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A B S T R A C T   

Microclimatic refugia (microrefugia) are ecologically important for the conservation of biodiversity under 
climate change. Year-to-year climatic consistency is an important requirement for most types of microrefugia, 
but refugia are often modeled using only a few years of data. Here, we used a decade-long (2009-2018) fine- 
scale, undercanopy microclimate temperature dataset from a landscape in the Cascades Mountains of Oregon, 
USA to assess the inter-annual temporal consistency of microrefugia. We used boosted regression tree micro-
climate models to quantify overall consistency and map locations of stable microrefugia for six biologically 
relevant annual temperature metrics. Microclimate temperature offsets (i.e., microclimate minus macroclimate 
temperatures) were remarkably stable over time, with R2 ranging from 0.69 for minimum temperature during 
spring to 0.90 for mean temperature during spring. We observed a high degree of coupling; that is, broad-scale 
climatic variation, as reflected in free-air temperature, has a major effect on microclimate temperatures – 
particularly in hot years – with the potential to overwhelm thermal buffering effects. In spite of this, we iden-
tified potential microrefugia locations throughout our study area, especially with respect to spring minimum and 
mean temperatures. To maintain microrefugia in a rapidly changing climate, conservation of old-growth and 
other structurally complex forest habitat is critical, especially at sites with high elevation relative to their 
surroundings.   

1. Introduction 

While habitat loss and overexploitation are currently the dominant 
threats to much of Earth’s biodiversity, climate change may greatly 
elevate extinction risk for many species (Maclean & Wilson 2011). 
Species distribution and bioclimatic envelope models, which link the 
geographic distributions of species to environmental and climatic 
covariates, can be used to predict the effects of climate change on species 
and as a basis for effective conservation planning (Elith & Leathwick 
2009; Franklin 2013). However, such models can be sensitive to the 
spatial resolution(s) considered (Pearson & Dawson 2003; Seo et al. 
2008) and often fail to account for microclimatic refugia (“micro-
refugia”) – spatially restricted habitats with favorable microclimate 
conditions that support species populations in otherwise inhospitable 
regions (Gavin et al. 2014; De Frenne et al. 2021). Commonly used 
climatic datasets for species distribution modeling, especially in global 
studies, have low resolution (often ≥ 1 km) compared to the scales at 

which many organisms interact with their environments (Potter et al. 
2013; Lenoir et al. 2017; Lembrechts et al. 2019). This mismatch mo-
tivates the analysis and modeling of microclimate at much finer scales, 
with grain sizes ideally approaching 1 to 10 times the length of the or-
ganisms of interest (Potter et al. 2013; De Frenne et al. 2019). 

Microrefugia, which can provide small areas of habitat that would 
likely be overlooked when using coarse-scale climatic grids, are 
important to the biology and persistence of species (Ashcroft 2010). 
While microrefugia have been defined in multiple ways, the term was 
first used to reflect the possibility that some relic vegetation species 
could persist at favorable sites during dry periods in the Pleistocene 
(Rull et al. 1988). Thus, the temporal aspect of microrefugia is funda-
mental to their original formulation. Moreover, temporal consistency of 
microrefugia locations as characterized by similar seasonal temperature 
patterns (that match with species habitat requirements) among years is 
especially relevant when forecasting species’ responses to climate 
change. Unfortunately, collecting temperature or other data suitable for 
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microclimate modeling can be expensive, labor intensive, and requires 
careful validation. As a consequence, the temporal consistency of 
microrefugia locations is often treated more as an assumption of ana-
lyses, rather than as an essential component of identifying and modeling 
microrefugia (but see Von Arx et al. 2013). For example, a recent 
meta-analysis of forest microclimate temperature buffering (De Frenne 
et al. 2019) identified 74 relevant studies, but just one of these studies 
used more than 1,095 days (three years) of data (Renaud et al. 2011). 

Temporal consistency of microrefugia is likely critical to the survival 
of species’ populations, particularly for longer-lived, low-vagility spe-
cies. Taxa generally fitting this profile include lichens, mosses, long- 
lived low dispersing herbaceous plants, tree seedlings, forest terrestrial 
amphibians, and many species of scorpions (Bryson Jr et al. 2013; 
Zellweger et al. 2020). Other species may also have restricted mobility. 
For example, red tree voles (Arborimus longicaudus) are arboreal rodents 
with maximum dispersal distance of ~75 meters (Swingle 2005; Linnell 
& Lesmeister 2019). Even species that travel long distances can be 
heavily reliant on microrefugia – depending on their phenology. For 
example, migratory birds require temporally consistent microrefugia in 
order for their movements to match the availability of resources in 
critical periods of their life cycle, with mismatches being linked to 
negative outcomes at the population level (Jones & Cresswell 2010; 
Miller-Rushing et al. 2010; Saino et al. 2010). Geographic factors may 
also predict species’ dependence on temporally consistent microrefugia. 
Species restricted to mountains or islands may be more reliant on 
microrefugia because they have reduced potential for range shifts (Elsen 
& Tingley 2015; Graae et al. 2018). Where high-severity disturbances 
are rare, animal species may be less mobile, and consequently more 
reliant on stable microrefugia (Betts et al. 2019). In summary, life his-
tory traits, ecological community composition and biotic environment, 
and geography all interact to potentially predispose metapopulations to 
being dependent on temporally consistent microrefugia. Notably, spe-
cies not presently dependent on microrefugia may be so in the future 
given climate and land-use change projections (Arneth et al. 2019). 

