360~373

論

Station Allow Station

文

PROPERTY OF: CASCADE HEAD EXPERIMENTAL FOREST AND SCENIC RESEARCH AREA

J. Jap. For. Soc. 58(10) '76

OTIS, OREGON

Biomass and Primary Production in Forests of Three Major Vegetation Zones of the Northwestern United States

Takao FUJIMORI,* Saburo KAWANABE,** Hideki SAITO,*** Charles C. GRIER**** & Tsunahide SHIDEI*****

FUJIMORI, Takao, KAWANABE, Saburo, SAITO, Hideki, GRIER, Charles C. & SHIDEI, Tsunahide: Biomass and primary production in forests of three major vegetation zones of the northwestern United States J. Jap. For. Soc. 58: 360~ Above-ground biomass and net primary production of representative 373, 1976 90 to 130 year-old stands in the Picea sitchensis, Tsuga heterophylla, and Abies amabilis vegetation zones of the northwestern United States were determined by destructive analysis and leaf litter collection. Total above-ground biomass, leaf biomass, and above-ground net production were, respectively 875 t/ha, 7.9 t/ha, and 10.3 t/ha/yr for a 100~120 year-old T. heterophylla-P. sitchensis stand in the P. sitchensis zone; 669 t/ha, 11.1 t/ha, and 12.7 t/ha/yr for a 90~110 year-old Pseudotsuga menziesii-T. heterophylla stand in the T. heterophylla zone; and 832 t/ ha. 17.5 t/ha, and 13.0 t/ha/yr for a 100~130 year-old Abies procera-P. menziesii stand in the Abies amabilis zone. Production structure, production efficiency. volumetric density, and other stand characteristics were presented and compared. Potential biomass accumulation for forests of T. heterophylla and A. amabilis zones was assessed by nondestructive stem biomass estimates of mature P. menziesii-T. heterophylla and A. procera-P. menziesii stands on sites comparable to those of corresponding younger stands. Stem biomass of these mature stands was 1591 t/ ha and 1687 t/ha respectively.

藤森隆郎・川邦辺三郎・斎藤秀樹・Charles C. GRIER・四手井領英: 米国北西部の主要 3 植生帯の森林の現存量と生産量 日林誌 58: 360~373, 1976 ※国北西部の主な三 つの植生帯からそれぞれ代表的な林分を選び、それらの現存量、生産量、落葉量などの調 査を行なった。太平洋に近い Picea sitchensis 帯の Tsuga heterophylla-P. sitchensis 林 (100~120年生)の地上部現存量、葉量、地上部純生産量は 875 t/ha, 7.9 t/ha, 10.3 t/ha/ yr であった。それより内陸の T. heterophylla 帯の Pseudotsuga menziesii-T. heterophylla 林 (90~110)のそれらは 669 t/ha, 11.1 t/ha, 12.7 t/ha/yr, カスケード山脈西 個の亜高山帯に近い Abies amabilis 帯の Abies procera-P. menziesii 林 (100~130)のそ れらは 882 t/ha, 17.5 t/ha, 13.0 t/ha/yr であった。調査で得た資料に基づき個々の林 分の生産構造、葉の生産能率、現存量密度、その他を検討し、林分間の比較を行なった。 上記調査林分とほぼ同環境にあり、極相に近づきつつある同型の林分を伐倒せず測定して 得た幹の現存量は、P. menziesii-T. heterophylla 林で 1591 t/ha, A. procera-P. menziesii 林で 1687 t/ha であった。

I. Introduction

North American forests in western Oregon, northern California, Washington, and southern British Columbia are generally composed of dense stands of large and long-lived trees (FRANKLIN & DYR-NESS, 1973). Species growing in these forests are tall (commonly over 60m at 100 years) with straight stems and with diameters of older trees often exceeding 200cm. Biomass accumulations in

- * Kansai Branch, Gov. For. Expt. Sta., Fushimi, Kyoto 612 農林省林菜試發均関西支場
- ** Kyoto Univ. For. in Hokkaido, Shibecha, Hokkaido 088-23 京东大学設学部清晨读習林北海道訪習林
- *** Fac. of Agr., Kyoto Pref. Univ., Kyoto 606 京都府立大学段学部
- **** School of For., Oregon State Univ., Corvallis, Oregon 97331, USA
- ***** Fac. of Agr., Kyoto Univ., Kyoto 606 京部大学喪学部

age 1 Th prese net p forest and p produ Biolog in ma Stu forest stand rangin for de These ductiv destru seral. rable Resu Diass : U.S. 1 now 3 of this world. This Washin of clim tation paper. primari ELIN & The ; ington Ranges. several Oregon in Wash ly has · invatio (antrast i ed slo

E

thes

bion LLIN

early of st

biom

fore:

for 1967 cond

ducti

E:

日林誌 58(10)'76

these forests appear to be outstandingly large.

Earlier reports have suggested potentially large biomass accumulations in forests of this region (HA-LLIN, 1934; WORTHINGTON, 1958). However, these early reports were concerned mainly with estimates of stem wood volume rather than total above-ground biomass and productivity. Only two studies of forest biomass and productivity have been reported for coniferous forests in this region (COLE *et al.*, 1967; FUJIMORI, 1971). Both of these studies were conducted in stands in the age range of peak productivity (35 and 26 years old) but well before the age range of maximum biomass accumulation.

The present study was intended to fill gaps in present knowledge of biomass accumulation and net primary productivity of northern temperate zone forests. In this study, methods of estimating biomass and productivity developed by the terrestrial primary productivity section of the Japanese International Biological Programme have been applied to stands in major northwest American forest types.

Study plots were located in three major coniferous forest zones of the U.S. Pacific Northwest. Three stands, one in each of the major forest zones and ranging from 90 to 130 years old were chosen for destructive biomass and productivity analysis. These stands were generally representative of productive sites in their respective forest zones. Nondestructive measurements were also made in mature seral, sub-climax stands growing on sites comparable to those of corresponding younger stands.

Results of this study provide reliable data on biomass and productivity in several forest types of the U.S. Pacific Northwest. Furthermore, these data now allow comparisons to be made between forests of this region and those in other parts of the world.

II. Characteristics of Study Area

This study was confined to western Oregon and Washington states in the USA. Detailed discussion of climate, geology, soils, physiography, and vegetation in this region is beyond the scope of this paper. The brief description following is drawn primarily from a more detailed treatment by FRAN-KLIN & DYRNESS (1973).

YR-

are

ith

ces

in

The physiography of western Oregon and Washington is dominated by the Coast and the Cascade Ranges. These mountain ranges are separated by several broad valleys; the Willamette Valley in Oregon and the Chehalis Valley and Puget Sound in Washington (Fig. 1). The Coast Range generally has low relief, relatively gentle slopes, and clevations ranging between 450 m and 750 m. In contrast, the Cascade Range has steep, deeply incised slopes with clevations normally reaching 1700

Fig.1. Location of experimental stands

- Numbers on map correspond with the following:
- 1: Tsuga heterophylla-Picca sitchensis stand, Cascade Head
- 2: Pseudotsuga menziesii-Tsuga heterophylla stand, Blue River
- 3: Abies procera-Pseudotsuga menziesii stand, Wildcat Mountain
- 4: Mature Pseudotsnga menziesii-Tsuga keterophylla stand, Middle Santiam
- 5: Mature Abies procern-Pseudotsuga menziesii stand, Goat Marsh, Res. Natural Area

m to 2000m, but occasionally reaching over 3000m.

The Coast Range is composed primarily of volcanic and sedimentary rocks. Soils derived from this material are normally fine textured deeply weathered except in areas of unstable soils. The Cascade Range south of latitude 47°15' is composed primarily of a variety of volcanoclastic rocks interbedded with numerous lava flows and volcanic ash layers. Soils in the Cascade Range are relatively young; many being classed as regosols. However, because of the nature of the parent material, these soils typically have a high clay content. Geology of the Cascade Range north of latitude 47°15' is exceedingly complex and incompletely mapped. Rocks in this area are a mixture of metamorphic, sedimentary, and igneous rock types.

The climate of western Oregon and Washington is generally mild for this latitude and annual temperature differences are relatively small. Annual precipitation in this region is usually greater than 1000mm and frequently exceeds 2500mm. Precipitation is concentrated in the winter months; normally, less than 10% of annual precipitation falls between 1 June and 1 September.

Vegetation zones of western Oregon and Washington have been described by FRANKLIN & DYRNESS (1973). The zones in which this study was conducted are the *Picea sitchensis* zone, the *Tsuga hcterophylla* zone, and the *Abies amabilis* zone. These zones include the major portion of forests of this region.

The Picca sitchensis zone is a long-narrow strip along the coastline of Oregon and Washington. It is restricted to western slopes of the Coast Range and generally at elevations below 350m. The cliinate in this zone is strongly influenced by the adjacent Pacific Ocean. One of the study plots for destructive analysis was located in the Picea sitchensis zone near Lincoln City, Oregon (Fig.1). This plot was located in a 120-year-old Tsuga heterophylla-Picea sitchensis stand on the U.S. Forest Service, Cascade Head Experimental Forest (Photo. 1). Location, soils, vegetation, and climate of this research area are given in Tables $1\sim4$. The study plot was representative of large areas of 120-yearold coastal forest in this region.

