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Coniferous trees are a major North American crop that has been intensively managed 

for its commercial value, while also serving as critical habitat for abundant wildlife and 

as carbon sinks. Having diverse functions, North American temperate coniferous 

forests have become a research hotspot for numerous scientific studies aiming to 

integrate ecological and economic objectives, such as examining the contribution of 

the conifer crown architecture to long-term forest management schemes. Point clouds 

have become an important source of forest inventory data and forest ecological studies, 

as provide accurate and comprehensive estimates of many structural variables. 

The present thesis aims to improve the understanding of conifer crown structure by 

estimating crown variables and developing stem and crown models using point clouds 

derived from images or laser scanning. The utilizations of point clouds were tested on 

loblolly pine plantations and mature Douglas-fir trees in a natural stand. Various types 

of 3D models were constructed for tree stems and branch attributes using point clouds. 

The 3D models provide direct volume estimates, as well as estimates of tree structural 

variables including tree height, stem diameter, branch basal diameter, length, insertion 

angle, and azimuth. The variable extractions were executed with semi-automatic 

methods, which combine human interpretation with an automatic estimation algorithm. 

The accuracy and reliability of point-clouds-based estimates were assessed with ground 

measurements and estimates from existing equations through simulations. Stem taper 

equations were developed using point-clouds-based stem diameter estimates. 



 

 

Nonlinear models of branch variables, as well as systematic crown models, were 

developed using lidar-based estimates by considering neighboring competition effects.  

The results demonstrate the reliability and efficiency of using point clouds data as 

alternatives or complements to traditional fieldwork. Stem and branch variables 

estimated nondestructively from lidar and photogrammetry point clouds agreed with 

ground measurements and fit in the range of observations from existing equations. 

Workflows developed and presented in this thesis can be employed by forestry 

practitioners and researchers to acquire fast and accurate tree structural variables, while 

models of stem and branch attributes can guide forest inventory and silvicultural 

practices as well as advance ecological research. 
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Chapter 1 Introduction 

1.1. Importance of conifer architecture    

In North America, conifer trees are a major crop that has been intensively managed for 

their high commercial value. At the same time, as home to enormous amounts of 

wildlife and serving as large carbon sinks, North American temperate coniferous 

forests have become a critical research hotspot for numerous scientific studies. To help 

integrate and balance ecological and economic objectives, one important research topic 

is to investigate the crown architecture of the conifer species, which is crucial in 

designing long-term forest management strategies (Franklin et al., 2002).  

Quantitative information on trees and numeric models describing individual tree 

structure such as stem and crown profiles are essential components of comprehensive 

forest growth and yield prediction systems (Harold E Burkhart and Tomé, 2012). In the 

context of the present research, structure is defined as the attributes describing the tree 

dimensional variables and the relationship among them, which is an application of the 

general systems theory developed by von Bertalanffy to forest. Acquisition of accurate 

estimates of forest volume and biomass is the primary goal of forest inventory (Kangas 

and Maltamo, 2006). Due to the difficulty of direct volume and biomass estimation in 

the field, tree structural variables, including diameter at breast height (DBH), total 

height (THT), stem taper, and crown radius are used as indirect inputs in empirical 

allometric models for stem volume and biomass estimation. Furthermore, numerical 

descriptions of tree structure guide silvicultural practices seeking to achieve desired 

tree forms. Tree branch geometry and size are important indicators of timber quality 

(Maguire et al., 1999; Osborne and Maguire, 2015). Small limbs are preferred on crop 
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trees, as large limbs form large internal knots that discontinue the wood fiber and 

reduce the strength and value of the lumber products. Tree spacing aims at optimal stem 

biomass allocation while reducing the crown volume. A system of equations or 

databases documenting branch size, growth, and geometry assists in designing 

silvicultural treatments to maximize timber yield.  

Knowledge of forest canopy architecture is also needed to better understand forest 

productivity (Bohn and Huth, 2017), forest fire resilience (Stephens et al., 2015), 

variability of forest microclimate (Aussenac, 2000; Chen and Franklin, 1997), and 

forest biodiversity and habitat connectivity (Franklin et al., 2002; Michel and Winter, 

2009; Van Pelt and Nadkarni, 2004). Clement and Shaw (1999) found the abundance 

of large limbs on old-growth Douglas-fir trees promotes the mass of epiphytes, which 

determines the microclimate condition forest substrates expose to. Michel and Winter 

(2009) observed a positive relationship between tree size and the numbers of 

microhabitat groups within individual Douglas-fir trees. They found that only a few 

large trees (DBH > 80 cm) provide the majority of bark-related microhabitats, which 

suggests a possible increase in tree structural complexity through management that 

enhances the trees’ ability to host diverse organisms.  

Acquiring accurate structural information is fundamental for successful structural 

studies. Among all the structural variables, DBH is the most commonly used variable 

in describing tree volume, biomass, height, and branch variables.  Although DBH alone 

could adequately explain basic mass metrics, such as total biomass and volume, other 

dimensional metrics are also important for describing tree structure. Updated tree
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 structure for plantation and natural regime trees improve the understanding of tree 

structural allocation and can be easily linked to other biological processes.  

Traditional field measurement methods are limited in their ability to acquire fast and 

accurate structural estimates in locations that are difficult to access, such as dense 

forests and very high canopy. Traditionally, the upper stem diameters are destructively 

measured from fallen trees. Tree falling requires tremendous efforts, time, and 

resources, and the representativeness of sampled stem diameters are limited by the 

randomness and the size of the measured samples (Harold E Burkhart and Tomé, 2012). 

Even more, tree falling causes a considerable loss of branch information.  Branch 

measurements on standing trees are usually performed by formally trained tree climbers, 

which is inexistent operationally only in research.   

1.2. Application of point clouds in tree structural studies 

The light detection and ranging (lidar) allows for measurement of forest structure even 

in dense forests, as laser beams can penetrate dense canopy and allows estimation of 

canopy metrics in substantially less time than conventional fieldwork methods. In the 

last decades, the application of lidar data acquisition has been gradually incorporated 

into forest inventory techniques (Johnson et al., 2014). Information provided by lidar 

scans is represented as points with coordinate and intensity attributes. Airborne lidar 

has been widely used to estimate stand- or plot-level forest structural variables, which 

are eventually used to predict tree aboveground biomass (Chen et al., 2012; Lim and 

Treitz, 2004, 2004; Sheridan et al., 2015), species diversity (Clawges et al., 2008; 

Hernández-Stefanoni et al., 2014; Simonson et al., 2012), and photosynthetic activities 
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(Chen et al., 2008; Hilker et al., 2010a; Thomas et al., 2006). However, as airborne 

lidar is operated from aircraft flying above the canopy, it tends to perform poorly in 

acquiring detailed structural information inside the crown and in the lower canopy.   

By contrast, terrestrial lidar can supply precise structural information inside the canopy, 

as the estimates have at most several centimeters error. Point clouds from terrestrial 

sensors depict detailed dimensional attributes of stems, branches, and leaves. Having a 

simpler structure relative to tree branches, conifer stems can be relatively easily 

modeled using lidar point clouds. To estimate tree stem diameter, the cross-section of 

the stem is commonly approximated with two geometries: circle and a convex hull 

developed from point clouds. The former is a fitted circular shape by minimizing a 

predefined loss function, whereas the latter is the smallest convex envelope that 

encompasses all the selected points. The reported error of DBH estimates from 

terrestrial lidar ranges from 1 cm to 3 cm (Henning and Radtke, 2006; Hopkinson et 

al., 2004; Huang et al., 2011; Liang et al., 2014b; Watt and Donoghue, 2005). Despite 

the advantages of lidar, the expensive cost of the sensors, as well as demanding 

operational and data processing skill level needed from forest practitioners, are factors 

limiting terrestrial lidar to forest research. Point clouds developed from images have 

recently become increasingly popular, as an affordable alternative to lidar point clouds. 

Structure from motion (SfM) is a technique that ties together a series of 2D photographs 

to convert them to 3D point clouds (Ullman, 1979). SfM extracts key feature points 

that define edges of objects in individual images, then aligns these feature points across 

multiple images, thereby mimicking the visual depth of the human eye. After images 
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are aligned, tie points outlining the 3D structures are retrieved and represented as 

relative 3D coordinates. Dense point 

clouds are created starting from the surface of the modeled 3D structures. Due to the 

underlining mechanisms of SfM, it is most effective in scenes with well-defined details, 

where distinct edges distinguish objects from their surroundings. Therefore, SfM 

usually is successful in developing 3D models for individual tree stems located in 

sparse forest understory. In fact, many studies have shown similar stem diameter and 

volume estimates derived from photogrammetry-based point clouds (PPC) to ground 

measurements or lidar point clouds (Mikita et al., 2016; Miller et al., 2015; Wallace et 

al., 2016).  However, exceeding complexity of branches and dense canopy usually 

decreases the success of 3D model construction with SfM.  

Compared with stem models, branch models are more difficult to reconstruct from 

point clouds due to their relatively small size, interlocking effects among branches, and 

noise from evergreen foliage. Aggregating branch point clouds with convex hulls or 

voxels provides rough estimates of entire crown volumes and surface areas (Kato et al., 

2009; Li and Liu, 2019; Stovall et al., 2017). In the process of creating a convex hull, 

only the points at the crown surface are actually used to define the crown shape. Voxel, 

in comparison, more precisely approximate crown shape by dividing the point clouds 

into small cubic units.  Different sizes of voxels result in different levels of precision 

of the structural estimates (Grau et al., 2017; Hauglin et al., 2013).  However, both 

convex hull and voxel methods neglect the topological relationship between points 

inside the unit. Côté et al (2009) developed an algorithm to extract tree skeleton from 
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terrestrial lidar point clouds by tracing the central line of defined node sets of points.  

Unfortunately, their study did not yield readily measurable branch models, and the final 

algorithm is not available as an open-source product.

Quantitative structural modeling (QSM) is a solution to utilize the topological relations 

between points to develop tree structural models. Starting from the bottom of the stem, 

QSM segments point clouds into subsections of varying lengths until the bifurcation of 

branches happens. Then, it repeats the same procedure recursively for all suborder 

branches. The segments of branch and stem point clouds are locally approximated with 

cylindrical models of varying sizes. Eventually, branch and stem structural and 

locational attributes can be estimated from these cylindrical models. Various QSM 

methods and corresponding algorithm products were provided in the last quinquennial  

(Delagrange et al., 2014; Hackenberg et al., 2015a; Raumonen et al., 2013b; Zhang et 

al., 2014). Among the QSM products, TreeQSM, developed by Raumonen et al. (2013b) 

is the most successful, as it was applied to many tree structural studies, some aiming at 

the structure of broadleaf species (Lau et al., 2019, 2018; Malhi et al., 2018), some at 

the tree volume (Calders et al., 2015; Tanago et al., 2018).  

Attributed to the dissimilar crown structures between broadleaf and coniferous species, 

as well as the seasonality of their foliage growth, the challenges of TreeQSM’s 

application on coniferous species are twofold. First, when using TreeQSM it is assumed 

that point clouds were collected during the leaf-off season. Filtering leaf points is an 

extra step required by TreeQSM to enable accurate 3D model reconstruction for conifer 

species (Brede et al., 2019a). Second, although TreeQSM is not designed to be 
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dependent on species, the relatively smaller branch diameters of coniferous species can 

impact the accuracy of reconstructed models. Lau et al. (2018) found that TreeQSM 

accurately estimated approximately 45% of the branches with a diameter at insertion 

point between 10 – 20 cm. For young to mature conifer trees, most of the branches are 

less than 10 cm. Thus, the reliability of accurately using TreeQSM on conifer trees is 

still in question.  

Despite the uncertainties associated with automatic branch model reconstruction, the 

branch attributes estimated with QSM techniques are still encountered in crown studies. 

For one, it supplies fast crown attribute estimates as a complement to field 

measurements. It also helps drive crown studies from model-driven to data-driven, the 

latter of which provides a more inclusive view of crown structure and free the crown 

studies from rigid and cumbersome model systems.  

1.3. Objectives of this study 

With the goal of improving scientific understanding of conifer crown structure while 

also advancing point cloud research in contemporary tree structural studies, the present 

thesis aims to: 1) test the utilization of point clouds derived from both photogrammetry 

and lidar in estimating tree structural variables; and 2) develop conifer tree stem and 

crown models using estimates acquired from point clouds. The substance of the thesis 

is contained in four chapters whose major goals are: 

Chapter 2: assess the accuracy of diameter measurements executed from the 

photogrammetric point clouds (PPC) obtained with SfM technique for loblolly pine 
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trees located at a plantation in central Louisiana, and developing stem taper equations 

using corresponding estimates from PPC; 

Chapter 3: compare stem volume estimates using terrestrial lidar point clouds with 

volume estimates from existing equations and assess the effects of sample segment 

lengths on lidar-based volume estimates; 

Chapter 4: test the performance of TreeQSM in estimating branch structural variables 

for mature Douglas-fir trees and develop conceptual tree crown models using estimates 

from terrestrial lidar for Douglas-fir trees; 

Chapter 5: develop nonlinear models for mature Douglas-fir branch attributes using 

estimates from lidar point clouds by incorporating competition effects from 

neighboring trees in the branch models and develop systematic crown model sets.   
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Chapter 2 Stem measurements and taper modeling using 

photogrammetric point clouds 
Abstract 

Estimation of tree biomass and products that can be obtained from stem focused forest 

research for more than two centuries. Traditionally, measurements of entire tree bole 

were expensive or inaccurate, even that sophisticated remote sensing techniques were 

used. I propose a fast and accurate procedure for measuring diameters along the 

merchantable portion of the stem at any given height. The procedure uses unreferenced 

photos captured with consumer grade camera. A photogrammetric point cloud (ppc) is 

produced from the acquired images using structure from motion, which is a computer 

vision range imaging technique. A set of 18 loblolly pines (Pinus taeda L.) from east 

Louisiana, USA, were photographed, subsequently cut, and diameter measured every 

meter. Same diameters were measured on the point cloud with AutoCAD Civil3D. 

Ground point cloud reconstruction provide useful information for at most 13 m along 

the stem. The ppc measurements are biased, overestimating real diameters with 17.2 

mm, but with reduced standard deviation (8.2%). A linear equation with parameters the 

error at diameter at breast height (d1.3)bh and the error of photogrammetric rendering 

reduced bias to 1.4 mm. The usability of the ppc measurements in taper modeling was 

assessed with four models: Max and Burkhart [1], Baldwin and Feduccia [2], Lenhart 

et al. [3] and Kozak [4]. The evaluation reveled that data fit well all the models 

(R2≥0.97), with Kozak and Baldwin & Feduccia performing the best. The results 

support replacement of taper with ppc, as faster, more accurate and precise product 

estimations are expected.  
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2.1.  Introduction 

Forest inventory is focused on estimation of existing resources with techniques that are 

simultaneously fast, accurate, precise, and cost effective [5-7]. Ground estimates are 

enhanced by remote sensing techniques, particularly lidar, which provide a wealth of 

data at reduced costs [8,9]. However, looking at the forest from above limits access to 

valuable information in respect to product identification from individual trees. 

Regardless the sensor (i.e., active or passive), nadir view fails to capture relevant 

information about the stem. Therefore, either ground inventory focused on stem 

product is executed or taper models are used to predict the products that can be obtained 

from each stem. In practical applications, stem is described from ground measurements 

with two procedures: one based on measuring diameter at various height with optical 

devices [10-13] and one based on point clouds, such as terrestrial laser scanning [14-

17]. Both approaches are time-consuming and not necessarily unexpansive. Besides 

significant time needed to acquire the information, accuracy issues are present. Optical 

devices overestimate actual diameter with more than 1 mm on average, which could 

seem insignificant. However, the standard deviation is at least 10 times larger than 

mean [10], which suggests that quality of the measurements depends on the operator as 

much as on the method or device. Overestimation of diameter also occurs when lidar 

serves as input, depending on the approach, by as much as 25 mm [17].  Compared 

with ground measurements, taper models require a significant development effort, but 

once completed the only information needed to estimate products allocation along stem 

is diameter at breast height (d1.3) and total height [18]. However, mixed results were 
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obtained when taper is used in products identification and estimation, some arguing for 

[19] some against [20,21].  

An alternative to time - consuming (i.e., ground measurements) or expensive point 

clouds (i.e., terrestrial lidar) is reconstruction of reality with computer vision 

techniques. The main product of computer vision procedures is a point cloud built from 

2D images [22,23]. The distinction between the computer vision based point clouds 

and the clouds produced from stereo images is the reduced importance, up to 

elimination, of the stereometric information in the former. Creation of point clouds with 

stereopsis is possible, but is slow, difficult to implement in the field, and requires a 

significant post-processing. Image processing is implemented in many instances with 

expensive software, such as ENVI [24] or IMAGINE Photogrammetry (former Leica 

Photogrammetry Suite) [25]. The need for performant software is rooted on the 

stereopsis (i.e., operates with one pair of images at a time), which supplies only a partial 

view of the trees. To render the entire tree multiple image acquisition positions are 

needed, each location producing point clouds that have to be merged subsequently. 

Therefore, stereometric techniques focused on 3D rendering are not considered 

operationally feasible for activities occurring under forest canopy. The lack of 

stereometry labeled the computer vision derived points as photogrammetric [26,27]. 

Representation of reality with 3D points is not new [28,29], but gained momentum in 

forestry when commercial applications become available, such as Agisoft [30], Pix4D 

[31] or VisualSFM [32]. A large number of papers using photogrammetric point clouds 

(henceforth ppc) describe forest from above, similarly with aerial lidar [33]. However, 

the presence of a passive sensor limits the ability of ppc to reach the ground; therefore, 



16 

 

they were used either in combination with other data (such as digital terrain models) or 

confined to upper canopy. Currently, researchers investigate the applicability of 

structure from motion (SfM) technique, a computer vision procedure, in reconstructing 

the lower portion of tree stem [34,35]. Success was noticed in estimation of d1.3, in 

many instances with precision superior to terrestrial lidar [34]. The encouraging SfM 

results recommended expansion from d1.3to diameter along the stem. Therefore, the 

objective of this research is assessment of the accuracy of diameter measurements 

executed from the ppc obtained with SfM technique. A secondary objective is 

comparison between the diameters measured from ppc and the diameters estimated 

from taper equations. 

2.1. Methods 

2.1.1. Field data collection 

The accuracy and precision of diameter measurements executed on ppc was assessed 

using 18 loblolly pines (Pinus taeda Lindl.) from west central Louisiana (Figure 2.1 

a,b). The trees were chosen to describe stands that are ready for a silvicultural 

prescription ( Figure 2.1 c) (i.e., thinning or regeneration harvest), and mirror other 

studies focused on taper modeling [36-38]. The selected trees were positioned in the 

dominant and codominant crown classes (Figure 2.1 d), according to Nyland [39]. 

Trees located in the upper crown classes are the focus of active forest management, as 

they are not only the most valuable trees but also the ones that define the ecosystem 

dynamics [40]. The trees were scheduled for either the first thin (i.e., mechanical 

thinning) or for final cut (i.e., clearcut). The average d1.3 was on average 306.1 mm 

(variance 68.5), ranging from 213.0 mm to 449.6 mm. Total height (H) varied from 
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15.9 m to 26.8 m, with an average of 22.2 m and a variance of 12.8. The trees grew on 

productive sites, with site indices ≥ 60 at base age 25. Each tree was photographed with 

a Nikon D3200 (i.e., CMOS sensor of 23.2 mm × 15.4 mm) equipped with a Nikkor 

AF-S DX VR 18-55 mm zoom lens (aperture 3.5 – 5.6). To capture as much as possible 

from the tree the images were acquired at the focal length 18 mm. For calibration, each 

tree had the d1.3 painted circularly, and on opposite sides of d1.3 two metal rods of 

304.8 mm (i.e., 1 foot) were freely hanged. Shortly after the images were captured, the 

trees were felled and diameter along the stem was measured every meter with a Spencer 

D-tape starting from d1.3, which was marked at 1.3 m. The accuracy of measurements 

was 1 mm for diameters and 10 mm for lengths along the stem (i.e., height). To verify 

total length after the tree was felt, total height was extracted from lidar data. The lidar 

flight scanning the area was executed in March 2012, at most four months before the 

trees were photographed and cut. To accommodate for the growth between flight time 

and field measurements I considered that trees could have increased their height with 

at most 1 m. The point density was on average 30 points / m2. 
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Figure 2.1 Study area showing the location of the trees. a. general position within 

Louisiana; b. locations of all the trees photographed and cut; c. the four most 

southern trees; d. lidar point cloud of the rectangle contain the southern four trees. 
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2.1.2. Photogrammetric point cloud generation and diameter measurements.  

