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Twenty-one quantitative geomorphic variables, measured
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78 watersheds, were tested for significance in differentiating

between good and poor producers o

S chn _ pink and chum salmon. A
discriminant model was then constructed.

Using this model,

the decisionmaker can make a_qualititative estimate of potential
pink and chum salmon production for _any southeast Alaska
watershed with minimum field investigation.
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Salmon streams in southeast
Alaska vary in the amount of
fish they produce per usable
area of stream. What this
variability is and how a
particular stream may be rated
qualitatively with respect to
others in terms of productivity
are of considerable concern to
the forest land manager at the
planning”level.

To provide a simple tool
for making such assessments, 21
quantitative yeomorphic variables
were measured from air photos
and topographic and geologic
maps of /8 watersheds identified

Fish management, geomorphology, salmonids,

as either exceptionally good or
exceptionaily poor pink and chum
salmonproducers. Each of these
variables was tested for signif-
icance in differentiating”
betaeen good and poor producers.
A discriminant model was then
constructed using the eight most
significant variables. Each of
these variables is easily ob-
tainable from air photos and
topographic maps withminimal
amounts of fieldwork. Together
the variables providea linear
equation yielding a qualitative
estimate of potentialpink and
chum salmon production for any
southeast Alaska stream.
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Introduction

Salmon streams in southeast
Alaska vary in amount of salmon
produced per usable area. In
many cases, the factors that
limit production in some streams
are readily discernible:
overfishing, barriers to fish
passage (falls, logjams),
unfavorable streambed conditions
(sedimentation, unstable gravel
beds), excessive gradient, and
highly variable streamflow. In
some cases, however, streams
that appear to have favorable
conditions for salmon production
do not support runs in propor-
tion to their apparent potential.
Questions then arise: Do
geomorphic factors regulate
production of salmon In these
streams? Are these factors, or
groups of factors, discernible

irectly as gross watershed
characteristics, or are they
more subtly related to_local
variations in the physical,
chemical, or biological makeup
of individual streams? Can the
productivity of a particular
stream be predicted from simple
measurements of watershed
characteristics on aerial
photographs and topographic
maps, or_is a detailed investi-
gation of streams and monitoring
of fish populations necessar¥?
Answers to these questions wil
have considerable bearing on
the management of anadromous
fisheries as the potential for
damage from man®s activities
increases and as emphasis
changes from maintenance of
natural stocks of salmon to
increased quality and pro-
ductivity of watersheds.

Factor Identification

Thompson _and Hunt (1930
stressed the importance of the
drainage basin as_a whole, not
just the stream, in their_
investigations of the basic
nature of stream productivity.
Slack (1955% reinforced this
concept in his_studies of
stream productivity factors,
demonstrating that the biolog-
ical productivity of a stream
is directly related to the
physical environment of the
watershed, which controls
drainage pattern, flow rates,
gravel size and shape, channel
gradient, and general stability
characteristics. Statistical
analysis of quantitative
geomorphic parameters of
Individual watersheds can help
identify these factors.

Quantitative geomorphic
techniques developed by Horton
(1932, 1945) and Strahler (1952,
1953, 1954) groyi@e a convenient
method for obtaining numerical
data on gross basin character-
istics, given limited funding
and difficulty of access and
sampling of test streams.
Measurement of physical parame-
ters based on basin and channel
geometry, obtainable from aerial
photggraphs and topographic maﬂs,
provides correlation units suc
as drainage size and shape,
stream density, and pattern,
number, and length of tribu-
taries. These in turn provide
an estimate of stage of water-
shed development, probable
basin discharge, extent of
bedrock control of drainage,



impact of unstable slopes, and
extent of channel suitable for
spawning. Such techniques have
been used successfully to
analyze relationships between
erosion, climate, surface
properties, and geomorphology
(Melton 1957, Maxwell 1960,
Dissmeyer 1967). In 1973, Ziemer
used quantitative geomorphic
techniques to relate drainage
basin and channel configuration
to chan?es in production of

ink salmon on Montague Island,
rince William Sound, Alaska,
after large vertical tectonic
adjustments resulting from the
”Good Friday Earthquake” of
1964. Using five drainage
system factors, he showed a
correlation between drainage
system geometry and freshwater
production factors for pink
salmon, with escapement as his
indicator of production. He
assumed that (1) the number of
spawners using a stream is a
sound measure of fish production
in that stream, (2)escafement
counts were consistently made
from year to year and stream to
stream, and (3) the impact of
the fishery was consistent
between stocks and years. He
realized the problems involved -
by making these assumptions,
but _he hnd no other tools
available.

