Annual Sediment Basin Yield Calculations for 2005

Method

chk-sum/calculator

sedcalpc

WS \#1:
104E Survey points avg: $471.58 / 165=2.859$
Elevation calculation: $100+1.252-2.859=98.393 \quad$ secalpc $=98.39394$
105F Survey points avg. $461.870 / 165=2.799$
Elevation calculation: $100+1.245-2.799=98.446$
sedcalpc $=98.44579$
Elevation difference: $98.446-98.393=0.053$
Sediment volume: $0.053 \times 199.37=10.567 \mathrm{~m}^{3}$
$10.27 \mathrm{~m}^{3}$
Basin wide : $10.567 / 95.9=0.110 \mathrm{~m}^{3} /$ ha

$$
0.11 \mathrm{~m}^{3} / \mathrm{ha}
$$

Method

chk-sum/calculator

sedcalpc

WS \#2:
204E Survey points avg: $\quad 515.120 / 173=2.978$
Elevation calculation: $100+1.168-2.978=98.190$
secalpc $=98.19043$
205F Survey points avg. $478.770 / 173=2.768$
Elevation calculation: $100+0.987-2.768=98.219$
sedcalpc $=98.21954$
Elevation difference: $98.21954-98.19043=0.02911$
Sediment volume: $0.02911 \times 175=5.094 \mathrm{~m}^{3} \quad 5.10 \mathrm{~m}^{3}$
Basin wide : $5.094 / 60.3=0.085 \mathrm{~m}^{3} /$ ha
WS\#3
1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\times 0.003785 \mathrm{~m}^{3}=0.019 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets $=37$
Sediment Volume $=37 \times 0.019=0.703 \mathrm{~m}^{3}$
Basin wide: 0.703 cubic meters $/ 101.1$ hectares $=0.007 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#9
Total \# of 5 gallon buckets $=14$
Sediment Volume $=14 \times 0.019=0.266 \mathrm{~m}^{3}$
Basin wide: 0.266 cubic meters $/ 8.54$ hectares $=0.031 \mathrm{~m}^{3} /$ ha
WS\#10
Total \# of 5 gallon buckets $=46$
Sediment Volume $=46 \times 0.019=0.874 \mathrm{~m}^{3}$
Basin wide: 0.874 cubic meters $/ 10.12$ hectares $=0.086 \mathrm{~m}^{3} / \mathrm{ha}$

Annual Sediment Basin Yield Calculations for 2006

Method

chk-sum/calculator
sedcalpc
WS \#1:
105E Survey points avg: $571.47 / 191=2.992$
Elevation calculation: $100+1.460-2.992=98.468 \quad$ secalpc $=98.46801$
106F Survey points avg. $443.79 / 191=2.324$
Elevation calculation: $100+1.259-2.324=98.935$
Elevation difference: $98.935-98.468=0.467$
Sediment volume: $0.467 \times 199.37=93.106 \mathrm{~m}^{3}$
Basin wide : $93.106 / 95.9=0.971 \mathrm{~m}^{3} /$ ha

Method

chk-sum/calculator

WS \#2:
205E Survey points avg: $\quad 524.08 / 180=2.912$
Elevation calculation: $100+1.142-2.912=98.230 \quad$ secalpc $=98.23044$
206F Survey points avg. $434.39 / 180=2.413$
Elevation calculation: $100+0.945-2.413=98.532$
sedcalpc $=98.53172$
Elevation difference: $98.532-98.230=0.302$
Sediment volume: $0.302 \times 175=52.85 \mathrm{~m}^{3} \quad 52.72 \mathrm{~m}^{3}$
Basin wide : $52.85 / 60.3=0.877 \mathrm{~m}^{3} /$ ha $\quad 0.87 \mathrm{~m}^{3} /$ ha
WS\#3
1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}=0.019 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets $=605$ or 649
Sediment Volume $=605$ or $649 \times 0.019=11.495$ or $12.331 \mathrm{~m}^{3}$
Basin wide: cubic meters11.495 or $12.331 / 101.1$ hectares $=0.114$ or $0.122 \mathrm{~m}^{3} /$ ha
WS\#9
Total \# of 5 gallon buckets = 24
Sediment Volume $=24 \times 0.019=.456 \mathrm{~m}^{3}$
Basin wide: 0.456 cubic meters $/ 8.54$ hectares $=0.054 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#10
Total \# of 5 gallon buckets $=170$
Sediment Volume $=170 \times 0.019=3.23 \mathrm{~m}^{3}$
Basin wide: 3.23 cubic meters / 10.12 hectares $=0.319 \mathrm{~m}^{3} / \mathrm{ha}$

HJ Andrews Annual Sediment Basin Yield Calculations for 2007

WS\#1
107F Survey points avg.: $465.74 / 184=2.53$
Elevation calculation: $(100+1.273)-2.53=98.743$
106E Survey points avg.: $481.320 / 184=2.62$
Elevation calculation: $(100+1.272)-2.62=98.652$
Elevation difference: $98.743-98.652=0.091$
Sediment volume: $199.37 \times 0.086=18.143 \mathrm{~m}^{3}$
Basin wide: $18.143 \mathrm{~m}^{3} / 95.9$ ha. $=0.189 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#2
207F Survey points avg.: $460.79 / 175=2.633$
Elevation calculation: $(100+0.986)-2.63=98.356$
206E Survey points avg.: $491.59 / 175=2.81$
Elevation calculation: $(100+1.131)-2.81=98.321$
Elevation difference: $98.356-98.321=0.035$
Sediment volume: $175 \times 0.035=6.125 \mathrm{~m}^{3}$
Basin wide: $6.125 \mathrm{~m}^{3} / 60.3$ ha. $=0.102 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#3
1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets = 341
Sediment Volume $=341 \times 0.019=6.479 \mathrm{~m}^{3}$
Basin wide: 6.479 cubic meters $/ 101.1$ hectares $=0.064 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#9
Total \# of 5 gallon buckets = 11
Sediment Volume $=11 \times 0.019=0.209 \mathrm{~m}^{3}$
Basin wide: 0.209 cubic meters $/ 8.54$ hectares $=0.025 \mathrm{~m}^{3} / \mathrm{ha}$