Previous work has established that forest vegetation structure can 
have strong influences on microclimate conditions; specifically, old- 
growth forest characteristics appear to moderate temperatures during 
both hot and cold periods over the short term (Frey et al. 2016). How-
ever, the capacity of forests to buffer plant and animal populations from 
the negative effects of climate change depends on the temporal consis-
tency of this thermal effect during periods of climatic extremes. Thus, 
temporal consistency of microrefugia is most important when macro-
climate conditions are at the extremes of their distribution. Importantly, 
if forest structure itself can predict temporally reliable refugia, then 
conservation and management prescriptions can indirectly influence 
species responses to climate change (Betts et al. 2018). 

Here, we conducted a spatiotemporal analysis of microclimate and 
microrefugia using a decade-long temperature dataset from the H. J. 
Andrews Experimental Forest (HJA) in the Willamette National Forest of 
Oregon, United States (Johnson & Frey 2019). Our objectives were (1) to 
quantify the temporal consistency in thermal characteristics in a 
mountain landscape, thereby identifying microrefugia and (2) to 
determine the biotic and abiotic drivers of these putative thermal 
microrefugia. We hypothesized that the temporal consistency of sites’ 
thermal characteristics would depend on the extent to which they are 
governed by factors that are relatively stable across seasons and years 
(vegetation structure and topographic shading) versus the dynamics of 
local weather patterns and airflows, which vary on daily and seasonal as 
well as inter-annual time scales. 

2. Materials and methods 

2.1. Terminology 

Here, we provide definitions of the key concepts referenced in our 
analysis. All definitions except the ones related to microrefugia are 

adapted from those presented in De Frenne et al. (2021). Macroclimate 
temperatures are free-air temperatures associated with open conditions 
whereas (forest) microclimate temperatures are undercanopy tem-
peratures. Temperature offsets refer to the differences between 
microclimate and macroclimate temperatures (microclimate minus 
macroclimate), whereas unadjusted temperatures refer to actual 
microclimate temperatures (see Supplementary Methods). When 
considering microclimate versus macroclimate temperatures, we 
distinguish between three possibilities for β, the regression slope of a 
model in which macroclimate temperatures are used to predict micro-
climate temperatures: coupling (β=1), decoupling (β=0), and buff-
ering (0 < β < 1) (De Frenne et al. 2021). A microrefugium (at a 
specific time) is an area with suitable temperatures and/or temperature 
offsets for a given organism. Finally, temporally consistent micro-
refugia are microrefugia with stable locations across time. 

These definitions are intended to clarify our analysis and to align 
with standard usage, where appropriate (De Frenne et al. 2021). Ulti-
mately, operationalized definitions, which may require specifying 
spatial and/or temporal scales (e.g., with regard to microrefugia or 
microclimate), are almost certainly context dependent. That is, they can 
vary depending on the focal organism(s) being considered, research 
questions being studied, processes involved, and so on. For example, 
microrefugia that are not temporally consistent in terms of their loca-
tions over time, but rather shift around on a landscape, may be adequate 
for some highly mobile organisms. While we acknowledge such organ-
ism dependence (Bütikofer et al. 2020), it is beyond the scope of our 
analysis (described below) to fully consider. Here, we consider micro-
refugia with respect to (1) unadjusted temperatures, (2) offset temper-
atures, and (3) their combination (our primary focus) because each may 
be relevant to different species. 

2.2. Study area 

Our study area (HJA) is a 6,400 ha experimental forest located in 
western Oregon, USA (44.23◦ N, 122.188◦ W). Elevation ranges from 
410-1630 m, and the forest is dominated by Douglas-fir (Pseudotsuga 
menziessii) and western hemlock (Tsuga heterophylla) at lower elevations 
and Pacific silver fir (Abies amabilis) at higher elevations. Variation in 
disturbance history, including fire, landslides, wind storms, and timber 
harvesting, produce a mosaic of forest ages, from 30-700 years. Steep, 
complex topography is common. At the primary meteorological station 
(elevation: 426 m), mean monthly temperatures range from 0.6◦C in 
January to 17.8◦C in July and annual precipitation averages 2.30 m 
(Bierlmaler & McKee 1989). Precipitation is highly seasonal, leading to a 
dry growing season. 