The Tsuga heterophylla zone is the most extensive forest zone in western Oregon and Washington. This zone is found at elevations between sea level and about 800 m elevation. In Oregon, this zone is found in the Coast and the Cascade Ranges but not in the Willamette Valley; in Washington, this zone is continuous from the coastal Picea sitchensis zone to about 800m elevation in the Cascades. Climate of the Tsuga heterophylla zone is strongly maritime but with generally less precipitation and greater temperature extremes than in the Picea sitchensis zone. A second plot for the destructive analysis was located in this zone in a 110year-old mixed stand of Pseudotsuga menziesii-Tsuga heterophylla-Acer macrophyllum in the Willamette National Forest near Blue River, Oregon (Fig. 1, Photo. 2). Location, soils, vegetation, and climate of the study plot area are given in Tables 1~4. This study plot was representative of large areas of seral Pseudotsuga menziesii forest of this age in this part of western Oregon. A study plot for non-destructive analysis of mature, sub-climax Pseudotsuga menziesii-Tsuga heterophylla-Tsuja plicata typical of productive sites in the *Tsuga helerophylla* zone was located in the upper Santiam River Drainage, Willamette National Forest, Oregon (Fig. 1). Climate and soils of this research area are essentially the same as in the 110-year-old stand near Blue River, Oregon.

The Abies amabilis zone lies between the temperate mesophytic Tsuga heterophylla zone of lowland western Oregon and Washington and the subalpine Tsuga mertensiana zone. This zone occurs in the Cascade Range, the Olympic Mountains of Washington and to a limited extent in the Coast Range at elevations from 1000m to 1500m. Like the other vegetation zones of this region, the climate of the Abies amabilis zone is strongly influenced by maritime storm systems, moving inland from the Pacific Ocean. Annual snowfall in this zone frequently exceeds 10 m and winter snow accumulations of 3 ~4m are not uncommon. The third study plot for destructive analysis was located in a seral Abies procera-Pseudolsuga menziesii-Abies amabilis stand in the Wildcat Mountains Research Natural Area, Willamette National Forest, Oregon (Fig. 1, Photo. 3). Location, soils, vegetation, and climate of this study plot area are given in Tables 1~4. Non-destructive analysis of a mature sub-climax Abies procera-Pseudotsuga menziesii stand was conducted near Mt. St. Helens in the Gifford Pinchot National Forest in Washington (Fig. 1, Photo. 4). Climate and soils in this area are comparable with those in the younger Abies procera-Pseudolsuga menziesii stand in Oregon.

III. Methods

1. Treatment for net production

Net primary production $(\varDelta P_N)$ estimates for trees in the destructive stands were based on the equation $\varDelta P_N = Y_N + \varDelta L_N + \varDelta G_N$

Table 1.	General	description	of	research	areas	
----------	---------	-------------	----	----------	-------	--

Forest type: (major tree species)	Tsuga hetcrophylla-Picca sitchensis	Pseudotsuga menziesii-Tsuga heterophylla	Abies procera-Pseudotsuga menziesii-Abies amabilis			
Location:	Cascade Head Experimental Forest, Otis, OR	Blue River, OR	Wildcat Mountain Res. Natural Area, OR			
Latitude: Longitude: Elevation (m):	45° 123°56 / 200	44° 122°30' 450	44° 122°40 ' 1300			
Soil characteristics: Type: Texture: pH (A 1 and B2	Reddish-Brown Lateritic Silt Loam	Reddish-Brown Lateritic Gravelly silty clay Loam	Brown Podzolic Sandy Loam			
horizons respectively): Soil Horizons (depths in cm)	4.0~4.5 A1; 0~14 A3~B1; 14~24 B2~B3; 24~70	7.0 \sim 6.2 A1; 0 \sim 20 A3; 20 \sim 38 B2; 38 \sim 104 B3; 101 \sim 125	6.2 \sim 5.8 A1; 0 \sim 20 A3 \sim B1; 20 \sim 50 B2; 49 \sim 90 B3; 90 \sim 120			
Rooting depth (cm) Soil parent material	70 Marine sediments (siltstone)	Andesite and andesitic breccia	120 Andesite plus volcanic ash and pumice			

日林志 58(10 Study plot Tsuga-Picea stand Pseudotsuga-Tsuga stand Abies-Pseudo-Isuga stand 1) Trees≥4.5cm Tsuga-Piced Tree species: Tsuga heterophyl. Picca sitchensis (Shrub species: Menzicsia ferrugi Vaccinium partif Oplopanax korrid. Herbaccous species Oxalis oregana N Trillium ocatum 1 Clintonia uniflora Pelystichum muni Viula semperiiren Struthiopteris spic Athyrium felix-fe

Tree species

where Y_N , dL_N , formed plant tissu ured at T_2 , losse due to mortality, interval.

It is difficult to the generally conthey were not conwas estimated usi ΔP_N

where S, B, and where S, B, and where V_{NR} , and where V_{NR} , and where V_{NR} , and

362,

日补志 58(10) '76

Table 2. Description of stands on study plots

Study plot	Slope, aspe Stand age and area (yr) study plo		Height of dominant trees (m) <u>Average</u> Range	Tree species present	Stand density ¹ , (stems/ha) Total and by species	Basal area ¹⁾ (m ² /ha) at DBH Total and by species	
Tsuga-Picea stand	199~120	0° 64m × 64m 4036m²	47.7 43.0 to 55.9	T.heterophylla P.sitchensis Total	322 51 373	71.6 26.6 98.2	
Psrudotsuga- Tsuga stand	90~110	18 ⁵ East facing 80m×50m 3808m ²	62.6 57.0 to 74.6	P. menziesii T. heterophylla A. macrophyllum Other species Total	234 102 87 55 478	57.4 1.8 3.5 0.6 63.3	
Abics-Pseudo- Isuga stand	100~130	21.5° South facing 60m×60m 3374m²	49.9 44.0 to 60.1	A. procera P. menzicsii A. amabilis T. mertensiana Total	136 116 92 6 350	54.7 39.2 4.1 0.1 93.1	

D Trees≥4.5cm DBH only

y 3 it is d 1, 5. is ed at the set ii

es on

Table 3. Tree, shrub, and herbaccous species present
--

Tsuga-Picea stand	Pseudotsuga-Tsuga stand	Abies-Pseudotsuga stand
Tree species:		
Tsuga heterophylla (RAF.) SARG.	Pseudotsuga menziesii (MIRB.) FRANCO	Abies procera REHD.
Picra sitchensis (BONG.) CARR.	Tsuga heterophylla (RAF.) SARG.	Pseudotsuga menziesii (MIRB.) FRANCO
	Acer macrophyllum PURSH	Abies amabilis (Dougl.) Forses
		Tsuga mertensiana (BONG.) CARR.
Shrub species:		
Menziesia ferruginea SMITH	Acer circinatum PURSH	Acer circinatum PURSH
Vaccinium partifolium SMITH	Vaccinium parvifolium SMITH	
Oplopanax horridum (J.E. SMITH) MIQ.	Gaultheria shallon PURSH	
	Berberis nervosa Pursh	
	Taxus brevifolia NUTT. 1)	
	Cornus nuttallii Aup. ex T. & G !!	
	Rhamnus purshiana DC.17	· · · · · · · · · · · · · · · · · · ·
Herbaceous species:		
Oxalis oregana NUTT. ex T. & G.	Linnaca borealis L.	Clintonia uniflora (SCHULT.) KUNTH .
Trillium ovatum PURSH	Polystichum munitum (KAULF.) PRESL	Asarum caudatum LINDL.
Clintonia uniflora (SCHULT.) KUNTH	Vancouveria hexandra (HOOK.) MORR.	Smilacina stellata (L.) DESF.
Polystichum munitum (KAULF.) PRESL.	& DEC.	Achlys triphylla (SMITH) DC.
Viola sempervirens GREENE	Tiarella trifoliata L.	Goodyera oblongifolia RAF.
Struthiopteris spicant (L.) WEIS.		Vaccinium mentbranacrum Dougl. ex
Athyrium felix-femina (L.) ROTH		Ноок.
		Pteridium aquilinem (L.) KUHN.
		var. pubescens UNDERW.

¹⁾ Tree species present as shrubs in this community.

where Y_N , ΔL_N , and ΔG_N respectively, are newly formed plant tissues in the interval T_1 to T_2 measured at T_z , losses out of newly produced matter due to mortality, and those by grazing in the same interval.