Ws\#10
Total \# of 5 gallon buckets $=79$
Sediment Volume $=79 \times 0.019=1.501 \mathrm{~m}^{3}$
Basin wide: $1.501 \mathrm{~m}^{3} / 10.12$ hectares $=0.148 \mathrm{~m}^{3} /$ ha

HJ Andrews
 Annual Sediment Basin Yield Calculations for 2008

	chk_sum/calculator Method	sedcalpc
WS\#1		
108F	Survey points avg.: 444.46 / $175=2.55$	
	Elevation calculation: $(100+1.203)-2.55=98.653$	$108 \mathrm{~F}=98.65731$
107E	Survey points avg.: $467.07 / 175=2.67$	
	Elevation calculation: $(100+1.225)-2.67=98.555$	$107 \mathrm{E}=98.55591$
	Elevation difference: $98.653-98.555=0.098$	
	Sediment volume: $199.37 \times 0.098=19.538 \mathrm{~m}^{3}$	Sed. Volume $=20.17 \mathrm{~m}^{3}$
	Basin wide: $19.538 \mathrm{~m}^{3} / 95.9$ ha. $=0.204 \mathrm{~m}^{3} / \mathrm{ha}$	Basin wide $=0.21 \mathrm{~m}^{3} / \mathrm{ha}$
	Method	
	Chk_sum/calculator	sedcalpc
WS\#2		
208F	Survey points avg.: $437.12 / 161=2.72$	$208 \mathrm{~F}=98.34797$
	Elevation calculation: $(100+1.063)-2.72=98.343$	
207F	Survey points avg.: $427.83 / 161=2.64$	$207 \mathrm{~F}=98.32867$
	Elevation calculation: $(100+0.986)-2.66=98.326$	
	Elevation difference: $98.343-98.326=0.017$	
	Sediment volume: $175 \times 0.017=2.975 \mathrm{~m}^{3}$	Sed. Volume $=3.38 \mathrm{~m}^{3}$
	Basin wide: $2.975 \mathrm{~m}^{3} / 60.3$ ha. $=0.049 \mathrm{~m}^{3} / \mathrm{ha}$	Basin wide $=0.06 \mathrm{~m}^{3} / \mathrm{ha}$
*** Due to the small amount of sediment deposited the data was manipulated by eliminating data from		
lines $15,16,17$ that didn't show much if any deposition. If this was not done the sediment calculation was a negative number, which doesn't make sense knowing that some new sediment was deposited.		
This certainly adds more bias to the calculation		
** The sediment basin @ Ws\#2 was not cleaned out in 2007 year due to the small volume of sediment deposited. There was no sed207E file so sed207F was compared to Sed208F.		

WS\#3 1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets = 103
Sediment Volume $=103 \times 0.019=1.957 \mathrm{~m}^{3}$
Basin wide: 1.957 cubic meters $/ 101.1$ hectares $=0.019 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#9
Total \# of 5 gallon buckets $=14$
Sediment Volume $=14 \times 0.019=0.266 \mathrm{~m}^{3}$
Basin wide: 0.266 cubic meters $/ 8.54$ hectares $=0.031 \mathrm{~m}^{3} / \mathrm{ha}$

Total \# of 5 gallon buckets $=45$
Sediment Volume $=45 \times 0.019=0.855 \mathrm{~m}^{3}$
Basin wide: $0.855 \mathrm{~m}^{3} / 10.12$ hectares $=0.085 \mathrm{~m}^{3} /$ ha

HJ Andrews
 Annual Sediment Basin Yield Calculations for 2009

HJ Andrews

Annual Sediment Basin Yield Calculations for 2010 / 2011
The Sediment Basins weren't cleaned in 2010
Method
chk_sum/calculator
WS\#1
111F Survey points avg.: $468.43 / 183=2.56$
Elevation calculation: $(100+1.387)-2.56=98.827 \quad 111 \mathrm{~F}=98.82727$
109E Survey points avg.: $509.14 / 183=2.78$
Elevation calculation: $(100+1.262)-2.78=98.482$
$109 \mathrm{E}=98.47981$
Elevation difference: $98.827-98.482=0.345$
Sediment volume: $199.37 \times 0.345=68.783 \mathrm{~m}^{3} \quad$ Sed. Volume $=69.07$? m^{3}
Basin wide: $68.783 \mathrm{~m}^{3} / 95.9$ ha. $=0.717 \mathrm{~m}^{3} / \mathrm{ha}$

sedcalpc

Basin wide $=0.72$? $\mathrm{m}^{3} / \mathrm{ha}$
? = the sedcalpc program wouldn't calculate using the proper count so the Volumes are off a little. It worked fine for the WS\#2 values $69.381 \mathrm{~m}^{3}$ and $0.724 \mathrm{~m}^{3} / \mathrm{ha}$ are the hand calculated values for the two sedcalpc elevation averages for 183 points.

