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Forest Landscapes
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F requency distributions of the spatial variability
in surface temperature are examined and modeled.
Surface temperature data were obtained from ther-
mal images, acquired using NASA’s Thermal In-
frared Multispectral Scanner (TIMS). Two daytime
and two nighttime overflights, from different forest
management units on the H. J. Andrews Experi-
mental Forest in the Cascade mountains of western
Oregon, were made during August 1985. Prior to
analysis, TIMS temperature values were corrected
for atmospheric attenuation and emission of ther-
mal radiation using the LOWTRAN-6 algorithm.
Surface temperatures ranged from 10 and 60°C.
Frequency distributions of these spatial tempera-
ture fields exhibited patterns that are closely asso-
ciated with the nature of the surface coverage on
the unit. The frequency distribution patterns of
surface temperature were modeled using a two-
parameter beta probability density distribution.
The fit of the model was evaluated against the
TIMS dataset. The parameters represent a mathe-
matical description of the thermal signature of the
distribution. The model’s parameters provide a ba-
sis for identifying and classifying surface types.
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Model discrimination among the various surfaces
was good for thermal images taken during the day.
The model yielded a comparable, but less distinct,
nighttime ranking.

INTRODUCTION

Thermal infrared measures of plant and soil sur-
face temperatures have been used since the 1960s
(Gates, 1962) to investigate how these surfaces
react to and/or influence, environmental energy
flows. Most of this research has concentrated on
uniform and homogeneous agricultural surfaces,
focusing primarily upon soil moisture, plant water
status, crop yield, and evapotranspiration relation-
ships. Some examples are Bartholic et al. (1972),
Soer (1980), Price (1980; 1982), Idso et al. (1975;
1977), Seguin and Itier (1983), Stone and Horton
(1974), Hatfield et al. (1983; 1984), Heilman et al.
(1976), Seguin (1984), and Reginato et al. (1985).
These studies employed a wide variety of thermal
radiance sensors, ranging from hand-held and
ground-operated instruments to aircraft-mounted
and satellite-based systems, and exhibiting resolu-
tions from leaf-sized to hundreds of meters.

These same thermal response issues are of
concern to investigators of natural landscapes
(Balick and Wilson, 1980; Fritschen et al., 1982).
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However, the analytical complexity and sampling
tasks introduced by the surface heterogeneity that
is characteristic of forests and other complicated
landscapes has limited research about their envi-
ronmental response relationships to the individual
components of the system (e.g., Vanderwaal and
Holbo, 1984). In fact, even though a substantial
amount of thermal variability for these kinds of
surface can be anticipated (Holbo and Childs,
1987; Holbo et al, 1985; Childs et al., 1985),
quantitative measures of the spatial character of
surface temperature heterogeneity at scales which
can be identified on the ground have largely been
lacking. This would require a remote-sensing means
of thermally scanning entire surface types and
mixtures of types (plants and soils), simultane-
ously, as they express their temperature responses
to the same atmospheric and radiant inputs.

The inclusion of surface thermal process infor-
mation in global-scale climate models is clearly
recognized (Shukla and Mintz, 1982). But far more
detailed information about the thermal response
characteristics of heterogeneous surface types is
needed (Carson, 1982; Dickinson, 1983; Carlson,
1986).

This report addresses the information needs in
both of these areas. It describes the spatial at-
tributes of surface temperature images obtained
from a forested, mountainous landscape. Our spe-
cific objective in this initial investigation is to
characterize and classify, using a data-modeling
approach, several of the types of surface tempera-
ture frequency distributions that occur in that
landscape.

SURFACE TEMPERATURE OBSERVATIONS

Observational Capabilities

Quantitative measures of surface temperatures at
suitable spatial scales can be accurately obtained
using the calibrated Thermal Infrared Multispec-
tral Scanner (TIMS) (Palluconi and Meeks, 1985).
This aircraft-mounted instrument acquires raster-
scanned thermal radiance images in each of six
spectral channels between 8 and 12 pm. In-flight
referencing to calibrated blackbodies at the end of
each raster assure the temperature accuracy of the
data. The noise equivalent temperature specifica-
tion for TIMS data is 0.09°C. This instrument’s

optical design, together with its sampling rate,
affords a ground resolution of 5-30 m, depending
upon flightline altitude. This spatial resolution is
on the order of many surface features. Because it is
aircraft-mounted, surfaces can be reimaged at short
time intervals. The TIMS is thus an excellent tool
for investigating surface temperature heterogene-
ity at the landscape scale.

Corrections to TIMS measurements are re-
quired because errors are introduced as thermal
radiation passes through the atmosphere. Along
this pathway both attenuation and emission of
thermal radiation occurs that tend to diminish
scene contrast and to shift radiance values. In
clean and cloud-free atmospheres, compensation
for these errors can be accomplished when air
temperatures and humidities along the path be-
tween the surface and the aircraft are known.