2.3. Data sources and processing 

We obtained fine-scale, undercanopy temperature data for the HJA 
from Johnson & Frey (2019). Specifically, we used undercanopy daily 
minimum, mean, and maximum temperatures between 2009 and 2018 
associated with 184 sites in the HJA (Supplementary Methods, 
Figure S1). As described in Frey et al. (2016), sampling locations were 
selected by stratifying by forest type, elevation, and distance to roads. 
We aggregated the data to the annual scale using six biologically rele-
vant temperature metrics: spring minimum, mean, and maximum tem-
perature, summer mean and maximum temperature, and winter 
growing degree days (GDD) (Table S1). While there are other temper-
ature summaries that could be calculated, these six are associated with 
species phenology and survival (Supplementary Methods; Miller et al. 
2001; Sparks et al. 2005; Yang et al. 2017). 

Because fine-scale temperatures are influenced by regional weather 
patterns reflected in broad-scale, free-air (i.e., macroclimate) tempera-
tures, we obtained ~4-km resolution daily minimum and maximum 
temperatures from the gridMET dataset (Abatzoglou 2013) to act as a 
region-wide baseline (Figure S2). GridMET synthesizes multiple climatic 
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datasets (PRISM, NLDAS-2) to accurately track temperatures and other 
variables over time (Abatzoglou 2013). We averaged gridMET free-air 
temperature estimates across the entire HJA for each day. As an alter-
native free-air reference temperature baseline, we also considered data 
from the Vanilla Leaf Meteorological Station (VANMET)—one of the 
benchmark meteorological stations in the HJA (Supplementary 
Methods). These data are more accurate at the station location (since 
they are obtained through direct measurement), although they may not 
be as representative of the HJA as a whole. For comparison, we redid the 
main parts of our analysis (detailed below) using the VANMET data for 
free-air temperature (Supplementary Methods). 

We used a suite of spatial predictor variables to model microclimate 
temperatures with temperature metrics as described above (Table S1, 
Figure S3). These predictors were selected to capture the important el-
ements of our hypothesized drivers of microclimate: vegetation, mac-
rotopography (elevation), and microtopography. These three categories 
were considered because of prior evidence for (1) old-growth tempera-
ture buffering effects, (2) surface temperature lapse rates, and (3) 
topographic shading and cold air pooling respectively (Minder et al. 
2010; Curtis et al. 2014; Frey et al. 2016; Macek et al. 2019; Rupp et al. 
2020). The vegetation and elevation variables are based on a 2008 lidar 
(light detection and ranging) survey of the HJA (Spies 2019). Thus, the 
vegetation variables do not reflect changes in forest structure that may 
have occurred after 2008, which could be significant in some areas. 
Lidar has been shown to accurately characterize both topography and 
vegetation structure in forest ecosystems (Lefsky et al. 2002; Kane et al. 
2010; Zald et al. 2016). The microtopography variables – slope, aspect, 
topographic position index (TPI), and topographic convergence 
(wetness) index (TCI) – were all calculated directly from elevation. 

2.4. Statistical modeling 

Because relationships between microclimate temperature metrics 
and vegetation and topography predictor variables can be complex and 
non-linear, we used boosted regression trees (BRTs) as our primary tool 
for statistical modeling (Elith et al. 2008). Briefly, BRTs use a sequence 
of regression (decision) trees to model a response variable where each 
successive tree predicts the residuals from the previous tree, which helps 
to increase the diversity of trees in the ensemble, thus potentially 
improving predictive performance (Elith et al. 2008; Hastie et al. 2009). 
BRTs are well-suited to large datasets and may outperform other 
methods, including random forests, neural networks, and kriging in 
temperature modeling (Appelhans et al. 2015). For our analysis, we used 
the ‘LightGBM’ high performance BRT framework (Ke et al. 2017). We 
varied the predictor variable sets, spatial extents (for smoothing), model 
loss functions, and other parameters to address different research 
questions as described in this section. 

We first modeled microclimatic conditions across years using the full 
suite of predictor variables summarized at multiple extents (Table S1, 
Figure S3, Supplementary Methods). We calculated the mean value of 
each predictor at radii 10 m, 20 m, …, 100 m for vegetation variables, 
and by resampling elevation at 25 m, 100 m, 250 m, and 500 m before 
calculating microtopographic variables (elevation as a predictor was not 
averaged). In this context, we use spatial “extent” to refer to the area 
associated with smoothing or coarsening (rather than the extent of the 
entire study area); for example, an extent of 100 m means that infor-
mation within roughly 100 m of each point was used in the associated 
calculation (Holland et al. 2004). To assess accuracy, we used 
prediction-based R2 and mean absolute error (MAE) with 
cross-validation based on blocking by year, which accounts for simi-
larity within years (Roberts et al. 2017). This accuracy assessment 
quantifies temporal consistency across years in that high model accuracy 
indicates that the relationships between temperature metrics and land-
scape drivers are similar regardless of inter-annual climatic variation. 
We used the associated plots of observed versus predicted values to 
provide insight into the degree of microclimate-macroclimate coupling; 

specifically, strong coupling would be evidenced by additive shifts in 
microclimate temperatures from year to year, paralleling shifts in 
macroclimate temperatures. Additionally, we calculated MAE for each 
year separately to determine if temperatures in certain years were 
especially difficult to predict using data from the other years. We used 
two versions of the response variables: (1) the “unadjusted” under-
canopy annual temperature summaries and (2) the associated temper-
ature offsets (undercanopy minus free-air) annual temperature 
summaries (De Frenne et al. 2019). We used the latter approach to 
quantify the effect of adjusting for year-to-year changes in broad-scale 
temperatures. This approach provides insight into how both 
broad-scale climatic patterns and local-scale spatial variables together 
drive microclimate temperatures. To further assess temporal consis-
tency, we computed Spearman’s rank correlations between years. In this 
case, we only considered unadjusted temperatures because rank corre-
lation is less sensitive to year-to-year variation. 