It is difficult to measure ΔL_N and ΔG_N , and they are generally considered far smaller than Y_N , so they were not considered in this study. Thus, ΔP_N was estimated using the equation

 $\varDelta P_N \coloneqq Y_{NS} + Y_{NB} + Y_{NL}$

where S, B, and L denote the tree components, stem, branch, and leaf, respectively. Although Y_{NS} . Y_{NB} , and Y_{NL} are not exactly the same as net production as mentioned above, it is allowed

to call them net production of stem, branch, and leaf, respectively, in this study.

For this study, Y_{NR} (*R* denotes root) is not included in JP_N , so the net primary production of the stand is limited to above-ground production. 2. Computations

Tree biomass and productivity of the three younger stands were estimated by the allometric method (KIRA & SHIDEI, 1967) using logarithmic regressions of individual tree component biomass and net production on D^2H (diameter squared times height in cm²×m). Regression equations were calculated using data from destructive analysis of individual trees in each stand. Regressions used in this pa-

2070

215

			-j piero	
Temperature and precipitation	measured on si	tudy plots for 1	1973~1974 (two-year :	average)
			Study plot	
		Tsuga-Picea	Pseudotsuga-Tsuga	Abics-Pseudotsuga
Average temperature (C):	Annual	9.9	9.2	7.4
	January	4.6	0.8	-1.4
	July	15.7	17.7	15.6
Precipitation (mm):	Annual	3423	2420	3620

Table 4. Climatic data for study plots

B. Long-term cumulative average temperature and precipitation from U.S. Weather Bureau climatic station1) nearest study plots.2)

1520

227

1 Dec. to 1 Mar.

1 June to 1 Sept.

		Otis, Oregon	McKenzie Bridge, Oregon
Latitude		45°02'	44-12'
Elevation		49m	497m
Average temperature:	Annual	10.1	10.1
	January	4.5	1.4
	July	15.2	19.8
Precipitation:	Annual	3115	1789
	1 Dec. to 1 Mar.	1317	780
	1 June to 1 Sept.	237	106

1) U.S. Weather Bureau. 1974. Annual Summary: Climatological data-Oregon. U.S. Dept. Comm. Asheville, N.C.

2) Otis is near Tsuga-Picea study area, McKenzie Bridge is near Pscudotsuga-Tsuga study area.

(1)

per estimate component volume or weight for individual trees. Notation used in these regressions is as follows: D is DBH (cm), H is tree height (m), and V is stem volume (dm³).

Equations relating tree component volume or biomass (Y, dm³ or kg) to D^2H for the three destructively sampled stands were of the form:

 $\log_{10} Y = b \log_{10} (D^2 H) - a$

Y

or of the form:

$$= -\frac{b}{D^2H} + a \tag{2}$$

Coefficients a and b for these equations as used in the different stands are given in the following paragraphs.

For the Tsuga-Picca stand, tree height was estimated from the equation: 0 5000

$$-\frac{1}{H} = \frac{0.5000}{D} + 0.0132$$
 (see Fig. 2)

1440

110

As relations between volume or weight of all components and D^2H show the same type of the relation between stem wood volume and D^2H shown in Fig. 3, all equations used in volume and weight computations for this stand were of form (1). Regression coefficients are given in the following table:

i.				Branch wood (weight) (Leaf (weight)				Net production of branch wood (weight)			
	Ь	a	b	a	Ь	a	Ь	a	6	a	Ь	a	
Tsuga heterophylla							1.1021		1.1435		0.8861	3.6811	
Picea sitchensis	0.9495	1.2069	1.0554	3.2569	0.9405	3.6343	1.1021	4.1079	1.1435	5.3407	0.8361	3.7851	

For the Pseudotsuga-Tsuga stand, tree height was estimated from the equation:

$$\frac{1}{H} = \frac{0.5357}{D} + 0.0089$$
 (see Fig. 2)

Again, all regressions were of form (1), since

relation between volume or weight of all components and D^2H showed the same type of relation between stem wood volume and D^2H as shown in Fig. 3. Coefficients for these regressions are given in the following table:

1 . · · ·			Branch wood (weight)		Leaf (weight)				Net production of branch wood (weight)				
	ь	a	Ь	a	Ь	a	ь	a	ь	a	Ь	a	
Pseudotsuga menzicsii	0.8885	0.9465	1.5171	5.8664	1.0172	3.7019	0.7621	2.1511	1.1850	5.4911	1.0172	4.3308	

Biomass and net production of Acer macrophyllum and Tsuga helcrophylla in this stand were estimated using the proportionality:

$$Y = Y' \cdot \frac{G}{G'}$$

where Y, Y', G, and G' are biomass of these spe-

日林誌 58(10)

cies in sample species, basal ple plot, and these species, For the Abie estimated from

τ Α.

日林誌 58(10) '76

sti-

omelan in ight l).

03

11 51 1potion 1 in ven

01

-1.0-

Photo. 1. Experimental stand of Tsuga heterophylla-Picea sitchensis, Cascade Head

Photo. 3. Experimental stand of Abies procera-Pseudolsuga menziesii, Wildcat Mountain

cies in sample plot, biomass of sample trees of these species, basal area (DBH) of these species in sample plot, and basal area (DBH) of sample trees of these species, respectively.

For the Abies-Pseudotsuga stand, tree heights were estimated from the equation:

Photo. 2. Experimental stand of Pseudotsuga menziesii-Tsuga helerophylla, Blue River

Photo. 4. Experimental stand of mature Abies procera-Pseudotsuga menziesii, Goat Marsh, Res. Natural Area

$$\frac{1}{H} = \frac{0.9516}{D} + 0.0087$$
 (see Fig. 2)

Components listed together with their regression coefficients in the following table were estimated using equation form (1). This is because relations between these components and D^2H show such regression line as shown in Fig. 3.

	Stem wood (weight)		Lea (weig		Net produ stem v (weig	vood	Net production of branch wood (weight)	
	6	a	ь	а	6	a	ь	a
All species	0.9252	1.4953	0.6656	1.7056	0.8528	3.1109	0.8046	3.0324

As the relation between branch wood weight or net production of leaf and D^2H shows such regression curve as shown in Fig. 4, they were estimated using equation form (2) and coefficients are given in the following table:

	Branch (weig		Net production of leaf (weight)				
	ь	a	Ь	a			
All species	714.23	0.0013	1.7105	0.0294			

For the non-destructive mature stands, tree height was estimated from the equations in Figs. 5 and 6. Stem volumes of the non-destructive mature stands were calculated using

$V = \pi/4(D^2H)F$

where F is a stem taper coefficient determined by measuring fallen trees of each species in the plot. Values of F for the various species were *Pseudotsuga* menziesii 0.427, *Tsuga heterophylla* 0.491, *Thuja*

Fig. 2. Relation between diameter and tree height for the three experimental stands

plicata 0. 427 in the Pseudotsuga-Tsuga stand and Abies procera 0. 414, Pseudotsuga menziesii 0. 393, Tsuga heterophylla 0. 510, and Abies amabilis 0. 510 for the Abies-Pseudotsuga stand. 3. Sampling

For destructive analysis, a sample plot was laid out in each stand. Sample plot dimensions are given in Table 2. Diameters $(\pm 0.1 \text{ cm})$ and species of all the trees and height $(\pm 1 \text{ m})$ of one-third of the trees on each plot were determined using a diameter tape for DBH and an Abney level for heights. Sample trees were chosen from each stand to represent the full range of tree size classes. The number of sample trees chosen was proportional to the number of trees in each size class and species on the plot. Sample trees were felled, tree dimensions were recorded and the dry weight of each tree component was determined by the stratifiedclip method (MONSI & SAEKI, 1953).

Using the general stratified-clip method, the following procedure was applied to determine dry weight of components of individual sample trees: Intervals 3~4 meters long(strata) were marked along

(dm3) Tsuga-Picea Stand o T. heterophylla P. sitchensis 10-Volume Stem Psudotsuga-Tsuga S. Abies-· Pmenzies: Psudotsuga S CA. procera 10 10-105 105 D2H (cm2m)

Fig. 3. Relation between D^2H and stem volume for the three experimental stands The two smallest trees in the *Pseudotsuga-Tsuga*

stand and the three smallest trees in the Abies-Pscudotsuga stand are not plotted on the graph.