Method

Chk_sum/calculator

WS\#2
211F Survey points avg.: $496.00 / 184=2.70$
Elevation calculation: $(100+1.070)-2.70=98.370$
209E Survey points avg.: $522.89 / 184=2.84$
Elevation calculation: $(100+1.095)-2.84=98.255$
Elevation difference: $98.370-98.255=0.115$
Sediment volume: $175 \times 0.115=20.125 \mathrm{~m}^{3}$
Basin wide: $20.125 \mathrm{~m}^{3} / 60.3$ ha. $=0.334 \mathrm{~m}^{3} / \mathrm{ha}$
Sed. Volume $=21.20 \mathrm{~m}^{3}$
Basin wide $=0.35 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#3 $\quad 1$ liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets = 379.5
Sediment Volume $=379.5 \times 0.019=7.211 \mathrm{~m}^{3}$
Basin wide: 7.211 cubic meters $/ 101.1$ hectares $=0.071 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#9
Total \# of 5 gallon buckets $=40$
Sediment Volume $=40 \times 0.019=0.760 \mathrm{~m}^{3}$
Basin wide: 0.76 cubic meters $/ 8.54$ hectares $=0.089 \mathrm{~m}^{3} /$ ha
Ws\#10
Total \# of 5 gallon buckets $=153$
Sediment Volume $=153 \times 0.019=2.907 \mathrm{~m}^{3}$
Basin wide: $2.907 \mathrm{~m}^{3} / 10.12$ hectares $=0.287 \mathrm{~m}^{3}$ ha

HJ Andrews
 Annual Sediment Basin Yield Calculations for 2012

Method
 chk_sum/calculator

WS\#1
112F Survey points avg.: $436.28 / 185=2.36$
Elevation calculation: $(100+1.263)-2.36=98.903 \quad 112 \mathrm{~F}=98.90473$
111E Survey points avg.: $497.70 / 185=2.69$
Elevation calculation: $(100+1.264)-2.69=98.574$
$111 \mathrm{E}=98.57373$
Elevation difference: $98.903-98.574=0.329$
Sediment volume: $199.37 \times 0.329=65.593 \mathrm{~m}^{3}$
Basin wide: $65.593 \mathrm{~m}^{3} / 95.9$ ha. $=0.684 \mathrm{~m}^{3} / \mathrm{ha}$
Sed. Volume $=66.03$? m^{3} Basin wide $=0.69$? $\mathrm{m}^{3} / \mathrm{ha}$
? = the sedcalpc program wouldn't calculate using the proper count so the Volumes are off a little.
Method

Chk_sum/calculator
WS\#2
212F Survey points avg.: $463.04 / 177=2.62$
Elevation calculation: $(100+0.898)-2.62=98.278$
211E Survey points avg.: $489.79 / 177=2.78$
Elevation calculation: $(100+0.980)-2.78=98.200$
Elevation difference: $98.278-98.200=0.078$
Sediment volume: $175 \times 0.078=13.65 \mathrm{~m}^{3} \quad$ Sed. Volume $=12.10 \mathrm{~m}^{3}$
Basin wide: $13.65 \mathrm{~m}^{3} / 60.3$ ha. $=0.226 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#3 1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets = 201.3
Sediment Volume $=201.3 \times 0.019=3.825 \mathrm{~m}^{3}$
Basin wide: 3.825 cubic meters $/ 101.1$ hectares $=0.038 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#9
Total \# of 5 gallon buckets = 23.5
Sediment Volume $=23.5 \times 0.019=0.447 \mathrm{~m}^{3}$
Basin wide: 0.447 cubic meters $/ 8.54$ hectares $=0.052 \mathrm{~m}^{3} / \mathrm{ha}$
Ws\#10
Total \# of 5 gallon buckets = 113
Sediment Volume $=113 \times 0.019=2.147 \mathrm{~m}^{3}$
Basin wide: $2.147 \mathrm{~m}^{3} / 10.12$ hectares $=0.212 \mathrm{~m}^{3} /$ ha

HJ Andrews Annual Sediment Basin Yield Report for 2013

```
Method
chk_sum/calculator
WS#1
113F Survey points avg.: \(430.27 / 172=2.50\)
Elevation calculation: \((100+1.203)-2.50=98.703 \quad 113 \mathrm{~F}=98.70143\)
112E Survey points avg.: \(463.60 / 172=2.70\)
Elevation calculation: \((100+1.293)-2.70=98.593\)
\(112 \mathrm{E}=98.59765\)
Elevation difference: \(98.703-98.593=0.110\)
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: 199.37 x 0.11 = 21.931m \({ }^{3}\)
Sed. Volume \(=20.77\) ? \(\mathrm{m}^{3}\)
Watershed Basin wide: \(21.931 \mathrm{~m}^{3} / 95.9\) ha. \(=0.23 \mathrm{~m}^{3} / \mathrm{ha}\) Basin wide \(=0.22\) ? \(\mathrm{m}^{3} / \mathrm{ha}\)
? = the sedcalpc program wouldn't calculate using the proper count so the Volumes are off a little.
Method
```


Chk_sum/calculator

WS\#2
213F Survey points avg.: $443.71 / 163=2.72$
Elevation calculation: $(100+0.929)-2.72=98.209$
212E Survey points avg.: $445.11 / 163=2.73$
Elevation calculation: $(100+0.907)-2.73=98.177$
Elevation difference: $98.209-98.177=0.032$
Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 95.9 ha
Sediment volume: $175 \times 0.032=5.60 \mathrm{~m}^{3}$
Basin wide: $5.60 \mathrm{~m}^{3} / 60.3$ ha. $=0.093 \mathrm{~m}^{3} / \mathrm{ha}$
sedcalpc
$213 \mathrm{~F}=98.20685$
$212 \mathrm{E}=98.17626$