Predicting temperatures in one year using data from other years does 
not directly address the temporal consistency aspect of microrefugia, 
although it is implicitly tested. We therefore used BRTs with quantile 
loss functions to model temperature extremes (Cade & Noon 2003). The 
quantile loss function, defined as ρτ(u) = u[τ − I(u< 0)], has the prop-
erty that, for a random variable Y and constant u, the expected value of 
Y − u is minimized when u equals the τ-quantile of Y (Koenker 2004). 
This approach therefore allowed us to directly model extreme quantiles 
of the response variables, thereby identifying areas where the most 
extreme temperatures are moderated. Although extreme cold or hot 
temperatures can be problematic for some species, we focused on the hot 
upper-tail (90% quantile of the response distribution) for all of the 
temperature metrics. Thermal refugia are therefore the locations across 
the entire landscape that exhibit the most dampened temperature ex-
tremes (i.e., where the 90% quantile of the response variable is relatively 
low in comparison to the rest of the landscape). This reflects temporal 
consistency (i.e., annual temperatures can be predicted well using fac-
tors that vary little between years) in the sense that such locations are 
more likely to be consistently habitable by temperature-sensitive or-
ganisms (Fig. 1). In particular, when temperatures are hottest across the 
landscape as a whole, the relatively cold places (in unadjusted terms 
and/or relative to macroclimate) are most important as potential 
microrefugia. In contrast, directly modeling variability instead (e.g., 
standard deviations) could be used to identify areas with temporally 
consistent microclimatic conditions. However, these areas are not 
necessarily microrefugia since they can be, for example, too hot for or-
ganisms to persist. Modeling the upper-tails of the response variable 
distributions avoids this problem because they incorporate information 
about both the mean (which areas are cool on average?) and the stan-
dard deviation (which areas have consistent temperatures?) (Figure S4). 

The focus of our analysis is on temporal consistency of microclimatic 
refugia, which we note is different from temporal consistency of micro-
climate. Microrefugia are organism-dependent because they are defined 
in terms of habitat, which is itself an organism-dependent concept (Betts 
et al. 2014). Thus, a small area that is consistently hot would have a 
temporally consistent (thermal) microclimate, but would not be a 
microrefugium for species requiring cooler temperatures. Conversely, 
sites where temperatures are low but more variable could function as 
microrefugia for certain organisms (Fig. 1). Because our interest is in 
modeling microrefugia, we used quantile regression to identify areas 
that are consistently cool (in both absolute terms and relative to free-air 
conditions) from year to year and thus likely to function as microrefugia 
for many species, especially in the face of climate change. 

For our main quantile regression models, we used the full set of 
predictors (Table S1). We quantified overall model performance using 
the pseudo-R2 (Koenker & Machado 1999). We mapped predictions (i.e., 
predicted 90% quantile values for each 5-m pixel in the HJA as a 
function of local vegetation and topographic characteristics) for extreme 
values of the temperature metrics (both unadjusted values and offsets). 
This provides some information about where microrefugia may be 
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located spatially, which can be of use to future studies (e.g., a study of 
patterns of mortality rates or persistence of temperature-sensitive spe-
cies). To further facilitate spatial identification of microrefugia, we 
calculated a “microrefugial suitability index” for each temperature 
metric, which we defined as: 

M = 1 − max{prop1, prop2}

where prop1 and prop2 represent the proportions of (90% quantile) 
predicted values with lower unadjusted temperatures and temperature 
offsets respectively. Thus, M takes on high values (indicating high po-
tential suitability) when both unadjusted temperatures are low and 
negative offsets relative to free-air are large (in the predicted 90% 
quantiles; see Supplementary Methods). Although unadjusted and offset 
temperatures may be individually useful when identifying microrefugia, 
this hybrid approach combines two important criteria into a single 
index. 

To quantify the relative importance of each temperature metric 
predictor (and their summaries at multiple extents; Table S1, Supple-
mentary Methods), we used the ‘gain’ metric, which measures the in-
crease in model performance associated with each variable. We 
summarized relative gain in two ways: (1) total gain summed across 
variables within groups, calculated separately for each predictor spatial 
extent, and (2) gain associated with each variable summed across spatial 
extents. Together, these summaries show which groups of variables are 
particularly important for each temperature metric, and how this 
importance varies with respect to spatial extent. To determine how gain 
varies with respect to quantile, we repeated the variable-specific gain 
calculations separately for quantiles ranging from 10% to 80% in in-
crements of 10%, although our main results are for the 90% quantile 
only. 