Study Area

The area selected for thermal imaging is the H. J.
Andrews Experimental Forest. It is a 6500 ha
watershed located in the central-western Cascade
Mountains of Oregon, with elevational extent from
400 to about 1500 m, east of Eugene, OR. The
Andrews is one of the National Science Founda-
tion’s Long Term Ecological Research (LTER)
sites. It represents the dense coniferous forests of
Douglas-fir, western hemlock, and common true
firs of the western slope of the Cascades (Hawk
et al., 1978). Geological parent materials range
from older andesites to younger basalts, much of
which has been heavily altered or metamorphosed.
Prior to its selection as a LTER, the watershed had
been a USDA-Forest Service Experimental Forest.
It provides a variety of forest stand ages and site
exposures, and includes many diverse examples of
forest management practices, including clearcut
logged areas, partially logged or thinned or shelter-
wood areas, naturally regenerating areas, and
monoculture plantations.

TIMS Data Collection

A series of four TIMS overflights covering the
Andrews Experimental Forest were conducted on
5 August 1985. The flight paths provided image
overlap from altitudes yielding an average ground
resolution (pixel size) of 10 m at nadir. The day-
time overflights were close to solar noon, to ac-



quire thermal images when solar irradiance was
changing the least. The first began at 13:37 local
time (PDT), the second 28 min later (14:06). Night
flights began shortly after sundown, when radiant
cooling rates would be high, the first at 21:41, the
second 12 min later (21:53). Coincident sets of
near-infrared color photographs were also taken as
an aid in extracting ground-feature-referenced sites
from the more abstract TIMS data files. No clouds
were evident during any of these periods. The
surface temperatures reported in this study are
based on radiance measurements from TIMS’s
Channel 2 (8.4-9.2 pum).

Atmospheric Correction and Surface Temperature

Atmospheric profiles of air temperature and hu-
midity were measured with radiosondes just prior
to the noon and early evening flight times. The
launch site was at 436 m, balloon ascent rate was
initially 6 m/s, and data was telemetered at 3-s
intervals through altitudes well above mission flight
levels. This information enabled TIMS data to be
subsequently corrected for errors due to thermal
radiance attenuation and thermal emission along
the atmospheric path between the surface and
TIMS. The profile measurements were input to the
LOWTRAN-6 model (Kneizys et al., 1983). The
output from LOWTRAN-6 was later combined
with TIMS spectral response calibration curves
and in-flight blackbody reference measurements to
produce the transform table for converting pixel
data values to surface temperatures (Graham et al.,
1986; Anderson, 1985).

Site Selection

From within the thermal image data files of the
Andrews, we selected 10 sites for analysis. To
minimize a real distortion, the sites chosen were
within 10° of flightline nadir. In addition to five
forest stands, we chose a clearcut unit, a shelter-
wood, a naturally regenerating unit, a plantation,
and a rock quarry.

All sites were assigned four-letter identification
codes for file handling and LTER reference pur-
poses. The five forested sites are: AS32, RS07,
RS10, RS18, and a stand of mature forest adjacent
to RS18 we designated as OLDG. The clearcut
unit is Snowbrush, or SNOW; the shelterwood is
Mendel-2, or MNDL; the naturally regenerating
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stand is L341; the Douglas-fir plantation is L521;
and the quarry we called simply ROCK.

Each of these sites was isolated from the larger
flight line data files by individually delineating and
extracting them as separate datasets (Sader, 1986).
The delineation procedure was subjective, and in-
volved manually tracing the borders of each site as
the thermal image was displayed on a monitor,
thereby entering into the computer the necessary
coordinates for extracting the desired dataset.
Contrast levels at the borders of the sites were not
always adequate on the thermal image to afford
complete confidence in its position, so the lines
were usually traced slightly to the interior of the
site. Generally, this still afforded a pixel population
of 1000, or more, each nominally 0.01 ha in size.
Our main concern during this operation was to
acquire datasets uncontaminated by bordering ar-
eas that may have different surface characteristics,
and to assure that the characteristics of the se-
lected sites matched either LTER records or our
on-the-ground site checks.

Surface Temperature Patterns

Figure 1 illustrates the frequency distribution pat-
terns observed for six of the 10 sites at the H. J.
Andrews Experimental Forest. Data for all flights
is in one graph for each site.

Fig. 1a) shows the type of frequency distribu-
tion pattern typically observed from the fully de-
veloped Douglas-fir forest canopies, which com-
prised five of the thermally-imaged sites in this
study. This example is OLDG. The frequency dis-
tributions for both the day and night from these
forest-covered surfaces are narrow and symmetri-
cal, the nighttime ones especially so. In the figure,
the second day-data frequency distribution (D2)
can be seen shifted toward higher temperatures,
with a sharper peak than the first day-data fre-
quency distribution (D1). Although difficult to dis-
cemn from the figure, the night-data exhibit an
opposite trend, shifting toward cooler tempera-
tures.