The ppc were generated using SfM implemented in Agisoft PhotoScan ver 1.2 [30]. 

Tree reconstruction and stem diameter measurements from ppc were executed in four 

steps (Figure 2.2 a, b, c and d): 1) photo alignment, 2) build the point cloud, 3) scale 

the point cloud, and 4) measure diameter along the stem. Three sample ppc trees were 

documented in Appendix A in detail. The crucial step of SfM is concerned with 

alignment of images, which if not completed properly will render an unusable ppc. 

Depending on computational power (i.e., microprocessor), the amount of detail existing 

inside the image (i.e., number of pixels), and time available for processing the 

alignment can be executed in few seconds or few hours. In Agisoft, there are four 

parameters determining the time and quality of photo alignment: accuracy of camera 

position, matching detected features across images, the number of key points (i.e., 

image specific feature points that can represent same entities in multiple images), and 

tie points (i.e., image specific points used for matching images). Accurate camera 

locations are obtained when original images are used unaltered, which in Agisoft is 

coded as “high” [41]. However, this option is time-consuming; therefore, lower 

accuracy can be used [42], such as medium, which downscale each side of the image 

by a factor of two. Liang et al. [42] obtained good results by low alignment of photos 

with resolution 5472 × 3648 pixels, which employed only 16th of the information 

recorded (i.e., 1368 × 912). In our study, the image resolution was 3872 × 2592 pixels, 

and I aligned the photos by downscaling the original images by half (i.e., 1936 × 1296). 

Thru experimentation the maximum number of key points was set to 100,000 and of 

tie-points at 60,000.  
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Figure 2.2 Workflow of the photogrammetric-based stem reconstruction and diameter 

measurement. a. field photographs for an individual tree; b. SfM process of 

reconstruction (tie points, densified points, surface); c. scaling the ppc with reference 

bar and d1.3; d. diameter measurements in AutoCAD. 
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Photos were captured around the trees in pairs to cover the lower and higher portions 

of the stem (Figure 2.2 a). Each pair overlapped ≥ 50%, to ensure sufficient common 

features for successful photo alignment. Georeference provides auxiliary information 

that helps camera positioning. However, by operating below canopy no reliable GPS 

coordinates were acquired; therefore, the photos were aligned by relying only on 

presence of same features on multiple images. At least 10,000 tie-points / image were 

used for photo alignment and camera positioning. 

The second step occurs after photos alignment and consists in densification of the tie-

points (Figure 2.2 b).  For each tree, the final ppc was created by downscaling the 

images by a factor of 2, which produced enough points for precise measurements 

without sacrificing processing time. All trees were described with a ppc of at least 

600,000 points (the maximum was approximately 2 millions), at least 25,000 points/ 

m2. To ensure precise measurements I reconstructed the surface of the trunk with at 

least 500,000 faces (Figure 2.2 b). The faces were built with a ratio of 1:5 to the number 

of points. Compared with previous studies of image-based forest inventories [34,35,42] 

the selected parameter for SfM in Agisoft (Table 2.1) were either similar or provided 

superior solutions. 

Table 2.1 Parameter for generation of the ppc with SfM implemented in Agisoft 

Photo alignment Point cloud densification Mesh building 

Accuracy Medium & 

High 

Quality High Face count High 

Key 

points 

100,000 
Depth 

filtering 

Disabled Interpolation Disabled 

Tie points 60,000     
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Because the images were not georeferenced and no ground control points were present, 

the ppc is in relative not absolute units. Therefore, to measure diameters, the ppc and 

the associated surface had to be scaled. To minimize the errors, scaling was 

implemented using measurements executed on two perpendicular planes. On the 

horizontal plane, the ground measured d1.3 was assigned to the corresponding segment 

from the ppc. The scale on the vertical plane was carried out by allocating the known 

length of the metal bar (i.e., 304.8 mm) to the distance between the points delineating 

the bar inside ppc (Figure 2.2 c). Scaling is one of the three main sources of errors when 

ppc are used for actual measurements, as usually increases the magnitude of the 

investigated attributes with at least one order of magnitude (in our case three orders, 

from 1 to 1000). Current guidelines consider field measurements accurate if difference 

between actual and measured d1.3 is < 5% [43]. The average d1.3 measured in the field 

is 306 mm. Because the calibrating metal bar was 304.8 mm (i.e., close to the d1.3 of 

measured trees), I considered that a vertical error of 5% is also admissible, even that 

field measurements for heights accepts errors < 10% [43]. Therefore, the accepted total 

error for accurate field measurements is 21.6 mm (i.e., 

2 20.05 306 304average dbh metal bar+

). For consistency, a similar value could have been used for ppc accuracy, but I decided 

to tighten the requirements. Consequently, I considered that scaling will have a limited 

impact of measurements if total error (i.e., horizontal and vertical) is < 10 mm (less 

than half from the field accepted accuracy).  

The last step consists in measuring the diameters every meter along the stem (Figure 

2.2 d), which was executed in AutoCAD Civil 3D [44].  The second source of ppc 
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measurement errors is matching the ground diameters with ppc-estimated diameters. 

The matching can be implemented in two ways: 1) identify d1.3 as the middle of the 

colored band marking the d1.3 in the ppc, then measure all diameters starting from the 

identified d1.3 (i.e., 1.3 m), or 2) identify the ground in the ppc, then measure diameters 

in respect with the ground. Both ways offer a check, as either ground should be at height 

(length) 0 (i.e., former), or d1.3 should fall inside the colored band (i.e., later). Even 

that the difference between the d1.3 identified using the two ways should by minor, its 

propagation could have significant impact, particularly for the upper section of the 

stem. Therefore, diameters were measured in both ways. In AutoCAD the diameters 

were measured on a plane perpendicular to the axis of the tree. The surface generated 

from ppc, on which the measurements are executed, describes the tree by its outer 

shape. Therefore, values larger then ground measured values are expected. 

Measurements on the surface is the third source of errors, and probably the largest one. 

Because, the ppc – based diameters likely overestimate the actual diameters, biased 

estimates are likely. 

2.1.3. Assessment of measurements and bias correction 

The main statistics used to assess the accuracy of the ppc-based diameter measurements 

was the difference between the ground diameter measured at height h (i.e., diameter@h 

field) and its correspondent from AutoCAD (i.e., diameter@h ppc): 

 𝑒𝑟𝑟𝑜𝑟ℎ = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟@ℎ𝑓𝑖𝑒𝑙𝑑 − 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟@ℎ𝑝𝑝𝑐    2-1 

Error analysis is necessary not only because overestimates are expected from ppc-based 

measurements but also because estimates from SfM could be biased [45]. Bias is 

assessed with three statistics, similar to other studies [46-49] 
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𝐵𝑖𝑎𝑠 = ∑ (∑ 𝑒𝑟𝑟𝑜𝑟𝑖,ℎ/(𝐻𝑖 + 1)

𝐻𝑖

ℎ=1

)

𝑛

𝑖=1

/𝑛 
2-2 

 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑖𝑎𝑠 = 𝑀𝐴𝐵 = ∑ (∑ |𝑒𝑟𝑟𝑜𝑟𝑖,ℎ|/(𝐻𝑖 + 1)
𝐻𝑖
ℎ=1 |)𝑛

𝑖=1 /𝑛   2-3 

 𝑅𝑜𝑜𝑡𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟 = 𝑅𝑀𝑆𝐸 =

√∑ ∑ 𝑒𝑟𝑟𝑜𝑟2
𝑖,ℎ/(𝐻𝑖 + 1)

𝐻𝑖
ℎ=1 |𝑛

𝑖=1 /𝑛   

2-4 

where errori,h is the ppc-based error at height h for tree i that has total height Hi, and 

n is the number of trees.  

If possible, bias would be corrected using a linear function, as it is more robust and 

parsimonious than nonlinear approaches [50,51]. For practicality, the proposed linear 

model should include variables easy to estimate accurately, either in the field (e.g., d1.3 

or total height) or during processing (e.g., software scaling errors). Furthermore, 

considering that the images were recorded from the ground the upper sections of a tree 

will be described by fewer points than the lower sections, which will render the 

measurement process less accurate close to terminal bud. Therefore, I expect that bias 

will change with height. Consequently, I will be using the following linear model for 

bias correction (Eq. 2-5): 

 𝐵𝐶ℎ = 𝑏0 + 𝑏1𝑑1.3𝑏𝑎𝑠𝑒𝑑𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏2ℎ𝑏𝑎𝑠𝑒𝑑𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏3𝑅𝐻 ×

𝑑1.3𝑏𝑎𝑠𝑒𝑑𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑏4𝑅𝐻 × 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝑏𝑎𝑠𝑒𝑑𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒     

2-5 

where BCh is bias correction at height h, RH is the relative height, RH=h/H, d1.3 based 

variable and scalingbased variable are linear variables derived from d1.3 and ppc 

scaling, and bi, i=0, .. 4, are coefficients to be estimated. 
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Preference will be given to a model that has coefficient bi 0 or 1, which are easy to 

implement. However, this simplistic approach will likely not remove the bias. 

Nevertheless, if bias is reduced to ≤ 1% while RMSE is larger, the simplification 

becomes operationally justified.  

The common approach of testing bias significance is through the null hypothesis stating 

that the statistics measuring bias are not different than 0 [49]. Assuming normality and 

no outliers, paired t-test will be used for accepting or rejecting the null hypothesis. 

However, the t-test is relatively sensitive to outliers [50]; therefore, the existence of 

large errors will be investigated with Grubbs test [52]. Grubbs’ test assumes normality, 

which will be assessed with the Kolmogorov-Smirnov test [53]. When one of the 

previous two assumptions is violated, the Wilcoxon signed-rank test will be used, 

which is robust to outliers and lack of normality [54]. All tests were executed in SAS 

9.4 [55].  

2.1.4. Taper modeling 

Diameters provide a cross-sectional perspective of a tree, which is also supplied by 

taper equations. Therefore, it is natural to compare the values obtained from taper 

models with the ppc-based diameters. The comparison employed four taper models 

(Table 2.2), out of each three are widely used for loblolly pine: Max and Burkhart [1], 

Baldwin and Feduccia [2], Lenhart et al. [3], and Kozak [4]. Max-Burkhart (1976) 

model has been extensively used to develop compatible taper equations of loblolly pine 

in central Louisiana and East Texas [18,56-58]. Instead of describing the tree bole with 

a single equation, Max-Burkhart partitions the tree bole in two sections. The partitions 

approximate better the neiloid and paraboloid forms associated with the respective 
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sections of the stem. Comparatively, Kozak’s model 2 (2004) integrates neiloid, 

paraboloid, and conic forms of the stem as a continuous function by using “changing 

exponents”[4]. Baldwin and Feduccia [2] and Lenhart et al. [3] models have a relatively 

simple model form, as only contain two coefficients. The four models were fit to the 

field and ppc based data with the package nls2 [59] from R version 3.2.4 [60]. 

Table 2.2 Taper equations used for modeling diameter outside bark 

Model Equation 

Max-Burkhart 

Eq.4 in original paper 

𝑑ℎ = 𝑑1.3 × [𝑏1(
ℎ𝑑

𝐻
− 1) + 𝑏2 (

ℎ𝑑
2

𝐻2 − 1) +

𝑏3 (𝑢1 −
ℎ𝑑

𝐻
)

2

𝐼1 + 𝑏4 (𝑢2 −
ℎ𝑑

𝐻
)

2

𝐼2]
0.5

  

𝑤ℎ𝑒𝑟𝑒 𝐼1 = {
1𝑖𝑓ℎ𝑑/𝐻 ≤ 𝑎1

0𝑖𝑓ℎ𝑑/𝐻 > 𝑎1
  

𝐼2 = {
1𝑖𝑓ℎ𝑑/𝐻 ≤ 𝑎2

0𝑖𝑓ℎ𝑑/𝐻 > 𝑎2
  

𝑎1 < 𝑎2  

Baldwin- Feduccia 

Eq. 2 in original paper 

𝑑ℎ = 𝑑1.3 × {𝑏1 + 𝑏2 𝑙𝑛[1 − (1 − 𝑒−𝑏1/𝑏2) ×

(ℎ𝑑/𝐻)1/3]}  

Lenhart et al. 

Eq.26 in original paper 

𝑑ℎ𝑡 = 𝑑1.3 × (
𝐻−ℎ𝑑

𝐻−1.3
)

𝑏

  

Kozak 

Eq. 3 in original paper 

𝑑 = 𝑎0 × 𝑑1.3
𝑎1𝑋𝑖

𝑞 , 

𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 = [1 − (ℎ𝑑/𝐻)1/4/(1 − 0.011/4)] 

𝑞 = 𝑏0 + 𝑏1 × (1/𝑒ℎ𝑑/𝐻) + 𝑏2 × 𝑑1.3
𝑋𝑖

+ 𝑏3 × 𝑋𝑖
𝑑1.3/𝐻
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Similar fit statistics used for bias assessment were employed to evaluate the taper 

models: bias, mean absolute bias (MAB), and root mean square error (RMSE). For the 

taper models, the error present in the fit statistics is computed as the difference between 

the measured diameter, di,h, and the estimated dimeter, �̂�𝑖,ℎ, at height h for tree i. 

Besides the previous three fit statistics I have included the coefficient of determination 

R2, to mirror other taper studies [61,62]. Because errors have different signs, bias is 

usually smaller than MAB and RMSE, which are always non-negative. MAB and 

RMSE are similar in the evaluation power [63], with the observation that RMSE is 

slightly higher than MAB, a direct result of the Cauchy-Bunyakovsky-Schwarz 

inequality [64].  

 
𝑅2 = 1 −

∑ (∑ (𝑑𝑖,ℎ−�̑�𝑖,ℎ)2𝐻𝑖
ℎ=1 )𝑛

𝑖=1

∑ (∑ (𝑑𝑖,ℎ−�̄�𝑖)2𝐻𝑖
ℎ=1 )𝑛

𝑖=1

   
2-6 

 

where di,h is the ppc –based  diameter of tree i at height ht, Hi is the total height of tree 

i, �̂�𝑖,ℎ is the diameter predicted from taper equations for tree i at height h, and �̄�𝑖is the 

average diameter of tree i. A 1 was added to the denominator of each statistics to 

account for the d1.3 measurement.   

Same tests used for assessing the accuracy of ppc – measurements (i.e., paired t-test or 

signed Wilcoxon) were employed to evaluate performances of the taper models. 

2.2. Results 

2.2.1. Tree construction and diameter measurement 

Ground based methods of measuring taper of standing trees with optical devices [10,13] 

or by climbing the tree with a Swedish ladder is accurate but requires at least 15 
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min/tree (this includes preparatory time and measurement time). For a timber inventory 

plot, commonly 500 m2 [65], on which 5-7 trees are measured, the total time to acquire 

the data is approximately two hours. The acquisition of images for SfM reconstruction 

is less than 2 min/tree, with a total time of at most 15 min/plot. The ppc processing time 

for one tree with the parameters from Table 2.1 on a Dell Precision workstation 7910 

CPU E5-2630 v3 @ 2.40 GHz and 32 Gb RAM was on average 15 min (i.e., ranging 

from 11 min to 18 min). Therefore, the total processing time for one plot would have 

been approximately 2 hours, same with ground measurements. However, the 

advantages of using ppc over ground data is tremendous, as a snapshot of the trees is 

obtained that can be used for subsequent investigations, including audit. Furthermore, 

while the field measurement time remained almost unchanged for the last 50 years, the 

technological advances will most likely reduce the computation time. Therefore, the 

desired results will likely be obtained faster than ground measurements. 

SfM successfully constructed the lower portion of the stem for all 18 trees (Figure 2.3). 

SfM was able to produce a usable reconstruction for only three trees above 13 m and 

seven for 12 m. Therefore, diameters were measured only on the part of the stem where 

the tree surface was continuous and has a shaped according to visual expectations. 
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Figure 2.3 An example of a reconstructed stem, with the lower part 

continuous, (i.e, measurable surface), and the upper part fragmented (i.e., 

unsuitable for accurate measurements)  

 



30 

 

The side-view measured diameters were constantly larger than the circumference-

based diameters (Figure 2.4 a), with a significant difference of 5.2 mm (p = 0.007 for 

the pair t-test). However, there were many heights for which the convex hull algorithm 

did not produce the expected polygon, as the PPC cross-section did not have the points 

evenly distributed along the circumference (Figure 2.4 b). To obtain valid results, an 

algorithm that compensates for a lack of points in some area of the cross-section of the 

stem should be executed before the implementation of the convex hull algorithm. 

However, such algorithms are not readily available, and the augmentation of PPC 

introduces errors, as a model is used. Therefore, to carry the subsequent analyses with 

all of the ground measured diameters, the side-view measured diameters were used. 

The decision to use the side-view diameter instead of the circumferential diameter was 

enforced by an overestimation of diameter with more than 10 mm by both approaches, 

which requires a subsequent bias correction anyway. 

 

 

 

Figure 2.2 Diameter measurements on cross sections of the stem. a. successfully 

identified by the convex hull algorithm at height 4 m; b. unsuccessfully identified by 

convex hull algorithm at height 11 m. The red line is the circumference of the tree as 

computed by the convex hull algorithm.  
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Irrespective height on the stem, the ppc measured mean diameter is constantly larger 

than the mean ground diameter (Figure 2.5), supporting the existence of bias. The 

variability of field and ppc measurements is similar along the stem, with standard 

deviation between 61.9 - 82.7 mm, and 40.0 ~ 88.4 mm, respectively (Figure 2.5). For 

heights < 9 m, the variance decreased along the stem for both ground and the ppc-based 

measurements, the largest occurring at 1.0 m for ppc (i.e., 782.9) and 1.3 m for field 

(i.e., 685.3). While diameter tapered with height, at 13 m I noticed the largest mean 

diameter (Figure 2.5) and the smallest variances for both ground and ppc-based 

measurements. This unnatural situation occurred because only three measurements 

were recorded at 13 m, and those were for largest trees  (i.e., d1.3 > 35 cm). Therefore, 

in further analyses only results for heights ≤ 12 m were considered.  

Figure 2.5 Variation with height of diameters measured in the field and from the 

ppc.  
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The overall mean error is -17.2 mm, which is 6.3% larger than the mean diameter 

(Table 2.3). The estimates from ppc are biased and not acceptable by the current field 

guides, which requires at least 5% accuracy. As expected MAB was larger than bias 

but not significantly (i.e., 7.2 % or 18.9 mm MAB). RMSE was the largest fit statistics 

employed for assessment, and was almost 30% greater than bias (i.e., 22.5 mm or 

7.9%). The range of ppc – based measurements errors is fairly constant along the stem 

height (Figure 2.6). The smallest deviations of the ppc-based measurement occur close 

to the ground (i.e., ≤14 mm for heights ≤ 2.0 m). The largest deviation happens at 9 m, 

with the mean error = -23.7mm, almost 10% of the corresponding diameter. 

Figure 2.6 The ppc-based error vs. the stem height; a. uncorrected b. after bias 

correction with Eq. 2-7. The dots represent outliers, which are estimated using 

the interquartile range approach. 
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Table 2.3 Variation along the stem of diameter measurement error from ppc. 

Diameter is the diameter measured in the field. 