We used accumulated local effects (ALE) plots to assess relationships 
between each predictor and each temperature metric response (both 

unadjusted responses and offsets) (Apley 2018). To estimate the effect of 
an individual predictor, it is necessary to specify the distribution of the 
other covariates (because of interactions). For ALE plots, the estimated 
conditional distribution of the other covariates is used, which improves 
interpretability. To further facilitate interpretability, we used principal 
components analysis (PCA) on the vegetation predictor variables 
(Table S1) to calculate two primary principal components that 
adequately captured stand-structure characteristics – particularly, a 
gradient in forest complexity (Schulze & Lienkaemper 2015; Frey et al. 
2016). As a sensitivity analysis, we used only data from the four most 
complete years (2012-2015), omitting sites that did not have data for all 
four years. This helps to mitigate issues with some sites potentially 
lacking data in unusual years. 

3. Results 

Inter-annual variation in gridMET (regional baseline) temperatures 
was often on the order of several degrees Celsius (Figure S2). VANMET 
(meteorological baseline) daily minimum and maximum temperatures 
were generally comparable to gridMET estimates, although VANMET 
daily maximum temperature estimates tended to be consistently lower 
than gridMET ones (Figure S2). This effect could be due to the location 
of VANMET at an elevation of 1,275 meters (since the HJA has a sig-
nificant elevational gradient and mean elevation of roughly 1,000 me-
ters) or possibly due to small or large scale buffering effects associated 
with forested land (the primary land cover type in the HJA). GridMET 
and VANMET temperature metrics (e.g., winter growing degree days) 
showed similar patterns as evidenced by associated slope parameter 
estimates (predicting VANMET from gridMET) being near 1 in most 
cases, although gridMET temperatures were consistently higher 
(Figure S5). Summer maximum temperature was a notable exception to 
this pattern, exhibiting high year-to-year variation in temperature off-
sets (Figure S5). 

3.1. Model performance 

Microclimate temperature offset models were highly predictive 
(despite substantial inter-annual variation in the response variables; 
Figure S6): R2 based on cross-validation by year ranged from 0.69 for 
spring minimum temperature to 0.90 for spring mean temperature 
(Fig. 2). Performance was mixed for the unadjusted temperature models 
(i.e., those that did not account for year-to-year variation in free-air 
temperatures) (Fig. 2). R2 and MAE by year were consistent with these 
overall patterns, both tending to indicate better performance when 
modeling temperature offsets (Figure S7). However, performance was 
often poor in 2009 and 2010, when relatively few sites had data loggers 
(Figures S1, S7). Quantile regression models for the unadjusted tem-
perature metrics (with the full suite of predictors; Table S1) had pseudo- 
R2 values ranging from 0.29 (summer maximum temperature) to 0.76 
(winter GDD). 

3.2. Temporal consistency in thermal characteristics 

The cross-validated results show that temperature offsets in a given 
year can be effectively predicted using data from other years (Fig. 2). 
That is, relatively cold spots (putative refugia) tended to be in consistent 
locations year to year since they could be identified in one year using 
data from the other years (provided the data logger locations cover the 
entire gradient of conditions in the HJA). This provides strong evidence 
for temporal consistency in our microclimate temperature response 
variables. This was further supported by the remarkably high Spear-
man’s (rank) correlation values between cross-validated unadjusted 
predictions in different years. All 450 correlations (each associated with 
a different variable and pair of years), were greater than 0.93 
(Figure S8). The mean of the correlations was 0.99 and the median was 
1.00. Among the response variables, summer maximum temperature 

Fig. 1. Illustration of the difference between stability of microclimate versus 
stability of microrefugia. Hypothetical distributions of an example annual sta-
tistic at two sites are shown. The right distribution is associated with greater 
microclimatic stability with respect to maximum summer temperature because 
it has lower variability. In contrast, for a species that requires maximum 
summer temperatures below the vertical line, only the left distribution is 
characteristic of a stable microrefugium. Importantly, these definitions are both 
statistic and species dependent. 
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had the highest mean correlation (1.00) and winter GDD had the lowest 
mean correlation (0.98). 

3.3. Predictors of microclimatic extremes and potential microrefugia 

The vegetation variables collectively were strongly predictive of 
microclimate temperature extremes, with combined relative influences 
ranging from 46.4% (spring minimum temperature) to 52.2% (winter 
GDD) (Fig. 3). Although variable relative influence estimates indicate 
that site-scale temperatures are dependent on elevation, micro-
topography, and vegetation structure, there was substantial variability 
in covariate contributions across temperature metrics (Fig. 3). Elevation 
was most predictive of spring mean temperature (11.8%) and spring 
minimum temperature (7.36%). Microtopography variables collectively 
had relatively consistent influence, ranging from 41.4% for spring mean 
temperature to 47.7% for summer maximum temperature (Fig. 3). In 
general, elevation had the greatest relative importance at intermediate 

quantiles, and less importance at extremes, which were the primary 
focus of our analysis because they highlight the coldest (or hottest) areas 
across time (Figure S9). 

