stable fitm of
water. Any water in excess of this amount will eventually drip
out. On the other hand, in the previous discussion the storage
capacity S, was defined to be a maximum value.

The interpretation of the water holding capacity S. as a
minimum and the particular choice for a and the ratio Do/I,
is of special interest as they are related to the model used by
Rutter et al. [1972, 1975] and Rutter and Morton {1977]. The
parameter « used in this work is numerically equal to their
drainage parameter b. (In this particular case their drainage
coefficient b is identical to a/S,, and their value of S, was
about 1 mm.) Their choice of D, also insures D,/I, is less than
one. This is because they chose D, so small that measure-
ments of drip rates less than it are unreliable. Finally, their
value of b which is based on observation is sufficiently large to
ensure that ® is much greater than one. They also noted some
variability of their drainage parameter 4 from one storm to
the next, which is not surprising if the physical interpretation
of « offered earlier is correct.

After the water holding capacity has been reached and with
the proper identification of parameters, then (6) reduces to the
following expression:

D([) - DO e—a(l-—S/S,) (7)

which is identical to the Rutter drip rate. However, at times
when the tree is dry, the Rutter model, equation (7), predicts a
smal amount of drip. This criticism has been pointed out by
Calder [1978]. On the other hand, the model proposed in (6)
does not have this difficulty; the drip is zero when the tree is
dry. Furthermore, because the Rutter model violates the
boundary condition, the drainage constant D, must be chosen
small to insure that the drip is negligible when the tree is dry.
This is not a problem with the model proposed here, since D,
can take on large or small values.

To summarize this section, the shape of the solution shown
in Figure 2 are similar to those presented in Figure 1 except
that they tend asymptotically to a value different from unity
which is primarily caused by the implicit proportionality as-
sumption. It was also shown that the Rutter drip equation is
an approximation to the more general one presented in (6)
and that unlike the Rutter equation, (6) avoids a finite drip
when the tree is dry.

EVAPORATION

To include evaporation the continuity equation given by (1)
can be written as follows:

dS/dt = I(t) — D(f) — E(f) - @8)

where E(?) is the evaporation rate. Generally, the evaporation
rate is affected not only by meteorological conditions but by
the amount of intercepted water present on the foliage sur-
faces. The Rutter model makes the evaporation rate propor-
tional to the relative canopy saturation, S/S_, whenever S/S.
is less than or equal to one, and otherwise the evaporation rate
is not influenced by the amount of intercepted water. Calder
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Fig. 2b. Same as Figure 2a except for « = —2. Not all values of
Do/ I, as in the previous figure are shown because not all solutions are
acceptable. This is discussed in more detail in the appendix.
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[1978] does not explicitly assume that the evaporation rate is
proportional to S/S,, but he does ailow parameters of his
model to vary depending on whether S/S. is greater than one
or not. However, both these models do employ evaporation
rates as estimated by the Penman-Monteith equation. For the
model described in this section, detailed evaporation rates
such as the Penman-Monteith equation provides are not
needed, and so it may be useful in areas where complete in-
strumentation excludes the use of the Penman-Monteith
equation or when advection of energy may strongly influence
evaporation rates. .
The evaporation rate £(#) is written as follows:

SISy ]
E(t)—Eo( pr ) &)
where E, and 8 are constants which depend on tree species
and foliage characteristics as well as the meteorological condi-
tions. Where detailed information is available on the evapora-
tion rate, it is possible to substitute the Penman-Monteith
equation for E,. However, this paper will assume E, is con-
stant.

Note than when 8 is zero, (9) reduces to the form similar to
that used in the Rutter model when S/S. is less than one.

Two simple examples of how (9) can be used will now be
given. The first is when the tree is completely wet but unsatu-
rated, i.e., when the rain and drip have stopped but evapora-
tion continues, and the second is when the tree is initially dry
and it begins to rain.

For the first example, (8) can be written as follows:

J(S/S,) —_ l
dS/dt=—E, (—erl—)

(10)
The solution to this equation is given in Figure 3 for various
choices of 8. The axes on this figure have again been normal-
ized with the time scale given by (E,/S.)t, and the dashed
straight line is the limiting solution which corresponds to the
constant evaporation of accumulated water without regard to
the amount of water present. In this example the definition for
the water storage capacity must be that minimum amount

necessary to completely wet the tree. Because the parameter 8

now offers greater freedom in simulating the evaporation, de-
tailed information on the evaporation rate is no longer neces-
sary. For example, Hancock and Crowther [1979) measured
the evaporation of water from a wet but unsaturated canopy
using branches as cantilever weighing machines. To fit their
data they essentially used 8 equal zero and a different evapo-
ration rate, E,, during different parts of the day. So they in a
sense used two curves to fit their data; but using (10), it may
be possible to fit their data with only one curve and two pa-
rameters, 8 and E,. This in effect would mask the natural vari-
ability of the evaporation rate. Hence detailed information on
the evaporation rate is no longer as important.