Height Diameter  Bias Mean absolute error RMSE 

[m] [mm] [mm] [%] [mm] [%] [mm] [%] 

1 312 -12.1 -3.9 14.8 4.8 19.4 6.2 

1.3 306 -12.0 -3.9 13.5 4.4 17.1 5.6 

2 296 -13.5 -4.6 16.1 5.4 20.4 6.9 

3 287 -16.4 -5.7 19.2 6.7 22.5 7.8 

4 278 -17.2 -6.2 18.2 6.6 22.4 8.0 

5 270 -20.3 -7.5 20.3 6.5 23.3 8.6 

6 263 -19.5 -7.4 20.3 7.7 23.3 8.9 

7 256 -20.0 -7.8 20.0 7.8 23.8 9.3 

8 247 -20.0 -8.1 20.5 8.3 24.2 9.8 

9 244 -22.4 -9.2 23.8 9.8 26.7 11.0 

10 242 -18.2 -7.5 20.9 8.6 22.9 9.4 

11 249 -19.9 -8.0 19.9 8.0 24.1 9.7 

12 229 -8.1 -3.5 18.1 7.9 22.1 9.6 

Total - -17.2 -6.3 18.8 6.9 22.5 8.2 
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Kolmogorov – Smirnov test supports the normal distribution of the difference between 

ground and ppc-based diameters (p>0.1), except for 5 m and 6 m height (p=0.02 and 

0.04, respectively). Grubbs’ test revealed no outliers in the data (p>0.05), which 

justifies t-test for assessing bias significance at all heights, except 5 m and 6 m. The t-

test provided strong evidence (p<0.01) that both bias and MAB are significantly 

different from 0, when applicable. For 5 m and 6 m, at which the t – test was not 

appropriate, Wilcoxon test confirms the presence of a significant bias. 

To correct the bias the preferred form of the Eq. 2-5 has bi either 0 or 1. Coefficients 

different than 0 or 1 require field measurements, which in most instances not only that 

are not available but preclude the remote sensing approach advocated by the paper. 

Multiple trials revealed that bias can be reduced with a linear function derived from 

Eq. 2-4 (i.e., b1 and b4 are 1, rest are 0): 

 𝐵𝐶ℎ = 𝑒𝑟𝑟𝑜𝑟𝑑1.3 + (𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟) × 𝑅𝐻    
2-7 

where BC is the bias correction, 1.3derror is the ppc-based measurement error at d1.3 

(i.e., d1.3 field – d1.3 ppc), and scaling error is the horizontal calibration error 

estimated by Agisoft.  

Being unfitted to data or distribution of errors, Eq. 2-7 will likely not eliminate the bias 

but will reduce it. However, since the only field measurements needed is d1.3, 

commonly recorded anyway, Eq. 2-7 delivered the intended results: measurements bias 

is operational and statistical insignificant. Nevertheless, a formal assessment of the 

residual error, errorht, residual, is required:  
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 errorh, residual = error@h – BCh 2-8 

The remaining bias was less than 1.8 mm (~0.5%), which was shown by the t-test to be 

unsignificantly different from 0 (p=0.2). However, t-test provides only empirical 

evidence that bias was reduced to insignificant values. Nevertheless, assuming that bias 

is linearly related with height, the residual bias is approximately 10% d1.3 errors, at 

most 1% of the diameter (proof in the Appendix B). For the 18 trees, the bias reduction 

was almost 10 times (i.e., 17.2/ 1.8 = 9.5 times), which proved that biased corrected 

ppc-measurements are accurate and precise. 

2.2.2. Taper equations 

Since the highest valid stem measurement is at the stem height = 13 m, the four taper 

models evaluated the shape of the lower and middle portions of the stem. Only three of 

the four selected models (Table 2.2) could be used directly on the data, as they were 

developed specifically for loblolly pine. Irrespective the source of data (i.e., field or 

ppc), all three models performed as intended by the authors  in respect with MAB, even 

that Lenhart et al. [3] had MAB three times larger than Max-Burhart or Baldwin and 

Feduccia (Table 2.4). For the 18 trees, bias was larger than the original model (e.g., 5.7 

mm vs 3.6 mm for Max- Burkhart), and significantly greater than other taper studies 

[66]. However, even that RMSE was comparable with other taper studies [4,67], I 

refitted the models to the data, such that a formal assessment of capacity to supply input 

data for taper modeling by ppc is executed. 
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Table 2.4 Performance of existing taper models on field and ppc-based 

measurements. Max –Burkhart Model 4 was used for assessment. 

Equation Coeff Original 
Bias [mm] MAB [mm] RMSE [mm] 

Field ppc Field ppc Field ppc 

Max- 

Burkhart 

b1 -3.0257 

5.7 12.4 14.1 19.4 18.1 24.4 

b2 1.4586 

b3 -1.4464 

b4 39.1081 

a1 0.7431 

a2 0.1125 

Baldwin- 

Feduccia 

b1 1.22467 

-6.2 0.1 14.7 17.9 18.6 21.9 
b2 0.3563 

Lenhart  

et al. 

b 0.841837 16.0 23.2 19.5 25.4 27.3 34.9 

 

 

 

 

 

 

 



37 

 

When developed from field measurements the models performed similarly, all 

measures of fit being within the expected range: R2>0.97, bias <1 mm, MAB and 

RMSE around 10 mm (Table 2.5). The models refitted from ppc-based measurements 

supplied comparable fit statistics with ground based data (Table 2.6), except for bias, 

who was twice as large (i.e., 1.4 mm for Baldwin and Feduccia and 2.2 mm for Max-

Burkhart vs 0.6 mm and 0.9 mm, respectively). It should be noted that because the 

upper portion of the stem could not be rendered from ppc, the upper inflection point of 

the Max-Burkhart equation was not identified. Therefore, a simplified version of the 

best Max-Burkhart equation (in Table 2.2) was used for ppc based values (equation 2 

in the original article) Irrespective the equation, the fit statistics are slightly higher for 

ppc-derived models than the ground-based models. Overall, Kozak model performed 

the best, with the smallest bias, MAB, RMSE, and largest R2.   
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Table 2.5 Taper models developed from ground-based measurements 

Equation Coeff. Data p-value 

R2 Bias 

[mm] 

MAB 

[mm] 

RMSE 

[mm] 

RMSE 

[%] 

Max- 

Burkhart 

b1 -0.48 <0.001 

0.98 -0.9 8.7 12.2 4 
b2 -0.41 0.01 

b3 2.72 0.02 

a 0.29 <0.001 

Baldwin- 

Feduccia 

b1 1.11 <0.001 

0.98 -0.6 8.6 11.7 5 
b2 0.24 <0.001 

Lenhart  

et al. 

b 0.5288 0.01 0.97 -2.0 9.8 12.9 5 

Kozak 

a0 1.35 <0.001 

0.98 -0.01 8.4 11.9 5 

a1 0.94 <0.001 

b0 0.19 <0.001 

b1 0.3 0.02 

b2 0.01 0.25 

b3 -0.05 0.19 
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Table 2.6 Taper models developed from the bias corrected ppc-based 

measurements 

Equation Coeff. Estimates p-value R2 
Bias 

[mm] 

MAB 

[mm] 

RMSE 

[mm] 

RMSE 

[%] 

Max- 

Burkhart 

b1 -0.64 <0.001 

0.95 -2.2 13.5 18.4 6 
b2 -0.33 <0.001 

b3 3.53 0.37 

a 0.2 <0.001 

Baldwin- 

Feduccia 

b1 1.12 <0.001 
0.95 -1.4 13.3 18.3 6 

b2 0.24 <0.001 

Lenhart et.al b 0.519 <0.001 0.94 -0.7 13.6 18.6 7 

Kozak 

a0 1.81 <0.001 

0.95 -0.1 12.5 16.7 5 

a1 0.84 <0.001 

b0 0.15 <0.001 

b1 0.42 0.02 

b2 -0.01 0.54 

b3 -0.04 0.77 
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The Max-Burkhart model have the inflection point at relative height 0.29 for ground 

measurements and 0.20 from ppc- measurements. However, the ppc-based model does 

not generate a significant estimate of α (p=0.37), indicating that a single polynomial 

curve can approximate the tree bole. Apparent divergence between the field and ppc 

curves can be observed for the relative height between 0.18 – 0.40 (Figure 2.6 a). The 

coefficients of the nonlinear term in the Baldwin and Feduccia model are the same (i.e., 

0.24), while the one for the linear term are practically indistinguishable between the 

two datasets (Figure 2.6 b). The model fit from ground - measurements is superior to 

the ppc-based model (i.e., MAB is 9.2 mm vs. 13.3 mm, and RMSE  is 13.2 mm vs. 

18.3 mm, respectively). Similarly to Baldwin and Feduccia model, regardless of 

measurements source, the Lenhart at al model has the same estimates of the power term 

(Figure 2.6 c).  Mirroring Max-Burkhart model, Kozak’s model has insignificant 

estimates for two coefficient (i.e., p > 0.10 for b2 and b3). The lack of significance is 

noticed for relative heights >0.5 (Figure 2.6 d). 
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Figure 2.7 Comparisons of the models developed with the ppc-based 

measurement and the ground-based measurement. a. Max and Burkhart b. 

Baldwin and Feduccia c. Lenhart et al d. Kozak 
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The cross-validation of the ppc based models with the field data reveals agreement for 

all fit statistics (Table 2.7), with R2≥0.97 irrespective the model type, bias <4 mm, 

MAB <10 mm, and RMSE<15 mm. Even that Kozak’s proved to be most suited to 

represent diameter variation along the stem, the Baldwin and Feduccia model, which is 

simpler, supplied similar fit statistics with a significant increase in parsimony. 

Table 2.7 Validation of the ppc – based models with ground measured data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation R2 

Bias 

[mm] 

MAB 

[mm] 

RMSE 

[mm] 

Max- Burkhart 0.98 -3.6 9.7 14.0 

Baldwin -Feduccia 0.97 -2.9 9.4 13.7 

Lenhart et al. 0.97 -2.5 10 14.2 

Kozak 0.98 -2.0 9.4 13.2 
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2.3.  Discussions 

Current applications of SfM in forest inventory are limited by irregular stems geometry 

and complex background, which challenge camera location, key point extraction, and 

lack of geo-reference under dense canopy. Oblique perspective limits the ability of 3D 

reconstruction of the entire tree, particularly the higher portion of the trunk. Therefore, 

diameter measurements were below 12 m (i.e., the first two logs), which is 

approximately half of the total tree height. Nevertheless, higher diameters can be 

measured if the photographic information is captured with unnamed aerial vehicles 

flying along and around the tree. 

Lightning and background of the objected to be rendered with SfM plays a significant 

role in accuracy of the reproduction process [68,69], particularly the lack of features 

and low light (called “bad lighting” by Koutsoudis et al. [68]). Considering that all 

images were acquired under canopy where limited light is present I have chosen only 

spring and summer bright days, with almost no cloud coverage and no rain for three 

days. The lack of details and a homogeneous background were not a concern, as forest 

provides plenty of variation to allow for identification of a multitude of key-points. 

The diameter measurements directly from ppc are constantly higher than ground 

measurements, which is the result of two assumptions: first, the stem is circular, and 

second, the length along stem is measured without error.  This combination impact 

AutoCAD measurements, as rotation of the stem could, and likely would, lead to small 

variations in diameter at the same location along the stem. Therefore, besides 

calibration errors measurements errors are also present. The bias correction equation 

that I proposed (Eq. 2-7) is practical and intuitive rather than mathematically based. 
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The measurement bias seems to be positively related to the stem height. I assumed that 

projective direction of the camera is almost horizontal, at the eye of the operator; 

therefore, the best-estimated diameter is d1.3. The measurement error expands along the 

stem as the distance is increasingly away from the projection center. Consequently, I 

select the relative height as correcting term. A higher order polynomial of relative 

height or even a rotation correction term could lead to better results than the proposed 

affine transformation (Eq. 2-7), as images are restructured with a nonlinear process. It 

is possible that accuracy is influenced by errors occurring from multiple directions [70]. 

Even so, the largest error, relative to diameter, was 4% (i.e., at 12 m), the rest being ≤ 

2%. The accuracy and precision of diameter measurements from ppc are not the only 

advantages of using 3D reconstruction from images. The ppc allows for diameter 

measurements at any height, not only at preset ones (e.g., every meter). Furthermore, 

high-density ppc supply information for detection and estimation of trunk defects, such 

as catface or sweep. 

The results show that the equations developed from the ppc-based measurements are 

comparable with the equations developed from the ground-based measurements, when 

the same model forms were applied. The four models developed by ppc-based 

measurement could be used to estimate ground diameter with accuracy < 4 mm. The 

bias of ppc-based diameter models does not vary remarkably among four model forms. 

The most evident difference between ground and ppc-based occurs for the Max-

Burkhart model (Figure 2.7a).  The Kozak model 02 was not originally developed for 

diameter estimation of loblolly pine. However, the goodness-of-fit of Kozak models is 

slightly better than other models, consistent with the finding of Li and Weiskittel [71]. 
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According to their study, Kozak model 02 will fit the diameters of other species across 

a wide range of biogeographic zones [71]. Diameter estimated with Baldwin and 

Feduccia [2] equation are the closest to the ground measurement at relative height > 

0.22, compared with Max-Burkhart and Lenhart et al. equations. A possible explanation 

of relatively weak performance of Lenhart et al (1987) equation could rest with its 

development, which was confined to small trees (d1.3< 33 cm). Nevertheless, our study 

results show that the selection of model forms would not significantly influence the 

model fit. Among the four models selected for taper assessment, I consider Baldwin 

and Feduccia [2] approach to be the most trustworthy, as it is intuitive and relatively 

simple. Kozak [4] model 02 outperformed all other models, but its lack of realism and 

low parsimony (e.g., 6 parameters compared to 2 for Baldwin and Feduccia) is not 

appealing. In fact, the difference between Kozak’s model 02 and Baldwin and Feduccia 

is minute, as bias, MAB, and RMSE are almost the same (Table 2.7). Therefore, the 

ppc measurements can be used not only for direct estimation of diameter (bias was < 2 

mm), but also on taper modeling (bias <4 mm and R2≥0.97). 

Diameter estimation and taper modeling was possible for loblolly pine because the 

crown is concentrated on a small portion along the trunk (usually <30%) and lack of 

dead branches on the lower portion of the stem. However, for species that keep for long 

time the lower branches, such as Douglas fir (Pseudotsuga menziesii Mirb.) or Norway 

spruce (Picea abies L.), the usage of SfM is difficult not only because of difficulty to 

navigate but also because pf the poor light conditions. In these situations a combination 

of active-passive sensors could deliver the desired point clouds.  
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The ppc proved that can be used for modeling taper, and consequently the amount and 

type of products that can be obtained from individual stems. I expect that subsequent 

studies on taper, particularly for genetic studies where branching is also important, will 

be almost entirely based on ppc. New equipment that allows diameter measurements 

along the stem, such as Criterion RD by Laser Technology, did not reduced 

significantly the time to acquire accurate data significantly. Furthermore, while 

measurements based optical devices exhibits increase in variability with distance from 

the tree, the ppc is not affected by these issues. Large sample size balances the estimates 

of various taper modeling methods, but all approaches, except the ones based on ppc, 

are either expensive (i.e., terrestrial lidar) are have larger variability. The costs of 

producing ppc will decrease, which would make it even more attractive. I expect that 

real time ppc creation will occur in the next decade, which will allow estimation of 

products during forest operations, which will increase the value of each stand. 

2.4.  Conclusion 

In this paper, I proposed an accurate procedure for measuring diameter along the stem 

from consumer grade cameras. Limited training and fieldwork is required for capturing 

oblique images of the trees and execution of scaling operation. The images are rendered 

to a 3D point cloud using a structure form motion algorithm, hence the name 

photogrammetric point cloud (ppc). Diameter measurements executed on the ppc along 

the stem are biased, overestimating the real diameter. However, a simple, intuitive, and 

easy to implement correction will reduce the bias to millimeters, majority ≤ 2%. 

Diameter measurements from ppc can successfully replace ground measurements not 

only by being accurate while reducing the costs and time, but also by allowing a 
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continuous examination of the stem. Therefore, taper models can be developed from 

ppc-based measurements that would trace closely the stem, (e.g., every 10 cm). I 

assessed the diameter measurements with four popular taper models, and I found no 

operational and statistical difference between the models developed from ground data 

and from ppc-corrected data. In fact, two models [Kozak [4] model 02 and Baldwin 

and Feduccia [2]] had the bias less than 1 mm. Although the application of SfM is still 

limited in the context of vegetation with high complexity, our results suggest that ppc 

based models are as accurate as conventional inventory. Reconstruction of the entire 

stem can be achieved by combining images acquired by unmanned aerial systems with 

ground-based photographs. Examination of the entire trunk can expand beyond 

dendrometric attributes, such as diameter or length, and can include stem defects, such 

as catface, knots, or sweep. For accurate product estimation in the lower portion of the 

bole (e.g., the first two logs), our results recommend replacement of taper with ppc, as 

being fast, more accurate and precise. 
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Chapter 3 Comparison of total stem volume estimates 

from point clouds of terrestrial lidar and empirical 

equations for mature Douglas-fir (Pseudotsuga menziessi 

(Mirb.) Franco)  

Abstract  

Total stem volume is desirable information for estimating timber yields and tree 

aboveground biomass. Terrestrial light detection and ranging (lidar) can provide 

nondestructive stem estimates through a sequence of cylindrical segments that locally 

approximate the point clouds of the stem. This study estimated the total stem volume 

of mature Douglas-fir trees using two point-cloud-based methods: one is to integrate 

taper equations developed with stem diameter estimated on the cylinder segments, and 

another is to sum up the volume of cylinder segments. Point-cloud-based volume 

estimates were compared with estimates yielded by a total volume equation of the 

Forest Inventory Analysis in the Pacific Northwest (FIA-PNW) and a taper equation 

developed by Poudel et al. (2018). The primary objective is to assess the discrepancy 

of volume estimates yielded by various methods. The secondary objective is to test the 

sensitivity of the point-cloud-based volume estimates to the segment length (0.5 m, 1 

m, and 2 m) of the cylindrical models constructed from point clouds. The ANOVA 

suggests a significant difference in mean volume estimates yielded by various methods 

and the difference increases with increasing tree DBH class. I found the volume 

estimates yielded by point-cloud-based taper equations are only slightly sensitive to the 

segment length of cylindrical models. However, the mean volume estimates using 

summations of cylindrical models differ in segment lengths, in which cylindrical 

models with the smallest segment length (0.5 m) produced up to 8% greater volume 
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estimates than models with the largest segment length (2 m). We concluded that not 

only the data sources but also the method of using these data can cause inconsistency 

in volume estimates. Calibration is needed to bring consistency to stem volume 

estimates produced by different methods.  