Potential microrefugia – locations with consistently low tempera-
tures and temperature offsets (i.e., large negative offsets) occurred in 
many parts of the HJA, especially at higher elevations (Figs. 4, S10). 
Across the entire HJA, total microrefugia area, when calculated using a 
0.8 threshold for M, was smallest when temperatures were summarized 
using summer maximum (4.85 km2) and winter growing degree days 
(5.44 km2) and highest when spring minimum (8.08 km2) and spring 
mean (8.01 km2) were used (Fig. 4). This amounts to between 7.5% 
(summer max) and 12.5% (spring min) of the HJA. 

The vegetation variables were generally highly positively correlated 
with each other (Figure S11). This supported our decision to focus on the 
first two principal components for these variables when constructing 
accumulated local effects plots. Together, the first two principal com-
ponents explained 69.7% of the total variance and were generally 

Fig. 2. Observed and predicted temperature metric values using cross-validation by year. The predicted values for each year were obtained using models fit to all 
other years of data (to guard against overfitting). For each temperature metric (Table S1), the left plot is based on undercanopy temperatures, while the right plot is 
for temperature offsets (differences between corresponding free-air and undercanopy temperature metric values). Taking the difference accounts for some years being 
overall hotter or colder than others (Figure S2), which improves the predictive performance of vegetation and topographic variables as indicated by mean absolute 
error (Figure S7). 

C. Wolf et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 307 (2021) 108520

6

successful in separating plantation sites from mature forest or old- 
growth sites (Figure S12). In particular, the first principal component 
was strongly associated with the plantation to mature forest or old- 
growth gradient, with scaled values greater than ~0.45 being associ-
ated with mature forest or old-growth (Figure S12). 

The ALE plots show large variation in effect magnitudes and di-
rections for the elevation, microtopographic, and forest structure and 
composition variables (Fig. 5). A shift from young plantations to older 
undisturbed forests (represented by the first vegetation principal 
component) tended to result in cooler spring and summer maximum 
temperatures (Fig. 5). As expected, the effect of elevation on tempera-
tures was generally negative, even after subsetting to exclude incom-
plete data (Figure S13). Patterns were also generally similar, especially 
for elevation and the first vegetation principal component, when using 
the VANMET free-air temperature baseline instead of gridMET 
(Figure S14). In contrast, the effects of microtopographic variables were 
mixed—possibly a consequence of the extent considered (10 m)— 
although topographic convergence index frequently had a negative ef-
fect on temperatures. 

3.4. Spatial extent 

Elevation, microtopography, and vegetation all helped to explain 
microclimate temperatures (Figs. 4, S8). This shows that the importance 
of these variable groups holds over longer time scales. The robustness of 
these results may be partly attributable to the use of multi-extent 
modeling, with spatial extents of covariates ranging from 5 to 500 me-
ters. The relative influence of these variable groups was frequently 
extent-dependent. Together, the vegetation-related variables declined in 
relative influence with increasing extent (Figure S15). In contrast, the 
microtopographic variables tended to maintain their relative influence 
across spatial extents, even out to 500 meters (Figure S15), although the 
associated relationships (i.e., effects on temperatures) likely depended 
on the extent considered. 

4. Discussion 

Our model R2 and MAE results show that spatial patterns in tem-
peratures in the HJA tend to be consistent and predictable over the long 
term – a critical criterion for thermal refugia (Figs. 2, S7). The fact that 
temperatures for a given location (i.e., data logger position) in each year 

Fig. 3. Relative influence of vegetation (green) microtopography (orange), and elevation (blue) predictor variables on temperature extremes for different unadjusted 
annual temperature metrics (Table S1). The 90% quantile is modeled for all variables in order to focus on relationships between predictors and temperature metrics at 
temperature extremes (results for other quantiles are shown in Figure S9). The variable relative influences indicate that, across temperature metrics, micro-
topography and vegetation are important predictors of undercanopy temperatures, even after accounting for elevation. 
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can be predicted well given data from the other years strongly supports 
this expectation. Moreover, this provides evidence for our hypothesis 
that the consistency of sites’ thermal characteristics is largely driven by 
relatively stable factors (i.e., topography and, to a lesser extent, vege-
tation). This is especially true when we considered temperature offsets 
(i.e., controlled for year-to-year changes in free-air temperature), an 
adjustment that had a modest impact on the locations of cool spots 
(Figure S10). The high predictability of microclimate temperature off-
sets (Figs. 2, S16) provides evidence for microclimate coupling (additive 
shifts in temperature), rather than decoupling (Lenoir et al. 2017; De 
Frenne et al. 2021). That is, the magnitude of the offset remains rela-
tively stable over time despite the current macroclimate warming trend 
(2009-2018; Fig. 2), thus suggesting a strong coupling between micro-
climate warming and macroclimate warming (De Frenne et al. 2021). 
Thus, areas that are consistently cool relative to their surroundings still 
track free-air temperatures, and can be hot in hot years; that is, although 
cold areas are consistently cold, they are less so (in absolute terms) in 
years when macroclimate conditions are hotter. The HJA contains a 
diversity of forest types that are representative of much of the 

old-growth and older plantation area throughout the Washington and 
Oregon Cascades. This suggests that microrefugia are likely to be 
temporally consistent at broader scales as well. 