In the cases where the ratio S/S. is greater than one, the
Rutter model suggests that the evaporation rate is not influ-
enced by the amount of water stored in the tree. These cases
occur when the tree is dripping or when it is raining. It would
be interesting to see how accurately the evaporation model
suggested by (9) can be extended to include the situations
where the amount of water stored in the tree exceeds the mini-
mum amount required to wet all the surfaces. Since (9) does
not need detailed information on the evaporation rate, one
curve may fit data where the ratio S/S. exceeds one for por-
tions of the data and is less than one for other portions.
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Fig. 3. Evaporation of accumulated water predicted by (10) for a
completely wet tree which is no longer dripping or intercepting water
for various choices of 8. The time axis is dimensionless and expressed
in units of (Ey/S.)t. The dashed line corresponds to the most rapid
evaporation of water possible from the foliage.

The second example of how (9) might be used is that of a
tree which is initially dry when it begins to rain. This is essen-
tially the same situation used in previous sections except with
evaporation included. Thus the general way to write (8) is as
follows:

A8 |
F-1

dS/dt=1I, - D.,(

5750 . | B
e—1

) (11a)

Where the interception intensity is assumed to be constant.

When the tree is fully wet, i.e., when the water in the tree,
S, is greater than or equal to the storage capacity S, then
(11a) is replaced by (11b):

(115)

(S/S)
dS/dt=1I, - Do(f——l) —E,

-1

However, as discussed earlier, it is possible that this extra con-
dition need not be imposed, since the parameter 8 offers a
great deal of flexibility; but (11b) will be used in this paper
where appropriate, since it does seem to be more realistic. In
applications where the evaporation rate is low relative to the
interception rate or where it can only be approximately esti-
mated then using (11a) for all values of the storage ratio S/S.,
whether greater or less than one, may be easier as-there would
only be one equation to deal with rather than two.

For simplicity, B is assumed to be the same as a, although
this may not be the case generally, since 8 should depend
upon how the intercepted water is exposed to the environment
and « depends on how the intercepting surfaces are oriented
relative to the direction of rainfall or fog movement. For the
case where E, is low compared to the interception intensity, the
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parameter 8 has little influence, and so it can casily be taken
to be the same as a without much effect. Generally, without the
simplification of « equal B, the solution to (8) is similar to that
shown in Figure | except that (a) the asymptotic values of S/
S. are always less than they are without evaporation, and they
decrease as B decreases; (b) it takes longer to saturate the foli-
age than wher évaporation is not includéd, and the saturation
time lengthens as g increases; and (c) the drip rate always ap-
proaches a value less than the interception intensity. Assum-
ing a = B, then (11a) can be written as follows:

(12)

e“(S/Se) -1

dS/dt =1, — (Dy + Ep) (e"—-l—)
Equation (115) remains unaltered, although as discussed
earlier, it may be easier and just as accurate to extend the
evaporation model, equation (9), into regions where the stor-
age ratio S/S. is greater than one. However, it is not clear how
this would impact the assumption that « and B are equal. Fig-
ures 4a and 4b show the solution to the model (115) and (12)
for various choices of the ratio E,/I,, For ‘Figure 4a the drip
ratio Do/I, is 0.125 and a = +2 and for Figure 4b the drip ra-
tio Do/I, is the same but « = —2. For these figures the results
are similar to those shown in Figures 24 and 25 which is not
surprising, since (12) is mathematically identical to the model
discussed in the previous section on implicit proportionality;
except that D, is replaced by (D, + E,). Furthermore, replac-
ing D, by (D, + E,) is independent of whether the drip rate is
implicitly or explicitly proportional to the interception in-
tensity. On the other hand, this expression is not completely
identical to the model discussed in the previous section. The
definition of the water holding capacity, S, in some way in-
fluences whether the implicit or explicit assumption is made
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Fig. 4a. Water accumulation on foliage including the influence of
evaporation as predicted by (12) and (1 16), using « = +2 and Do/ 1, =
0.125 and for various choices of Ey/I, The axes are the same as in
Figure 1.
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Fig. 4b. Same as Figure 4a except for a = —2. Not all values of
Do/, as in the previous figure are shown because not all solutions are
acceptable. This is discussed in greater detail in the appendix.

and vice versa. Once that question is resolved, evaporation

~ can only reduce the amount of water stored in the tree com-

pared to when evaporation is not taking place, and the tree
will take longer to become saturated with evaporation than
without it. For this example though, the mathematical similar-
ities end when the amount of stored water is greater than the
storage capacity and (11b) is used, which assumes that once
the tree is completely wet and S/S. equals one, then the evap-
oration rate is not influenced by the amount of stored water.
More details on the nature of the solution to (12) are given in
the appendix, where the implicit proportionality assumption is
further discussed.