Keywords: Point clouds; cylinder models; taper equations; stem volume estimates; 

Forest Inventory and Analysis   

3.1.  Introduction  

Accurate tree stem volume estimation is ecologically and economically essential for 

accessing forest carbon stocks and timberland assets (Avery and Burkhart, 2015; 

Harold E Burkhart and Tomé, 2012; West and West, 2009). Douglas-fir, a major tree 

species of the Pacific Northwest (PNW), provides considerable value through timber 

and biomass; therefore, total stem volume can be desirable information. Total stem 

volume of Douglas-fir is usually estimated from the equations of Forest Inventory 

Analysis in the Pacific Northwest (FIA-PNW), which are multiple-entry equations that 

include diameter at breast height (DBH) and total tree height (Harold E Burkhart and 

Tomé, 2012; Fang et al., 2000; Kershaw et al., 2017). However, total stem volume 

equations fail to take into consideration the stem shape variation along the trunk and 

yield the same volume estimates for trees with identical DBH and height. Taper 

equations enhance volume estimation by modeling the evolvement of the upper stem 

diameter (West and West, 2009) and flexibly yield total or sectional stem volume 

estimates for given stem sections. A series of taper equations have been incorporated 

into the volume estimation system of Douglas-fir in PNW to enhance the estimation 

accuracy (Biging, 1984; Rustagi and Loveless Jr, 1991; Walters and Hann, 1986). The 
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acquisition of accurate stem diameter measurements is essential for the development 

of taper equations. In comparison with field measurements, which require tremendous 

effort, point clouds, developed from light detection and ranging (lidar) or thru 

photogrammetric techniques, have been increasingly used to provide stem diameters 

and volumes (Mikita et al., 2016; Pitkänen et al., 2019; Raumonen et al., 2013b). To 

estimate the upper stem diameter, convex hull or circular models are usually used to 

approximate thin slices of points surrounding the cross-sectional area of the stem at a 

specific height. The difference between values obtained from point and field 

measurements are within 2 cm, which render as unnecessary the acquisition of the DBH 

on the ground  (Fang and Strimbu, 2017; Henning and Radtke, 2006; Hopkinson et al., 

2004; Mikita et al., 2016). For stem volume estimation, quantitative structural models 

(QSM) are commonly used to construct segments of the stem or branches with 

cylinders developed from sectional point clouds (Hackenberg et al., 2015a; Raumonen 

et al., 2013b). Many studies have demonstrated the accuracy of tree stem diameter and 

volume estimates from QSM-developed models for broadleaf species (Burt et al., 2013; 

Lau et al., 2018; Tanago et al., 2018). However, its application to tall conifer species is 

challenging due to scarce point cloud density at higher sections of the canopy. An 

alternative to the QSM approach is to use a point cloud processing software, like 

Cyclone (Leica Geosystems, 2019), which fits cylinder models by visually selecting 

the seed points. To date, human interaction with computer aid software supplies more 

accurately reconstructed models of complex structures, like tree stems. Regardless of 

the approach used (i.e., visual or automatic), stem volume can be computed with 

cylindrical models. The precision of lidar-based estimation can vary with the length of 
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the segment used to fit cylinders. When point clouds densely cover the stem, cylinder 

models with smaller segment length can lead to precise tree volume estimation, as they 

approximate stem shape in fine detail. However, obstruction can lead to point clouds 

unevenly distributed around and along the stem, which can lead to early termination of 

the algorithms fitting cylinders due to point gaps. Short segments could fit curved 

shapes at the expense of the algorithm’s performance, in many instances preferred, 

whereas longer segment could increase the success of reconstructing the stembut 

sacrifices the accuracy. 

Stem volume estimation can be performed nondestructively using lidar through two 

methods: integrating the taper equations developed from lidar-based stem diameter 

estimates, and direct volume estimates with cylinder models. The former combines 

auxiliary tree structural information obtained from point clouds data and traditional 

modeling approach to provide numeric models that could be repeatedly used for other 

inventory purposes. The latter supplies more accurate individual tree volume estimates 

and drives inventory from model-based to data-based, reducing uncertainties 

introduced by model specification. Currently, terrestrial point-cloud-based stem 

volume estimation remains at local scales, and its connection with regional volume 

estimation, such as the FIA equation system, is unclear. Empirical equations that use 

only DBH and tree height fail to account for tree structural information which can be 

crucial for volume estimates and produced biased estimates, especially for volume 

estimates in commercial use (Dassot et al., 2011).  
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As lidar has been widely used in contemporary forest inventory but empirical equations 

are still used as reference volume estimates, there is an increasing need to bring 

consistency to stem volume estimates from various methods. Especially for studies of 

forest dynamics, the evolvement of inventory methods and technology allows more 

accurate and more frequent forest inventory but also bring inconsistency in volume 

estimates at different time (Kangas and Maltamo, 2006; Smith, 2002; White et al., 

2016), which might overestimate or underestimate the change of forest stem volumes 

overtime. The information on the difference between lidar-based volume estimates and 

estimates from empirical equations is needed to update the current equation-based 

estimation systems and to develop stem volume estimation with the frontier technology. 

The overarching objective of the present study is to compare lidar-based estimates with 

the values supplied by the FIA-PNW equations and existing taper equations. First, we 

developed three sets of cylinder models of the stems from lidar point clouds. The three 

sets of cylinder models are distinguished by their segment lengths: 0.5 m, 1 m, and 2 

m. The three lengths represent the level of precision, as we assumed that the shorter the 

segment length, the more precise the volume is estimated. Next, three taper equations 

were developed by using stem diameter estimates from the cylinder models. Third, 

Douglas-fir total stem volume was estimated with taper equations, cylinder models and 

the FIA-PNW equation. Finally, we used simulation to assess the volume estimation 

discrepancy between different methods for trees with various DBH classes. The 

specific objective of our study is twofold: 1) to assess the sensitivity of volume 

estimates to the parameters defining the cylindrical stem models, and 2) to evaluate the 
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difference between the stem volume estimates obtained from point clouds and from 

empirical equations.  

3.2. Methods 

3.2.1. Study area and point cloud acquisition and processing 

The study site is located in the Oregon Cascade, at the HJ Andrews Long Term 

Ecological Forest. An 80 m ×  100 m secondary Douglas-fir-dominated plot was 

scanned with a RIEGL VZ-400 terrestrial laser scanner from 22 scan locations. Scan 1, 

located at the plot center, was a 10 min scan for highest density, whereas the rest of the 

scans were performed at 5 min each. To register the 22 scans, I placed 76 targets inside 

the plot and their geographic coordinates were surveyed with Leica TS15 P1 total 

station. I registered the scan with Cyclone (Leica Geosystems, 2019),  using the targets 

with known coordinates and cloud-to-cloud comparison. Mean absolute error of target 

and cloud-to-cloud alignments were 0.009 m and 0.016 m respectively. Point clouds of 

10 dominant and codominant trees were randomly selected within the plot. Figure 3.1 

provides a rendering of sample trees’ point clouds. The point clouds associated with 

each tree were visually delineated in Cyclone. The dbh of the 10 trees ranged from 49 

cm to 110 cm, with an average of 64 cm. Tree height ranged from 39 m to 53 m, with 

an average of 44 m. 
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Figure 3.1 A rendering of sample tree point clouds. The grey scale of the point clouds 

are represented by their intensity values.  
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3.2.2. Stem measurements  

I fitted the tree stem with cylinder models using the Region Grow function in Cyclone 

(Figure 3.2 a). Region Grow requires a manual selection of initial seed points, then 

automatically expands those user-selected points to include all other points likely 

belonging to the same cylinder segment. Region Grow can fit cylinders to stems that 

have missing points on one side by estimating the geometric center of the arc (Figure 

3.2 b). The cylinder models were obtained by minimizing the sum of distances between 

the point clouds to the cylinder surface. To account for taper, I developed three sets of 

cylinder models (Figure 3.3), defined by their sub-cylinder segment length: 0.5 m, 1.0 

m, and 2 m.  

Figure 3.2 Fitting cylinder models; a. cylinder fitting in Cyclone with region grow; b. 

Region Grow fits stem sections with missing points on one side; c. Imputation of the 

tree top: A is the highest fitted cylinder, B is the imputed cone shape, and C is the 
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estimated tree top from point clouds.  dA is the diameter of highest fitted cylinder; hBC 

is the length between A and C.   

 

 

Figure 3.3 Illustration of cylinder models with three segment length. a. The length of 

the cylinder segment is 0.5 m; b. the length of cylinder segment is 1 m; c. the length 

of the cylinder segment is 2 m. 

 

For each cylinder length, I measured the diameter outside bark (dob) as the diameter of 

the cylinder cross section. Stem model at the top, particularly for height above 35 m, 

was missing due to insufficient points for constructing lidar models. The missing model 

at stem top was filled with cone shape by assuming linear relationship between stem 

diameter and specific height (Figure 3.2 c).  Conic or parabolic shapes are usually 

present at the stem top (Avery and Burkhart, 2015). Defining conic shape only requires 

the bottom diameter and height. Defining parabolic shape, however, requires three 

parameters of bottom diameter, height, and an additional diameter measurement along 

the stem to be able to complete the equation.  As the point clouds in upper sections of 

trees was not dense enough to provide a reliable third measurement for diameter along 

the stem needed for parabolic modeling, and in light of the nature of trees holding 
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relatively less volume in the upper stem that would be important to capture, we 

considered the conic model to be sufficient for this study.  

3.2.3. Taper equations 

Diameter outside bark is converted to diameter inside bark (dib) by subtracting bark 

thickness: 

 dibij = dobij − dbtij     3-1 

where dibij is the predicted diameter inside bark of tree i at height j;  

          dobij is the the diameter outside bark measurement from point clouds for tree i 

at height j; dbtij is the predicted double bark thickness with Maguire and Hann’s 

equation (1990) (see Appendix C).  

Despite abundance of taper equation forms, variable exponent developed by Kozak 

(2004) has been found by some studies (Fang and Strimbu, 2017; Poudel et al., 2018) 

as having the least bias.  In this study, I fit dib equations with the three datasets using 

variable exponent equation from Kozak (2004):  

dij = a0DBHi
a1Hi

a2X
ij

b1RHij
4 +b2(eDBHi/Hi)

−1
+b3Xij

0.1+b4
1

DBHi
+b5H

i

1−RH
ij
1/3

+b6Xij

+ eij    3-2 

where Xij =
1−RHij

1/3

1−p1/3 , p =
1.3

Hi
, RHij =

hij

Hi
,  

          DBHi is the diameter breast height of tree i; 

           Hi is the total tree height of tree i;  

           hij is the particular height;  
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           eij  is the error term, modeled as first order autoregressive (AR(1)), with the 

covariance  cov(eij, eik) = σ2Фk−j k ≥ j , σ2  the mean squared error, and Ф  the 

estimated correlation between two consecutive observations.  

All the coefficients are tested as random effect of individual trees. Final models were 

selected as these having the lowest value of Akaike information criterion (AIC). 

Coefficients b4  and b6  are modeled as random effects with distributions: 

b4~𝑁(0, 𝜎𝑏4

2 )  and b6~𝑁(0, 𝜎𝑏6

2 ) , where 𝜎𝑏4

2  and 𝜎𝑏6

2 are the variance of b4  and b6 

respectively.  

Coefficients of Eq.3-2 were computed with weighed least squares to alleviate 

heteroscedasticity of residuals. Since the precision of the point-cloud-based stem 

diameter estimates decreases as stem height increases , less weight is given to estimates 

at the relatively higher section of the stem. After seeking different weight functions, I 

eventually selected the weight as vij =
1

RHij
4 , which lead to the lowest value AIC and a 

normal distribution of residuals.  

The computations were executed in R 3.5.2 (Gentleman and Ihaka, 2014) using the 

nlme package (Pinheiro and Bates, 2019). Taper equations are evaluated with leave-

one-out validation, using three measures, namely pseudo R2 (Eq. 3-3), bias (Eq. 3-4), 

and root mean square error (RMSE) (Eq. 3-5). 

 
Pseudo R2  = 1 −

∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2N
i=1

∑ (𝑦𝑖𝑗 − �̅�)2N
i=1

 
3-3 
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Bias =
1

N
∑

∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)
𝑛𝑖
𝑗=1

𝑛𝑖

N

i=1

 
3-4 

 

RMSE =

∑ √
∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2𝑛𝑖

𝑗=1

𝑛𝑖

N
i=1

N
 

3-5 

where yij is the measured dib of tree i at height j;  

 ŷij is the predicted dib of tree i at height j;  

 N is the total number of trees; 

 ni is the number of stem diameter measurement of tree i.  

Although other taper equations are available for Douglas-fir in Pacific Northwest 

(Garber and Maguire, 2003; Rustagi and Loveless Jr, 1991), I decided to compare our 

results with the Kozak 04 equation fitted by Poudel et al. (2018), as it is the most recent 

equation and was obtained from a large sample covering the sample trees’ DBH range 

of this study.  

3.2.4. Volume estimation  

Total stem volume was estimated using point clouds through two methods. One is to 

use the summation of the cylinder segments’ volume as a surrogate of total stem 

volume, which is expressed as:  

 

Vi(s) = ∑ π (
dibij(s)

200
)

2

Lij(s)

ni(s)

j=1

 

3-6 

where Vi(s) (m
3) is the stem volume of tree i based on cylinder length s, s = 0.5, 1, and 

2 m; 
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 ni(s) is the number of fitted cylinders with length s; 

 dibij(s) (cm) is the diameter inside bark of jth cylinder models of tree i; 

 Lij(s) (m) is the jth cylinder length of tree i and length s.  

Another is to integrate the stem cross-sectional area computed with Eq. 3-2, and the 

total stem volume estimates can be described as: 

where  Vi (m
3) is the stem total inside bark volume of tree i; 

  dibi (cm) is the diameter inside bark predicted with taper equations (i.e., M05, 

M1, M2, and Poudel et al. (2018)) for tree i; 

 Hi (m) is the total tree height for tree i.  

Altogether, six types of point-cloud-based volume estimates were computed (Table 

3.1), three of which were based on the direct cylinder model estimates and the other 

three were based on the taper equations developed with stem diameter estimates from 

the cylinder models.  

As references, stem total volume is also estimated with two empirical equations. One 

is the FIA-PNW total volume equation developed by Brackett (1977) for western 

Oregon Douglas-fir: 

Another is the Kozak 04 taper model developed by Poudel et al. (2018). The model 

form of Poudel et al.’s equation is the same as Eq. 3-2 and the fitted coefficients were 

provided in Poudel et al. (2018).  

 
Vi = 0.00007853981 ∫ dibi

2dh
Hi

0

 
  3-7 

Vi = 0.0283168 × 10

{−3.21809+0.04948×log10(3.2808×Hi)×log10(0.3937×dbhi)−0.15664(log10(0.3937×dbhi))2+

2.02132∗log10(0.3937×dbhi)+1.63408∗log10(3.2808×Hi)−0.16185∗(log10(3.2808×Hi))2}  
  3-8. 
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Since the FIA-PNW equation has been widely used for stem volume estimation, all the 

volume estimates are compared with FIA-PNW equation as their relative difference: 

 

where  VolumeFIA is the stem volume estimates with the FIA-PNW equation; 

            Volumex is the volume estimates with taper equations (i.e., M05, M1, M2 and 

Poudel et al. (2018)), and cylinder models (i.e., C05, C1 and C2).  

Table 3.1 Summary of methods that are used for stem volume estimates.  

 

 

3.2.5. Simulation  

To access the discrepancy of stem volume estimates produced by various methods, I 

have simulated trees. I generated simulated trees of DBH classes ranging from 40 – 

120 cm and computed their stem volume with the compared methods. The simulated 

DBH classes were divided into four intervals: 40 – 60 cm, 60 – 80 cm, 80 – 100 cm, 

and 100 – 120 cm. For each of the four DBH classes, generated 10,000 trees realizations 

and estimated their volume with all four methods: 1) the point-cloud-based taper 

equations, 2) cylinder models, 3) taper equation of Poudel et al. (2018), and 4) the FIA-

PNW regional equation (Figure 3.4). An iteration contained the following four steps: 

 
Relative Difference =

VolumeFIA − Volumex

VolumeFIA
× 100% 

3-9 

Volume estimation Dataset Cylinder length Name 

Cylinders 

I 0.5 m C05 

II 1 m C1 

III 2 m C2 

Taper equations 

I 0.5 m M05 

II 1 m M1 

III 2 m M2 
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Step 1. Identify the DBH of a simulated tree by with a randomly selecting ed a 

value from a uniform distribution with the range defined by each DBH class; 

Step 2. Compute the total height of simulated tree with the DBH-height 

equation for Douglas-fir Temesgen et al. (2007): 

 Hsimi
= 1.3 + exp(a + b ∗ dbhsimi

c ) + εi    3-10 

             where a = 5.7567, b = -6.7792, and c = - 0.2795; 

εi ~N(0, 𝛿𝑖
2); 

Hsimi
 is the simulated tree height in m; 

DBHsim is the randomly drawn value from Step 1 in cm; 

Step 3. Starting from the bottom of the stem, compute tree dib at specific heights 

along given sampling intervals (0.5 m, 1 m, and 2 m) with Poudel et al. (2018):  

dibsimij

= b20dbhsim
b21 Hsim

b22X
ij

b23RHij
4 +

b24

edbhsim/Hsim
+b25Xij

0.1+
b26

dbhsim
+b27Hsim

1−(
h

Hsim
)1/3

+b28Xij

+ esimij
 

3-11 

 esimij
= esimi1

∗ φsimi
+ ϵij       3-12 

where   b20, b21, … , b28 are estimated coefficients of Poudel et al. (2018);  

dibsimij
 is the predicted dib of simulated tree i at specific height j; 

dbhsim and Hsim are simulated DBH and tree height from Step 1 and 2;  

Xij = (1 − RHij
1/3

) (1 − k1/3)⁄ ;  

k = 1.3/Hsim; 
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esimij
 is the random error of the predicted dib; 

esimi1
is the random error of the first dib prediction of tree i; 

φsimi
 is simulated autogressive correlation of tree i; 

φsimi
 ~U(0.6, 1) , the range of autocorrelation is tested by the pre-

modeling of our data set; 

ϵij is the random effect of error term, ϵij~N(0, σsimi

2 );  

σsimi

2  is the variance of random effect ϵij.  

Step 4. Compute the volume of the simulated tree with equations defined in 

section 3.2.4.  

Generalized linear model (GLM), allowing the non-normal distribution of error terms, 

was executed to assess the effects of the computation method and dbh class on stem 

volume estimates. The GLM is expressed as: 

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 + 𝑑𝑏ℎ 𝑐𝑙𝑎𝑠𝑠

+ 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 × 𝑑𝑏ℎ 𝑐𝑙𝑎𝑠𝑠 

 3-13 

where computation method has 8 levels; 

           DBH class has four levels.  
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Figure 3.4 Simulation process of volume estimation with different methods. dbhi is the 

simulated dbh of ith tree and is generated from the uniform distribution of U(a, b), 

where a and b are the boundary of dbh class. H is simulated total tree height based on 

Eq. 3-10. VolumeFIA−PNW  is the estimated stem total volume with the FIA-PNW 

eequation. VolumeM05 , VolumeM1 , and VolumeM2  are stem volume estimated with 

point-cloud-based taper equations, in which dibs are estimates of equation M05, M1 

and M2 as it describes in Table 3.1. VolumePoudel18 is the estimated stem volume with 

the taper equation of Poudel et al. (2018). VolumeC05, VolumeC1, and VolumeC2 are 

volumes of direct cylinder estimates. 

 

3.3. Results 

3.3.1. Taper equations 

I found that not all the coefficients from Kozak 04 equation are significant (Table 3.2), 

which supported their elimination from the final model (the case of a2). The 

autoregressive correlation, Ф, is inversely related to the length of sub-cylinder, 

indicating error correlation between adjacent pairs of estimates declines with the 

increasing distance between them. (Table 3.2). The residual plots (Figure 3.5) shows 
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normality, and homoscedasticity. Leave-one-out validation exhibited little difference 

in pseudo- 𝑅2 , RMSE and bias for all stem diameter equations (Table 3.3). The 

predicted dib curves of all equations (i.e., M05, M1 and M2) were very similar (Figure 

3.6 a - d), with equation M05 yielding slightly higher dib estimates for the lower portion 

of the stem for large trees (Figure 3.6 c and d). The point-cloud-based taper equations 

exhibited different patterns from the equation of Poudel et al. (2018) (Figure 3.6), as 

they yielded smaller dib estimates at the lower third of the stem but larger dib estimates 

at the middle and upper thirds of the stem, which consequently leads smaller volume 

estimates from point-cloud-based taper equations for lower two thirds of the stem but 

greater estimates for total stem volume than estimates from Poudel et al.’s (2018) 

(Figure 3.6 e – h).  

Table 3.2 Fitted coefficients of the Kozak 04 equation with AR(1) structure for point 

clouds measured inside bark diameter. The standard errors is abbreviated SE. 

Coefficients b4 and b6 are associated with random effects. The given estimates of b4 

and b6 are the mean estimates of individual trees.  