Many of the same features are evident in Fig.
1b), which is from the Douglas-fir plantation
(L521). The distributions for the plantation are
broader and lower than the forest, and are less
symmetrical, with frequency values which trend
gradually toward higher temperatures in the day,
and toward cooler at night. The open, less dense
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Figure 1. Frequency distributions of surface temperature at six of the 10 sites at the H. ]J. Andrews
Experimental Forest (approx. 44°N latitude) on 5 August 1985: a) mature Douglas-fir forest (OLDG);
b) Douglas-ir plantation (L521); c) natural regeneration, with Douglas-fir and maple (L341); d) a
recently clearcut-logged site (SNOW); e) shelterwood site (MNDL); f) a rock outcrop and quarry
(ROCK). Each subfigure shows the observations for each site from both daytime and both nighttime
overflights. The higher temperature 1st day data (D1) and lower temperature Lst night data are lines
only. The 2nd day data (D2) and 2nd night data (N2) lines are denoted with symbols. Except for the
quarry [f)], which was a small site with an image size of only 100 pixels, all frequency distributions
shown are based on image datasets containing 1000 or more 0.01 ha pixels.



canopy of these sites allowed the underlaying soil
and forest floor materials to influence the radiance
distribution.

At the natural regeneration site (L341), Fig.
lc), the patterns become more diffuse in character.
The frequency distributions from both daytime
datasets are broader, and the daytime asymmetry
toward higher temperatures is even more pro-
nounced. This may be an expression not only of
thermal emissions from soil and forest floor materi-
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als, through the incomplete foliar canopy on this
site, but also from some large openings of bare soil
and rock. Also, the distributions are irregular, with
no particular most-frequent class, or mode, of tem-
perature values.

Showing even more contrast in frequency dis-
tribution range and pattern is Fig. 1d), for the
clearcut site (SNOW). Several differences from the
other patterns are apparent: The asymmetry of the
daytime distributions are reversed, with limbs

Table 1. TIMS-Observed Surface Temperature Statistics for Sites on the H. J. Andrews Experimental Forest,

5 Aug. 1985"
Temperature (°C) Form Mix
Site ID Surface Type Low High Range Mean DISPRS Factor Freq %

Daytime
AS32-D1 Forest 25.4 343 8.9 28.19 6.99 7.46 8.8
AS32-D2 Forest 26.7 346 79 29.04 6.41 9.46 10.8
L341-D1 Natural-regen. 21.6 50.0 28.4 28.51 22.79 3.23 59
L341-D2 Natural-regen. 22.7 53.1 30.4 30.17 24 45 3.13 5.3
L521-D1 Plantation 19.8 40.8 21.0 29.22 16.70 2.93 6.2
L521-D2 Plantation 26.2 40.8 14.6 29.98 14.34 5.65 7.0
OLDG-DI1 Forest 20.6 32.3 11.7 24.19 7.29 3.33 8.6
OLDG-D2 Forest 216 34.8 13.2 25.10 6.01 4.59 12.5
ROCK-D1 Quarry 279 59.2 31.3 48.47 44.90 - 228 39
ROCK-D2 Quarry 445 60.1 15.6 52.97 15.97 0.22 4.5
RS07-D1 Forest 242 42.5 18.3 27.40 9.50 4.16 10.1
RS07-D2 Forest 25.7 31.7 12.0 28.31 6.23 5.52 11.1
RS10-D1 Forest 259 348 89 28.39 722 7.88 10.1
RS10-D2 Forest 27.1 33.7 6.6 29.18 5.53 8.32 12.3
RS18-D1 Forest 20.4 31.1 10.7 23.99 8.89 7.72 10.6
RS18-D2 Forest 21.1 30.2 9.1 24.67 6.89 1.91 13.0
SNOW-D1 Clearcut 24.5 60.8 36.3 50.48 37.64 -203 2.7
SNOW-D2 Clearcut 40.6 60.4 19.8 52.64 21.51 -2.10 2.9
MNDL-D1 Shelterwood 318 60.8 29.0 52.52 36.93 -212 2.6
MNDL-D2 Shelterwood 32.3 60.8 28.5 51.96 38.36 -1.93 2.4