Sed. Volume $=5.35 \mathrm{~m}^{3}$
Basin wide $=0.09 \mathrm{~m}^{3} / \mathrm{ha}$

```
WS\#3 \(\quad 1\) liquid gallon \(=0.003785 \mathrm{~m}^{3}\)
Volume of a 5 gallon bucket \(=5\) gal \(\mathrm{x} 0.003785 \mathrm{~m}^{3}\)
Total \# of 5 gallon buckets = 71
Sediment Volume \(=71 \times 0.019=1.349 \mathrm{~m}^{3}\)
Basin wide: 1.349 cubic meters \(/ 101.1\) hectares \(=0.013 \mathrm{~m}^{3} / \mathrm{ha}\)
WS\#9
Total \# of 5 gallon buckets \(=9\)
Sediment Volume \(=9 \times 0.019=0.171 \mathrm{~m}^{3}\)
Basin wide: 0.171 cubic meters \(/ 8.54\) hectares \(=0.020 \mathrm{~m}^{3} / \mathrm{ha}\)
Ws\#10
Total \# of 5 gallon buckets \(=47\)
Sediment Volume \(=47 \times 0.019=0.893 \mathrm{~m}^{3}\)
Basin wide: \(0.893 \mathrm{~m}^{3} / 10.12\) hectares \(=0.088 \mathrm{~m}^{3} /\) ha
```

Note: The WS\#2 basin was not cleaned this year due to the small amount of sediment deposition. Therefore there is not SED213E file for 2013. Sed213F will be compared with Sed214F to obtain the 2014 volume of bedload deposition.

HJ Andrews
 Annual Sediment Basin Yield Report for 2014

	chk_sum/calculator Method	sedcalpc
WS\#1		
114F	Survey points avg.: $475.90 / 197=2.42$	
	Elevation calculation: $(100+1.350)-2.42=98.930$	$114 \mathrm{~F}=98.93426$
113E	Survey points avg.: $504.57 / 197=2.56$	count $=197$
	Elevation calculation: $(100+1.233)-2.56=98.673$	$113 \mathrm{E}=98.67121$
	Elevation difference: $98.930-98.673=0.257$	count $=196$
	Sediment Basin Area: 199.37 Watershed Area: 95.9 ha	
	Sediment volume: $199.37 \times 0.257=51.238 \mathrm{~m}^{3}$	Sed. Volume $=52.44$? m^{3}
	Watershed Basin wide: $51.238 \mathrm{~m}^{3} / 95.9$ ha. $=0.53 \mathrm{~m}^{3} / \mathrm{ha}$	Basin wide $=0.55$? m³/ha
? = the sedcalpc program wouldn't calculate using the proper count so the Volumes are off a little.		
Method		
	Chk_sum/calculator	sedcalpc
WS\#2		
214F	Survey points avg.: $450.33 / 167=2.70$	$214 \mathrm{~F}=98.24841$
	Elevation calculation: $(100+0.945)-2.70=98.245$	
213E	Survey points avg.: $454.01 / 167=2.72$	$213 \mathrm{E}=98.21038$
	Elevation calculation: $(100+0.929)-2.72=98.209$	
	Elevation difference: $98.245-98.209=0.036$	
	Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 95.9 ha	
	Sediment volume: $175 \times 0.036=6.30 \mathrm{~m}^{3}$	Sed. Volume $=6.66 \mathrm{~m}^{3}$
	Basin wide: $6.30 \mathrm{~m}^{3} / 60.3$ ha. $=0.105 \mathrm{~m}^{3} / \mathrm{ha}$	Basin wide $=0.11 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#3	1 liquid gallon $=0.003785 \mathrm{~m}^{3}$	
	Volume of a 5 gallon bucket $=5 \mathrm{gal} \times 0.003785 \mathrm{~m}^{3}$	
	Total \# of 5 gallon buckets = 71	
	Sediment Volume $=71 \times 0.019=1.349 \mathrm{~m}^{3}$	
	Basin wide: 1.349 cubic meters / 101.1 hectares $=0.013 \mathrm{~m}$	
WS\#9		
	Total \# of 5 gallon buckets = 9	
	Sediment Volume $=9 \times 0.019=0.171 \mathrm{~m}^{3}$	
	Basin wide: 0.171 cubic meters / 8.54 hectares $=0.020 \mathrm{~m}$	
Ws\#10		
	Total \# of 5 gallon buckets = 47	
	Sediment Volume $=47 \times 0.019=0.893 \mathrm{~m}^{3}$	
	Basin wide: $0.893 \mathrm{~m}^{3} / 10.12$ hectares $=0.088 \mathrm{~m}^{3} / \mathrm{ha}$	

Note: The WS\#2 basin was not cleaned this year due to the small amount of sediment deposition. Therefore there is not SED213E file for 2013. Sed213F will be compared with Sed214F to obtain the 2014 volume of bedload deposition.