The connection between old-growth and microrefugia is particularly 
important in unmanaged forests where the length of time between major 
disturbances can be 500+ years, with old-growth potentially giving 
species a chance to persist over the long term in the face of broad-scale 
climatic events (Zellweger et al. 2020). The thermal effects of forest 
structure can be dominated by year-to-year temperature variation – 
which may be greater in magnitude than thermal buffering effects. 
However, even when the magnitude of thermal buffering is overcome by 
macroclimate warming, consistently “cold” microrefugia are still more 
hospitable than anywhere else in the landscape, and thus might buy time 
for species to move or adapt. In the cases of spring and summer 
maximum temperatures, old-growth forest structure was associated with 
cooler temperatures (relative to all vegetation present) on the order of 
3-5◦C (Fig. 5), often exceeding inter-annual variation in free-air tem-
perature in magnitude (Figure S2). These larger effects are comparable 
to the ~5◦C shifts in monthly minimum and maximum temperatures 

Fig. 4. Predicted microrefugia locations in the HJA for each temperature metric using data from 2009 to 2018 (Table S1). Predictions are based on a “microrefugial 
suitability” index which has high values when both the temperature metrics themselves (e.g., winter growing degree days) and the associated temperature offsets 
(relative to free-air) have low values. Blue regions (top two rows) show locations of microrefugia based on a 0.8 threshold. For context, maps of elevation and forest 
structure gradient are shown in the bottom row. The forest structure gradient ranges from plantations (outlined in black) to mature forest and old-growth, and is 
based on principal component analysis (with values linearly rescaled to range from 0 to 1 at data logger sites). Predicted temperature and temperature offset maps are 
also available (Fig. S10). 
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linked to habitat type (grassland, heathland, or deciduous woodland) in 
northern England (Suggitt et al. 2011) and to reductions in microclimate 
maximum temperatures of up to 3.3◦C associated with forest ecosystems 
in Switzerland (Von Arx et al. 2013). They are also comparable to the 
Intergovernmental Panel on Climate Change’s projected surface tem-
perature change of 3.7◦C (likely range: 2.6◦C to 4.8◦C) for 2081-2100 
under the RCP8.5 high emission scenario (Stocker et al. 2013). If man-
agers wish to maintain landscapes that incorporate some less climati-
cally stressful habitats for species of interest, conserving old-growth 
forests may remain a priority. Such management could prioritize sites 
where elevation and microtopographic characteristics also favor the 
occurrence of microrefugia (Figs. 3, S3). Importantly, the bulk of PC1’s 

negative effect was realized prior to reaching a value of 0.45, the value 
associated with the transition to old-growth (Figure S12). More work is 
needed to identify the specific forest structure characteristics shaping 
understory microclimate; knowledge about such characteristics could 
form the basis for silvicultural prescriptions aiding the development of 
microrefugia. 

Our results indicate that vegetation, particularly forest structure, 
effectively reduces maximum temperatures, which can be an important 
driver of species distributions at the landscape scale (Macek et al. 2019), 
but has weaker effects on minimum and mean temperatures. This is 
generally consistent with the results of prior forest microclimate studies 
(e.g., Zellweger et al. 2019) and with the overall pattern of microclimate 

Fig. 5. Accumulated local effects (ALE) plots indicating the effects of each predictor on the extremes of different temperature metrics (90% quantile, panel A). 
Predictors have been scaled so they can be plotted on the same axis. Large negative effects associated with elevation are apparent. Additionally, the first principal 
component “PC 1” (Fig. S12), which spans the gradient from tree plantations (B) to old-growth (C), often has a negative effect, consistent with old-growth buffering of 
microclimate temperatures. Photo credit: Matthew Betts. 
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buffering derived using a global meta-analysis, which estimated the 
average forest buffering effect relative to macroclimate temperatures 
was 1.7◦C, 4.1◦C, and -1.1◦C for mean, maximum, and minimum tem-
peratures respectively (De Frenne et al. 2019). However, our results for 
mean temperatures were more mixed (“PC 1” in Fig. 5). This discrepancy 
may be due to fine-scale variation in vegetation near the data loggers or 
to our focus on undercanopy temperatures in general, rather than forest 
versus non-forest temperatures (although sites on the upper left of the 
PC1-PC2 plot correspond to nearly open conditions). The observed 
patterns in summer maximum temperatures may be important for forest 
wildfire behavior and management. Recent evidence that high severity 
fires may be less likely in some types of older forests (Zald & Dunn 2018; 
Meigs et al. 2020) could, in part, be explained by the capacity of these 
old forests to temper extreme temperatures. This implies that the prev-
alence of old-growth forest could help determine forest landscape 
resistance to high severity fire in the western Cascade Mountains. 