Nighttime
AS32-N1 Forest 18.2 229 4.7 20.79 5.04 - 0.50 15.7
AS32-N2 Forest 17.7 216 39 20.14 4.01 -11.35 18.8
L341-N1 Natural-regen. 13.5 198 6.3 © 16.38 6.43 0.72 10.0
L341-N2 Natural-regen. 12.9 19.6 6.7 15.93 6.74 2.16 12.4
L521-N1 Plantation 10.0 198 9.8 16.59 6.78 -9.01 208
L521-N2 Plantation 10.0 19.8 98 16.09 6.35 -9.98 17.3
OLDG-N1 Forest 18.5 211 2.6 19.52 2.31 22.79 32.0
OLDG-N2 Forest 18.0 20.4 24 19.11 2.78 5.32 245
ROCK-N1 Quarry 16.9 22.7 5.8 17.50 6.73 -6.32 11.3
ROCK-N2 Quarry 20.4 24.5 4.1 21.54 3.39 16.43 30.3
RSO7-N1 Forest 20.1 23.4 33 22.45 3.01 - 22.76 245
RSO7-N2 Forest 19.3 23.2 39 21.98 3.40 - 2142 29.7
RS10-N1 Forest 20.4 229 25 21.66 2.77 -6.14 244
RS10-N2 Forest 20.6 22.4 1.8 21.47 2.28 8.03 26.8
RS18-N1 Forest 18.0 20.1 2.1 19.02 2.25 12.70 26.7
RS18-N2 Forest 15.7 19.8 4.1 18.50 3.09 -11.58 244
SNOW-N1 Clearcut 115 21.9 10.4 16.32 9,95 0.62 73
SNOW-N2 Clearcut 10.6 20.4 9.8 15.77 9.95 -091 8.7
MNDL-N1 Shelterwood 16.6 21.1 4.5 16.77 3.62 - 495 195
MNDL-N2 Shelterwood 16.6 22 .4 5.8 17.89 5.41 12.25 16.0

“D = day. N = night, 1 = first flight, and 2 = second flight.
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graduating toward cooler temperatures, instead of
warmer; both the daytime and nighttime fre-
quency distributions have even lower frequency
percentages, making it more difficult to identify
any dominant mode in the frequency distributions;
and both day and night frequency distributions
extend over wide temperature ranges, spanning
the entire thermal image range. The daytime fre-
quency distributions express the effects of this
surface’s micro relief which produced many facets
that were exposed to the sun at diverse angles to
take on a wide range of temperatures. The gradual
extension from the modal classes to cooler temper-
atures may be due to the rather sparse coverage by
herbaceous vegetations. Most of the vegetation
was senescent, and therefore not transpiring. Had
it been live, perhaps even lower surface tempera-
ture classes would likely have been observed.

The shelterwood site (MNDL), Fig. le), is
similar to the daytime pattern of the clearcut,
having a slowing rising frequency distribution to-
ward higher temperatures. But its nighttime pat-
tern resembles that of a forested site. Shelterwoods
are typically logged to leave approximately four to
eight large Douglas-fir trees per hectare, presum-
ably mediating the microclimate in favor of forest
regeneration. The soil surface of this particular site
is more steeply inclined toward south, and closer
to the canyon bottom than the others. During D1
and D2, it was exposed to solar radiation at near-
normal incidence, as well as to longwave emissions
and reflected solar radiation from adjacent slopes
in the canyon. Highest temperatures for this site
were beyond the scale expressed in the daytime
datasets. And daytime temperature frequency dis-
tributions were irregular, with adjacent tempera-
ture classes having widely ranging frequencies,
yielding discontinuous frequency distributions.
This is in contrast to the other sites. It is as if the
surface is composed of discrete facets, with some
temperature classes essentially missing. While the
clearcut showed some of this, the expression is
more dramatic on the shelterwood, and may have
been due to the effects of shading by the remain-
ing large trees.

The dataset from the rock quarry (ROCK),
Fig. 1f), completes this graphical summary of the
variety in observed frequency distributions. This
site is on a minor peak on the northern boundary
line of the H. J. Andrews. It exhibits the most
irregular pattern of those observed. Part of this is

probably due to its smaller area, and thus small
number of pixels. But the rock quarry’s daytime
datasets tend to extend and confirm interpretations
of the discontinuous types of pattern seen in the
clearcut and shelterwood site datasets. Unfortu-
nately, the nighttime patterns are not consistent
with each other, it appearing likely that the N2
frequency distributions were mistakenly taken from
the adjacent forested area.

Table 1 lists the measured characteristics and
statistical properties of the frequency distributions
for all 10 sites. The tabulated values quantify the
features seen in Fig. 1. The low, high, and range
temperatures are the measured lowest and highest
dataset pixel values, and their difference. The mean
is the statistical central moment of the measured
pixel temperatures. The other three entries in the
table are: 1) The width of the frequency distri-
butions, or statistical measure of dispersion, is
DISPRS. It is computed as +3 times the standard
deviation of the frequency distributions. 2) The
form factor is the ratio of the frequency distribu-
tion’s third and fourth moments, normalized by
the temperature scale. This statistical property was
computed to represent the frequency distribution’s
peakedness and symmetry. Unfortunately, the form
factor is very sensitive to any irregularities in the
frequency distributions, so its intended use for
pattern interpretation was not achieved. 3) The
distribution’s height, the measured greatest fre-
quency of occurrence, is max freq %.