The greatest value of the model proposed by (12) may be
that detailed information on the evaporation rate is now not
so important. It is certainly possible to include as much de-
tailed information as is available, but it may not be necessary
because the other model parameters D, and « provide a great
deal of flexibility. Equation (12) is probably most accurate when
the evaporation rate is small compared to the interception in-
tensity; but only comparison to observations will tell for sure.
For cases of high evaporation rates and low interception in-
tensities or advection of energy, (11a) may offer a better ap-
proach.

DISCUSSION

It is important to consider the question of implicit or ex-
plicit proportionality before using the model suggested here.
Making the drip rate explicitly proportional to the inter-
ception intensity appears to be valid when the foliage is dry
initially or when the foliage is partially wet but not dripping,
like those situations investigated by Merriam (1973] and Jack-
son [1975]. On the other hand, this assumption cannot remain
valid always because the drip can continue well after the rain
has stopped. When this happens, the implicit proportionality
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assumption is more useful and hence may apply to those cases
where the tree may not dry out completely before the rain be-
gins again or in regions where the rainfall intensity is highly
variable and it is not always possible beforechand to know
whether the tree is completely dry or not. It is also important
to have some understanding of how the storage capacity S. is
to be interpreted, since the definition of S. can strongly infiu-
ence whether the implicit or explicit proportionality assump-
tion is made. For example, if S. is to be the minimum amount
required to wet the tree, then only the implicit proportionality
assumption can be made in order to insure that the amount of
water in the tree, S, can be greater than S.. However, without
data and detailed studies of drip rates at different interception
intensities and low evaporation rates, it may not be possible to
decide which approach is correct. Ultimately, the appropriate
choice may depend upon the specific situation under investi-
gation or the simplicity and ease that one approach has over
the other when simulating or predicting the amount of water
in tree canopies.

Once questions are made concerning the interpretation of
the water holding capacity S, and which proportionality as-
sumption is appropriate, evaporation can easily be included in
a way that makes detailed information on the evaporation
rate unnecessary. This approach could be of great benefit in
regions where only a crude estimate of the evaporation rate is
available. However, it is important that these other basic ques-
tions be resolved first in order to correctly interpret the model
predictions. '

Constant interception intensity and evaporation rates were
assumed mainly for simplicity so attention could be focused
on the approach and its underlying dynamics and on its
strengths and weaknesses. For application where the inter-
ception intensity and evaporation rates are variable, a simula-
tion would easily include this extra variation as the Rutter
model has demonstrated. These extra effects would not funda-
mentally alter the discussions and conclusions drawn assum-
ing a constant interception intensity and constant evaporation
rates.

SUMMARY

A general equation for the prediction of water accumula-
tion from either rain or fog on forest foliage was presented
which unified equations used by Rutter et al. [1972, 1975] and
Rutter and Morton [1977] and the more empirical ones used by
Merriam [1973] and Jackson [1975]. This model is based on a
single dimensionless parameter and under the proper limits
and assumptions predicts linear, logarithmic or exponential
accumulation of water on plant foliage. An exploration of the
underlying assumptions relating drip rate to interception in-
tensity showed that the Rutter model is based on a slightly
different assumption of how the drip rate is related to inter-
ception intensity than are the more empirical models of Jack-
son [1975} and Merriam [1973]. Evaporation is then included

in the model in a manner that makes detailed information on

the evaporation rate unnecessary. This is done by using an-
other dimensionless parameter and hence may be of value in
regions where lack of complete instrumentation may preclude
the use of the Penman-Monteith equation for estimating

ing» evaporation of water from plant foliage surfaces. However,

1l X L o
i not ¢ d" Jack” before including evaporation into the model, it is necessary to

1973} 2%
n Ca““o

‘ema'\“ define the water storage capacity S, and to choose the propor-
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APPENDIX
The purpose of this appendix is to briefly discuss the mathe-
matical nature of the solution to the model assuming the im-
plicit proportionality assumption. With this assumption the
conservation equation can be written as follows:

(13)

(S/S.) — 1
dS/dt = I, - D, [f;——]

e—1
and the general solution to this equation is given as follows:
S/S.=—1/aln[g'(1 — e exp {—galot/S{1 — ™)}