Several quantitative methods
were considered in an_attempt to
assign numbers to various degrees
of salmon production. Enoug
time could not be spent on each
. Stream to obtain even rough

estimatesof the standing crop
of juveniles, egg or preemerpent
fry densities, or some other
biological measure of product inn
Escapement counts are available
for most southeast Alaska salmon
streams for many years back
These countsare summarized in_
a set of catalogs that describe
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the physical characteristics

of streams as well as the
number of salmon that have
returned to their spawning
grounds. (Catalogs can be
seen_at the Alaska Department
of Fish and Game, Juneau).
However, salmon escapement

data are not necessarily a
reliable index of production

of a given stream. Escapement

is only one portion of the
total run returning to a
stream--the portion that has
survived the onslaught of the
fishery and has successfully
completed the upstream migration
to the spawning grounds. In-
tenS|t¥ of the fishing effort
as well as success of flshin%
IS not necessarily the same for
different streams. Consequently,
the total return (catch plus
escapement) to two streams may
be similar. If fishing mor-
tality, however, has accounted
for two-thirds of the total
return to one stream and one-
third of the total return to
another stream, escapement

to _the second stream may be
twice as great. Other Tactors
also _may Broduce differential
survival between stocks of
fish. The ocean feeding area
of one population may promote
better growth and/or survival
than another, The migration
routes of one stock may subject
that run to greater predation
than the route or timing of
another run. Aerial and ground
surveys of escapements are
often conducted at different
stages of a given run in dif-
ferent years, by various
observers, under different
light conditions, etc. The
main point is that escapement
to a stream, although it may
help in qualitatively describing
the general level of production
of thestream, does not necessarily
indicate the biomass of salmon



that were or could be produced
in that stream. A better
quantitative indication of a
stream®s fish production would
be the average number of smolts
(seaward migrant juveniles)
produced by a known number of
spawning females over several
years. Obtaining this type of
information for many streams

is costly, time consuming and,
as a result, generally not done.

For this study, streams

were categorized as either
good producers or poor pro-
ucers of pink and chum salmon.
These categories were based on
interviews and correspondence
with district fishery manage-
ment biologists throughout
southeast Alaska and on the
many years of escapement data
(aerial and ground surveys by
several agencies) summarized iIn
the stream catalogs. Production
was not based on escapement
figures alone. Streams which
were thought to be fair pro-
ducers were not selected, so
that only very good production
and very poor production of
pink and chum salmon were
considered. Poor producers
were further defined as streams
to which no known causes for
poor runs could be attributed;
that is, they were streams
which were accessible to mi%ra-
ting fish throughout most o
their length (not blocked by
falls, logjams, etci)h they
appeared to have sufficient high
quality water and gravels, they
were not regularly "robbed” by
illegal fis in?, and they had
not historically supported good
pink and chum salmon runs. This
subjective selection of good
roducers _and poor producers may
e criticized as not being
statistically valid since the
streams were not a randomly
selected sample of all the

available streams in southeast
Alaska--one person®s idea of
"good™ or “poor"™ may differ
ﬁreatly from that of the next.
owever, we felt that this
type of selection was justified
since we specified only very
good or very poor streams and
since this 1s the the of
selection process that may be
necessary for the resource
manager to use when he does
not have the time and funds to
obtain more quantitative
estimates of production.

Data Accumulation *

A total of 78 watersheds
were categorized as either
exceptionally good producers or
exceptionally poor producers
based on the preceding criteria.
These watersheds were scattered
throughout southeast Alaska.
They ranged in size from a
minimum of 5.2 km? to a maxi-
mum of 422_.2 km2 (fig, 1); 22
were classified as poor and
56 as good.