MODEL DEVELOPMENT

It is evident that the various surface temperature
frequency distribution patterns are characteristic
of the type of surface from which they were ob-
served. The patterns are expressive of the thermal
properties and microclimates of those surfaces.
Some generalizations about the expected behavior
of these surface types, based on the observed
patterns, are:

1. Daytime, sunlit-surface temperature frequency
distribution patterns vary more widely than
nighttime frequency distributions, and are
quite sensitive to the site’s spatial uniformity,
i.e., whether or not a surface is composed of
many elements or facets of differing tempera-
tures.



2. Daytime frequency distributions tend to be
dominated and narrowed by foliage, particu-
larly when the foliage is a coniferous canopy.

3. Single-moded, sharply-peaked frequency distri-
butions characterize nighttime forested sur-
faces. The nighttime frequency distributions
from a non-forested surface is broader.

4. Although limited by the size of individual pix-
els, the observed surface temperature fre-
quency distribution defines the spatial temper-
ature domain of the site at the time of image
acquisition. Depending on the correspondence
of pixel size to the size of predominating sur-
face features, there is some suggestion of a
potential for partitioning the daytime imaged
area according to the various components mak-
ing up the surface, e.g., vegetated, nonvege-
tated portions, particularly if model definitions
for certain types of surface can be employed as
reference standards.

5. Conceptually, nighttime pixel temperatures
might be similarly partitioned, although their
narrow temperature ranges would make vege-
tated /nonvegetated discrimination more dif-
ficult. The observed nighttime temperature fre-
quency distributions were expressing different
dissipative response mechanisms than those
during the day, but did seem to behave differ-
ently for vegetated surfaces than for bare soil
or rock.

6. The aggregate effects, considering both day-
time and nighttime temperature behaviors,
should aid in understanding the extent to which
surface microclimates can be altered by land
management practices. And the site-by-site
analysis of those microclimates should be ex-
tendable toward a more accurate expression of
the effects of surface alteration on climatic
behaviors at larger scales.

The BETA Probability Distribution as a Model
for Describing the Frequency Distributions of
Surface Temperature

In statistics the term frequency refers to the num-
ber of occurrences an observed value occurs within
a specified interval. Frequency distributions are
graphically depicted by histograms. The sum total
of all possible occurrences drawn from a popula-
tion has unity, or 100%, probability. This integral
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function of the individual probabilities over all
intervals defines the probability distribution.

On the other hand, the term probability den-
sity function, or PDF (Lumley and Panofsky, 1964)
refers to the derivative function of a probability
distribution, usually after it has been smoothed. If
not smoothed or its behavior generalized in some
way, the PDF and the frequency distribution would
otherwise be equivalent.

The bellshaped Gaussian, or normal, distribu-
tion is the most commonly applied example of a
PDF. When a hypothesis of normality is accept-
able, the distribution of sampled datasets is usually
not of primary concern. And, as a practical matter,
frequency distributions constructed from sample
datasets are often insufficient for defining the sta-
tistical attributes of any other distribution. How-
ever, it is apparent that few, if any, of the ob-
served temperature frequency distributions in this
study would classify as normal distributions, neces-
sitating the choice of some alternative distribution.

The popularity enjoyed by the normal distribu-
tion is attributable to its existing body of well-
developed theory, which also defines its statistical
behavior, and the likelihood that most sampled
datasets can rarely be shown to depart from a
normal distribution. This distinction, separating a
frequency distribution histogram from a PDF, has
no doubt arisen owing to: 1) historical considera-
tions of the continuous versus discrete properties
of observations (particularly in small samples drawn
from larger populations); 2) the analytical advan-
tage of being able to depict frequency distribu-
tions in mathematically deterministic ways; and 3)
the limited degree to which observational data
typically represents the populations from which
the samples were taken.

In consideration of the above discussion, and
somewhat in contrast to the restrictions noted, the
datasets for the TIMS imaged sites in this study
will hereafter be regarded as completely represent-
ing the populations of thermal pixels, rather than
merely being a small sample drawn from that
population. Further, the data interval is small
(+£0.2°C) and continuous, without inadvertent
sampling gaps, rather than discrete, randomly
sampled packets of information. Therefore, the
term PDF could be applied to the frequency distri-
butions of the observed TIMS datasets.