HJ Andrews
 Annual Sediment Basin Yield Report for 2015

Method		
	Excel/calculator	sedcalpc
WS\#1		
115F	Survey points avg.: $432.13 / 194=2.23$	The sedcalpc program will
114E	Elevation calculation: $(100+1.210)-2.23=98.980$	no longer be used as of 2015.
	Survey points avg.: $504.59 / 194=2.60$	the data files were changed
	Elevation calculation: $(100+1.273)-2.60=98.673$	from FoxPro to Excel as
	Elevation difference: $98.980-98.673=0.307$	FoxPro is out of production.
	Sediment Basin Area: 199.37 Watershed Area: 95.9 ha	
	Sediment volume: $199.37 \times 0.307=61.207 \mathrm{~m}^{3}$	
	Watershed Basin wide: $61.207 \mathrm{~m}^{3} / 95.9$ ha. $=0.64 \mathrm{~m}^{3} / \mathrm{ha}$	
Excel/calculator		
WS\#2		
215F	Survey points avg.: $446.92 / 161=2.78$	
	Elevation calculation: $(100+0.988)-2.78=98.208$	
214E	Survey points avg.: $454.14 / 161=2.82$	
	Elevation calculation: $(100+0.973)-2.82=98.153$	
	Elevation difference: $98.208-98.153=0.055$	
	Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 95.9 ha	
	Sediment volume: $175 \times 0.055=9.63 \mathrm{~m}^{3}$	
	Basin wide: $9.63 \mathrm{~m}^{3} / 60.3$ ha. $=0.160 \mathrm{~m}^{3} / \mathrm{ha}$	
WS\#3	1 liquid gallon $=0.003785 \mathrm{~m}^{3}$	
	Volume of a 5 gallon bucket $=5 \mathrm{gal} \times 0.003785 \mathrm{~m}^{3}$	
	Total \# of 5 gallon buckets = 140	
	Sediment Volume $=140 \times 0.019=2.66 \mathrm{~m}^{3}$	
	Basin wide: 2.66 cubic meters / 101.1 hectares $=0.026 \mathrm{~m}$	$3 / \mathrm{ha}$
(the excavator bucket volume $=33,5$ gallon buckets)		
WS\#9		
	Total \# of 5 gallon buckets = 29	
	Sediment Volume $=29 \times 0.019=0.551 \mathrm{~m}^{3}$	
	Basin wide: 0.551 cubic meters / 8.54 hectares $=0.065 \mathrm{~m}$	$\mathrm{m}^{3} / \mathrm{ha}$
Ws\#10		
	Total \# of 5 gallon buckets = 143.5	
	Sediment Volume $=143.5 \times 0.019=2.727 \mathrm{~m}^{3}$	
	Basin wide: $2.727 \mathrm{~m}^{3} / 10.12$ hectares $=0.270 \mathrm{~m}^{3} /$ ha	

HJ Andrews Annual Sediment Basin Yield Report for 2016

Method
Excel/calculator
WS\#1

```
116F Survey points avg.: \(464.95 / 191=2.43\)
\[
\text { Elevation calculation: }(100+1.277)-2.43=98.847
\]
115E Survey points avg.: \(568.31 / 191=2.98\)
Elevation calculation: \((100+1.672)-2.98=98.692\)
Elevation difference: \(98.847-98.692=0.155\)
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: \(199.37 \times 0.155=30.902 \mathrm{~m}^{3}\)
Watershed Basin wide: \(30.902 \mathrm{~m}^{3} / 95.9\) ha. \(=0.32 \mathrm{~m}^{3} / \mathrm{ha}\)
```


Excel/calculator

```
WS\#2
216 F Survey points avg.: 406.70 / 152=2.68
Elevation calculation: \((100+0.889)-2.68=98.209\)
215E Survey points avg.: \(416.28 / 152=2.74\)
Elevation calculation: \((100+0.921)-2.74=98.181\)
Elevation difference: \(98.209-98.181=0.028\)
Sediment Basin Area: \(175 \mathrm{~m}^{2}\) Watershed Area: 95.9 ha
Sediment volume: \(175 \times 0.028=4.9 \mathrm{~m}^{3}\)
Basin wide: \(4.9 \mathrm{~m}^{3} / 60.3\) ha. \(=0.081 \mathrm{~m}^{3} / \mathrm{ha}\)
WS\#3 \(\quad 1\) liquid gallon \(=0.003785 \mathrm{~m}^{3}\)
Volume of a 5 gallon bucket \(=5\) gal x \(0.003785 \mathrm{~m}^{3}\)
Total \# of 5 gallon buckets = 165
Sediment Volume \(=165 \times 0.019=3.135 \mathrm{~m}^{3}\)
Basin wide: 3.135 cubic meters \(/ 101.1\) hectares \(=0.031 \mathrm{~m}^{3} / \mathrm{ha}\) ( the excavator bucket volume \(=33,5\) gallon buckets )
WS\#9
Total \# of 5 gallon buckets = 21
Sediment Volume \(=21 \times 0.019=0.399 \mathrm{~m}^{3}\)
Basin wide: cubic meters \(0.399 / 8.54\) hectares \(=0.047 \mathrm{~m}^{3} / \mathrm{ha}\)
Ws\#10
Total \# of 5 gallon buckets \(=85.5\)
Sediment Volume \(=85.5 \times 0.019=1.625 \mathrm{~m}^{3}\)
Basin wide: \(\mathrm{m}^{3} / 10.12\) hectares \(=0.161 \mathrm{~m}^{3} /\) ha
```


HJ Andrews Annual Sediment Basin Yield Report for 2017

Method

WS\#1

Excel/calculator

117F Survey points avg.: 581.26/ $190=3.06$
Elevation calculation: $(100+1.850)-3.06=98.79$
116E Survey points avg.: $488.26 / 190=2.57$
Elevation calculation: $(100+1.195)-2.57=98.625$
Elevation difference: $98.79-98.625=0.165$
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: $199.37 \times 0.165=32.896 \mathrm{~m}^{3}$
Watershed Basin wide: $32.896 \mathrm{~m}^{3} / 95.9$ ha. $=0.34 \mathrm{~m}^{3} / \mathrm{ha}$