To _identify general
similarities or differences
between good producers and
poor producers, we selected 21
independent variables for inter-
basin correlation purposes.
These variables are listed in
table 1. Of these, 19 were
continuous--that is, they ap-
peared at varying levels in
every basin and _could be simply
measured on aerial photographs
or 15-minute quadrangle maps.
The other two were discontinuous;
they classed each watershed
according to whether it was
underlain predominantly by
igneous bedrock or metasedi-
mentary bedrock. Of the 19
continuous variables, 14 (X;-X;;
Xs5-X8; X11-X167 Xlg-xlg) were

wl
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Table 1--List of quantitative geomorphic variables used for
interbasin correlation purposes

Symbol Variable Unit of measurement
Xl Area of drainage basin km2
X, Mean valley side slope degrees
X3 Basin area with slope above
critical angle (34°) percent
X4‘ Avalanche indgx (number of
avalanches in watershed) number
X5 Drainage density dimensionless
X6 Bifurcation ratio dimensionless
X7 Total length of channel segments km
X8 Gradient of stream channel degrees
Xg Length of stream with acceptable
spawning gradient (<12 percent) km
Xi0 Obstructions in main channel number
Xll Basin perimeter km
Xy, Basin relief m -
X13 Channel frequency dimensionless
X14 Relative relief dimensionless
X15 Compactness coefficient dimensionless
X16 Form factor dimensionless
X17 Lakes in stream system number
X18 Length ratio dimensionless
19 Basin orientation degrees
X50 Predominatly sedimentary/
metamorphic rock (>50 percent) 1
X21 Predominantly igneous rock
(>50 percent) 2




standard quantitative geomorphic
variables that provide a measure
of basin or channel geometry,
discharge characteristics, or
stage of watershed development.
Five (XS’ X4, ng X].O’ X17)

were developed for this study

to provide a direct measure of
basin stability and productivity.

Analysis

The purposes of the data
analysis were: (1) to test each
variable for significance in
differentiating between good
producers and poor producers
and (2) to construct a discrim-
inant model that would give a
decisionmaker or researcher the
opportunity to classify salmon
streams as either very poor
producers or very good producers.
Analysis dictated a search for a
'""best possible'" model (where
"best" is determined by trade-
offs between statistical
accuracy, data collection feasi-
bility, and model application
costs) that would provide more
potential gain than cost to the
user and that could be applied
to any watershed for classifying
it as a good producer or poor
producer. Figure 2 shows such
a model. Note that this ap-
proach requires equal dispersions
for both groups but does not
require equal sample sizes
(Cooley and Lohnes 1971).

Data analysis was handled
in four stages. Stage 1 in-
volved computer-assisted
evaluation of each explanatory
variable property. This eval-
uation required examination of
sample statistics, histograms,
scatter diagrams, and correlation
coefficients for each variable.
Stage Z centered on basic linear
regression analysis of the 21

GOOD_— /__ POOR

Figure 2.--Geometric interpretation
of discriminant analysis (after
Cooley and Lohnes 1971, used with
pbermission): (a) problem for two
groups and two variates (x and yl):
(b) line I line II; (c) elipse
sets called centours for centile
contours; (d) overlap of group
good or poor is smaller than for

~any other set; (e) picture outer
elipses as including 90 percent of
each group and inner elipses 75
percent of each group.

independent variables on salmon
productivity. Stage 3 involved
development of a family of
discriminant functions from
which a subset could be se-
lected for further evaluation.
Stage 4 included comparative
analysis of selected key
discriminant models. All
analytical work was accom-
plished with the aid of special
data processing facilities and
software available through
Oregon State University,
Corvallis.