日林誌 58(10)'76

76

and

393,). 510

laid

are

ecies

rd of

ng a

1 for

stand

The

nal to

pecies

imen-

cach

tified-

e fol-

c dry

trees:

along

ume

121

ics-

(kg) 10 of Leaf Production ž (kg) 10¹ procera Wood P. menziesii A. amabilis Branch 10⁵ (cm²·m) 10 104 108 D²H

Fig. 4 Relation between D^2H and branch wood weight, and between D^2H and net production of leaf

Pseudotsuga menziesii: $\frac{1}{H} = \frac{0.5913}{D} + 0.0026$ Tsuga heterophylla: $\frac{1}{H} = \frac{1.0345}{D} + 0.0056$ (D≥20cm)

the main stem of the felled tree. All branches originating in each 3~4m stratum were removed and separated into foliage-bearing twigs and large

Fig. 6. Relation between diameter and tree height in mature Abics-Pseudolsuga stand at Goat Marsh Res. Natural Area Abies procera: $\frac{1}{H} = \frac{0.6035}{D} + 0.0095$ Pseudolsuga menziesii: $\frac{1}{H} = \frac{1.0087}{D} + 0.0087$ Tsuga heterophylla and Abies amabilis: $\frac{1}{H} = \frac{1.1842}{D}$

+0.0066 (D≥20cm)

branch components. Fresh weight of these components was determined on a spring scale. Representative subsamples of large branches and foliagebearing twigs were taken from each 3~4m stratum and fresh weight obtained. The subsample of foliage-bearing twigs was separated while fresh into new twig plus foliage and older twigs plus foliage fractions. Large branch and the foliage-twig samples were then dried. After drying, the foliage-twig samples were separated into foliage and twig components and percent water of the original subsample was computed together with ratios of new foliage to new twig plus foliage, older foliage to older twig plus foliage, and new twig plus foliage to total twig plus foliage. These ratios were used together with fresh weight of all twigs and foliage to compute dry weight of new and older twigs and foliage components in that stratum. Component weights for each tree were obtained by summing the respective weights in each stratum.

Cross-section discs were cut from the tree stem at each stratum mark. Diameter outside bark, diameter inside bark, and the thickness of current 5-year radial increment were measured on each section. Wood and bark density were also determined on samples from these sections. Stem, bark, and increment volume were computed using SMA-

LIAN's rule. The value of stem increment volume was averaged over the current five years.

Net production of branch was determined for the Abics-Pseudotsuga stand by two methods. In the first, three to five sample branches were chosen from each vertical stratum in direct proportion to the branch size frequency distribution, and with care to cover the whole characters of the branches in each stratum. Sample branches were cut into 5 to 50cm segments from bough to twigs, segment length being proportional to branch diameter. The annual rings of the segments were examined and the growth (net production) rate of branch volume was calculated using the common stem analysis method (SMALIAN). In the second method, net production of branch was computed by multiplying stem wood growth rate by branch biomass for each stratum. This method was used for the Tsuga-Picea and the Pseudotsuga-Tsuga stands and also, to provide comparative data, on the Abies-Pseudotsuga stand. Net production of stem bark was computed by multiplying stem wood growth rate times bark biomass. Net production of branch bark was similarly the product of branch wood growth rate and branch bark biomass.

All weights are reported as oven-dry weights at 90°C.

4. Field procedures

Tsuga-Picea stand: Fieldwork was done between August 28 and September 20, 1972. From the experimental plot (Tables 1, 2, Photo. 1), 12 sample trees (10 Tsuga heterophylla and 2 Picea sitchensis) were felled for analysis. Each sample tree was divided into 4m vertical strata except for the top (a variable length) and the base (1.3m). For estimation of understory biomass(DBH \leq 4.4cm), 5 subplots (4m×4m) were set at the four corners and the center of the plot. All vegetation in each subplot was harvested and directly weighed.

Pseudotsuga-Tsuga stand: Fieldwork was done

between September 27 and October 17, 1972. From the experimental stand (Tables 1, 2, Photo. 2), 12 sample trees (10 *Pseudolsuga menziesii*, 1 *Tsuga heterophylla*, and 1 *Acer macrophyllum*) were felled for analysis. Each tree was divided into 4m strata except for the top and the base. Five sub-plots(5m \times 2m) for estimating understory biomass (DBH \leq 4.4 cm) were set every 5m along the strata mid-line of the plot. That is to say, the vertical length of each sub-plot was 5m and the distance between each margin of those sub-plots was also 5m. All vegetation in each sub-plot was harvested and weighed.

Abies-Pseudotsuga stand: Fieldwork was carried out between August 3 and 25, 1972. In the experimental plot (Tables 1, 2, Photo. 3), 6 Abies procera, 4 Pseudotsuga menziesii, 1 Abies amabilis, and 1 Tsuga mertensiana were felled as sample trees. The sample trees were divided into 3m strata except for the top and the base. For estimating understory biomass (DBH≤4.4cm), the following method was used. The experimental plot was divided into 30 10m×10m sub-plots. In each subplot, percent cover by species of understory vegetation was recorded. Average cover values were then calculated. The sub-plot whose percent cover for each species was nearest the average values was chosen for total harvest. All of the subordinate vegetation on this sub-plot was cut and weighed.

Six litterscreens $(1 \text{ m} \times 1 \text{ m})$ were placed in each of the destructive analysis stands. Litterfall was collected monthly from these screens for two years. Senescent and living leaf litter were separated from other litter; all were weighed.

For non-destructive measurement of the mature Pseudotsuga-Tsuga stand, a $120 \text{m} \times 80 \text{m}$ plot was laid out in the stand. The plot was on level ground. The DBH of all trees with DBH \geq 9.5cm were measured. Tree heights which were not measured

Fig. 7. Diameter frequency distributions for the three experimental stands

were estimated and tree height work was done The mature Ab the same way (m and inclined done between O

日林誌 58(1(

7

2

2

IV.

Height-diamet distribution for stands are show distinguish betw tree layers in th vations indicate range between respectively, in ga, and Abiesthe Tsuga-Pice range (Fig. 2). tributed along th cters in both the Pseudotsuga stan istic of the Ps values of H/D Pseudolsuga mer

日林誌 58(10)'76

1) '76

d in each erfall was wo years. rated from

plot was of ground. form were measured

Pseudotsuga-Tsuga Stand Fig. 8. Production structure of the three stands

.5010

L, S, and B denote leaf, stem, and branch dry weight respectively.

were estimated by the relationship between DBH and tree height really measured (Fig. 5). Fieldwork was done between November 6 and 8, 1972. The mature *Abies-Pseudotsuga* stand was analyzed the same way (Fig. 6). This plot was $100 \text{ m} \times 100$ m and inclined 10° to the south. Fieldwork was done between October 20 and 25, 1972.

40 80 Stem & Branch 120

.5 0 10

2 1 0

Leaf

IV. Result and Discussion

Height-diameter relations and diameter frequency distribution for the three destructively sampled stands are shown in Figs. 2 and 7. It is difficult to distinguish between the dominant and sub-dominant tree layers in these stands. However, our observations indicate that canopies of dominant trees range between 43~56m, 57~75m, and 44~60m, respectively, in the Tsuga-Picea, Pseudolsuga-Tsuga, and Abies-Pseudotsuga stands. Few trees in the Tsuga-Picca stand are in the 5~25m height range (Fig. 2). In contrast, tree heights are distributed along the entire range of heights and diamcters in both the Pseudotsuga-Tsuga and the Abies-Pscudotsuga stands (Fig. 2). An unusual characteristic of the Pseudotsuga-Tsuga stand is the high values of H/D (height in cm+diameter in cm) for Pseudotsuga menziesii. Many trees in this stand,

even dominants, have an H/D ratio exceeding 100 (Fig. 2). For example, the largest value of H/D in the dominant trees $(57\sim75 \text{ m in H})$ recorded 106.5 (60.6 m in H, 56.9 cm in D) in this stand.

The production structure of the three stands is diagrammed in Fig. 8. These data show vertical distribution of tree component biomass in the various species of each stand. The leaf biomass of the *Tsuga-Picea* stand is concentrated in the upper part of the canopy in comparison with the other two stands.

Above-ground biomass and net production of the Tsuga-Picea stand is shown in Table 5. Total stand biomass including subordinate vegetation is 875t/ha, of which about 75% is Tsuga heterophylla. Subordinate vegetation biomass (4.0t/ha) is a negligible component of this stand. Leaf biomass in this stand excluding subordinate vegetation is 7.9t/ha, less than 1% of total above-ground biomass. This value falls in the lowest class of leaf biomass for coniferous forests of Japan. In contrast, FUJI-MORI (1971) reports leaf biomass of 21.1t/ha in a 26-year-old Tsuga heterophylla stand in the same experimental forest in which the present stand was sampled.

There are several possible explanations for the

369

A. amabilis

80 50 10

Table 5. Biomass and net production of *Tsuga-Picea* stand at Cascade Head Experimental Forest, Oregon

Trees (≧4.5cm l	DBH)			Dry	weight	t (ton/	hal			Volu	me (m ³	(ha)
		Ste	m	2.,	Bran					Ste		na)
		Wood		Total			Total	Leaf	Total	Wood	Bark	Total
	Tsuga heterophylla	560.7	56.0	616.7	24.4	4.5	28.9	6.03	651.6	1278.6	132.5	1411.1
Biomass	Picea sitchensis	190.8	7.2	198.0	18.3	1.5	19.8	1.88	219.7	544.8	22.6	567.4
	Total	751.5	63.2	814.7	42.7	6.0	48.7	7.91	871.3	1823.4	155.1	1978.5
	Tsuga heterophylla	4,35	0.44	4.79	0.29	0.03	0.32	2.23	7.34	9.93	1.03	10.96
Net production	Picea sitchensis	1.72	0.06	1.78	0.53	0.02	0.55	0.66	2.99	4.88	0.20	5.08
	Total	6.07	0.50	6.57	0.82	0.05	0.87	2.89	10.33	14.81	1,23	16.04
Subordinate veg	getation	Dry weight (ton/ha))							
			Tot	al	_							
	Tsuga heterophylla		2.55									
	Broad leaf shrubs		1.14	1								
Biomass	Herbaceous plants		0.05	5								
	Ferns		0.2	9								
	Total		4.0	3								

low leaf biomass in this stand. The difference between this stand and the one reported by FUJIMORI may be due simply to differences in the growing stage of this stand and the younger stand studied by FUJIMORI. According to ANDO et al. (1972), leaf biomass of a mature Tsuga sieboldii stand in Japan is 7.8t/ha, nearly the same as in this stand. Another factor probably contributing to the low leaf biomass in this older stand is pruning of living foliage by winds associated with winter storms. Litterfall collections indicate that 1.5 and 1.0 t/ha/ yr of living foliage of all age classes were broken from trees in this stand by winds during 1973 and 1974 respectively. In the same period, wind damage to younger stands in this experimental forest was minimal. However, longer term data is necessary to confirm these observations.