Excel/calculator

WS\#2
217F Survey points avg.: $443.38 / 164=2.70$
Elevation calculation: $(100+0.988)-2.70=98.288$
216F Survey points avg.: $436.59 / 164=2.66$
Elevation calculation: $(100+0.899)-2.66=98.239$
Elevation difference: $98.288-98.159=0.049$
Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 60.3 ha
Sediment volume: $175 \times 0.049=8.575 \mathrm{~m}^{3}$
Basin wide: $8.575 \mathrm{~m}^{3} / 60.3$ ha. $=0.14 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#3 1 liquid gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}$
Total \# of 5 gallon buckets $=213$
Sediment Volume $=213 \times 0.019=\mathrm{m}^{3}$
Basin wide: 4.047 cubic meters $/ 101.1$ hectares $=0.040 \mathrm{~m}^{3} / \mathrm{ha}$ (the excavator bucket volume $=33,5$ gallon buckets)

WS\#9
Total \# of 5 gallon buckets $=25.5$
Sediment Volume $=25.5 \times 0.019=0.485 \mathrm{~m}^{3}$
Basin wide: cubic meters $0.485 / 8.54$ hectares $=0.057 \mathrm{~m}^{3} / \mathrm{ha}$
Ws\#10
Total \# of 5 gallon buckets = 43.5
Sediment Volume $=43.5 \times 0.019=0.827 \mathrm{~m}^{3}$
Basin wide: $0.827 \mathrm{~m}^{3} / 10.12$ hectares $=0.082 \mathrm{~m}^{3} /$ ha

HJ Andrews
 Annual Sediment Basin Yield Report for 2018

```
            Method
Excel/calculator
WS\#1
118F Survey points avg.: 485.22/ \(190=2.55\)
Elevation calculation: \((100+1.367)-2.55=98.817\)
117F Survey points avg.: 580.38/190=3.06
Elevation calculation: \((100+1.850)-3.06=98.79\)
Elevation difference: \(98.817-98.79=0.027\)
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: \(199.37 \times 0.027=5.383 \mathrm{~m}^{3}\)
Watershed Basin wide: \(5.383 \mathrm{~m}^{3} / 95.9\) ha. \(=0.06 \mathrm{~m}^{3} / \mathrm{ha}\)
```


Excel/calculator

```
WS\#2
218F Survey points avg.: \(436.65 / 160=2.73\)
Elevation calculation: \((100+1.047)-2.73=98.317\)
217F Survey points avg.: \(433.04 / 160=2.71\)
Elevation calculation: \((100+0.988)-2.71=98.278\)
Elevation difference: \(98.317-98.278=0.039\)
Sediment Basin Area: \(175 \mathrm{~m}^{2}\) Watershed Area: 60.3 ha
Sediment volume: \(175 \times 0.039=6.825 \mathrm{~m}^{3}\)
Basin wide: \(6.825 \mathrm{~m}^{3} / 60.3\) ha. \(=0.11 \mathrm{~m}^{3} / \mathrm{ha}\)
WS\#3 2017 sediment was not removed from basin due to high fire danger. Subtract 2017
bucket total from 2018 total to get actual 2018 bucket total
1 gallon \(=0.003785 \mathrm{~m}^{3}\) Volume of a 5 gallon bucket \(=5\) gal \(\mathrm{x} 0.003785 \mathrm{~m}^{3}\)
2018 Total \# of 5 gallon buckets \(=221\)
2017 Total \# of 5 gallon buckets \(=213\) ( \(221-213=8\) buckets for 2018 )
Sediment Volume \(=8 \times 0.019=0.152 \mathrm{~m}^{3}\)
Basin wide: \(0.152 \mathrm{~m}^{3} / 101.1\) hectares \(=0.002 \mathrm{~m}^{3}\)
( 2018, the excavator bucket volume \(=35\), 5 gallon buckets \(2017=33\)
The previous bucket volume used until 2018 was 33, 5 gallon buckets )
WS\#9
Total \# of 5 gallon buckets \(=8.5\)
Sediment Volume \(=8.5 \times 0.019=0.162 \mathrm{~m}^{3}\)
Basin wide: cubic meters \(0.162 / 8.54\) hectares \(=0.019 \mathrm{~m}^{3} / \mathrm{ha}\)
Ws\#10
Total \# of 5 gallon buckets \(=21\)
Sediment Volume \(=21 \times 0.019=0.399 \mathrm{~m}^{3}\)
Basin wide: . \(399 \mathrm{~m}^{3} / 10.12\) hectares \(=0.039 \mathrm{~m}^{3} / \mathrm{ha}\)
```


HJ Andrews
 Annual Sediment Basin Yield Report for 2019

Abstract

Method

Excel/calculator WS\#1 119F Survey points avg.: $484.3 / 178=2.72$ Elevation calculation: $(100+1.355)-2.72=98.635$ 118E Survey points avg.: $464.40 / 178=2.61$ Elevation calculation: $(100+1.175)-2.61=9.565$ Elevation difference: $98.635-98.565=0.070$ Sediment Basin Area: 199.37 Watershed Area: 95.9 ha Sediment volume: $199.37 \times 0.070=13.96 \mathrm{~m}^{3}$ Watershed Basin wide: $13.96 \mathrm{~m}^{3} / 95.9$ ha. $=0.146 \mathrm{~m}^{3} / \mathrm{ha}$

\section*{sedcalpc}

The sedcalpc program will no longer be used as of 2015. the data files were changed from FoxPro to Excel as FoxPro is out of production.