Stage 1 provided familiarity
with the explanatory variables
and all relevant interrelation-
ships. Stage 2 provided a tool
for evaluating possible model
structures and behavioral char-
acteristics. The basic approach
was a "modified-backstep" regres-
sion analysis. All explanatory
variables were regressed on a
salmon productivity dummy vari-
able. The least significant
variables were dropped one at a
time in each "backstep."” At
each_juncture, the t-values of
previously dropped variables were
scanned. Any dropped variable
which had a t-value that climbed
back to a value of +2.0 was
reentered into the specified
model. This approach allows for
development of more significant
models than does "stepwise
regression’™ (Draper and Smith
1968). The reason for _using
regression modeling prior to_
using discriminant modeling is
that a two-class linear,
discriminant function is alge-
braically equivalent to a re-_
gression model. Model stability,
structure, and order of variable
importance (significance) are
more easily examined and evaluated
in a regression model than in a
discriminant model; for example,
for presence and impact of
multicolinearity.

_ _Stage 2 resulted in several
significant models and a battery
of test results that examined
the reliability of six model
assumptions (Kmenta 1971):

1) Error term is normally

istributed, (2) expected value
of the error term is zero, (3)
variance of the error term is a
constant, (4) error _terms are
not correlated in time and/or
space, (5) each explanatory
variable 1s nonstochastic, and
() no ex_lanator¥ vgrlane has
an exact linear relationship

with any other explanatory
variable. Examination of
histograms and selected scatter
diagrams of the residuals as
well as of covariance matrices
and correlation matrices did
not indicate that any of these
assumptions was violated signif-
icantly for the models
considered (Draper and Smith
1968, Kmenta 1971).

Stage 3 produced a variety
of discriminant models for later
evaluation. The approach used
in forming these models was the
"'modified- backstep™ procedure
that simply began with a fullr
specified model (all 21 explan-
atory variables) and droppe
variables, one by one, in the
same order as determined for
the regression modeling proce-
dure. For practical purposes,
the largest model considered
was a 12-variable model which
included all explanatory
variables with regression .
values so that: -1.0>/= t >/= +1.0.
The smallest model considered
was a 5-variable model with
values for all inclusive

vasiables: -2.0 >/= t >/= +2_.0. In

all models considered,each
discriminant function produced
means of the good groups and _
poor groups that were signifi-
cantly different at the a -
0.025 level. Models with 8

or fewervariables produced
significantly different means
at the a = 0.01 level (largest
characteristic root test,
Morrison 1967).

** Note: For the t-test for
sample sizes of n = 20, anything at
or near 2.00 is significant at a =

0.05, With = 78 the t =/~ 2.00 is
significant at a = 0.025, whereas
the a = 0.05 has a t-value =/~ 1.67
and the a = 0.10 one =/~ bl1.29
(Brownlee 1965).



Stage 4 was the most
thorough and rewarding stage.
Three key models were identified
immediately for detailed com-
parative analysis. They were:
5-, 8-, and 12-variable models
with the general characteristics
shown in table 2.

Any process providing for
final model selection 1s neces-
sarily arbitrary and subjective.
Because the explanatory vari-
ables had inclusive t-values
near the o = 0.05 level and
the function discriminated
between good and poor means at
the o = 0.01 level, the eight-
variable model was chosen for
reporting analysis. The extra
costs of collecting data and
manipulating a larger equation
were also considered part of

the trade-off in model selection.

We accepted a middle ground
between data costs and
statistical accuracy.

The selected 8-variable

discriminant function is: ,
f(x) =-0.002787 X - 0.602159 Xz -
0.019247 Xy - 0.029875 X +

0.002146 X, + 0.000332 X12 -

0.023515 Xig * 0.000660 X19'

For discussion purposes, let
f1(x) = Y1 express functional
output for the poor group and
fa(x) =y, for the good group.
Figure 3 underscores the
generalized multivariate
normality (multinormal) con-
cept assumed related to this /
application of the discriminant
analysis; it illustrates a
tailored version of the dis-
crimination provided by this
model between the good groups
and poor groups.