As expected, the relative influence and effects of microtopographic 
variables varied greatly depending on the temperature metric consid-
ered (Figs. 3, 5). This is a consequence of the dynamic nature of the 
interaction between topography and local airflows (Daly et al. 2010). 
Among drivers of microclimate variability, some effects of topography 
(e.g., cold air flows and pooling) tend to be more transient than those of 
old-growth vegetation. Ultimately, the locations and stability of micro-
refugia are dependent on complex interactions between predictors that 
vary at daily, seasonal, annual, and likely even centennial, and millen-
nial (for topography) temporal scales. 

4.1. Future work 

While our analysis shows that certain spots have been consistently 
cool relative to free-air temperatures and other locations within the 
same watershed over the last decade (Fig. 4), in the future, it will be 
important to understand the varying and interacting drivers of micro-
refugia consistency in order to accurately quantify the medium- and 
long-term stability of microrefugia. An important step toward improving 
assessments of microrefugia is to incorporate other response variables, 
such as measurements related to water balance, snow cover, snow depth, 
and snow duration (Lenoir et al. 2017; McLaughlin et al. 2017; Davis 
et al. 2019). Long-term temperature patterns under old-growth canopy 
in the HJA suggest that vegetation and topography combine to influence 
local air flow and understory temperature dynamics (Rupp et al. 2020) 
and that cold air pooling driven by local topography can lead to 
decoupling from free-air temperatures (Daly et al. 2010). These findings 
provide some potential mechanisms for buffering to climate change via 
combined vegetation and topographic influences, which can be helpful 
in refining our understanding of the strength and stability of micro-
refugia in forested landscapes. This understanding will ideally be based 
on mechanistic models – for example, simulating the flow of air across 
the landscape and directly modeling shading and solar radiation (Ogée 
et al. 2003; Bennie et al. 2008; Dobrowski et al. 2009; Maclean et al. 
2019). Such mechanistic or process-based models may offer greater 
predictive power than purely statistical methods when generalizing to 
novel circumstances, including anthropogenic climate change (Cud-
dington et al. 2013). This is supported by the promising results shown by 
recently developed, global microclimate models (e.g., Kearney et al. 
2020; Maclean, 2020), although these models do not incorporate the 
mechanistic approach of Ogée et al. (2003) and may have limited ability 
to predict forest microclimate (undercanopy) conditions [but see 
(Maclean and Klinges, 2021)]. Importantly, long-term studies, such as 
the one described here, offer an ideal data source for developing and 
validating such mechanistic models, which could then be linked to 
biodiversity responses (Supplementary Discussion). 

4.2. Conclusion 

For microrefugia to be effective in a changing climate, they must be 

temporally consistent. Generalizing our results over the last decade to 
long-term future climate conditions is difficult, but important for setting 
conservation priorities at the landscape-scale and broader scale. The 
strong elevational gradient in temperatures means that high-elevation 
sites are likely to be doubly important: first, they may function as 
microrefugia for species populations at lower elevations, and second, 
high-elevation sites with high temporal consistency due to factors such 
as topographic shading and vegetation structure are vital because spe-
cies that are already dependent on high-elevation microrefugia may 
have little potential for further range shifts. Because vegetation is also 
predictive of microrefugia locations, when managing for and protecting 
microrefugia, old-growth in high elevation and high topographic posi-
tion index areas should be conserved when possible (Morelli et al. 2016). 
Conversely, mid elevation old growth stands with low topographic po-
sition might be equally important in managing species responses to 
climate change because they have the added benefit of being some of the 
locations that have served as fire refugia over the last 500 years, in 
contrast to a lot of the higher elevation forests in the HJA. While our 
analysis deals with the effects of vegetation on microclimate, microcli-
matic conditions associated with forest can, in turn, promote tree 
recruitment (Badano et al. 2015). Thus, positive feedback loops wherein 
decreases in forest structural complexity and increases in undercanopy 
temperatures reinforce each other can lead to undesirable alternative 
stable states, providing additional motivation to conserve old-growth 
and mature forest (Schröder et al. 2005). 

Another management consideration is that minimum, maximum, 
and mean temperatures may be differentially affected by both climate 
change and the presence of old-growth (Dobrowski 2011; De Frenne 
et al. 2019; Zellweger et al. 2019). Thus, a holistic approach is needed to 
achieve conservation and other management goals. The availability and 
persistence of microrefugia must be considered alongside potential 
benefits of old-growth forests to biodiversity, including increased 
habitat diversity and vegetation structure (Mladenoff et al. 1993). Such 
an approach could consider the effects of microclimate on species’ 
populations more generally, accounting for inter-annual variability, 
including among less extreme years. For example, relatively short-term 
variation in climate can help or hinder tree regeneration, allowing for 
range expansion, maintenance, or contractions (Jackson et al. 2009). 
This implies that the temporal variation in microclimate is a key 
component for understanding historical and future species range shifts. 
By modeling microrefugia over a decade, our analysis represents a step 
toward taking a long-term view of microclimate (Lenoir et al. 2017), 
which will be necessary to ensure effective biodiversity conservation as 
climate change accelerates. 
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