The regularity of the frequency distribution
patterns of the TIMS datasets, and their disimilar-
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ity to a normal distribution, prompted our selec-
tion of the beta probability distribution for the
modeling effort. The beta distribution (Selby, 1968;
Press et al., 1986) can take on a large range of
shapes, thereby having the potential to categori-
cally describe many observed distributions. The
statistical properties of beta probability distribu-
tions are well known, and a beta probability distri-
bution can be fitted to any closed distribution
assumed to have a single mode. It is defined by
two parameters and a gamma function (I') (op.
cit.) of these same parameters:

flx) =T(a, B)[(x) +(1-x)*],
for 0<x<1 and a>-1,8>-1. (1)

Note that the distribution is a closed one,
owing to the term in square brackets, which forces
a return to zero at each end of the x range. The
position along the x scale is governed by the
relative sizes of a to 8: When a > 3, the distribu-
tion is shifted to the right, and vice versa; if a=f3,
the mean of the distribution is 0.5, and may be
made to look very much like a normal distribution.
The range of the distribution narrows as « and S
are made larger. For integer values of a and £, the
gamma function term is

[[(a+B+2)]
MaB) = TTa+rorg+n] @

defining I'(y) =(y —1)!, where ! is the factorial
operator and y is the sum of values in parentheses.
The role of the gamma function is an impor-
tant and primary one. It can be interpreted as a
weighting coefficient, or third parameter, which
conditionally assures that the integral of the BETA
f(x) distribution is equal to 1 (unity probability)
for any a, B8 values that may be chosen. Because of
this condition, f(x) can truly be regarded as an
estimator of the probability of x, i.e., p(x), for
datasets being fitted by a BETA distribution.

Fitting BETA Probability Distributions to
Observed Frequency Distributions

Modeling a Frequency Distribution of Surface
Temperature with a BETA

Probability Distribution.

Each TIMS dataset was modeled with a BETA
probability distribution. The following describes

the steps used:

1. Scale the TIMS temperature values, from the
observed frequency distribution dataset, to
range from 0 to 1:

Tj —= Lo
=
Thigh - Tlow
low and high being the extreme TIMS values,
and
Tlow = T} < Thigh'

2. Choose values for a, 8, and compute for
each x:

(x)"+(1-x)".

Near 0 and 1 of x, this BETA product function
can produce very small numeric values. Com-
putational difficulties may also arise when the
frequency distribution is narrow and has large
frequency classes, situations that necessitate
choosing large values of a or B.

3. Find the integral function from step 2 for all x:

0<x<l.

This is done by successively summing the re-
sults of step 2 for x over its 0—1 range.

4. Normalize the function described by step 3
according to its value at x = 1. In step 3, this
maximum value will likely be a small number.
Dividing it into all values of the function pro-
duced in step 3 will result in a function being
produced by this step (step 4), which is a
cumulative BETA distribution with an integral
value of unity at x = 1. This step performs an
equivalent operation to the coefficient ['(a, B),
which is troublesome to compute.

. Differentiate the resultant function of step 4 at
the intervals of x. This produces the BETA
probability density function (PDF) of a, B, or
p(x).

6. Compare p(x) with the observed frequency
distribution. Loop iteratively through step 2
(selecting new trial values of a, ) to step 6
until an acceptable level of comparability is
found. For the cases shown here, a combina-
tion of least squares fit and visual (graphical)
matching at the modal frequency was used.
This combination approach helped avoid

at
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Figure 2. An example of a BETA modeled surface temperature frequency distribution. a) TIMS frequency
observations (—0-), superimposed with BETA model frequency estimates (—). The BETA parameters A
and B (a) producing this “fit” are shown along the Y-axis, a above 8. b) An X-Y scatterplot and the
“fitted” regression line for the frequency distributions shown in 2a). Procedures are detailed in the text.



20 Holbo and Luvall

choosing the a, 8 parameter set which may
yield a high regression coefficient, but which
did not simultaneously represent the modal
class of the observed distribution.

An Example of a BETA-Modeled Surface
Temperature Distribution

Figure 2a) shows an example, for the H. J.
Andrews site: “natural regeneration” (L341), of
both the observed frequency distribution of sur-
face temperature data and the results of a BETA
distribution fit, developed using the procedure de-
scribed above. This particular example is from
daytime TIMS overflight number 1 (D1). The val-
ues of the parameters a,f which were used to
produce the BETA results (the smooth curve su-
perimposed through the connected data points in
Fig. 2a) are shown to the right of the Y-axis
(45, 85). The major feature of the frequency distri-
bution of surface temperature can be seen to be
fairly closely described by the BETA probability
distribution.

Unlike Fig. 1c), for the same site, which shows
data from all four overflights, Fig. 2a) allows more
of the detail to be seen. Upon inspection, 2 peaks
(or modes) in the dataset are evident, as is the
pronounced limb in the frequency distribution,
extending toward high surface temperatures. While
the BETA distribution does not describe all of
these details, it does follow the general character
of the observed frequency distribution. One mea-
sure of how well the model fits is obtained by
regression. For this example (L341-D1), R? is
0.923.