WS\#1 118E file benchmark reading was 2.103 m . or 6.9 feet. That is too high unless a person is standing on a bucket or something else but that was unlikely. By looking at the rod used for the benchmark survey it looked as though the rod had not been raised when it should have been. Raising the rod would have given a reading of 1.175 m . instead of 2.103 . Craig suggested double checking the number I came up with and the difference between a point on the dam with the benchmark reading from the 119F survey. That difference could then be subtracted from the elevation reading from the sed118E file for the same point on the dam and that should give you the benchmark reading. That came out to 1.175 m also. 1.175 m is the number I chose to use for the bench mark reading for the sed118E file.

Excel/calculator

WS\#2
219F Survey points avg.: $430.71 / 155=2.78$
Elevation calculation: $(100+0.945)-2.78=98.165$
218E Survey points avg.: $433.94 / 155=2.80$
Elevation calculation: $(100+0.941)-2.80=98.141$
Elevation difference: $98.165-98.141=0.024$
Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 60.3 ha
Sediment volume: $175 \times 0.024=4.2 \mathrm{~m}^{3}$
Basin wide: $4.2 \mathrm{~m}^{3} / 60.3$ ha. $=0.07 \mathrm{~m}^{3} / \mathrm{ha}$
WS\#3
1 gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal $\mathrm{x} 0.003785 \mathrm{~m}^{3}=0.019$
1 backhoe bucket $-=10-5$ gallon buckets
The HJA Compound backhoe was used since we did not hire and excavator this year.
There were 19 backhoe buckets X $10=190-5$ gallon buckets
Sediment Volume $=190 \times 0.019=3.61 \mathrm{~m}^{3}$
Basin wide: $3.61 \mathrm{~m}^{3} / 101.1$ hectares $=0.036 \mathrm{~m}^{3}$
(2018, the excavator bucket volume $=35$, 5 gallon buckets
The previous bucket volume used until 2018 was 33, 5 gallon buckets)

WS\#9 Backhoe bucket = 10,5 gallon buckets
Recorded 2 full backhoe buckets $=20$ ' 5 gallon buckets
Total \# of 5 gallon buckets $=20$
Sediment Volume $=20 \times 0.019=0.38 \mathrm{~m}^{3}$
Basin wide: cubic meters $0.38 / 8.54$ hectares $=0.045 \mathrm{~m}^{3} / \mathrm{ha}$
Ws\#10
Recorded 3 full backhoe buckets $=30,5$ gallon buckets
Total \# of 5 gallon buckets $=30$
Sediment Volume $=30 \times 0.019=0.570 \mathrm{~m}^{3}$
Basin wide: $0.057 \mathrm{~m}^{3} / 10.12$ hectares $=0.056 \mathrm{~m}^{3} /$ ha

HJ Andrews
 Annual Sediment Basin Yield Report for 2020

Excel/calculator

WS\#1
120F Survey points avg.: 513.62/ $183=2.81$
Elevation calculation: $(100+1.443)-2.807=98.636$
119F Survey points avg.: $496.79 / 183=2.715$
Elevation calculation: $(100+1.355)-2.715=98.640$
Elevation difference: $98.636-98.64=-0.004$
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: $199.37 \times 0-.004=-0.798 \mathrm{~m}^{3}$
Watershed Basin wide:- $0.798 \mathrm{~m}^{3} / 95.9 \mathrm{ha} .=-0.008 \mathrm{~m}^{3} / \mathrm{ha}$
The $-.798 \mathrm{~m}^{3}$ and $-.008 \mathrm{~m}^{3} /$ ha values indicate that some sediment was actually flushed through the sediment basin while not enough came into the basin to replace it or just that the survey method is not accurate enough to account for little or no sediment being added to the basin. Upon second glance of the survey data it does appear that some sediment may have flushed from the basin between the sediment basin entrance and the basin outlet.

Excel/calculator

WS\#2
220 F Survey points avg.: $400.56 / 148=2.707$
Elevation calculation: $(100+0.908)-2.707=98.201$
219 F Survey points avg.: $412.14 / 148=2.79$
Elevation calculation: $(100+0.945)-2.785=98.160$
Elevation difference: $98.201-98.160=0.041$
Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 60.3 ha
Sediment volume: $175 \times 0.041=7.18 \mathrm{~m}^{3}$
Basin wide: $7.18 \mathrm{~m}^{3} / 60.3 \mathrm{ha} .=0.12 \mathrm{~m}^{3} / \mathrm{ha}$
$7.18 \mathrm{~m}^{3}$ of calculated sediment deposition seems like more deposition then likely actually happened. The sediment basin area plays a big role in how much the sediment volume will be. Because we don't change that value even though we use a smaller area to calculate the annual elevation change between the two surveys it makes the sediment volume greater than if we used a basin area that corresponded to area of the basin that we actually used in the calculation. Historically, we cut down the number of points that we include in the average basin elevation calculation to the number of points that appear to show deposition in the current year compared to the previous year. By cutting down on the points in the calculation it keeps the points that show no deposition from reducing the sediment volume calculation. The surveys are only so accurate so errors can add up in the averaging with points that don't' appear to be significant deposition wise. A smaller basin would give a smaller sediment volume even though it is the same amount of sediment.