Annual total above-ground net production and net production of leaf (excluding subordinate vegetation) were 10.3 and 2.9t/ha/yr in this stand. Proportions of current foliage to total leaf dry weight in this stand were 37% for Tsuga heterophylla and 35% for Picea sitchensis. The value of net production of leaf in this stand is in good agreement with that of leaf litterfall; averaged over 2 years, leaf litterfall in this stand was 3.0t/ha/yr. Leaf efficiencies for production of above-ground portions (aboveground net production divided by total leaf biomass) of this stand were 1.2 and 1.6t/t/yr for Tsuga heterophylla and Picea sitchensis, respectively.

Above-ground biomass and net production of the *Pseudotsuga-Tsuga* stand is shown in Table 6. Total above-ground biomass of this stand is 669t/ha including subordinate vegetation. Biomass of *Pseudotsuga menziesii*, *Tsuga heterophylla*, *Acer macrophyllum*, other tree species, and subordinate vegetation constitute about 95, 1, 2, 0.4, and 1% respectively of the total above-ground stand biomass. Excluding subordinate vegetation, leaf biomass of this stand is 11.1t/ha (13.9t/ha including subordinate vegetation) while total above-ground net production and net production of leaf are 12.7 and 2.84 t/ha/yr, respectively. Based on these data, leaf production efficiency of this stand is 1.1 and 1.2t/ t/yr for *Pseudotsuga menziesii* and *Tsuga helerophylla*, respectively. Current foliage constitutes 24 and 42% respectively of total leaf biomass of *Pseudotsuga menziesii* and *Tsuga heterophylla*. Again for this stand, there was good agreement between the value of leaf litterfall (2.6t/ha/yr) and that of net production of leaf (2.8t/ha/yr).

Above-ground biomass and net production of the Abies-Pseudotsuga stand is shown in Table 7. Total biomass of this stand is \$82t/ha with Abies procera, Pseudolsuga menzicsii, Abies amabilis, Tsuga mertensiana, and subordinate vegetation constituting about 60, 37, 3, 0.02, and 0.2%, respectively, of this total amount. Excluding subordinate vegetation, leaf biomass of this stand is 17.5t/ha (17.6t/ ha, including subordinate vegetation), while total above-ground net production and net production of leaf are respectively 13.0 and 3.22t/ha/yr. Based on these data, leaf production efficiencies in the Abies-Pseudotsuga stand are 0.76, 0.73, and 0.63t/ t/yr for Abies procera, Pseudolsuga menziesii, and Abies amabilis, respectively. In this stand, current foliage constitutes 19, 18, and 13% of total foliage for Abies procera, Pseudotsuga menziesii, and Abies amabilis, respectively. The value of leaf litterfall in this stand was 3.0t/ha/yr, which is also in good agreement with that of net production of leaf (3.2 t/ha/yr).

When comparing net production of branch among stands, the different methods used should be noted.

•
Biomass
Net production
Subordinate vege
Biomass
 D T≤10kg/ha, Primarily 1 Table Trees (≥4.5cm 1
Biomass
Net production
Subordinate vege
Biomass
 Net product lower lines T≤10kg/ha/
Net production of the <i>Pseudolsuga</i> -product of brane

the correspondin

日林誌 58(10

Trees (≥4.5cm I

Table 6

日林誌 58(10) '76

Table 6. Biomass and net production of Pseudotsuga-Tsuga stand at Blue River, Oregon