The regression test was made a part of the
fitting procedure. The fitting procedure utilized
only those frequencies within the TIMS-observed
pixel temperature range, excluding of the tails of
the BETA distribution, which were beyond the
low-high range of the dataset. Using the regres-
sion, various values of a, 8 were tried, iteratively,
until a maximum R? was found. Tabulating the
resulting R? values in the form of a matrix with
coordinates a, x, 8 helped in the process of choos-
ing the best parameter combination. Using such a
matrix table, the optimal a, 8 values were chosen
from along what appears as a diagonal “ridge” of
higher correlation coefficients. This iterative tech-
nique was also assisted by viewing graphs of the
“fit” on a graphics monitor, since the convergence
of a, B values toward an optimum could be visu-

ally evaluated, especially during the early stages of
fitting. Additionally, viewing the fit helped assure
against selecting a, 8 values that may happen to
yield a high RZ, but failed to satisfactorily produce
the frequency near the principle mode of the
distribution. This was often the situation for the
more irregular datasets. As a figure of merit, R*
may not be the optimal choice, and its maximum
was sometimes quite broad through a range of a, 8
values, but it is an easy one to implement. Also, in
view of the wide range in a, 8 combinations, rep-
resenting all observed surface temperature distri-
butions in the Andrews’ datasets, the regression-
fitting technique seemed to provide fairly adequate
discrimination among the sites examined.

Figure 2b) is the X-Y scatterplot of TIMS
versus BETA regression for the “natural regenera-
tion” (L341-D1) site. The two peaks (modes) in
the frequency distribution are expressed to the
right and below the regression line; and the obser-
vations along the right limb of the frequency dis-
tribution, which had frequencies below 0.05, are
grouped near the origin. Otherwise, the clustered
pattern of data points around the regression line,
which has slope 1.026, was judged an accepta-
ble fit.

Results of BETA Distribution Fits for 10 Sites on
the Andrews Experimental Forest

The fitting procedure was repeated for all 40
datasets; 10 sites by four imaging overflights. The
results are presented in Table 2. In addition to the
a and B BETA parameters, a BETA index (de-
rived from the parameters and defined in the next
section), and the R* (R-SQRD) values, the table
presents model-estimated values for mean surface
temperature, temperature dispersion (DISPRS),
mode temperature, and modal frequency (mode
freq %). Unlike the observed distributions, these
latter two properties can be precisely defined,
owing to the deterministic nature of the model.
Ideally, the mean should be the same as the value
calculated from the data, and might have been
chosen as a fitting criterion. But the irregularity in
some of the observed distributions detracted from
its suitability for this purpose. The model disper-
sion value (DISPRS) was calculated the same way
( £+ 3 standard deviations) as it was for the datasets.
Again, because the model has no randomness, and
its statistical properties are determined by the
parameters of the model, model DISPRS will be



more conservative (smaller) than the comparable
statistic based on observational values.

The BETA Index and Site Rankings

To make ranked comparisons between the sites,
the two BETA parameters were combined into a
single value, the BETA index. This index contains
information about both the parameter ratio and
parameter magnitudes. The fitted «, 8 values for
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the sites had absolute ratios of less than 1 to above
3, at the same time ranging over 3 orders of
magnitude; 1 < a or 8 <1000, or more. The geo-
metric mean (GM) of a, B,/a* B was selected to
represent magnitude information. The logarithm of
the 8/a ratio (LR), log(8/a), was chosen to con-
vey the relationship between a and B. The advan-
tage of this logarithmic form was twofold: first, it
indicates model asymmetry in a manner similar to
the third moment of the dataset; and second, it

Table 2. BETA-Modeled Surface Temperature Distributions for Sites on the H. J. Andrews Experimental Forest, 5