Table 2--Discriminant model characteristics

Significant deiineéting
characteristics (s)

Means significant @ « = 0.01
All inclusive t-values:
-2.0 >t >+2.0

Means significant @ o« = 0.01
All inclusive t-values:
-1.5 >t >+2.0

Means significant @ a = 0.025
All inclusive t-values:
-1.0 >t >+1.0

Model Explanatory
variables
5-variablel/ Xy, Xa, X, Xoo, X
12 732 24, 7127
8-variable Xl’ XS’ X4, X6’ X7,
X120 X180 %19
12-variable Xl’ XZ’ XS’ X4, X6,
N ERSTERSFLRSTE
X16> X180 X19
1/

. .= Smaller models were not considered due to very high degree of
significance of removing variables beyond the five listed.
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Figure 3.--Normalized distributions
of good and poor watersheds for
eight-variable discriminant model.

Application

The next step was devel-
opment, application, and
evaluation of classification
rules. All classification
rules depend directly on any
"a priori" probability infor-
mation on occurrence of both
groups y; and y;.
is to assume no such knowledge
exists, hence probability (P1)
of y; is equal to probability
(P2) of y;. And, because Py +
P, = 1.0, both P; and Py are
equal to 0.50. A second ap-
proach is to assume the
available relative frequencies
approximate the Pj levels.
Hence: Py = 22/78 =~ 0.30 and
Py = 56/;8 = 0.70. The prob-
tem with the second approach
is that it assumes that the
sampling techniques were truly
random. When sampling is not
random, relative frequencies
are not used to approximate
the P; "a priori'" probabilities
(Morrison 1967, Cooley and
Lohnes 1971). For this problem,
because of the state of the
existing data base (highly

One approach

of accepting only truly poor
or truly good producing streams,
the technique was not random.
This in no way affects any of
the analytical procedures for .
discriminant functions
(Morrison 1967); however, it
precludes the use of relative
frequencies as "a priori"
probabilities. For classi-
fication analysis, P, =Py =
0.50 was the '"a priori"
estimate used. If and when
future research indicates
different levels of P; and P,,
such modifications can be
entered in the analysis. The
appendix illustrates just

how Py and P; enter into the
calcu%ation of the posterior
probabilities that dictate
classification,

In general, where P(yl)
and P(y,) represent posterior
probabilities of yi and yj,

a classification riile is:

When L; ,P(yp)>L2,1P(y1),
classify as yjp; otherwise as
yy. Here, L;,1 represents
t%e expected loss for mis-
classifying a poor (yj) as
a good (y7), and Ly,  the
expected loss for misclassifying
a good (yp) as a poor (yj). The
equal sign is relevant and can
classify the function value as
either a good producer or a poor
producer. When Ly , = L2 1,
this reduces to: Classify as
y7 when P(y,) > P(yl); other-
wise as yj. For analysis
purposes, we assumed Ly,2=1L2,1,
and when Py = P, then L 7P;=
Lz 1P7. This simplifies the
dedision rule (Morrison 1967):
When f(x) > yp, classify as yq;
otherwise as y,. Refer to
figure 4 for t%is rule (Rule I).
Application of Rule I to the 78
watersheds in the study yielded
the results shown in table 3.



A modification to Rule I
provides for selecting a band
bracketing either side of yp
so that any f(x) values fal-
ling within the band are not
classified. Figure 5 illus-

Classify
asy,

Classify
asy,

J trates this concept.
I *0070 Application of Rule II to
the 78 watersheds, where the
lower limit (E,;) is 0.05, the
upper limit (Ey) is 0.09, and
ym is 0.07, yielded the results

Figure 4.--Classification Rule I.

Table 3 --Classification of 78 watershed by Rule I

Classified by Preanalysis classification
discriminant function
and Rule I Good Poor Total

Number of watersheds

Good 41 5 46
Poor 15 17 32
Total 56 22 78

Here, 20 out of 78 water-
sheds were misclassified, abou
26 percent. If L, 1, Ly 2, P1
and P, are different from
assumed levels, this would be
altered by applying the tech-
niques shown in the appendix.
Under assumptions used here,

Classify

/0

Classify
as Yy

N

application of the selected ~27// ==
discriminant function yields j LBLETIINN

much better results than ! ' 5

. y. Ym
assumptions of 50-50 possi- %2 € £ )
hbilities (e.g., "a priori" 1 u
probability = 0.50).