 

 

 M05 M1 M2 

Coefficients Estimates SE Estimates SE Estimates SE 

a0 1.0858 0.2274 1.1347 0.2501 1.2026 0.2431 

a1 0.9504 0.0491 0.9416 0.0531 0.9318 0.0563 

b1 0.5529 0.0427 0.5486 0.0441 0.5470 0.0468 

b2 -0.4759 0.2112 -0.4424 0.2256 -0.4682 0.2372 

b3 0.2882 0.0577 0.2700 0.0609 0.2643 0.0650 

b4 -1.3222 0.0844 -1.3266 0.0863 -0.9745 0.0863 

b5 0.0237 0.0104 0.0326 0.0106 0.0472 0.0098 

b6 0.1182 0.0210 0.1093 0.0213 0.0748 0.0213 

Φ 0.7246  0.5605  0.3878  
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Table 3.3 Evaluation of the three point-cloud-based equations using the leave-one-out 

validation. 

 

Figure 3.5 Residuals of fitted Kozak 04 equations with the point-cloud-based dib 

estimates against predicted dib. a. equation M05, b. equation M1, and c. equation M2.  

 

Figure 3.6 Comparisons of taper equations for different tree size. Upper row (a – d): 

predicted dib curves with the point-cloud-based taper equations; lower row (e – h): 

cumulative stem volume estimates with the point-cloud-based taper equations.  

Predictions of Poudel et al. (2018) serve as references. 

Equation Measurements (m) pseudo-

𝑅2 

Bias (cm) RMSE (cm) 

M05 0.5 0.94 -0.0650 4.6231 

M1 1.0 0.94 -0.1328 4.5354 

M2 2.0 0.95 -0.0756 4.5642 
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3.3.2. Volume estimation  

Strong correlations (R > 0.98) are present among the point-cloud-based and the FIA-

PNW volume estimates (Figure 3.7). Among all the methods, the FIA-PNW equation 

produced the lowest mean volume estimates, as well as lowest standard deviation of 

the estimates (Table 3.4).  Poudel et al. (2018) produced the most similar total volume 

estimates to the FIA-PNW equation, with a relative difference of -6% (Table 3.4). 

Overall, mean volume estimates from point-cloud-based methods are 12% - 17% 

higher than the mean FIA-PNW estimate. Point-cloud-based taper equations produced 

the greatest mean volume estimates, as well as the highest standard deviation of the 

estimates (Table 3.4). The segment length (i.e., 0.5, 1, and 2 m) did not strongly impact 

the volume estimates of the point-cloud-based taper equations (i.e., M05, M1, and M2). 

The mean volume estimates and standard deviations are similar across all point-cloud-

based taper equations (Table 3.4). The cylinder model estimates were slightly smaller 

than the taper-based estimates developed with the same segment length, but were 12 - 

15% and 7 - 8% higher than the FIA-PNW and Poudel et al. (2018) mean estimates 

respectively (Table 3.4). Increasing segment length leads to declines in mean volume 

estimates and the estimate standard deviation of cylinder models (C05 > C1 > C2)  

(Table 3.4). The point-cloud-based taper equations (i.e., M05, M1, and M2) produced 

higher mean relative difference to FIA estimates than cylinder models (i.e., C05, C1 

and C2), but the standard deviations of the relative difference are much lower in taper-

based methods (Table 3.4). 
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 Table 3.4 Summary of volume estimation (i.e., mean and standard deviation) and 

relative difference to the FIA-PNW volume estimates. 

 

 

Figure 3.7 Comparison between stem volume estimates of the FIA-PNW equation 

and other methods. a. Volume estimates of cylinder models. b. Volume estimates of 

taper-based equations. 

Methods Model Type 
Volume Estimation Relative difference 

Mean St. Dev. Mean St. Dev. 

Cylinder 

C05 5.7200 3.1490 -0.1613 0.13900.1380 

C1 5.6316 3.0880 -0.1449 0.1398 

C2 5.4471 2.9555 -0.1115 0.1400 

Taper 

M05 5.8191 3.3278 -0.1645 0.0174 

M1 5.8033 3.3035 -0.1627 0.0157 

M2 5.8138 3.2568 -0.1691 0.0199 

Poudel et al. (2018) 5.3783 3.1979 -0.0664 0.0211 

FIA-PNW Total volume 5.0100 2.9000   
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3.3.3. Simulated trees  

GLM suggested that the mean volume estimates differ in the computation methods, the 

DBH class of tree and their interaction (p-value < 0.000001) (Table 3.5). As it shows 

in Figure 3.8 a, increasing divergence exhibited between volume estimates of various 

computation methods as the DBH class increased. The taper equations (Poudel et al. 

(2018) and point-cloud-based) produced larger volume estimates, as well as larger 

standard deviation of estimates, than the FIA-PNW equation (Figure 3.8 a, c). As DBH 

classes increase from 40 – 60 cm to 100 – 120 cm, Poudel et al.’s mean volume is 

increasingly greater than the FIA-PNW estimate from 2% to 11% (Table 3.6). The 

divergence implies the FIA-PNW equation cannot sufficiently yield volume estimates 

for larger trees. For point-cloud-based taper equations, the mean volume estimates are 

14% – 17% (Table 3.6) higher than FIA-PNW estimates across all DBH classes (Figure 

3.8 b). All point-cloud-based taper equations yield very similar mean volume estimates 

for the simulated trees, whereas the standard deviation of volume estimates for a given 

DBH class increases from model M2 to M05 (Table 3.6), indicating the taper equations 

developed with smaller segment length could capture more variation of stem volume 

for a given combination of DBH and tree height. For cylinder-based estimates, the 

segment length of the sub-cylinders that compose the stem is inversely related to the 

mean volume estimates, as well as the standard deviation of volume estimates.  For a 

given DBH class, the greatest mean volume estimate and standard deviation of the 

estimates were observed for model C05 followed by model C1 and C2 (Figure 3.8 a 

and Table 3.6). For the DBH class of 40 – 60 cm, the mean volume estimates from 

cylinder models are 1% - 7% smaller mean volume estimates from the FIA-PNW 
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equation (Figure 3.8 a and Table 3.6). As the DBH class increases, cylinder model 

estimates grow closer to the FIA-PNW estimates until they eventually surpass them 

(Figure 3.8 b). For the DBH class of 100 – 120 cm, the mean volume estimates of 

cylinder models are 2% - 7% greater than the FIA-PNW estimate (Table 3.6). The 

standard deviation of the relative difference between the cylinder model and FIA-PNW 

estimates maintain constant but much higher than taper-based estimates for all DBH 

(Figure 3.8 d), because cylinder models fit directly to the stem shape and yield much 

variable volume estimates for a given DBH and height combination.   

Table 3.5 GLM of volumes estimates as response variable of computation methods 

and dbh class. 

Term 

Degree 

of 

freedom 

Sum 

square 

Mean 

sum 

square 

F value P value 

Computation methods 8 22047178 2755897 603684.8 <0.000001 

Dbh Class 3 7312183 2437394 533916.1 <0.000001 

Computation methods × 

dbhClass 
21 19092 909 199.1 <0.000001 

Residuals 319968 1460694 5   
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Figure 3.8 Simulation results of the 10,000 generated trees by dbh classes: 1 (40 – 60 

cm); 2 (60 – 80 cm); 3 (80 – 100 cm); 4 (100 – 120 cm). a. Estimated mean stem volume; 

b. Mean relative difference between estimates of other methods and the FIA-PNW 

equation; c. Standard deviation of volume estimates; d. Standard deviation of relative 

difference.  
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Table 3.6 Simulation results of volume estimates. 

 

 

DBH 

Classes 

(cm) 

Model 
Mean Volume 

Estimates(m3) 

Standard 

Deviation (m3) 

Mean 

Relative 

Difference 

Standard 

Deviation of 

Relative 

Difference 

40 – 60  

M05 2.8082 0.8382 -0.1478 0.0154 

M1 2.8271 0.8320 -0.1569 0.0136 

M2 2.8651 0.8319 -0.1738 0.0157 

Poudel et al. 

(2018) 
2.4917 0.7765 -0.0221 0.0181 

C05 2.4172 0.7667 0.0094 0.0415 

C1 2.3630 0.7564 0.0323 0.0449 

C2 2.2670 0.7381 0.0729 0.0508 

FIA-PNW 2.4278 0.7203 NA NA 

60 – 80  

M05 5.9627 1.4345 -0.1399 0.0149 

M1 5.9634 1.4086 -0.1410 0.0102 

M2 5.9835 1.3896 -0.1458 0.0091 

Poudel et al. 

(2018) 
5.5445 1.3799 -0.0520 0.0203 

C05 5.3918 1.3685 -0.0224 0.0405 

C1 5.2842 1.3558 -0.0014 0.0437 

C2 5.0969 1.3373 0.0351 0.0502 

FIA-PNW 5.2517 1.2177 NA NA 

80 – 100  

M05 10.4850 2.3036 -0.1507 0.0161 

M1 10.4321 2.2410 -0.1460 0.0112 

M2 10.3791 2.1851 -0.1412 0.0091 

Poudel et al. 

(2018) 
9.8503 2.2099 -0.0800 0.0201 

C05 9.5973 2.2000 -0.0517 0.0397 

C1 9.4161 2.1879 -0.0315 0.0426 

C2 9.1065 2.1703 0.0033 0.0488 

FIA-PNW 9.0914 1.8857 NA NA 

100  

–  

120  

M05 16.3040 3.5054 -0.1703 0.0169 

M1 16.1546 3.3857 -0.1608 0.0129 

M2 15.9599 3.2679 -0.1480 0.0121 

Poudel et al. 

(2018) 
15.4604 3.3579 -0.1094 0.0199 

C05 15.0725 3.3638 -0.0807 0.0420 

C1 14.8014 3.3471 -0.0607 0.0447 

C2 14.3383 3.3295 -0.0264 0.0505 

FIA-PNW 13.9021 2.8139 NA NA 
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3.4.  Discussion  

We compared total stem volume estimates for mature Douglas-fir yielded from eight 

methods, six of which are based on the applications of terrestrial lidar point clouds and 

two of which are based on empirical equations. Empirical equations are usually 

developed based on well-known tree allometry studied from destructive samples 

acquired from field measurements and can be repeatedly used for various inventory 

purposes. The advantages of using lidar data to develop empirical taper equations are 

the nondestructive estimates of stem diameter at any specific height and permanent data 

storage. As being developed with large samples, empirical equations are usually 

representative of population means of the variables of interest. In contract, direct 

cylinder model estimates account for individual tree structural variation and produce 

more accurate volume estimates for individual trees.  

A wealth of studies showed that the accuracy of current point-cloud-based stem 

diameter measurements ranges from 1 – 3 cm (Côté et al., 2011; Hopkinson et al., 2004; 

Strahler et al., 2008; Tansey et al., 2009; Watt and Donoghue, 2005; Wezyk et al., 

2007), and largely depends on the scanner type, number of scans, point density, position 

of scans, and forest types (Dassot et al., 2011). Previous studies that used the same type 

of terrestrial laser scanner to model canopy characteristics reported accuracies of DBH 

estimates within 2 cm (Calders et al., 2015; Huang et al., 2011; Ishak et al., 2015; Tao 

et al., 2015).  Currently, circular or convex hull approximations are commonly used to 

calculate stem perimeter (Calders et al., 2015; Huang et al., 2011; Liang et al., 2012; 

Olofsson et al., 2014). In this study, we modeled stems with circular models, as it 

allows continuous volume estimates along the stem with relative low computation cost.  
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3.4.1. Sensitivity of point-cloud-based volume estimates to segment length of 

cylinder models 

Within the test range of 0.5 m – 2 m, the segment length of sub-cylinders composing 

the stems did not exhibit a strong influence on the performance of the point-cloud-

based taper equations since similar RMSE and R2 were observed for all point-cloud-

based taper equations (Table 3.3). For a given DBH class, the difference of mean 

volume estimates from three point-cloud-based taper equations is less than 3%. The 

volume estimate difference in the three point-cloud-based taper equation is mainly 

caused by the variation in the stem tapering rate. For trees with small DBH, the large 

sub-cylinder length might not adequately capture the tapering rate at the upper stem 

resulting in overestimates of stem diameters. For trees with large DBH, large sub-

cylinder length overgeneralizes the tree stump, where contains most of the tree volume, 

resulting in underestimates of the stem volumes.  

Cylinder volume estimates exhibit a similar pattern with the taper-based estimates that 

models with smaller sub-cylinder lengths yielded greater volume estimates and 

standard deviation of the estimates. However, for a specific tree, the difference in 

volume estimates from cylinder models with different segment lengths ranges from 1% 

- 14%, which is more variable than the difference observed for estimates from taper-

based equations, since individual tree stem variation is fitted locally in the cylinder 

models but taper equations were developed by minimizing estimation errors of all 

observations.  
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For future applications, the cylinder segment length may need to be adjusted 

proportionally to the total length, the shape, and the diameter of the stem. The fixed 

segment length could cause errors to the model construction for where sharp angles 

happen (Binney and Sukhatme, 2009), especially for highly crooked stems, which 

require fine cylinders to better approximate the stem shapes. Fixed segment lengths 

less than 0.5 m was used by Thies et al. (2004) to construct sequent cylinder models 

for highly crooked beech and cherry stems whose lengths were less than 12 m. In our 

study, the selected segment lengths did not cause problematic model construction for 

total conifer stem. Variable segment lengths can improve the cylinder models’ accuracy 

of locally approximating the stem (Binney and Sukhatme, 2009), but they are subjected 

to the decision of segment length of a given stem section and may introduce extra 

variations to the volume estimates yielded from the model. Defining the segment length 

as a fixed ratio to the fitted cylinder radius is a way to better approximate the stem 

tapering shape (Calders et al., 2015; Raumonen et al., 2013b). The protocol of defining 

the length to radius ratio requires prior information of a taper equation (Raumonen et 

al., 2013b). As the segment length is dynamically determined from the ongoing 

construction of successive cylinders, the locally modeled cylinder radius is crucial for 

successful cylinder construction for the follow-on segment, which works ideally for 

stems with dense point coverage.  

3.4.2. Difference of total stem volume estimates from various methods 

The mean and standard deviation of the simulated volume estimates reveal the 

existence of significant difference in the estimated volume from various methods. 
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Large relative difference between point-cloud-based and the FIA-PNW volume 

estimates may indicate great divergences between local and regional stem volume 

estimates. However, a lower standard deviation of the relative difference implies a 

higher possibility of a systematic calibration to reach consistent estimates when 

different methods are used in an inventory system.  

For the sample trees, the FIA-PNW equation yielded volume estimates that are 6% - 

17% lower than other estimates. Especially for trees with DBH greater than 100 cm, 

the FIA-PNW equation yielded mean volume estimates that are 17% and 10% lower 

than estimates from model M05 and Poudel et al. (2018) respectively. Slight 

underestimation of the FIA-PNW equations for stem volume of trees having DBH 

greater than 90 cm were also observed by Poudel and Temesgen (2016). However, the 

following study of Poudel et al. (2018) found that the bias of the FIA-PNW volume 

estimates of Douglas-fir was smaller than the bias of the estimates yielded by the 

refitted Kozak 04 equation. Therefore, uncertainties arise when regional equations are 

applied to volume estimation for individual trees at the local scale (Smith et al., 2006) 

and when plot-level aggregation of individual tree volume estimates were upscaled to 

estimation at regional scales (Berger et al., 2014; McRoberts and Westfall, 2013). 

Nevertheless, extraordinarily high correlations were observed between estimates of all 

point-cloud-based methods and estimates yielded by empirical equations (Figure 3.7), 

suggesting a high possibility of calibration bringing consistency to volume estimates 

yielded by different methods.  
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As the cylinder models in the simulation were directly derived from Poudel et al. 

(2018)’ s equation, they only help investigate the impact from the sub-cylinder segment 

lengths on stem volume estimation, but their estimates were not directly comparable 

with estimates yielded by the point-cloud-based taper equations (i.e. M05, M1, and 

M2), which were developed from the real scanned trees. Considering the high accuracy 

level that lidar estimates have achieved (Brede et al., 2019b; Lau et al., 2018; Tanago 

et al., 2018), we assume in reality cylinder models constructed with human-eye 

interference would yield volume estimates that are closer to the true volumes of a 

specific tree than volume estimates yielded from an empirical equation, which only 

produces true mean volume estimates for a large sample that are similar to the samples 

used to develop the equation. In comparison with volume estimates of the point-cloud-

based taper equations, cylinder volume estimates exhibited higher standard deviations 

of the relative difference to FIA-PNW estimates (Table 3.4), indicating the difference 

is more associated with individual tree random effects and stem form variation rather 

than systematic effects from the parameter and model form specification of the 

equations.  

3.5.  Conclusion 

This study provided a system of using point-cloud-based cylinder models to develop 

taper equations and generate volume estimates. Despite the small sample size, total 

stem volumes estimated from both the point-cloud-based taper equations and cylinder 

models were comparable to the existing values obtained with significant expenses and 

field effort. For developing taper equations, the sample interval along the stem did not 

impact the taper equation performance. However, segment length of cylinder models 
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significantly influenced the stem volume estimates, which are more evident for trees 

with large dbh. Cylinder models produced more similar volume estimates to the FIA-

PNW equation, with a lower relative difference than estimates of the point-cloud-based 

taper equations. However, the standard deviation of relative difference is much lower 

for the point-cloud-based taper equations. As they directly fit the stem shape, cylinder 

models are supposed to produce more accurate estimates of individual stem volume. 

However, application of cylinder models at regional level could be biased, as depends 

on the segment length and shape of individual stems.  In contrast, the point-cloud-based 

taper equations are less accurate at predicting individual stem volume, but they are 

easier to be calibrated to ensure consistency with existing volume equations. I expect 

that the expensive and time-consuming field measurements that require tree felling 

would be replaced with point cloud estimates, as are significantly faster, executed on 

standing trees, and provide a timeless snapshot of the tree or stand. Therefore, 

considering availability of terrestrial laser scanners and the constant improvement of 

the algorithms focused on estimation of tree attributes form point clouds, such as 

DendroCloud or TreeQSM, I think that lidar and photogrammetric point clouds would 

be the main source of acquiring forest inventory data in the next decade. 
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Chapter 4 Comparison of mature Douglas-firs’ crown 

structures developed with two quantitative structural 

models using TLS point clouds for neighboring trees in a 

natural regime stand 

Abstract 

The Douglas fir crown structure serves important ecological functions in regulating the 

ecosystem of the Pacific Northwest (PNW). Mapping and modeling of the Douglas-fir 

crown has traditionally focused on young plantations or old-growth forests. The crown 

description in natural regime forests is limited by data availability. Terrestrial laser 

scanning (TLS) enables the acquisition of crown structural attributes, even in dense 

forests, at a fine-scale. The vertical and horizontal distributions of the fine-scale branch 

attributes, such as branch diameter, branch length, and branch insertion angle, will 

reflect the crown behaviors towards light resource availability, as a result of 

neighborhood competition. The main objective of the study is to compare crown 

structural models of a group of neighboring trees developed with two TLS-based 

procedures, namely: semi-automatic (Cyclone software) and automatic (TreeQSM) 

procedures. The estimated crown attributes are the branch diameter, branch length, 

branch insertion angle, height of branch insertion point, and branch azimuth. The 

results show that branch azimuth distribution does not differ between TreeQSM and 

Cyclone for most of the sample trees. However, the TreeQSM and Cyclone identified 

branches exhibit different distributions of insertion height. A paired t-test indicates no 

difference between the mean branch diameter of Cyclone and TreeQSM at an 

individual tree level. However, Cyclone estimated that the branch length and branch 

insertion angle are 0.49 m and 9.9° greater than the TreeQSM estimates, respectively. 
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Repeat measurements of the analysis of variance (ANOVA) suggest that the height 

along the stem is an influential factor of the difference between the Cyclone and 

TreeQSM branch diameter estimates. To test whether TLS-based estimates are within 

the ranges of the previous observations, I computed the tree crown attributes of second- 

and old-growth trees using Monte Carlo simulations for diameter at breast height (DBH) 

class 50–55 cm, 60–65 cm, and 85–105 cm. I found that the crown attributes estimated 

from both of the TLS-based methods are between the simulated second- and old-growth 

trees, except for DBH 85–105 cm. The TLS-based crown structural models show 

increasingly diverse distributions of branch insertion angles and increasing branch 

exclusion as DBH increases. Cyclone-based crown structural models are consistent 

with previous studies. However, TreeQSM-based crown structural models omitted a 

significant number of branches and generated crown structures with reduced 

plausibility. 