Aug. 1985°
BETA Parameters Fit Temperature (°C) Mode
Site ID Surface Type A B Index R? Mean  DISPRS  Mode  Freq %
Daytime
AS32-D1 Forest 178 320 60.8 0.953 28.18 6.57 28.1 8.8
AS32-D2 Forest 250 420 73.0 0.963 28.98 5.68 28.8 98
L341-D1 Natural-regen. 45 85 171 0.923 27.64 12.69 27.4 4.5
L341-D2 Natural-regen. 55 95 17.2 0.925 28.68 11.95 28.6 4.7
L521-D1 Plantation 70 120 215 0.942 28.76 10.€3 28.6 5.3
L521-D2 Plantation 120 200 34.4 0.925 29.08 8.22 29.1 6.8
OLDG-D1 Forest 95 245 62.8 0.989 24.22 7.40 24.2 8.1
OLDG-D2 Forest 240 370 1389 0.984 25.06 4.86 24.9 12.0
ROCK-D1 Quarry 23.5 5 -73 0.423 52.01 21.14 53.1 21
ROCK-D2 Quarry 41 8 -129 0.620 52.58 15.86 53.3 28
RS07-D1 Forest 215 420 874 0.986 27.21 573 27.1 10.1
RS07-D2 Forest 265 470 878 0.987 28.33 542 28.4 10.5
RS10-D1 Forest 195 350 66.4 0.954 28.20 6.29 28.1 9.2
RS10-D2 Forest 310 515 88.1 0.983 29.11 5.12 29.1 10.9
RS18-D1 Forest 130 350 91.7 0.952 23.78 6.17 23.7 98
RS18-D2 Forest 210 520 130.1 0.927 24.63 5.09 24.5 11.6
SNOW-D1 Clearcut 23 5 -=171 0.900 51.86 21.46 53.0 2.1
SNOW-D2 Clearcut 20 4 -6.3 0.896 52.48 22.45 53.9 2.0
MNDL-D1 Shelterwood 7.7 1.3 -24 0.562 53.76 32.78 58.7 1.7
MNDL-D2 Shelterwood 75 14 -24 0.477 53.14 34.14 7.8 1.5
Nighttime
AS32-N1 Forest 160 600 1779 0.837 20.69 4.38 20.6 13.5
AS32-N2 Forest 150 600 180.6 0.913 20.18 440 20.1 13.8
L341-N1 Natural-regen. 25 170 54.3 0.969 16.54 7.30 16.3 9.2
L341-N2 Natural-regen. 32 245 783 0.843 15.88 5.87 15.7 115
L521-N1 Plantation 135 850 270.7 0.899 16.96 3.29 16.9 19.5
L521-N2 Plantation 100 700 223.6 0.963 16.36 3.56 16.3 18.7
OLDG-N1 Forest 272 1170 3574 0.735 19.59 3.15 19.6 20.2
OLDG-N2 Forest 260 1200 371.0 0.918 19.05 3.05 19.0 20.9
ROCK-N1 Quarry i 320 97.6 0.597 19.67 5.99 19.6 10.4
ROCK-N2 Quarry 295 1000 288.0 0.807 21.56 3.66 21.6 178
RS07-N1 Forest 300 900 2479 0.847 22.52 2.90 22,7 195
RS0O7-N2 Forest 300 990 282.6 0.605 21.80 362 219 17.7
RS10-N1 Forest 300 1000 286.4 0.946 21.71 362 21.6 178
RS10-N2 Forest 300 1000 286.4 0.603 21.67 3.33 21.6 18.5
RS18-N1 Forest 250 1150 355.4 0.944 19.07 3.06 19.0 20.5
RS18-N2 Forest 230 1150 359.5 0.938 18.48 297 18.5 21.0
SNOW-N1 Clearcut 14 95 30.3 0.930 16.57 9.79 16.1 6.9
SNOW-N2 Clearcut 13 95 30.4 0.830 16.15 9.57 15.7 71
MNDL-N1 Sheterwood 192 850 261.0 0.971 19.37 3.70 19.3 17.3
MNDL-N2 Shelterwood 168 775 239.6 0.967 19.06 3.81 19.0 16.8

*D = day, N = night, 1 = first flight, 2 = second flight.
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Figure 3. Site rankings, according to the parameter-based BETA index: GM * LR (see text). a) Daytime

results; b) nighttime results. See legend for site identifications,



offers greater discrimination between distributions
having ratios close to unity, essentially stretching
the contrast level for scenes with narrow and /or
nearly symmetrical temperature frequency distri-
butions, i.e., the nighttime datasets. The BETA
index was formed as the product of these two
terms: GM = LR.

Figure 3 shows a ranking of the sites according
to their BETA index values. Figure 3a) shows the
results for the daytime datasets; Fig. 3b), for night-
time. The daytime rankings are consistent with
intuition, as all the forested sites group toward one
end (large positive BETA indices), graduating
down toward the lower canopy densities and the
barren sites, which also show negative BETA index
values, consistent with their negatively skewed
frequency distributions (negative third moments).
This trend supports our interest in using the BETA
model as a tool for distinguishing sites on the basis
of cover type. As would be expected, site discrimi-
nating power corresponds to the amount of tem-
perature contrast in the scene. Thus, the nighttime
ranking does not yield as clear a separation among
sites as the daytime. The nighttime ranking embar-
rassingly revealed that our second dataset for the
ROCK site was, in fact, drawn from the forest
adjacent to it (rank position 5).

CONCLUSIONS

BETA probability distribution models of TIMS
spatial surface temperature frequency distribu-
tion data have described landscapes at the H. J.
Andrews Experimental Forest quite well. By pro-
viding simply parameterized descriptions of those
distributions, this image analysis technique ap-
pears to have considerable advantages over the use
of ensembled statistical descriptions. Acquisition of
additional TIMS datasets from widely different
landscape types are needed to test the BETA
model’s general applicability.

Some of the applications we anticipate for
BETA-modeled surface temperature frequency dis-
tributions have already been discussed in previous
sections. In summary, they include: classifying
landscapes on the basis of their thermal images;
interrelating such classifications with ecological
processes; evaluating alternative land management
strategies in microclimatic terms, as interpretable
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from the thermal image data; and, developing
composite-surface heat balance models for predict-
ing regional climate impacts.
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