				Dry	weight	(ton/ł	na)			Volu	me (m ³ /	ha)
	-	Stem Branch						Stem				
	-	Wood	Bark	Total	Wood	Bark	Total	Leaf	Total	Wood	Bark	Total
	Pseudotsuga menziesii	510.2	69.2	579.4	49.5	5.8	46.3	10.50	636.2	1172.8	183.0	1355.8
	Tsuga heterophylla	4.11	0.49	4.60	1.07	0.18	1.25	0.31	6.16	9.43	1.28	10.71
Biomass	Acer macrophyllum	13.50	1.25	14.75	1.07	0.10	1.17	0.20	16.12	31.10	3.31	34.41
	Other species	2.11	0.21	2.32	0.28	0.04	0.32	0.07	2.71	4.87	0.55	5.43
	Total	529.9	71.2	601.1	42.9	6.1	49.0	11.1	651.2	1218.2	188.2	1406.4
	Pseudotsuga menziesii	6.70	0.50	7,60	1.40	0.22	1.62	2.47	11.69	15.39	2.38	17.77
	Tsuga heterophylla	0.20		0.22		TD	0.01	0.13	0.36	0.45	0.05	0.51
	Acer macrophyllum	0.28		0.31		т	0.02	0.20	0.53	0.63	0.07	0.70
	Other species	0.06		0.07		T	T	0.04	0.11	0.14	0.02	0.16
	Total	7.24		8.20	1.43		1.65	2.84	12.69	16.61	2.53	19.14
Subordinate vegetation		Dry weight (ton/ha)										· · ·
		Stem	and br	anch	Leaf		Total					
	Acer circinatum		1.10		0.07		1.17					· • · ·
Biomass	Taxus brevifolia		2.98		0.66		3.64					2. * 3
	Vaccinium parvifoliu»	1	0.15		0.01		0.16					
	Berberis nervosa		0.17		0.48		0.65					
	Gautheria shallon		0.25		0.18		0.43					•'.
	Tsuga heterophylla		0.03		0.03		0.11					
	Seedlings ²⁾		0.02		0.01		0.03					
	Herb layer				0.13		0.13					
	Polystichum munitum				1.23		1.23					
	Tabal											
	Total		4.75		2.80		7.55					• *•••
1) T<10kg/ha			4.75		2.80		7.55					• • • • • •
a ma averag, mo	ı/y r	heleroph		edlings	2.80		7.55					• •
	/yr 1 to 6-year-old Tsuga)		ylla se									• • • • •
	l/yr 1 to 6-year-old <i>Tsuga</i> l		ylla se			scudols		and a	t Wild	cat Mou	ntain	• ****
>> Primarily	yr 1 to 6-year-old <i>Tsuga</i>) e 7. Biomass and ne		ylla se			scudols		and a	t Wild			*,
Primarily Table	yr 1 to 6-year-old <i>Tsuga</i>) e 7. Biomass and ne		ylla se	n of A			uga st	and a	t Wild	Volu	ime (m)	•,
Primarily Table	yr 1 to 6-year-old <i>Tsuga</i>) e 7. Biomass and ne	et proc	<i>ylla</i> se luctior em	n of A	bies-Ps y weigh Brar	nt (ton,	iuga st (ha)			Volu	ume (m³, em	/ha)
Primarily Table	yr 1 to 6-year-old <i>Tsuga</i>) e 7. Biomass and ne	et proc	<i>ylla</i> se luctior	n of A	<i>bies-Ps</i> y weigh	nt (ton,	iuga st (ha)	and a	Total	Volu St. Wood	ume (m³, em Bark	/ha) Tota
Primarily Table	yr 1 to 6-year-old <i>Tsuga I</i> 7. Biomass and ne DBH)	et proc	em Bark	n of A	bies-Ps y weigh Bran Wood	nt (ton,	iuga st (ha)		Total	Volu	ume (m³, em	/ha) Tota
Primarily Table	Alyr 1 to 6-year-old Tsuga I 7. Biomass and ne DBH) Abies procera	St Wood 411.6	em Bark 67.9	n of A Dry Total	bies-Ps y weigh Bran Wood 25.3	t (ton) nch ¹⁾ Bark 10.7	fuga st (ha) Total	Leaf 10.19	Total	Volu St. Wood 1083.2 602.1	ume (m³, em Bark	/ha) Tota 1234.2 700.0
Primarily Table	yr 1 to 6-year-old <i>Tsuga I</i> 7. Biomass and ne DBH)	St Wood 411.6	em Bark 67.9 41.1	Total 479.5 224.0	bies-Ps y weigh Bran Wood 25.3 19.2	nt (ton) nch ¹⁾ Bark 10.7 7.4	(ha) Total 30.0 26.6	Leaf 10.19 6.65	Total 528.7	Volu Sto Wood 1083.2	ume (m ³ , em Bark 131.0	/ha) Tota 1234.2 700.0
 Primarily Table Trees (≥4.5cm 	Alyr 1 to 6-year-old Tsuga I 27. Biomass and ne DBH) Abies procera Pseudotsuga menziesi	St Wood 411.6 252.9	em Bark 67.9 41.1 0 2.88	Total 479.5 234.0 21.3	bies-Ps y weigh Bran Wood 28.3 19.2 8 1.5	at (ton/ ach ¹ / Bark 10.7 7.4 0.61	(ha) Total 30.0 26.6	Leaf 10.19 6.63 0.63	Total 528.7 327.3	Volu St. Wood 1083.2 602.1	ume (m ³ , em Bark 131.9 97.9	/ha) Tota 1234.2 700.0 54.7
 Primarily Table Trees (≥4.5cm 	Abies procera Pseudotsuga menziesin Abies amabilis	St Wood 411.6 252.9 13.56 0.13	em Bark 67.9 41.1 0 2.88	Total 479.5 224.0 21.3	bies-Ps y weigh Brar Wood 28.3 19.2 \$ 1.5 7 0.6	t (ton) ach ¹ , Bark 10.7 7.4 0.61 T	(ha) Total 39.0 26.6 2.13	Leaf 10.19 6.63 0.63	Total 528.7 327.3 24.19 0.18	Volu St. Wood 1083.2 602.1 48.65	ume (m ³ , em Bark 151.0 97.9 6.10	(ha) Tota 1234.2 700.0 54.7 0.4
 Primarily Table Trees (≥4.5cm 	Abies procera Pseudotsuga menzicsin Abies amabilis Tsuga mertensiana Total	St Wood 411.6 252.9 13.56 0.11 683.2	em Bark 67.9 41.1 0 2.88 5 0.62 111.3	Total 7013 479.5 2/4.0 21.3 0.11 795.1	bies-Ps y weigh Brar Wood 28.3 19.2 8 1.55 7 0.67 4).1	nt (ton) nch ¹ , Bark 10.7 7.4 0.61 T 13.7	iuga st (ha) Total 30.0 26.6 2.13 0.01 67.8	Leaf 10.19 6.65 0.63 0.01 17.43	Total 528.7 327.3 24.19 0.18	Volu St. Wood 1083.2 602.1 48.65 0.37	em Bark 131.0 97.9 6.10 0.04	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4
 Primarily Table Trees (≥4.5cm 	Abies procera Pseudotsuga menzicsin Abies amenzicsin Abies amenzicsin Abies amenzicsin	St Wood 411.6 252.9 13.56 0.13	em Bark 67.9 41.1 0 2.88 5 0.62 111.9	Total 7013 479.5 2/4.0 21.3 0.11 795.1	bies-Ps y weigh Brar Wood 28.3 19.2 \$ 1.57 7 0.6 4).1	at (ton) ach ¹⁾ Bark 10.7 7.4 0.61 T 13.7 0.87	iuga st (ha) Total 39.0 26.6 2.13 0.01 67.8 3.44	Leaf 10.19 6.65 0.63 0.01 17.48 1.97	Total 528.7 327.3 24.19 0.18 830.4 10.00	Volu St. Wood 1083.2 602.1 48.65 0.37 1734.4	em Bark 131.0 97.9 6.10 0.04 235.0	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4
 Primarily Table Trees (≥4.5cm 	Abies procera Pseudotsuga menelesii Abies procera Pseudotsuga menelesii Abies amabilis Tsuga mertensiana Total Abies procera	St Wood 411.6 252.9 13.56 0.11 683.2 3.59	em Bark 67.9 1.18 5 0.62 111.9 8 0.61	Total 479.5 2/4.0 21.3 0.1 795.1 4.5	bies-Ps y weigh Brar Wood 28.3 19.2 5 1.5 7 0.6 40.1 9 2.5 0.4 9	t (ton) ach ¹⁾ Bark 10.7 7.4 10.61 T 13.7 0.65 5 0.15	(ha) Total 39.0 26.6 2.18 0.01 67.8 3.44 1.15	Leaf 10.19 6.65 0.63 0.01 17.43 1.97	Total 528.7 327.3 24.19 0.18 830.4	Volu St. Wood 1083.2 602.1 48.65 0.37 1734.4	em Bark 131.0 97.9 6.10 0.04 235.0	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8
 Primarily Table Trees (≥4.5cm 	Abies procera Pseudotsuga menzicsin Abies amabilis Tsuga mertensiana Total	St Wood 411.6 252.9 13.56 0.11 683.2 3.59	em Bark 67.9 12.8 5 0.62 111.9 8 0.61	Total 479.5 2/4.0 21.3 0.1 795.1 4.5	bies-Ps y weigh Brar Wood 28.3 19.2 \$ 1.5 7 0.6 4).1 9 2.5 0.0 9 1.4	at (ton) ach ¹⁾ Bark 10.7 7.4 7.4 10.61 1 T 13.7 7 0.87 8 0.15 3 0.56	Total 30.0 26.6 2.18 0.01 67.8 3.14 3.14 5.2.01	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47	em Bark 131.0 97.9 6.10 0.04 255.0 1.36	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8
 Primarily Table Trees (≥4.5cm Biomass 	yr 1 to 6-year-old Tsuga I e 7. Biomass and ne DBH) Abies procera Pseudotsuga menziesii Abies amabilis Tsuga mertensiana Total Abies procera Pseudotsuga menziesi	St Wood 411.6 252.9 13.56 0.11 693.2 3.59 2.5	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38	Total 479.5 224.0 21.3 0.1 795.1 4.3 2.9	bies-Ps y weigh Brar Wood 25.3 19.2 \$ 1.5 7 0.6 40.1 9 2.5 0 2.5 0 2.5 0 1.4 0 0.6	at (ton) ach ¹⁾ Bark 19.7 7.4 7.4 10.61 1 T 18.7 7.4 7.6 8 0.61 5 8 0.15 6 6 0.12	Total 39.0 26.6 2.13 0.01 67.8 3.44 1.16 2.001 2.001	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03 4.85	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47	em Bark 131.0 97.9 6.10 0.04 255.0 1.36	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9