Keywords: LiDAR; point clouds; TreeQSM; Cyclone software; crown structure; 

Douglas-fir; branches attributes; neighborhood; light resource availability 
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4.1.  Introduction 

Crown structure of Douglas-fir forests plays an important role in shaping abiotic 

arrangements and eventually determines the biodiversity of the temperate forest 

ecosystem in Pacific Northwest (Franklin et al., 2002; Ishii et al., 2004; Spies et al., 

2006). Characterizing canopy architecture will significantly enhance the understanding 

of forest microclimate variability (Aussenac, 2000; Chen and Franklin, 1997),  foliage 

distribution (Brunner and Nigh, 2000; Parker, 1997),  epiphyte abundance (Clement 

and Shaw, 1999; Lyons et al., 2000; Sillett and Neitlich, n.d.; Sillett and Bailey, 2003), 

growth productivity (Barbour et al., 1997; Briggs et al., 2007; Maguire et al., 1998) and 

distribution of wildlife habitats (Michel and Winter, 2009). Furthermore, knowledge of 

forest structural dynamics, particularly of the crown, guides silvicultural practices 

aimed at achieving economic, social and ecological benefits (Barbour et al., 1997; 

Bauhus et al., 2009; Davis et al., 2007; Swanson and Franklin, 1992).  

The crowns of young- to mid-age Douglas-fir plantation trees have been successfully 

modeled with allometric equations focused on branch diameter (Maguire et al., 1994, 

1999, 1991), branch length (Roeh and Maguire, 1997), branch insertion angle (Roeh 

and Maguire, 1997) and foliage mass (Kershaw Jr. and Maguire, 1996; Maguire and 

Bennett, 1996; Mori and Hagihara, 1991). In comparison, applications of allometric 

equations in describing old-growth Douglas-fir crown were less fruitful, as more 

uncertainties are induced by the complex structural variability caused by canopy 

closure and stratification (Franklin et al., 2002). In such cases, the crown architectures 

were conceptually (Ishii and Ford, 2002; Pelt and Sillett, 2008; Van Pelt et al., 2006; 
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Van Pelt and North, 1996) and numerically (Ishii et al., 2000; Ishii and Wilson, 2001) 

documented almost exclusively for individual “big trees.” Descriptions of mature 

crowns of trees from natural regime stands are constrained by the difficulties in the 

acquisition of the branch attributes. Therefore, crown development of trees located 

inside unmanaged stands is limited.  

The point clouds produced by terrestrial laser scanning (TLS) provide a reliable source 

of data for 3D forest measurements (Coops et al., 2007; Danson et al., 2007; Hilker et 

al., 2010b). At the stand level, TLS can successfully estimate stand basal area, stem 

mean diameter, canopy height, and gap fraction (García et al., 2011; Moskal and Zheng, 

2012). At the tree level, TLS has also been proven to successfully measure tree crown 

width, diameter at breast height (DBH), total height and leaf area distribution (Moorthy 

et al., 2011; Moskal and Zheng, 2012; Srinivasan et al., 2015). Point clouds convey 

spatial coordinates and laser intensity of reflecting surfaces, with reduced information 

on the type of surface. Therefore, fine-scale crown geometric measurements, such as 

branch diameter, branch length, and branch insertion angle, are difficult to be 

automatically retrieved without external human input or with the use of advanced 

algorithms. Such algorithms are the quantitative structural models (QSM), which 

extract tree woody structure based on the topographic relationship between points and 

approximate tree skeleton with cylinder models (Delagrange et al., 2014; Hackenberg 

et al., 2015a; Raumonen et al., 2013b; Zeide and Pfeifer, 1991).  QSM has effectively 

reconstructed stems and branches for broadleaf trees and accurately measured tree 

height (Ghimire et al., 2017), DBH (Ghimire et al., 2017), branch diameter (Lau et al., 

2018), branch length (Lau et al., 2018), stem and branch volumes (Burt et al., 2013; 
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Lau et al., 2018). The accurate stem and branch volume estimations from QSM also 

enable rapid biomass estimation at tree level (Raumonen et al., 2015; Tanago et al., 

2018). From an ecological perspective, QSM also reveals tree structural development 

in response to ecosystem conditions (Jackson et al., 2019; Malhi et al., 2018).  

Despite the successful applications of QSM in estimating big branches of broadleaf 

trees, QSM tends to overestimate the diameters of smaller branches  (Hackenberg et al., 

2015a; Lau et al., 2018), because QSM is sensitive to noise, leaf-on points, and 

disconnected point clouds, which cause poor reconstruction of branch models. 

Therefore, the application of QSM to coniferous species is challenged by the small leaf 

on branches. For coniferous trees, TLS-based crown structure studies focus on 

depicting general crown profile (Ferrarese et al., 2015; van Leeuwen et al., 2013), 

rather than describing the inside canopy details, particularly branch arrangements and 

dimensions. To date, few studies have characterized Douglas-fir branch architecture of 

average trees from stands that experienced limited management (Clement and Shaw, 

1999; Maguire et al., 1999; Pelt and Sillett, 2008). The overarching objective of the 

present study is to numerically describe the crown architecture of average Douglas-fir 

trees from point clouds. Because the size and location of branches can be estimated 

using automatic procedures such as QSM, or semi-automatic ones such as Cyclone 

based, a primary objective of our study is to test the utility of QSM for Douglas-fir 

crown measurements.  

Under similar environmental conditions, Douglas-firs’ crown structure reflect the 

results of the light availability (Pelt and Sillett, 2008). For mature crowns, as the crowns 
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expand, competition among neighboring crowns triggers the branch exclusion and 

diversification of branch insertion angles and branch size (Franklin et al., 2002) to 

ensure sufficient light resource. Previous crown structural modeling has been focused 

on unrelated individual trees (Ishii et al., 2000; Ishii and McDowell, 2002; Ishii and 

Wilson, 2001; Pelt and Sillett, 2008; Van Pelt et al., 2006). However, neighborhood 

density in the canopy is a significant factor on crown dynamic (Getzin et al., 2008; 

Getzin and Wiegand, 2007; Kramer et al., 2019). In this study, I attempt to develop 

crown structures of a group of neighboring trees with a variety of sizes using TLS point 

clouds. A set of plausible crown structural models will reflect the neighborhood impact 

on crown development as tree size increases. Therefore, the secondary objective of our 

study is to examine whether TLS-based crown structure will reflect the light-induced 

neighboring competition’s impact on crown structure of varying sized trees.  

To achieve the two major objectives, I was interested in addressing four subobjectives:  

1. To describe the crown of the average (understood as not-special) dominant and 

co-dominant Douglas-fir, from different DBH classes using point clouds.  

2. To examine whether the TLS-based estimates of the crown fit within the range 

of existing observations for second-growth plantations and old-growth stands. 

3. To compare the branch dimensions estimated using Cyclone, the semi-

automatic approach, with the values supplied by TreeQSM, the automatic 

approach. 
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4. To examine the neighborhood impact on Douglas-fir crown structure 

development based on conceptual crown models developed with TLS point 

clouds.   

4.2. Data and methods 

4.2.1. Study sites and data collection 

The study was conducted in a Douglas-fir stand located in the west side of the Cascades, 

Oregon, in the HJ Andrews Experimental Forest. Inside the stand, an 80 m × 100 m 

plot (Figure 4.1 b) with trees on average 38 m tall (standard deviation of 11.5 m), were 

scanned from 22 locations with a RIEGL VZ400i scanner. The first scan was located 

at the center of the plot and was programmed for an execution of a complete rotation 

(i.e., 360º) in 10-min, whereas all subsequent scans took only 5 min. A set of 76 tie-

points were placed inside the plot and their coordinates were surveyed with a Trimble 

RTS633 total station. The registration of individual scans was performed in Leica 

Cyclone (Leica Geosystems, 2019). Scans were aligned using cloud-to-cloud 

comparison, constrained by the 76 tie-points. Mean absolute error of constraint and 

cloud-to-cloud alignments are 0.009 m and 0.016 m respectively. The sample trees 

selected in this study meet three conditions: 1) trees are composed of abundance of 

point clouds at least for lower-middle crown, 2) belong to the dominant and codominant 

crown class (Nyland, 1996), 3) the trees are neighbors,  4) the trees are composed of 

several DBH classes at least 10 trees fulfill the first two conditions. Therefore, I 

randomly selected the point clouds of 10 dominant and codominant trees with adjacent 

crowns (Figure 4.1 a and c). The points associated with each tree were visually 

delineated in Cyclone (Figure 4.1 a and c). Visual extraction of sample trees is difficult 
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at the middle section of crowns where a significant number of interlocking branches 

are found within adjacent crowns. To ensure a clear view of point clouds rendering in 

Cyclone, individual crowns are roughly divided into sublayers, crown delineation is 

performed in sublayer level, then, point clouds of sublayers were eventually integrated 

as an individual tree. Visual delineation of individual crowns largely depends on the 

connective relationship between stem and branch points. Points rendering based on 

intensity segregates stem, branch and leaf points and supports visual identification of 

the stem and its connected branches. The major errors of visual extraction of crowns 

are the omission of entire or partial branches and inclusion of branches from 

neighboring crowns. To reduce the sample tree segregation errors, visual delineations 

were performed from different angles. 

Table 4.1 Summary of involved crown attributes. 

Attribute Abbreviation Formula 

Diameter at breast height DBH  

Total Tree height  THT  

Branch diameter  BD  

Branch length  BL  

Branch insertion angle  α  

Branch azimuth  θ  

Height of branch i’s insertion point hi   

Height of crown base hBC   

Crown Length  CL CL = THT − hBC  

Branch depth into the crown DINC DINC = THT − hi  
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Figure 4.1 Lidar point clouds. a. Rendering of the segmented sample tree point 

clouds; b. Point clouds of the entire plot and the locations of the 10 sample trees 

within the plot; c. Nadir view of the sample tree crowns 
 

4.2.2. Cyclone-based estimation of stems and branch dimensions 

For each tree, I directly measured tree DBH, height, branch diameter, branch length, 

branch insertion angle, branch azimuth, and height of branch insertion point (Table 4.1) 

using crown structural models constructed in Leica Cyclone (Figure 4.2). I also 

computed five attributes, some of which are commonly used in forest modeling, namely 

crown length (CL), crown ratio (CR), branch relative height inside the crown (BRH), 

branch depth inside the crown (DINC), and branch relative depth into the crown 

(RDINC).  
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All the branch and stem estimates are based on the region growth algorithm (Pal and 

Pal, 1993), which requires sufficient points to fit cylinders (Figure 4.2 a). At the top of 

the crown, not enough points are available for fitting cylinder models (Figure 4.2 b). 

Therefore, the top stem diameter is determined by assuming the top segment is cone-

shaped, with the cone’s base diameter equal to the stem diameter of highest available 

cylinder model. The axis of the top stem segment was aligned with the highest available 

stem cylinder. Branches at the top of the crown were manually traced with line 

segments. Thus, branches at the top of the crown were still measured for their height, 

length, insertion angle, azimuth, and crown radius, but no diameters were estimated. 

For the best accuracy, I only measured the first-order live branches that are directly 

attached to the stems, which were only fitted with cylinders at the insertion point for 

measuring the basal diameter (Figure 4.2 c). For each cylinder, the extreme coordinates 

were recorded (i.e., start and end), as well as the axis, diameter, and length. I fitted tree 

stems with cylinders 1 – 1.5 m long (Figure 4.2 e), for which the taper is negligible in 

respect with the measurement errors. Dead branches were visually identified in the 

point cloud, considering that few leaves, and consequently points, are attached to the 

woody tissue in this case (Figure 4.2 f). 

I computed the tree height as the difference between the z values of the highest 

identified point and the start point of the stem base. I traced the branch skeletons with 

segments, whose length was summed from the insertion point to the end of the branch 

and estimated its linear extent (Figure 4.2 d). I computed the branch azimuth with 

respect to the axis of the base cylinder, while the branch insertion angle was the angle 
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between the axis of the branch base cylinder and the axis of the stem cylinder (Figure 

4.2 c). I determined the crown radius of a branch as the horizontal distance between the 

end point of the branch and the stem (Figure 4.2 d).  

 

Figure 4.2 Crown measurements in Cyclone. a. The point clouds of a sample 

tree. b. Incomplete point clouds of the top section of crown. c. Cylinder 

models of a branch. Branch insertion angle is measured as the angle between 

the stem axis and branch cylinder axis. d. Branch length measurements: sum 
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of the length of line segments. The maximum horizontal distance from the 

stem is the branch projected distance. e. Cylinder model of the stem. f. Dead 

branch without leaves attaches on it.  

4.2.3. Automatic estimates of stem and branches dimensions using TreeQSM 

QSM provides an automation process of constructing 3D models from point clouds 

(Figure 4.3). It segments tree branches by using cover sets, which are connected patches 

of the tree surface (Raumonen et al., 2013b). Among the QSM models available to 3D 

model the trees, such as SimpleTree (Hackenberg et al., 2015a), pypetree (Delagrange 

et al., 2014), or TreeQSM (Raumonen et al., 2013a, 2013b) I chose the TreeQSM. Our 

software selection is based on the operability and the validity of the results, as only 

TreeQSM was able to render realistic trees in a feasible amount of time. The other 

software either were not operational, the case of pypetree, or required a large amount 

of time to provide valid results, the case of SimpleTree. I used the following parameters 

to generate the cover sets in TreeQSM: 

1. Patch diameter for the first cover: 0.1 – 0.15 m.  

2. Minimum patch diameter for the second cover: 0.02 - 0.03 m.  

3. Maximum patch diameter for the second cover: 0.06 - 0.08 m.  

For each tree, I have estimated the same attributes with TreeQSM as I did with Cyclone, 

listed in Table 4.1. 
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Figure 4.3 An example of QSM created tree model. Different colors 

represent segments.
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4.2.4. Cleaning TreeQSM estimates 

I noticed that the tree models constructed with TreeQSM produce significantly more 

branches than Cyclone. Since the accuracy of TreeQSM is sensitive to the density of 

the points, and consequently, to the proportion of noise points (Raumonen et al., 2013b), 

higher order branches located at the upper portion of crowns commonly contain large 

errors. Therefore, branches that were apparently wrongly created were removed. To 

eliminate the wrongly constructed branches, I used a series of ad-hoc criteria, which 

were developed by trial and errors:  

1. branches with base diameter above 15 cm; 

2. branches with total length less than 1 m; 

3. branch height below the lowest identified branch in Cyclone; 

4. insertion angle less than 30 degrees; 

5. insertion angle less than 50 degrees and length greater than 3 m.   

Because TreeQSM wrongly classified some first-order branches as second order, I 

reexamined all the second-order branches, which were re-classified as first-order 

branches if the distance between the insertion point and the stem axis is less than stem 

radius, d (Eq. 4-1):  

 
{√(xbranch − xstem)2 + (ybranch − ystem)22

≤
d

2
 

zbranch = zstem

 
 4-1 

where xbranch, ybranch and are zbranch starting coordinates of a second-order branch, 

xstem, ystem and zstem are the coordinates of the stem center.    
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4.2.5. Comparison of the Cyclone and TreeQSM estimates 

4.2.5.1. Estimate aggregations by height section 

Since one of the interests of this study is the similarities of the trees depicted by the 

two TLS-based producers (i.e., Cyclone and TreeQSM) I aimed at pair-wise 

comparison of the branches. However, only 8% of the branches identified with Cyclone 

and TreeQSM could be paired using visualization and coordinates proximity. Therefore, 

I compared the aggregated attribute values by height sections of each individual tree 

rather than comparing paired individual branches. The comparison of aggregated 

values would reveal whether two procedures generate similar tree structural estimates 

at individual tree level. The ordinal variable height section is determined based on two 

criteria: 1) the length of each section < 5 m, except for the bottom and top of the crown; 

and 2) the number of branches located within each section is relatively equal. The 

division of the height section is summarized in Table 4.2.  For each height section, the 

branch variables were aggregated by computing the mean (Eq. 4-2): 

where y̅methodHij
 is the average variable (e.g., BD, BL, and α) of height section j of tree 

i, yHijk
 is individually measured branch variable within height section j of tree i,  

nmethodHij
 is the number of branches measured by Cyclone or TreeQSM in height 

section j of tree i, the estimation method is either Cyclone or TreeQSM. 

 

y̅methodHij
=

∑ yHijk

nmethodHij

k=1

nmethodHij

  4-2 
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For comparing the branch locational variables insertion height and azimuth, I used 

nonparametric Kolmogorov–Smirnov test to compare the Cyclone and the TreeQSM 

estimates, using the R package “stats”. 

Table 4.2 Summary of number of branches by height section 

4.2.5.2. Measures for comparing the Cyclone and TreeQSM estimates 

I assessed the differences between the two TLS-based branch estimates with four 

measures: 

 𝑀𝐷𝐻𝑖𝑗 = 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = �̅�𝐶𝑦𝑐𝑙𝑜𝑛𝑒𝐻𝑖𝑗
− �̅�𝑇𝑟𝑒𝑒𝑄𝑆𝑀𝐻𝑖𝑗

  4-3 

 
MPDHij = Mean percent difference by height section =

MDHij

y̅CycloneHij

100 [%] 
 4-4 

 MADHij =  Mean absolute by height section = |y̅CycloneHij
− y̅TreeQSMHij

|     4-5 

 MAPDHij = Mean percent absolute difference =

|y̅CycloneHij
−y̅TreeQSMHij

|

y̅CycloneHij

100 [%]   

 4-6 

Height of the Section 

(m) 

 Number of Branches 

 Cyclone TreeQSM 

< 15  23 22 

15 - 18  28 30 

18 - 23  84 51 

23 - 26  58 46 

26 - 29  88 50 

29 - 32  106 33 

32 - 35  119 27 

35 - 38  116 24 

38 - 43  101 5 

> 43  34 0 
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I used paired t-test to access the overall difference between attribute estimates from 

Cyclone and TreeQSM. The null hypothesis of paired t-test is that mean difference 

(MD) equals zero. Paired t-test will reveal whether MD follows a normal distribution: 

N(0, 𝜎𝐴
2), where 𝜎𝐴

2 is the variance of MD of attribute estimate A (A could be branch 

diameter, branch length, or branch insertion angle).  

Point cloud density decreases with increasing height, suggesting that height section is 

a possible factor affecting the difference in estimates. Furthermore, the branches 

belonging to the same stem can be viewed as repeated measurements; therefore, I also 

used a repeated measures ANOVA (Crowder and Hand, 1990) to evaluate the 

differences between Cyclone and TreeQSM estimates. To identify the structure of the 

covariance matrix (required by the repeated measures framework), I considered three 

structures: autoregressive of order 1 (AR(1)), unstructured variance, and compound 

symmetry, as recommended by Diggle et al. (Diggle et al., 2002) and Fitzmaurice et al. 