Figure 5.--Classification Rule II.
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shown in table 4; where 13
watersheds out of 78 are mis-

classified (about 17 percent).

Also, 13 watersheds out of 78

are not classified; so of the
65 classified, Rule II
misclassifies 13 watersheds
or 20 percent.

Actually, Rule T mis-
classifies 5 out of 22 poor

(23 percent); Rule II, 2 out
of 18 (11 percent). Rule I
misclassifies 15 out of 56
good (27 percent); Rule II, 11
out of 47 (23 percent). Rule
II is better than Rule I if we
assume that the decisionmaker

_does not wish to classify the

f(x) values clustered closely
about yp. Tables 5 and 6
illustrate the percentages of

Table 4--Classification of 78 watersheds by Rule IT

Classified by Preanalysis classification

discriminant function

and Rule II Good Poor Total
Number of watersheds

Good ‘ 36 2 38

Neutral 9 4 13

Poor : ‘ 11 16 27

Total 56 22 78

Table 5--Generalized application of Rule T by percentages

Classification by Posterior percentage of total group

normalized curves Good Poor
Good 77 23
Poor v 23 77
Total 100 100

Table 6--Generalized application of Rule II by percentages

Classification by Posterior percentage of total group

normalized curves Good Poor
Good 71 18
Neutral 11 ; 1
Poor 18 1
Total o | 100 100

11



the normalized curves for
Rules I and 11 that generally
fall _into the categories
specified.

Discussion

The results of the data
analysis provide us with a
linear equation yielding at
least a qualitative estimate
of productivity of pink and
cnum salmon for southeast
Alaska watersheds. The method
is simple, flexible, much more
accurate than assuming 50-50
probabilities, and responsive
to the demands of the decision-
maker. The land manager 1is
provided with an analytical
tool that can be used in
solving land use problems.

For example, a decisionmaker
faced with a problem of al-
locating funds for protection

or improvement of pink and

chum salmon streams could use
the discriminant function to
classify very poor watersheds
and very good watersheds. Then,
based on managerial ﬁrlorltles
for protection or enhancement
of pink and chum salmon habitat
commensurate with other resource
values, he could determine ap-
propriate allocation of funds.

_ Additional _areas of mana-
gerial application involve land
use decisions which may have an
impact on salmon production. A
land manager would benefit from
knowing which watersheds are
good producers of pink and chum
salmonand which are poor pro-
ducers. He could then take
steps to minimize impact in _
watersheds with high production.

12

For the scientist and_
researcher, this tool provides
a direct means of choosing an
exceptionally good or an
exceptionally poor salmon-
producing watershed for more
refined analysis of factors
affecting productivity. It can
direct the researcher to water-
sheds that have a higher prob-
ability of defining variables
most likely to influence the
level of pink and chum salmon
production.

The important point 1is
that, in general, the discrimi-
nant function developed from
this research is a flexible
tool that has potential dual
utility: in land management
decisions, a classification
into poor or _good categories
ailds the decisionmaking proc-
ess; in research applications,
It assists in detailed variable
cause and effect analysis.

hY
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Appendix

Posterior Probabilities and Classification Comments

A. Posterior probabilities:

Two basic equations are
solved simultaneously to obtain
posterior probabilities:

1. P(yl) + P(yz) =1.0.
2. P(yy) =CP.f.(y);i=1,2.

Where: y is the value of the
discriminant function for a
watershed;

P(yl) is the posterior proba-
bility of the value y
being classified in
the poor group.

P(yz) is the posterior proba-
bility of the value y
being classified in
the good group.

p. is the "a priori"”
probability for the
respective poor (Pj)
and good (PZ) groups.
Cb is a constant to be
determined.

f.(y) is the value of the
1 function on y:

2 -2
- 1 -(1/267) (y-y3)
f.(y) =———1[e i’ ].
1 Y21 0.
i
T is the value 3.1416. .
5 is the standard devi-

ation of group i
discriminant values.