 Primarily Table Trees (≥4.5cm 	yr 1 to 6-year-old Tsuga I e 7. Biomass and ne DBH) Abies procera Pseudotsuga menziesii Abies amabilis Tsuga mertensiana Total Abies procera Pseudotsuga menziesi	St Wood 411.6 252.9 13.56 0.11 683.2 3.59	em Bark 67.9 41.1 0 2.88 5 0.02 111.9 8 0.61 2 0.35	Total 479.5 224.0 21.3 0.1 795.1 4.3 2.9	bies-Ps y weigh Brar Wood 25.3 19.2 \$ 1.5 7 0.6 40.1 9 2.5 0 2.5 0 2.5 0 1.4 0 0.6	at (ton) ach ¹⁾ Bark 10.7 7.4 7 0.61 1 T 13.7 7 0.87 8 0.15 5 0.56 6 0.12 3 0.05	Total 30.0 26.6 2.13 0.01 67.8 3.44 1.15 0.201 2.0.13	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17 0.08	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03 4.85	Volt St Wood 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00	ame (m ³) em 131.0 97.9 6.10 0.04 255.0 1.36 0.90	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9
 Primarily Table Trees (≥4.5cm Biomass 	Abies procera Pseudotsuga menzicsin Abies procera Pseudotsuga menzicsin Abies amabilis Tsuga metensiana Total Abies procera Pseudotsuga menzicsi Abies amabilis	St Wood 411.6 252.9 13.56 0.11 683.2 3.56 2.5 0.2	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38 1 0.03	Total 479.5 224.0 21.3 0.1 795.1 4.3 2.9	bies-Ps y weigh Bran Wood 25.3 19.2 5 1.55 7 0.67 4).1 9 2.5 0 (2) 0 1.42 0.66 4 0.1	at (ton) ach ¹⁾ Bark 10.7 7.4 7 0.61 1 T 13.7 7 0.87 8 0.15 5 0.56 6 0.12 3 0.05	Total 39.0 26.6 2.13 0.01 67.8 3.44 1.15 2.01 2.0.78 5.0.13 0.03	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17 0.08	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03 4.85 0.50 0.40	Volt St Wood 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00	ame (m ³) em 131.0 97.9 6.10 0.04 255.0 1.36 0.90	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9
 Primarily Table Trees (≥4.5cm Biomass 	yr 1 to 6-year-old Tsuga I e 7. Biomass and ne DBH) Abies procera Pseudotsuga menziesii Abies amabilis Tsuga mertensiana Total Abies procera Pseudotsuga menziesi	St Wood 411.6 252.9 13.56 0.11 693.2 3.59 2.5	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38 1 0.03	Total 479.5 224.0 21.3 0.1 795.1 4.3 2.99 4.0 2.99	bies-Ps y weigh Brar Wood 23.3 19.2 5 1.5: 7 0.6: 40.1 9 2.5: 0.2: 0.2: 0.2: 0.2: 0.4: 0.6: 4 0.1 0.0:	at (ton) ach ¹² Bark 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 7.4 10.7 10.7 7.4 10.7	Total 30.0 26.6 2.13 0.01 67.8 3.44 1.15 0.201 2.0.13	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17 0.08	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03 4.85 0.50 0.40 T	Volt St. Wood 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55	ame (m ³) em 131.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9 0.6
 Primarily Table Trees (≥4.5cm Biomass 	Abies procera Pseudotsuga menziesii Abies procera Pseudotsuga menziesii Abies amabilis Tsuga mertensiana Total Abies procera Pseudotsuga menziesi Abies amabilis Tsuga mertensiana	St Wood 411.6 252.9 13.56 0.11 653.2 3.59 2.5 0.2 T ²	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38 1 0.03 0 T	Total Total 479.5 274.0 21.3 0.11 795.1 4.5 2.9 0.2 T	bies-Ps y weigh Brar Wood 28.3 19.2 \$ 1.5 7 0.6 40.1 9 2.5 0.4 0.1 0.6 40.1 0.6 40.1 0.6 T T	at (ton, ach ¹) Bark 10.7 7.4 0.61 1 T 13.7 7.0.87 8 0.15 5 0.56 6 0.12 3 0.03 7 0.01 T T	Total 30.0 26.6 2.18 0.01 67.8 3.145 2.01 0.78 0.78 0.78 0.13 0.03 T T	Leaf 10.19 6.63 0.01 17.43 1.97 1.17 0.08 T	Total 528.7 327.3 24.19 0.18 8 ³ 0.4 10.00 7.72 6.03 4.85 0.50 0.40 T	Volt St. Wood 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55	ame (m ³) em 131.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9 0.6 T
 Primarily Table Trees (≥4.5cm Biomass 	Abies procera Pseudotsuga menzicsin Abies procera Pseudotsuga menzicsin Abies amabilis Tsuga metensiana Total Abies procera Pseudotsuga menzicsi Abies amabilis	St Wood 411.6 252.9 13.56 0.11 683.2 3.56 2.5 0.2	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38 1 0.03 0 T	Total Total 479.5 274.0 21.3 0.11 795.1 4.5 2.9 0.2 T	bies-Ps y weigh Brar Wood 28.3 19.2 \$ 1.5 7 0.6 40.1 9 2.5 0.4 0.1 0.6 40.1 0.6 40.1 0.6 T T	at (ton) ach ¹² Bark 10.7 7.4 7 0.61 1 T 13.7 0.87 5 0.55 5 0.55 5 0.55 5 0.55 5 0.00 T T 5 1.45	Total 30.0 26.6 2.13 0.01 67.8 3.44 5.2.01 2.0.0	Leaf 10.19 6.63 0.01 17.43 1.97 1.17 0.08 T 3.22	Total 528.7 327.3 24.19 0.18 830.4 10.00 7.72 6.03 4.85 0.50 0.40 T T	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55 T	ame (m ³) em Bark 151.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06 T	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9 0.6 T
 Primarily Table Trees (≥4.5cm Biomass 	Abies procera Pseudotsuga menziesii Abies procera Pseudotsuga menziesii Abies amabilis Tsuga mertensiana Total Abies procera Pseudotsuga menziesi Abies amabilis Tsuga mertensiana	St Wood 411.6 252.9 13.56 0.11 653.2 3.59 2.5 0.2 T ²	em Bark 67.9 41.1 0 2.88 5 0.62 111.9 8 0.61 2 0.38 1 0.03 0 T	Total Total 479.5 274.0 21.3 0.11 795.1 4.5 2.9 0.2 T	bies-Ps y weigh Brar Wood 25.3 19.2 5 1.5 7 0.6 40.1 0 2.5 0 1.4 4 0.1 0.6 4 0.1 0.0 T T 3 4.1	at (ton) ach ¹² Bark 10.7 7.4 7 0.61 1 T 13.7 0.87 5 0.55 5 0.55 5 0.55 5 0.55 5 0.00 T T 5 1.45	Total 30.0 26.6 2.13 0.01 67.8 3.44 5.2.01 2.0.0	Leaf 10.19 6.63 0.01 17.43 1.97 1.17 0.08 T 3.22	Total 528.7 327.3 24.19 0.18 8 ³ 0.4 10.00 7.72 6.03 4.85 0.50 0.40 T T 16.58	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55 T	ame (m ³) em Bark 151.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06 T	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9 0.6 T
 Primarily Table Trees (≥4.5cm Biomass 	lyr 1 to 6-year-old Tsuga I e 7. Biomass and ne DBH) Abies procera Pseudotsuga menziesi Abies amabilis Tsuga mertensiana Total Abies amabilis Tsuga mertensiana Total	St Wood 411.6 252.9 13.56 0.11 653.2 3.59 2.5 0.2 T ²	em Bark 67.9 41.1 5 0.62 111.9 8 0.61 2 0.35 1 0.03 9 T 1 1.02	Total Total 479.5 274.0 21.3 0.11 795.1 4.5 2.9 0.2 T	bies-Ps y weigh Brar Wood 25.3 19.2 5 1.5 7 0.6 40.1 0.2 0 1.4 0.6 4 0.1 0.0 T T 3 4.1 1.7	at (ton) ach ¹² Bark 10.7 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	Total 30.0 26.6 2.13 0.01 67.8 3.44 5.2.01 2.0.0	Leaf 10.19 6.63 0.01 17.43 1.97 1.17 0.08 T 3.22	Total 528.7 327.3 24.19 0.18 8 ³ 0.4 10.00 7.72 6.03 4.85 0.50 0.40 T T 16.58	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55 T	ame (m ³) em Bark 151.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06 T	/ha) Tota 1234.2 700.0 54.7 0.4 1989.4 11.8 6.9 0.6 T
 Primarily Table Trees (≥4.5cm Biomass Net production 	lyr 1 to 6-year-old Tsuga I e 7. Biomass and ne DBH) Abies procera Pseudotsuga menziesi Abies amabilis Tsuga mertensiana Total Abies amabilis Tsuga mertensiana Total	St proc St Wood 411.6 252.9 13.56 0.11 693.2 3.59 2.5 0.2 T ² 6.7	em Bark 67.9 41.1 5 0.62 111.9 8 0.61 2 0.35 1 0.03 9 T 1 1.02	Total 479.5 2/4.0 21.3 0.1 795.1 4.5 2.9 0.2 T T.T y weig	bies-Ps y weigh Brar Wood 25.3 19.2 5 1.5 7 0.6 40.1 0.2 0 1.4 0.6 4 0.1 0.0 T T 3 4.1 1.7	at (ton) ach ¹² Bark 10.7 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	Total 30.0 26.6 2.13 0.01 67.8 3.44 5.2.01 2.0.0	Leaf 10.19 6.65 0.63 0.01 17.43 1.97 1.17 0.08 T 3.22	Total 528.7 327.3 24.19 0.18 8 ³ 0.4 10.00 7.72 6.03 4.85 0.50 0.40 T T 16.58	Volt St. Weod 1083.2 602.1 48.65 0.37 1734.4 10.47 6.00 0.55 T	ame (m ³) em Bark 151.0 97.9 6.10 0.04 255.0 1.36 0.90 0.06 T	Tota 1234.2 700.0 54.77 0.4 1989.4 11.8 6.9 0.6