(Fitzmaurice et al., 2004). The ANOVA equation used to test the difference by height 

section is 

 MDHij
= Height Section Orderj + εij  4-7 

The covariance structure for the AR(1) is cov(εij, εij−s) = ρsσ2, for the unstructured 

variance is  cov(εij, εij−s) =  σji−s
2  ,  and for the compound symmetry is 

cov(εij, εij−s) =  σ1
2 (Fitzmaurice et al., 2004), where cov stands for the covariance 

matrix, εij and εij−s are the model residual of tree i at height section of j and j-s, j ≥ s, 

ρ  is the correlation between two measurements of 1 unit apart, σ2  is the overall 

variance of all the measurements.  
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4.2.6. Simulation of crown architecture  

In addition to directly comparing the estimations of branch dimensions and location 

with two procedures, I conducted a simulation analysis to find whether or not the TLS-

based crown estimates can fit in the ranges of the documented Douglas-fir profiles 

(Ishii et al., 2000; Ishii and McDowell, 2002; Pelt and Sillett, 2008). Most Douglas-fir 

crown modeling studies have been conducted for plantations or old-growth forests 

(Ishii et al., 2000; Ishii and Wilson, 2001; Maguire et al., 1999; Roeh and Maguire, 

1997). Models for trees with similar crown development stages and sizes as our sample 

trees are not readily available. Thus, I used both second- (Maguire et al., 1999; Roeh 

and Maguire, 1997) and old-growth (Ishii and Wilson, 2001) crown models to develop 

simulated crowns and compare the simulated crown attributes with TLS-based 

estimates. Our sample trees are located within a natural regime stand with closed 

canopy and mixed DBH classes. I expect the crown attributes of our sample trees to be 

at the transitional stage between second- and old-growth trees. Since field 

measurements are not available, the comparisons between TLS-based estimates and 

exiting observations also serve as a justification of TLS-based estimation.  

4.2.6.1. Second-growth branch size models 

Maguire et al. (1999) developed maximum BD models for managed stands. Among all 

the equations of Maguire et al. (1999), I selected the constrained variable-exponent 

model to simulate BD: 

 BDij = (λ1CWλ2 + δi)WC + εij  4-8 

 
CW = MCW ∗ CR0.01431509∗CL+0.07224024

DBH
Ht  

 4-9 

 MCW = 1.4081 +  0.22111 ∗ DBH − 0.00053438 ∗ DBH2  4-10 
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 W = 1 − BRH0.5  4-11 

 C = λ3BRHλ4  4-12 

 
BRH =

hi − hBC

CL
 

 4-13 

λ1, λ2, λ3 and λ4 are coefficients of Eq 6c fitted in Maguire et al. (1999). CW is the 

stand-grown maximum crown width, MCW is the open-grown maximum crown width, 

CR is crown ratio, BRH is the branch relative height inside the crown, hi is the height 

of branch insertion point, and hBC is the height of crown base. δi and εij are random 

errors of tree level and individual branch level, following distribution δi~N(0, δ2) and 

εij~N(0, σ2).  

Roeh and Maguire (Roeh and Maguire, 1997) developed a set of crown profile models 

for coastal Douglas-firs, in which the estimated attributes were simultaneously 

corrected across the equations. An examination of the symmetrically modeled BD and 

BL in Roeh and Maguire revealed that BD and BL are smaller than the estimates from 

the point clouds of this study. Therefore, I only selected individually developed BL 

model for the simulation (Roeh and Maguire, 1997): 

 BLij = ed1DINCd2ed3DINCBDd4THTd5  4-14 

where the variables are defined in Table 4.1, BD is estimated branch diameter from Eq. 

4-8.  

 Zij = aRDINCij
b(1 − RDINCij)

c  4-15 

 
RDINCij =

THTi − hij

THTi − hBCi

=
DINCij

CLi
  4-16 
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4.2.6.2. Old-growth branch size models 

Unlike young plantation trees, the branches of old-growth trees are less constrained by 

tree size and more determined by the depth of the crown. Ishii and Wilson (Ishii and 

Wilson, 2001) developed crown models for old-growth Douglas-firs, which could 

adapt to the variation of branch forms. The branch size equation used in this study is:  

where Zij is the size of branch j from tree i (BD or BL), RDINCij is relative depth into 

the crown, a is a coefficient and b and c are scaling exponents, THTi is the total height 

of tree i, hij is branch j insertion height, and hBCi
 is height of crown base.  

The final crown equation is fitted as a piecewise function since at the lower end of the 

crown the equation cannot capture the variability of the branch size.  

 
{

    Zij = aRDINCij
b(1 − RDINCij)

c, DINCij < h

Zij = ahb(1 − h)c,          RDINCij  ≥ h           
   4-17 

 

Previous studies have shown the existence of a relatively simple allometric relationship 

between BD and BL (Bertram, 1989; Ishii et al., 2000; McMahon and Kronauer, 1976): 

BL = aBDb , where a and b are coefficients. To determine a and b, I used a pre-

simulation to decide the range of a and b based on BD and BL models of Ishii and 

Wilson. The final estimates of branch length model are described as: 

 BLij = 1.6971 × BDij
0.6237   4-18 

4.2.6.3. Simulation algorithm 

The simulation was performed for three DBH classes, each following a uniform 

distribution: 
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DBH1j~U(50, 55) , DBH2j~U(60, 65) , and DBH3j~U(85, 105) . The selected 

boundaries cover the DBH range of sample trees and represent crown development at 

different stages. The number of sample trees within DBH classes 50 – 55, 60 – 65 and 

85 – 105 cm are five, three and two respectively. Although trees of DBH classes 50 – 

55 and 60 – 65 cm behave similarly in crown structural development, the sample trees 

are not evenly distributed within the entire DBH range of 50 – 65 cm and the separation 

of DBH classes would better approximate the transition of crown development. For 

each size class, I generated 10,000 simulated trees and their crown attributes were 

estimated with both second- and old-growth models as described above (Hann, 1999; 

Ishii and Wilson, 2001; Maguire et al., 1999; Roeh and Maguire, 1997).
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Figure 4.1 The algorithm used to simulate individual trees crown using existing 

models 



110 

 

The steps of synthetically generating crown attributes are: 

Step 1. Select DBH 

A random number is drawn from the uniform distribution of DBH for each class. 

Step 2. Compute tree height from DBH 

An empirical height-DBH equation is used to determine tree total height (Temesgen et 

al., 2007): 

 THT = 1.3 +  e(a+b×DBHc) + ε  4-19 

where a = 5.7567, b = -6.7792, c = - 0.2795 and ε is a random error, ε ~ N(0, σε
2).  

Step 3. Compute crown length  

Crown ratio (CR) is generated from a uniform distribution: CR ~ U(0.3, 0.7). The 

selection of crown ratio distribution is based on the observation of our sample trees.  

Then, crown length is determined from its definition as:  

 CL = CR × THT  4-20 

Step 4. Select the number of branches and branch insertion height 

The number of first ordered branches is established assuming that it follows a uniform 

distribution, NBi~U(60, 140), where NBi is the number of branches of simulated tree 

i. The boundaries of uniform distribution of NB is determined by the observation of 

sample trees.  
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Branch insertion height is determined by the BRH, which follows a beta distribution. 

A pre-simulation was executed to decide the parameters α and β of an assumed beta 

distribution, which yielded the following ranges for α and β: 

 

{

𝜶 ~ 𝑼(𝟏, 𝟑)
𝜷 ~ 𝑼(𝟏, 𝟑)
𝜷 ≤ 𝟏. 𝟓 × 𝜶

 

 4-21 

I simulated BRH following the distribution: BRHij~Beta(α, β), where BRHij is the ith 

branch relative height above crown for jth simulated tree.  

Step 5. Compute the branch diameter and branch length 

For a second-growth tree, the branch diameter and branch length are determined by Eq 

4-8 and 4-14 respectively. For an old-growth tree, the branch diameter and branch 

length are determined by Eq 4-17 and 4-18.  

4.3. Results 

4.3.1. Tree level estimates  

I found no bias in the TreeQSM estimates of DBH (Table 4.3). However, TreeQSM 

estimated total height consistently smaller than Cyclone, by approximately 10%. For 

tree #3, a large discrepancy is present between Cyclone and TreeQSM estimated DBH 

and height, in which TreeQSM overestimated DBH by 17 cm (20%) and 

underestimated tree height by 10 m (18.5%) (Table 4.3). The difference between 

Cyclone and TreeQSM crown length estimates ranges from 0.2 – 3.92 m (Table 4.3). 

A major difference between the two procedures is that TreeQSM identifies fewer first 

order branches than Cyclone, sometime as low as 31%. 
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Table 4.3 Semi-automatic (Cyclone) and automatic (TreeQSM) tree attribute estimates. 

 

4.3.2. Estimation of branch attributes 

4.3.2.1. Branches azimuth and insertion height 

The majority of the branches identified by TreeQSM are located in the lower portion 

of the crown, whereas Cyclone generated widely spread branch distribution along the 

height of the tree (Figure 4.5). The distributions of azimuths for both procedures are 

similar. The majority of identified branches are facing south, with azimuth ranging 

from 90° to 270°, except for tree #3 and #4, whose DBHs (> 80 cm) are greater than 

other trees (Figure 4.5).  The distribution of branch azimuth by DBH class is primarily 

determined by the light condition of the canopy. For small trees, most branches are 

south facing where light abounds, while for large trees, some branches are facing north 

where branch exclusion allows some light.  

The distribution of branch insertion height exhibits an obvious shift between Cyclone 

estimates and TreeQSM estimates, suggesting that automatic procedures supplied 

Tree 
DBH (cm) Tree Height (m) 

Crown Length 

(m) 

No. of Branches  

(First Order) 

Cyclon

e 

TreeQS

M 

Cyclon

e 

TreeQS

M 

Cyclon

e 

TreeQS

M 

Cyclon

e 

TreeQS

M 

1 64 65 40.50 36.60 30.58 26.66 96 49 

2 60 58 44.00 44.65 35.15 38.30 122 67 

3 84 101 53.99 43.83 30.34 29.91 87 32 

4 110 113 45.00 45.81 20.71 21.68 47 36 

5 56 53 38.06 37.12 24.62 21.35 37 12 

6 63 60 44.93 44.39 22.95 24.30 87 27 

7 50 52 45.83 46.78 27.37 27.57 77 50 

8 52 51 44.76 41.20 28.70 28.82 98 59 

9 49 47 39.00 35.29 30.27 26.71 74 34 

10 51 54 40.78 40.12 26.33 26.61 39 15 

Averag

e 
63.9 65.4 43.69 41.58 27.7 27.19 76.4 38.1 
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values lower than Cyclone procedure (Figure 4.6). The Kolmogorov–Smirnov test 

confirms the difference between branch insertion height estimated by two procedures, 

as no tree was found with a similar distribution (p-value < 0.05 Figure 4.6). The largest 

disagreement in the distribution of branch insertion height occurs between 17 – 36 m. 

In contrast to branch insertion height, the distributions of the estimated azimuths are 

much more similar for Cyclone and TreeQSM (Figure 4.6). The Kolmogorov–Smirnov 

test confirmed similarities of branch azimuth distributions estimated by the two 

procedures, as only one tree (i.e., 4) has different distributions (p-value < 0.05). 

 

Figure 4.5 TLS identified individual branches by insertion height and azimuth. 
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Figure 4.6 Cumulative probability of branch insertion height. The p-values are for the 

Kolmogorov–Smirnov test used to compare the branch insertion height distribution of 

TreeQSM and Cyclone. The null hypothesis of the test is that two sets of values have 

the same distribution. Red dots mark the height at which the largest difference in the 

cumulative probability of Cyclone and TreeQSM measured height is found.  
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Figure 4.7 Cumulative probability of branch azimuth. The p-values are for the 

Kolmogorov–Smirnov test used to compare the branch azimuth distributions estimated 

by TreeQSM and Cyclone. The null hypothesis of the test is that two sets of values 

have the same distribution. Red dots mark the azimuth at which the largest difference 

in cumulative probability of Cyclone and TreeQSM estimates are found. 
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4.3.2.2. Branches diameter 

TreeQSM estimated mean BD is greater than Cyclone estimates below insertion height 

of 29 m (Table 4.4 and Figure 4.8 a). Above 29 m, the TreeQSM estimates are smaller 

than the Cyclone estimates (Table 4.4 and Figure 4.8 a). The normality of paired t-test 

is met for BD estimates. The paired t-test indicates no difference between the overall 

mean of Cyclone and TreeQSM BD estimates (p-value = 0.96) by individual trees over 

the entire tree profile.  

The section-wise comparison reveals that the repeated measurement framework with 

AR(1) structure yielded smallest AIC value (Table 4.5), suggesting that branch 

diameter estimates along the stem are not independent but correlated with the insertion 

height. Cyclone BD estimates are relatively constant across height sections. In contrast, 

TreeQSM BD estimates decrease with the increase in height section. The largest 

discrepancy between the BD estimates of the two procedures is at the height section 35 

– 37 m (Table 4.4), where TreeQSM underestimated mean BD by 2.34 cm (40.08%). 

The underestimation was probably the result of the unsuccessful construction of branch 

structure due to sparse point clouds. Although the abundance of points is supposed to 

yield similar estimates for branch diameter, the second largest difference is found at 

the height section below 15 m, where average BD computed with TreeQSM is 1.53 cm 

(28.75%) greater than Cyclone value (Table 4.4). The overestimation of small size 

branches by TreeQSM was also found by previous studies (Hackenberg et al., 2015b; 

Lau et al., 2018), where plenty of points were available.  
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Figure 4.8 Branch diameter estimates at insertion point by height section. a. 

Comparison of branch diameter estimates of Cyclone and TreeQSM by height 

section; reference lines connect the mean of the aggregated estimates. b. The     

difference of the branch diameter estimates between Cyclone and TreeQSM by height 

section. 

Table 4.4 Summary of mean branch diameter estimates by height section. 

Table 4.5 Difference in branch diameter estimates between Cyclone and TreeQSM as 

a function of height section, within a repeated measurements framework.  
 

 

 

 

 

 

Height Procedure Difference Absolute Difference 

(m) Cyclone (cm) TreeQSM (cm) (cm) (%) (cm) (%) 

<15 5.36 6.89 -1.53 -28.75 1.53 28.75 

15-17 6.20 6.40 -0.20 -5.10 0.65 11.82 

18-22 5.38 6.54 -1.16 -24.82 1.75 35.32 

23-25 5.92 6.04 -0.12 -4.12 1.36 22.71 

26-28 5.64 5.95 -0.31 -10.36 1.78 31.53 

29-31 5.75 5.09 0.67 4.56 1.48 24.18 

32-34 5.38 4.62 0.76 13.65 2.17 44.04 

35-37 6.22 3.88 2.34 40.80 2.34 40.80 

38-42 4.10 2.89 1.21 29.51 1.21 29.51 

Model Type AIC BIC 

Unstructured 161.8796 175.6169 

Repeated measures - AR(1) 153.6215 168.8851 

Repeated measures - Compound Symmetry 156.865 172.1286 
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4.3.2.3. Branch length estimates 

Both Cyclone and TreeQSM yielded the longest mean BL estimates at the base of the 

crown (Figure 4.9). Paired t-test indicates that Cyclone mean BL estimate is 

significantly larger than TreeQSM estimate (i.e., 0.49 m) by aggregation of height 

sections (p-value < 0.001). The largest discrepancy in length estimates occurs at the 

height section 26 – 29 m (Figure 4.9), where mean difference and mean absolute 

difference are 1.34 m (33.4%) and 1.52 m (37.7%) respectively (Table 4.6). ANOVA 

does not indicate difference in length estimates in response to height section (i.e., p-

value is 0.25). The normality assumption, required for ANOVA, is met, but the 

homoscedasticity is not, as the variance of the difference between the estimated BL for 

height section 15 – 18, 23 – 26, and 29 – 32 m is relatively higher than for the other 

height sections (Figure 4.9).  

Figure 4.9 Branch length estimates by height section. a. Estimates for Cyclone and 

TreeQSM; reference lines connect the mean of the aggregated estimates. b. Difference 

between the branch length estimates of Cyclone and TreeQSM. The dots represents 

outliers identified with the quantile approach.  
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Table 4.6 Summary of branch length estimates by height section. 

 

4.3.2.4. Branch insertion angle estimates 

Both angle estimates do not show strong correlation with height section (Figure 4.10). 

Paired t-test indicates that the mean Cyclone estimated angle is 9.916° (i.e., 10.52%) 

greater than the TreeQSM estimates by aggregation of height sections (i.e., p-value < 

0.001). The largest mean difference between two estimates occurs at 18 – 23 m (Table 

4.7) and is 20.90° (i.e., 22.63%). ANOVA suggests that the difference between angle 

estimates also does not vary across height sections (i.e., p-value is 0.087). As height is 

below 18 m, Cyclone mean estimated insertion angles are smaller than TreeQSM 

estimates. For height above 18 m, Cyclone estimated mean insertion angles are greater 

than TreeQSM estimates, except for height section of 29 – 32 m (Figure 4.10 b).   

 

 

 

 

Height Procedure Difference Absolute Difference 

(m) 
Cyclone 

(m) 

TreeQSM 

(m) 
(m) (%) (m) (%) 

< 15 4.96 5.06 -0.10 0.37 0.52 10.52% 

15 - 18 3.62 2.93 0.69 0.58 1.08 34.24% 

18 - 23 3.18 3.42 -0.24 -13.87 0.41 18.36% 

23 - 26 3.53 2.84 0.69 12.41 0.96 24.90% 

26 - 29 3.96 2.62 1.34 33.38 1.52 37.72% 

29 - 32 3.38 3.37 0.02 -2.44 0.89 24.57% 

32 - 35 3.10 2.62 0.49 8.58 0.88 34.61% 

35 - 38 3.68 2.64 1.04 25.53 1.26 32.37% 

38 - 43 2.65 2.40 0.25 8.19 0.57 21.09% 



120 

 

Figure 4.10 Branch angle estimates by height section. a. Estimates for Cyclone and 

TreeQSM; reference lines connect the mean of the aggregated estimates. b. Difference 

between branch insertion angle estimates of Cyclone and TreeQSM by height section.  
 

 Table 4.7 Summary of branch angle estimates by height section. 

Height 

Section TreeQSM Cyclone Difference 
Absolute Difference 

(m) Angle (º) Angle (º) (º) (%) (º) (%) 

< 15 88.45 77.27 -11.18 -21.45 12.16 22.49 

15 - 18 89.30 84.17 -5.12 -9.85 10.38 15.37 

18 - 23 82.92 103.82 20.90 18.91 20.90 18.91 

23 - 26 89.81 103.46 13.65 11.86 16.75 15.27 

26 - 32 87.60 96.52 8.91 8.32 10.06 9.62 

32 - 35 83.60 97.98 14.37 15.06 18.96 20.08 

35 - 38 85.35 95.25 9.90 10.08 19.43 20.53 

38 - 43 78.94 85.85 6.91 6.63 22.68 26.37 
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4.3.3. Simulated crowns 

TLS-based estimates for BD and BL are compared with the same attributes from the 

simulated trees without differentiating whorl from epicormic branches. Therefore, I 

used the maximums to reflect key attributes of crown profile, usually defined by the 

whorl branches (Hann, 1999; Maguire et al., 1999), and the means to consider all the 

branches. Furthermore, crown profiles derived from Cyclone and TreeQSM are 

compared to test whether TreeQSM can develop average tree structures that are 

comparable with Cyclone.   

4.3.3.1. Branch Diameter 

Simulated old-growth trees have wider ranges of mean and maximum BD compared to 

second-growth trees (Figure 4.11), because of greater variability of the old-growth 

crowns. As the fitted polynomial curves show, both Cyclone and TreeQSM estimated 

mean BD profiles are slightly greater than simulated second-growth trees (Figure 4.11 

a and b), except for DBH 85 – 105 cm. The mean BD profiles of Cyclone and TreeQSM 

estimates are consistent with simulated second-growth trees, in which largest mean 

BDs are located in the middle-lower crown and smallest mean BDs are located at the 

top of the crown (Figure 4.11 a – c). In comparison with Cyclone mean BD estimates, 

the variance of TreeQSM mean BD estimates are greater. For DBH class of 50 – 55 

cm, TreeQSM yielded greater mean BD estimates than Cyclone at the lower crown 

(Figure 4.11 a). For DBH class of 60 – 65 and 85 – 105 cm, Cyclone, and TreeQSM 

BD estimates show better agreement.  
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For both Cyclone and TreeQSM, the maximum BD estimates are similar to simulated 

old-growth trees for DBH classes 50 – 55 and 60 – 65 cm Figure 4.11 a and e), with 

mean difference less than 1 cm. However, for DBH class 85 – 105 cm, the overall 

simulated old-growth trees’ maximum BD are 8.51 and 9.60 cm averagely greater than 

Cyclone and TreeQSM estimates respectively. Instead, mean differences between 

simulated second-growth trees’ maximum BD and TLS-based estimates are within 1.5 

cm for DBH class of 85 – 105 cm (Figure 4.11 f). Similar to mean BD estimates, 

TreeQSM maximum BD estimates are more variable than Cyclone estimates. 