WS\#3

$$
1 \text { gallon }=0.003785 \mathrm{~m}^{3}
$$

Volume of a 5 gallon bucket $=5 \mathrm{gal} \mathrm{x} 0.003785 \mathrm{~m}^{3}=0.019$
Total number of 5 gallon buckets $=67$
Sediment Volume $=67 \times 0.019=1.27 \mathrm{~m}^{3}$
Basin wide: $1.27 \mathrm{~m}^{3} / 101.1$ hectares $=0.013 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#9
Total \# of 5 gallon buckets $=10$
Sediment Volume $=10 \times 0.019=0.19 \mathrm{~m}^{3}$
Basin wide: cubic meters $0.19 / 8.54$ hectares $=0.022 \mathrm{~m}^{3} /$ ha

Ws\#10
Total \# of 5 gallon buckets $=21$
Sediment Volume $=21 \times 0.019=0.40 \mathrm{~m}^{3}$
Basin wide: $0.40 \mathrm{~m}^{3} / 10.12$ hectares $=0.040 \mathrm{~m}^{3} / \mathrm{ha}$
2020 Logistics: Brad McNutt using his backhoe worked with a truck driver from Portable Rock Inc.to dig the sediment out of WS\#1 and lift it out of WS\#3 after we shoveled sediment into the backhoe bucket. We did not calibrate the backhoe bucket by number of 5-gallon buckets at WS\#3 as there wasn't enough sediment to make it worthwhile.
We did not have Brad dig out the basin at WS\#2 as the backhoe would have had trouble getting into the basin and would have wallowed around in the mud making a big mess and potentially compromising the integrity of the basin. Let alone the backhoe might have gotten stuck in there. Like Mike Mulligan and his steam shovel. We could have a coffee bar and heated pool by using the backhoe engine as a boiler Fortunately, there was not a large amount of sediment in the basin to require that it be removed this year.

Sed119F and Sed219F are used to compare the 2020 full surveys. The WS\#1 and \#2 basins were not cleaned out in 2019 as I was not able to find an excavator operator to dig out the sediment. Rod Fouts did use the HJ Andrews backhoe to lift sediment out of the WS\#3 basin in 2019.

HJ Andrews
 Annual Sediment Basin Yield Report for 2021

Excel spreadsheet comparison

WS\#1
121 F Survey points avg.: $468.65 / 173=2.709$
Elevation calculation: $(100+1.335)-2.709=98.626$
120E Survey points avg.: $492.73 / 173=2.848$
Elevation calculation: $(100+1.351)-2.848=98.503$
Elevation difference: $98.626-98.503=0.123$
Sediment Basin Area: 199.37 Watershed Area: 95.9 ha
Sediment volume: 199.37 x $0.123=24.52 \mathrm{~m}^{3}$
Watershed Basin wide: $24.52 \mathrm{~m}^{3} / 95.9 \mathrm{ha} .=0.257 \mathrm{~m}^{3} / \mathrm{ha}$

Excel spreadsheet comparison

WS\#2
221 F Survey points avg.: $440.96 / 163=2.705$
Elevation calculation: $(100+0.923)-2.705=98.218$
220 F Survey points avg.: $438.61 / 163=2.691$
Elevation calculation: $(100+0.908)-2.691=98.217$
Elevation difference: $98.218-98.217=0.001$
Sediment Basin Area: $175 \mathrm{~m}^{2}$ Watershed Area: 60.3 ha
Sediment volume: $175 \times 0.001=0.175 \mathrm{~m}^{3}$
Basin wide: $0.175 \mathrm{~m}^{3} / 60.3 \mathrm{ha} .=0.003 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#3
1 gallon $=0.003785 \mathrm{~m}^{3}$
Volume of a 5 gallon bucket $=5$ gal x $0.003785 \mathrm{~m}^{3}=0.019$
Total number of 5 gallon buckets $=80$
Sediment Volume $=80 \times 0.019=1.52 \mathrm{~m}^{3}$
Basin wide: $1.52 \mathrm{~m}^{3} / 101.1$ hectares $=0.015 \mathrm{~m}^{3} / \mathrm{ha}$

WS\#9 Total \# of 5 gallon buckets $=307.5$ buckets
Sediment Volume $=307.5 \times 0.019=5.84 \mathrm{~m}^{3}$
Basin wide: cubic meters $5.84 / 8.54$ hectares $=0.684 \mathrm{~m}^{3} / \mathrm{ha}$
The sediment total for WS\#9 for 2021 is a combination of 3 different sediment removal actions.

This, larger than normal, sediment total is due to the effects of the Holiday Farm Fire burning the entire WS\#9 watershed.

Ws\#10
Total \# of $1 / 2$ of a 5 gallon buckets $=491 / 2$ buckets
Total \# of 5 gallon buckets $=49 / 2=24.55$ gallon buckets
Sediment Volume $=24.5 \times 0.019=0.47 \mathrm{~m}^{3}$
Basin wide: $0.47 \mathrm{~m}^{3} / 10.12$ hectares $=0.046 \mathrm{~m}^{3} / \mathrm{ha}$
2021 Logistics: Neither WS\#1 or WS\#2 sediment basins were dug out in 2021. The contractor that I had interacted with to dig out the basins was not available, his equipment was all committed to wildfire assignments. Fortunately, WS\#1 did not receive an extreme amount of sediment in 2021 and the deposition at WS\#2 was low so the basins will likely be safe from overflowing with sediment in 2022.

Sed 120 F and Sed220F are used to compare to the 2021 full surveys. As mentioned above, the WS \#2 basins was not cleaned out in 2020 or 2021 as I was not able to find an excavator operator to dig out the sediment. Rod Fouts did use the HJ Andrews backhoe to lift sediment out of the WS\#3 basin in 2019, 2020 and 2021. Brad McNutt dug out WS\#1 in 2020 with his backhoe.