¹⁾ Net production of branch: Upper value for each species was obtained from direct branch analysis, values on lower lines were obtained from product of branch biomass and stem growth rate in the corresponding stratum.

0.11

0.62

0.13

1.50

0.02

1.52

1.33

1.39

2) T≤10kg ha/yr

Biomass

Net production of branch in the *Tsuga-Picca* and the *Pseudotsuga-Tsuga* stands was computed as the product of branch biomass and stem growth rate in the corresponding stratum (method 2). This same

Acer circinatum

Herb layer

Total

method was used in the *Abies-Pseudotsuga* stand to provide comparative values, but branch analysis (method 1) was also used to provide an independent estimate. In Table 7, two values are given for net

371

biomass. iomass of subordid net pro-7 and 2.84 data, leaf and 1.2t/ heterophyltitutes 24 of Pseudot. Again t between and that of

.0) '76

/ha)

Total 1411.1 567.4 1978.5 10.96 5.08 16.04

ion of the le 7. To-Abics prois, Tsuga onstituting ctively, of te vegeta-'ha (17.6t/ while total duction of r. Based ies in the and 0.63t/ iesii, and d, current stal foliage and Abies f litterfall lso in good t leaf (3.2

nch among I be noted.

7	4.1- 54-	-0/1
1	林誌	58(1

volume deduct

Ē

Total basal area of stem (m²/ha)¹⁾ at DBH Stem volume (m3/ha)1) Stand age Tree number/ha¹⁾ Height of the Species highest tree (m) Place: Forest type (yr) Pscudotsuga menziesii 71 78.3 105.69 3231.0 Middle Santiam: Elevation-480m Tsuga heterophylla 167 48 3 18.41 319.9 Thuja plicata >500 1 56.6 1.95 45.63 Pseudotsuga men-Acer circinatum 33 10.9 0.50 0.50 17.5 т ziesii and Tsuga Cornus nuttallii 1 0.50 heterophylla stand Acer macrophyllum 8.0 0.01 T 274 127.06 3600.0 Total Abies procera 48 82.2 86.00 2675.6 Goat Marsh Res. Pseudotsuga menziesii 75.0 1097.7 Natural Area: About 19 28.90 Elevation-1000m Tsuga heterophylla 310 120 65.9 16.74 381.0 Abies procera and Abies amabilis 137 37.3 5.79 57.48 Pseudotsuga menziesii stand 147.43 Total 324 4211.8

Table 8. Descriptions of mature stands

D Trees≥9.5cm DBH only

production of branch, the upper values estimated by method 1, the lower values estimated by method 2. Apparently the values obtained by method 2 are smaller than those obtained by method 1. It could be said that the value obtained by method 1 is more precise than that by method 2. Providing that this is permitted, it can be safely said that the growth rate of stem inside its crown is far smaller than that of the branches of the tree. Therefore, when the net production of branch is estimated by the product of branch biomass and the stem growth rate in the corresponding stratum, there is a possibility of underestimating the value.

On a comparative basis, above-ground biomass and net production in the three experimental stands were similar. Total biomass of the *Pseudotsuga-Tsuga* stand was about 75% of the totals for the *Tsuga-Picea* or the *Abies-Pseudotsuga* stands. On the other hand, net production was about 20% less in the *Tsuga-Picea* stand than in the *Pseudotsuga-Tsuga* or the *Abies-Pseudoisuga* stands. Expressed as percentages, proportions of above-ground net production per unit total above-ground biomass were 1.2, 1.9, and 1.5% for the *Tsuga-Picea, Pseudotsuga-Tsuga*, and *Abies-Pseudotsuga* stands, respectively.

Leaf biomass of the Abies-Pseudolsuga stand is 2.2 and 1.6 times greater respectively than that of the Tsuga-Picea and the Pseudolsuga-Tsuga stands. However, net production of leaf in these stands is about the same (Tables 5~7). This indicates a longer period of foliage retention in the Abies-Pseudolsuga stand than in the other two. Observations made during destructive analysis showed the oldest leaves on both Abies procera and Abies amabilis to be 18~20 years old. Typical needle retention in Pseudolsuga menziesii and Tsuga heterophylla are 5 and 4 years respectively. However, foliage of Pseudolsuga menziesii in the Abies-Pseudolsuga stand was retained about a year longer than that in the lower elevation *Pseudotsuga-Tsuga* stand. This implies some environmental influence on foliage retention at least for *Pseudotsuga menziesii*.

However, leaf production efficiencies in the three stands are inversely related to leaf biomass with average values for the *Tsuga-Picea*, *Pseudotsuga-Tsuga*, and *Abies-Pseudotsuga* stands being about 1.3, 1.1, and 0.74t/t/yr, respectively. So at least in these experimental stands, leaf production efficiency decreases with increasing elevation.

In a forest, the above-ground biomass divided by the height of dominant trees gives the apparent density of dry organic matter per unit volume occupied by a forest. The volumetric dry organic matter density of the *Tsuga-Picea*, *Pseudotsuga-Tsuga*, and *Abies-Pseudotsuga* stands were 1.82, 1.06, and 1.76kg/m³ when computed using average heights of the dominant trees in respective stands of 48, 63, and 50m (Table 2). In closed forests in Japan, dry matter densities usually range between 1 and 1.5kg/m³ with no relation to normal stand height, although there are exceptions in shorter stands as reported by KIRA & SHIDEI (1967) and YODA(1971).

Results of the non-destructive surveys of the mature *Pseudotsuga-Tsuga* stand at the proposed Middle Santiam Research Natural Area, Oregon and of the roughly 310-year-old *Abies-Pseudotsuga* stand at the Goat Marsh Research Natural Area in Washington are shown in Figs. 5 and 6, and Table 8. These two stands may be regarded as a potential result of continued growth by the corresponding younger experimental stands of this study. Total basal areas of stem (m^2/ha) of the mature *Pseudotsuga* and 147. These values are much higher than reported for stands outside this region.

Total stem volumes including bark for trees \geq 9.5cm DBH were 3600 and 4212m³/ha in the mature *Pseudotsuga-Tsuga* and *Abies-Pseudotsuga* stands, respectively. These values are computed without

rot since there plot. Stem bioma: computed usin and wood to be sampling of Stem biomass tical. Stem t tsuga-Tsuga st

isuga stand. mates, the vo 2. 12kg/m³ for stand and 2. 31 isuga stand.

Biomass estin conservative in branches, folia so, these under densities for t higher than the outside this reg the large biom northwestern U

We gratefully U. S. Forest S Corvallis, Oreg study. This is IBP and contr Forest Biome,

3(10) '76

n volume 1¹/ha)¹⁵ 234.0 219.9 45.63 0.50 7 600.0 675.6 007.7 381.0 57.48

211.8

iga stand. e on foliage sii. n the three

mass with neudotsugaeing about So at least uction effim.

divided by apparent volume ocganic matga-Tsuga, 1.06, and heights of of 48, 63, in Japan, veen 1 and nd height, stands as DDA(1971). ys of the proposed Dregon and suga stand a in Washand Table is a potenresponding dy. Total re Pseudods are 127 han reportor trees ≥ the mature

a stands, d without

日林誌 58(10) '76

volume deductions for stem defects such as heartrot since there were few defective trees in either plot.

Stem biomass for these two mature stands was computed using wood and bark specific gravities and wood to bark ratios obtained during destructive sampling of the corresponding younger stands. Stem biomass of these two stands were nearly identical. Stem biomass was 1591t ha in the *Pseudotsuga-Tsuga* stand and 1687t ha in the *Abies-Pseudotsuga* stand. Based on these stem biomass estimates, the volumetric density of these stands are 2.12kg/m³ for the 75m high *Pseudotsuga-Tsuga* stand and 2.31kg/m³ for the 73m high *Abies-Pseudotsuga* stand.

Biomass estimates for the two mature stands are conservative in that they do not include biomass of branches, foliage or subordinate vegetation. Even so, these underestimates of biomass and volumetric densities for these mature coniferous forests are higher than those reported for forests anywhere outside this region. Future research should confirm the large biomass accumulations in forests of the northwestern United States and southwestern Canada.

Acknowledgements

We gratefully acknowledge Dr. J. F. FRANKLIN, U. S. Forest Service, PNW Experiment Station, Corvallis, Oregon, for his assistance during this study. This is contribution No. 183 to the Japanese IBP and contribution No. 187 to the Coniferous Forest Biome, US/IBP. This study was funded in part by U.S. National Science Foundation Grant GB-20963 to the Coniferous Forest Biome, US/IBP.

Literature cited

- ANDO, T., CHIBA, K., NISHIMURA, T., TANIMOTO, T., MIYAMOTO, M. & TAGAWA, R.: Primary productivity of Abies firma and Tsuga sicholdii. Preliminary reports by JIBP-PT-F 1972: 1~8, 1973 (In Japanese)
- COLE, D. W., GESSEL, S. P. & DICE, S. F.: Distribution and cycling of nitrogen, phosphorus, potassium, and calcium in a second-growth Douglas-fir ecosystem. In: Symposium on primary productivity and mineral cycling in natural ecosystems. Papers presented to Ame. Assoc. Advance. Sci., 13 th Ann. Meeting, New York. 193-197 pp, Univ. of Maine Press, Orono, Mine., 1967
- FRANKLIN, J.F. & DYRNESS, C.T.: Natural vegetation of Oregon and Washington. USDA For. Ser. Gen. Tech. Rep. PNW-8 1973: 417 pp, 1973
- FUJIMORI, T.: Primary production of a young Tsuga heterophylla stand and some speculations about biomass of forest communities on the Oregon Coast, USDA For. Ser. Res. Paper PNW-123: 1~11, 1971
- HALLIN, W.: Fast growing Redwood. J. For. 32: 612~613, 1934
- KIRA, T. & SHIDEI, T.: Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jap. J. Ecol. 17: 70-57, 1267
- MONSI, M. & SAEKI, T.: Über den Lichtfactor in den Pflanzen-gesellshaften und seine Bedeutung für die Stoffpraduktion. Jap. J. Bot. 14: 22-52, 1953
- WORTHINGTON, N.P.: How much Douglas-fir will grow on an area? J. For. 56: 763~764, 1958
- Yopa, K.: Forest ecology. 331 pp, Tsukiji Shekan, Tokyo, 1971 (In Japanese)

(Received February 13, 1976)