Y. is the mean of group i
discriminant values.

e is natural log base e;
value of 2.7183.

For this study two simplifi-
cations were made:

1. For the 8-variable
model discriminant function,

2 _ 2 2 _ 2
a. o = 1 and o) =S, .

s represents significant
delineating characteristics
(see table 2).

2

b. s;% = 0.0112 and szz'; 0.0139.

Cc. Assume 012 =0, = ozand use:

s2 = [(n—l)sl2 + (m-l)szz]/(m + n-2).

m and n represent re-
spective sample sizes for
groups 1 and 2.

d. 52 = 0,013; where s2 = 02.

2
e. Hence, o =0y, =5

(Wetherill 1967).

2. The "a priori" proba-
bilities are assumed equal:

P1 = P2 = 0.50.

This allows reduction of the
fi(y) function to only its
variable portion:

2 - 32
fi(y) = e'(l/ZO ) (}"yi) .
Here,-—l———will always be
2T oi'

constant; therefore, it 1is
included as part of the to-be-
determined constant:
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C and C ='1/[Zfi(y)].

1
" cicb’

The posterior probabilities can
be calculated now using this
information. For:

B. Classification comments:

Classification into good
and poor groups cannot rely alone
on values of the discriminant
function and respective posterior
probabilities. The basic guide-

When

y; = 0.1520 (mean poor group). : S
1 _ line is: qul P(y1) < 11,2 P(yz).
v Here Ly 1 IS the cost of mis-
2 =-0.0120 (mean good group). classifying a poor group as good;
2 2 and Lj 2, the cost of misclassi-
o =s" = 0.0130. fying a good group as poor.
vy o5 oy -yt 6P 5 OH® Lo Mo C-pto Pop Puy oy
20 i
0.040 —0.112 0.0125 0.052 0.0027 0.013 —38.46 0.6183 0.9014 1.520 0.658 0.4068 0.5932 1.0
0.050 —0.102 0.0104 0.062 0.0038 0.013 —38.46 0.6703 0.8640 1.534 0.649 0.4350 0.5650 1.0
0.060 —0.092 0.0085 0.072 0.0052 0.013 —38.46 0.7211 0.8187 1.540 0.650 0.4687 0.5313 1.0
0.070 —0.082 0.0067 0.082 0.0067 0.013 —38.46 0.7728 0.7728 1.550 0.645 0.5000 0.5000 1.0
0.080 —0.072 0.0052 0.092 0.0085 0.013 —28.46 0.8187 0.7211 1.540 0.650 0.5322 0.4678 1.0
0.090 —0.062 0.0038 0.102 0.0104 0.013 —38.46 0.8640 0.6703 1.534 0.649 0.5607 0.4393 1.0
0.100 -0.052 0.0027 0.112 0.0125 0.013 —38.46 0.9014 0.6183 1.520 0.658 0.5932 0.4068 1.0
For: f(x) = ~0Jm278hﬁ_- 0.602159x this inequality holds, classify

3

—0.019247x4 - 0.029875)(6 + 0.002146x7

+ 0.000332x12 - 0.023515x18 + 0.000660)(19 member of the poor group.

() =y).

When the "a priori" probabilities
can be determined to be something
other than equal (e.g., P, = P, =
0.50), the calculation of pos-
terior probabilities is still
straightforward. The analyst
simply uses a value other than
0.50 in P(y;) = CP;jfi(x) for

the Pj term. The theory and
analysis remain unaltered.

16

the value for y as a member of
the good group; otherwise as a
For
L2,1 = L1,2 the analyst can use
just the posterior probabilities:
P(yl) < P(y,) implies classi-
fication as good, otherwise as
poor.

The important point here
is that the decisionmaker or
researcher (user of analysis
results) must determine his costs
of wrong classification before
the method can be applied.
Exact costs need not be deter-
mined. Simple cost ratios (R)
will suffice: Ly 1/L1,2 = Ry 1/R1,2.
Then use Rz,lP(ylj <R 2P(y2 as

X ; s

the guideline.
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