+ e“’(g"D?;o)] (14) -~

where g = | — €™ + Do/Io¢™" and is written into'(l4) for con-
venience. Note that when D, equals I, g reduces to one, and
(14) reduces to (4). Since g, which is determined by a and Do/
I,, now appears in the exponent, its sign influences the nature
of the solution. In particular, those values of a and Do/,
which cause the solution, S/S., to increase to infinitely large
values are to be excluded. These excluded values are given by
the following inequalities:

a<0 0<(D/I)<1—e™* (15)

Otherwise all other values of « and Do/, are acceptable. Thus
all positive values of a are acceptable, and only a portion of
negative values of a are unacceptable.

The solution (14) now has a much different asymptotic
value than (4), and it depends upon D, as well as a. This
asymptotic value is given as follows:

S/S. =1 — —l-ln 29+ lln(l + &e“'—e“'\) (16)
a I, a Iy
which is valid for all acceptable values of a and Do/I,. Note
that the argument (1 + (Do/Io) €™ — ¢ ) must be positive for
all acceptable solutions, which follows from the conditions
discussed earlier.

The asymptote is of interest primarily as it illuminates .
something of the nature of the model. In particular, when D,/
I, is less than one, then this model will predict that the
amount of water intercepted by the tree will be greater for
larger values of interception intensity, and vice versa, when
Dy/I, is greater than one, this model will predict that the
amount of water intercepted by the tree will decrease with
larger values of interception intensity. This is an artifact of the
model only. When D,/I, is equal to one, then S/S_ will ap-
proach unity.

Therefore it is important to have an appropriate under-
standing of the water storage capacity before deciding
whether the implicit or explicit assumption is to be made. If S,
is to be a maximum value, then the explicit proportionality as-
sumption can be made or at least D, chosen greater than 1,
On the other hand, if S, is to be a minimum amount required
to wet the tree surface, then the implicit proportionality as-
sumption must be made with the condition that Dy/I, be less
than one, so that the intercepted water, S, can eventually ex-
ceed the storage capacity S..

With the inclusion of evaporation for a relatively simple
case it was shown that D, could be replaced by (D, + Eo).
Hence in a mathematical sense the above discussion of the
model is valid with evaporation also. However, it is important
beforehand to have a definition of the storage capacity S, with
its attendant conditions on the drainage constant D,, so that
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evaporation will be independent of the definition of the stor-
age capacity and vice versa.

In fact the inclusion of evaporation will make the condi-
tions on a and D, given in (15) less stringent, since the sum of
D, and E, now replaces D, in that inequality. However, the
mathematical similarities ‘end if the evapo:ation rate is no
longer influenced by the amount of stored water in the tree.
This is most likely to happen when the storage capacity S, is
exceeded, although, again, there may be application for which
it is simpler not to apply this condition.

Acknowledgments. The author wishes to thank Phil Sollins for his
comments and discussions in the formulation of this paper and Bill
Hopper and Terry Montlick who assisted in computer programing.
This research was supported under grant DEB78-03583 from the Na-
tional Science Foundation.

REFERENCES

Calder, 1. R., Transpiration observations from a spruce forest and
comparisons with predictions from an evaporation model, J. Hy-
drol., 38, 3347, 1978.

Hancock, N. H., and J. M. Crowther, A technique for the direct mea-
surement of water storage on a forest canopy, J. Hydrol., 41, 105-
122, 1979.

Jackson, 1. J., Relationships between rainfall parameters and inter-
ception by tropical forests, J. Hydrol., 24, 215-238, 1975.

Merriam, R. A., Fog drip from artificial leaves in a fog wind tunnel,
Water Resour. Res., 9, 1591-1598, 1973.

Rutter, A. J., and A. J. Morton, A predictive model of rainfall inter-
ception in forests, 111, Sensitivity of the model to stand parameters
and meteorological variables, J. Appl. Ecol., 14, 567-588, 1977.

Rutter, A. J., K. A. Kershaw, P. C. Robins, and A. J. Morton, A pre-
dictive model of rainfall interception in forests, 1, Derivation of the
model from observations in a plantation of corsican pine, Agr. Me-
teorol., 9, 367-384, 1972.

Rutter, A. 1., A. J. Morton, and P. C. Robins, A predictive model of
rainfall interception in forests, iI, Generalization of the model and
comparison with observations in some coniferous and hardwood
stands, J. Appl. Ecol., 12, 367-380, 1975.

(Received April 25, 1979;
revised August 22, 1979;
accepted August 28, 1979.)

Purchased by USDA Forest
Setvice for official use