TreeQSM generated greater maximum BD estimates than Cyclone for DBH class 50 – 

55 cm.  

Figure 4.11 Mean (a - c) and maximum (d - f) branch diameter of the 10 trees by DBH 

class as a function of depth into the crown. The reference lines are second-order 

polynomial regression lines fit to the simulations and observations. Green and red lines 

are the simulated trees with second- and old-growth models, namely Ishii and Wilson 
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(2001) and Maguire (1999) models. The shades represent the 95% confidence intervals 

of the simulated results of 10000 trees.  

4.3.3.2. Branch length  

Overall, both simulated second- and old-growth trees have longer mean BL estimates 

than the TLS-based estimates (Figure 4.2 a - c). The fitted curves on the Cyclone mean 

BL estimates suggested the presence of three crown shapes: ellipsoid crown for DBH 

class 50 – 55 cm, where the longest branches are at the middle-lower crown (Figure 4.2 

a); conic crown for DBH class 60 – 65 cm, where the longest branches are at the bottom 

(Figure 4.2 b); and cylindrical crown for DBH class 85 – 105 cm, where the branch 

lengths are relatively constant along canopy (Figure 4.2 c). In comparison with Cyclone, 

mean BL estimates supplied by TreeQSM underestimated mean BL for DBH class 50 

– 55 and 85 – 105 cm for 0.3 and 1.12 m, respectively (Figure 4.2 a - c).     

For maximum BL, both Cyclone and TreeQSM estimates are close to simulated old-

growth trees for DBH classes 50 – 55 and 60 – 65 cm, with mean difference less than 

1 m (Figure 4.2 d and e). However, great difference is present between TLS-based 

maximum BL estimates and simulated old- and second-growth trees for trees with DBH 

≥ 85 cm (Figure 4.2 f). Unlike ellipsoidal shapes of maximum BL estimates for DBH 

50 – 55 and 60 – 65 cm, round crown shapes were present for DBH 85 – 105 cm 

irrespective the procedure, in which the longest BLs are present in the middle-upper 

crown. Both simulated second- and old-growth trees have longer maximum BL 

estimates than Cyclone and TreeQSM estimates for DBH class 85 – 105 cm and the 

difference is greater than 2 m.
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Figure 4.12 Mean (a - c) and maximum (d - f) branch length of the 10 trees by DBH 

class as a function of depth into the crown. The reference lines are second order 

polynomial regression lines fit to the individual simulations and observations. Green 

and red lines are the simulated trees with second- and old-growth models, namely Ishii 

and Wilson (2001) and Maguire (1999) models. The shades represent the 95% 

confidence intervals of the simulated results of 10000 trees. 
 

4.4. Discussion  

4.4.1. Comparison of TreeQSM and Cyclone crown attribute estimates 

The TreeQSM reduces the time and effort of the Cyclone procedure, but the results are 

still significantly different. In total, the semi-automatic procedure using Cyclone 

identified 761 branches for the 10 trees, whereas, TreeQSM identified only 38% 

branches of comparable dimensions and similar locations, mainly for the lower crown. 

However, for the upper crown where the point cloud is sparse, considerable branches 

were missed by TreeQSM. For all the sample trees, TreeQSM failed to construct 
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accurate stem models above 15 m (Figure 4.13 b), where disconnection of point clouds 

happened due to obstruction of scan view and reduction of point cloud density. Stem 

model construction is terminated before the process reaches the top of the crown since 

insufficient point clouds are available for the modeling process. TreeQSM might yield 

underestimated tree height for tall trees like Tree #3 because of incomplete stem models. 

However, region grow function in Cyclone still can accurately approximate the 

remaining point patches for stem model construction at the higher portion of the crown 

(Figure 4.13 a). TreeQSM miscategorized some first-order branches as second-order 

(Figure 4.13 c). I examined miscategorized branches, included miscategorized second-

order branches and cleaned branches that are wrongly categorized as first-order. 

TreeQSM failed to construct structural models of stems with irregular form and strong 

inclination such as Tree #3 (Figure 4.13 f) resulting in incorrect DBH estimation. In 

Cyclone, stem model construction is controlled with human assistance. The stem 

cylindrical models are manually adjusted to approximate the point clouds (Figure 4.13 

e). TreeQSM also misidentified some stem points as branch points and incorrectly 

constructed nonexistent branches (Figure 4.13 h). 
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Figure 4.13 Comparisons of quantitative structural models constructed with TreeQSM 

and Cyclone. Identification of some typical errors of structural models developed with 

TreeQSM. a. Accurate stem model (silver cylinder) developed in Cyclone. b. 

Inaccurate stem models developed with TreeQSM (blue cylinders). c. A first-order 

branch was categorized as second-order in TreeQSM (red cylinder). d. Cyclone 

rendering of the point clouds of the same branch shown in c. e. Stem models at breast 

height of Tree #3 in Cyclone. f. Incorrect stem models at breast height of Tree #3 in 

TreeQSM. Cylindrical models (blue cylinder) deviate from the stem point clouds 

resulting overestimation of DBH. g. Accurate stem model (silver cylinder) constructed 

in Cyclone. h. TreeQSM misidentified stem points as branch points and constructed 

models for a nonexistent branch (green cylinders shown in the right).  
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For both Cyclone and TreeQSM estimated BD, the accuracy is constrained by the 

application of pipe models, since real branches have irregular shapes rather than perfect 

cylinders. With the human-aid computation, Cyclone is believed to generate more 

accurate BD estimates, especially for complex understory canopy, because noise and 

leaf points are manually excluded from pipe model construction. TreeQSM can 

accurately construct pipe models for broadleaf tree stems and branches (Calders et al., 

2018; Lau et al., 2019, 2018; Raumonen et al., 2013b), particularly for branches and 

stem diameters greater than 10 cm (Lau et al., 2019). For branches smaller than 10 cm 

in diameter, TreeQSM is prone to overestimation (Hackenberg et al., 2015b; Lau et al., 

2018). However, the BD estimation with TreeQSM is challenging, since average 

branch diameter is smaller than 7 cm in this study. Whereas TreeQSM estimates of BD 

are questionable, the DBH is not, considering that the trees used in this study are mature, 

with large DBH. Therefore, TreeQSM supplied reliable DBH, as no significant 

difference was found from the Cyclone values. 

Our results suggest that branch height plays a significant role in the accuracy of 

TreeQSM estimation of BD because branch height is directly related to point cloud 

density and the abundance of information carried in the point clouds (Calders et al., 

2018). Inside the lower crown, where sufficient points are available, TreeQSM yielded 

greater mean BD estimates than Cyclone, which is probably error introduced by leaves 

and noise points. Inside the upper crown, TreeQSM provided smaller diameters than 

Cyclone, because insufficient point density was available to construct and connect the 

cylinder models. Consequently, the overall means of BD estimates along the entire 

crown profile are not different between TreeQSM and Cyclone at individual tree level.  
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Cyclone estimated BL depends only on the identification of the few points defining the 

overall skeleton of the branches. In contrast, BL estimation with TreeQSM requires 

enough points for cylinder model construction through the entire branch extent. Thus, 

BL estimation with TreeQSM is very sensitive to the density of points. False 

bifurcations caused by noise points and patches of points terminate the branch model 

construction, resulting in BL estimation errors. The average BL is almost 0.5 m greater 

in Cyclone than from TreeQSM. Our results are consistent with Lau et al. (Lau et al., 

2018), which found that TreeQSM is more reliable in estimating branch diameter than 

branch length.  

Cyclone estimated branch insertion angle would be more accurate in the lower crown 

since both branch and stem were fitted with sufficient points. For the upper crown 

sections, the accuracy of branch angle estimation depends not only on the determination 

of the branch skeleton but also on the accuracy of the projected stem cylinder from the 

lower section. The average TreeQSM estimated branch insertion angle is 9° smaller 

than Cyclone values. Since the accuracy of angle estimates is associated with the 

availability of points, I was surprised to find minute differences in angle estimates 

between TreeQSM and Cyclone across canopy height. I hypothesize that unlike branch 

length, which relies on the successful construction of the pipe model for the entire 

branch, angle estimation is only determined by the main skeleton at the branch base.   
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4.4.2. Crown architecture and development stage derived with TLS-based 

estimates   

The simulations confirmed our expectation that TLS-based crown estimates would be 

within the range between second- and old-growth trees. For trees of DBH classes 50 – 

55 and 60 – 65 cm, TLS-based mean BD and BL estimates are similar to second-growth 

trees, whereas, maximum BD and BL estimates fit in the range of old-growth trees, 

indicating a transitional crown development stage (Franklin et al., 2002). However, 

crown expansion is not present in trees of DBH class 85 – 105 cm, as crown size is 

significantly smaller than simulated second- and old-growth trees, which is probably 

associated with branch exclusion caused by canopy closure (Franklin et al., 2002).  

Conceptual crown architectures are drawn based on TreeQSM and Cyclone crown 

estimates by DBH classes (Figure 4.14 and Figure 4.15). TreeQSM depicted similar 

crown form with Cyclone for trees with DBH between 50 – 55 cm. However, TreeQSM 

omitted large numbers of branches for trees with DBH ≥ 60 cm. As the tree grows, 

branch exclusion occurs on the lower crown given the limited light, resulting in upward 

migration of crown mass. Therefore, TreeQSM could less accurately retrieve crown 

attributes for trees with DBH ≥ 60, in which the majority of branches are located at the 

higher portion of crowns than trees with DBH ≤ 55 cm. Consistent with greater 

variances of TreeQSM estimated BL and insertion angle, TreeQSM also derived more 

irregular crown profiles than Cyclone (Figure 4.14), supporting the uncertainties in the 

estimation of crown attributes using TreeQSM.  

Conceptual crown architectures (Figure 4.15) developed based on Cyclone are 

supported by a previous study of age-related crown development (Ishii and McDowell, 
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2002). Our results suggest transitions of ellipsoid and conic crown shapes to cylindrical 

crown with the increase in DBH, as well as increasing gaps from branch loss due to 

light competition (Franklin et al., 2002) (Figure 4.15). For DBH classes of 50 – 55 and 

60 – 65 cm, canopy gaps are mainly found in lower crowns facing north, which likely 

are caused by the absence of enough light (Figure 4.15 a and b). However, 

extraordinarily long isolated branches are also found in low canopy gaps, probably as 

a result of increasing light availability from neighboring branch exclusion (Figure 15 a 

and b). In addition, the variation of insertion angle increases with growing tree size 

(Figure 15 c). The diversity of insertion angle eventually will increase the light resource 

for neighboring branches. For trees with DBH ≥ 85 cm, most branches are surprisingly 

north facing, possibly because of the light competition from neighboring trees that 

challenges south-facing branch expansion.  

Our findings suggest that point clouds can provide fine scale crown architectural 

estimates comparable with field measurements. The crown attributes generated from 

human-aid TLS estimation procedure are consistent with existing studies (Ishii and 

McDowell, 2002; Ishii and Wilson, 2001; Maguire et al., 1999; Pelt and Sillett, 2008). 

The comparison of crown attributes by DBH classes provides numerical support for 

crown development driven by light condition defined by neighboring trees. 
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Figure 4.14 Conceptual Douglas-fir tree architectures developed based on TreeQSM 

crown attribute estimates by DBH classes.  
 

 

Figure 4.15 Conceptual Douglas-fir tree architectures developed based on Cyclone 

crown attribute estimates by DBH classes. 
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4.5. Conclusion  

This study evaluated the accuracy of two TLS-based estimation procedures of mature 

Douglas-fir crown attributes of neighboring dominant and codominant mature trees. 

Additionally, I assessed the ability of the estimation procedures to describe the crown 

attributes of mature unmanaged Douglas-firs. The two procedures are a semi-automatic 

approach — Cyclone, and an automation process, TreeQSM. Although limited human 

interference is required in TreeQSM process, the uncertainty of TreeQSM estimated 

crown attributes challenges its application in dense conifer forests. Therefore, 

significantly more work is needed to implement an operational automatic crown 

measurement algorithm, similar as TreeQSM, for tall Douglas-firs. I expect that 

comparable conclusions would be found for other coniferous species, as similar crown 

architecture is present. Among the estimated attributes, the branch diameters computed 

by TreeQSM are the closest to the Cyclone values, whereas the branch lengths are 

significantly shorter than the Cyclone values. The simulated trees based on the TLS 

estimates suggest an intermediate developmental stage of the trees, as they are between 

the second- and old-growth stands. The conceptual crown architectures developed 

based on TLS estimates are similar with other studies, supporting the finding that crown 

development is driven by light availability.     
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Chapter 5 Modeling mature Douglas-fir crown attributes 

using point clouds-based measurements 
Abstract 

Crown attributes of a cluster of Douglas-fir were estimated using structural models 

developed from terrestrial laser scanning (TLS) point clouds. The length, diameter and 

insertion angles of each branch were described with nonlinear models. Besides 

dimensional variables, competition indices that measure the proximity of neighboring 

trees and shading effects were considered in the modeling process. The best models 

were for the maximum branch length and for the insertion angle of branches identified 

with maximum diameter at given canopy depth of each individual tree, which explained 

79% and 70% of the variation, respectively. The mixed effect model of the maximum 

branch diameter only explained 60% variation of maximum branch diameter and 20% 

variation is accounted by random effect. Model of the insertion angle of branches with 

maximum length only explained 49% variation. Except for model of branches with 

maximum diameter, height- or crown length- related competition indices largely 

improved the model explanation power and DBH is not primary predictor variables in 

any of the models, implying light condition induced by shading and crowding effects 

determine the branch woody allocation instead of tree size capacity for closed canopy. 

Two crown profile model systems were developed with nonlinear seemingly unrelated 

regression (NSUR). One is based on maximum branch length and another is based on 

maximum branch diameter. The former achieved higher agreement with observations 

from TLS-based point clouds. Although NSUR did not apparently reduced bias and 

RMSE of the model, it brought consistency of the estimated coefficients by reducing 

the standard error of estimation.  



139 

 

Key words: branch attribute estimates, TLS, crown profile, Douglas-fir with mature 

crown, nonlinear seemingly unrelated regression 

5.1.  Introduction 

Information of Douglas-fir branch allocation and crown profile guide silvicultural and 

ecosystem conservation practice in Pacific Northwest. Branch attributes, such as 

diameter, length, crown width and the relative location of the branches inside crowns 

are important indicators of tree primary production (Ishii et al., 2004; Lewis et al., 

2000). Large branches, carrying a great amount of foliage, have superior 

photosynthesis potential  (Oren et al., 1986), but also were argued to have great 

hydraulic resistance (Bond, 2000; McCulloh and Sperry, 2005) and high relative 

respiration rate to the stem (Sprugel, 1990), which in turn limits the photosynthetic 

activities (Hubbard et al., 1999). The crown of large trees, which is an important carbon 

sink, has been neglected in aboveground biomass estimation, since crowns have 

relatively lower carbon fixation than stems. However, crown continues to accrue 

biomass even after stem accumulation rate decrease as stand ages (Ishii et al., 2017).  

Traditional crown structure studies applied widely present tree allometric relationships 

among organisms (Niklas, 1994; West et al., 1999) to predict branch attributes using 

predictor variables such as depth into the canopy (DINC) and tree-level parameters 

diameter at breast height (DBH), tree height and crown length. Numerous studies have 

developed allometric equations for predicting Douglas-fir branch attributes of both 

plantation trees  (Garber and Maguire, 2005a; Maguire et al., 1999; Roeh and Maguire, 

1997; Weiskittel et al., 2007) and  trees in natural regime stands (Ishii et al., 2000; Ishii 

and Wilson, 2001; Nemec et al., 2012). The main challenge faced by the development 
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of crown allometric models is the need of extensive field measurements at multiple 

sites.  

Recently, the focus of individual tree-level crown structural studies, described as the 

size and distributions of the branches, as well as their relationships with the stem and 

the neighboring crowns, has been shifted from allometric-model-driven to data-driven, 

since the advancements in applications of terrestrial laser scans (TLS) enabled fast and 

accurate acquisition of abundant canopy structural information. Multiple TLS-based 

crown structural studies applied convex hull algorithms to estimate individual crown 

volume and surface area (Korhonen et al., 2013; Lin et al., 2017; Trochta et al., 2017) 

or  generalized crown shape with single distribution model such Beta and Weibull 

distributions (Ferrarese et al., 2015). However, either convex hull or generalized crown 

profile uses only surface points to describe crown features. A wealth of point clouds 

inside the crown were omitted, although they convey richness of information about 

fine-scale branches structural attributes such as branch diameter, branch insertion angle 

and branch length.  

Quantitative structural modeling (QSM) is an automatic approach to model the tree 

skeleton structure with cylindrical models (Delagrange et al., 2014; Hackenberg et al., 

2015a, 2014; Raumonen et al., 2013b). Accurate estimation with QSM requires full 

coverage of point clouds on the scanned leaf-off branches. QSM could successfully 

estimate branch diameter that are greater than 10 cm (Hackenberg et al., 2015b; Tanago 

et al., 2018), but tends to overestimate the smaller branches (Lau et al., 2019, 2018) 

when the variance of point clouds accuracy approaches to the size of the branch 

dimension. Therefore, usage of QSM to construct structural models of tall conifer trees 
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located in dense canopy is limited, especially for the upper crown, where insufficient 

points are missing from ground-based scans as a result of obstruction (Fang and 

Strimbu, 2019). Consequently, branch measurements of tall conifer trees using TLS-

based point clouds are more reliable with human eye assistance in a computer-aid 

system than using automatic algorithms, particularly inside the crown (Fang and 

Strimbu, 2019).   

The application of TLS is currently not realistic for extensive forest inventory, as the 

operation is usually expensive. Besides, processing dense point clouds data requires 

advanced algorithms and powerful computation capacity. Allometric models still serve 

as important tools for forest inventory and enhance the understanding of branch woody 

biomass allocation. Nevertheless, TLS-based branch measurement plays as a 

supporting role in constructing branch allometric models, reducing the field 

measurement effort and enabling permanent storage of tree structural information. 

Allometric models perform as expected when predicting the branch structure of young 

plantation trees. As trees age, the complexity of the crown structure increases and 

branch attributes are less predictable from several tree-level parameters, since crown 

development is more driven by recent growing conditions (Bartelink, 1996; Ishii et al., 

2017) rather than stem size. Variability of light condition is the main factor that triggers 

the canopy complexity (Ishii and McDowell, 2002; Ishii et al., 2004). For stands with 

closed canopy, competition for light resource with neighbor trees is a main factor 

influencing the mass allocation (Bartelink, 1996), which is more prominent in shade-

intolerant species. The intensity of competition is mainly determined by the neighbor 
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trees’ size and proximity to the focal trees (Harold E. Burkhart and Tomé, 2012; 

Rouvinen and Kuuluvainen, 1997). Competition with neighbors alters the symmetric 

ellipsoid or conic crown geometry to asymmetry for more light availability (Krůček et 

al., 2019; Rouvinen and Kuuluvainen, 1997) and limits the tree crown volume gain 

over long period in old-growth forests (Kramer et al., 2019). Considering the immediate 

effect of light condition on crown development, neighbor competition may be a 

significant factor influencing the branch woody mass allocation. For natural regime 

stand, little allometric models are available for branch attribute estimation with 

consideration of competition impacts.  

This study aims to developing branch allometric models of mature Douglas-fir crown 

located in a natural regime stand using TLS-based branch measurements. The estimated 

branch attributes include branch diameter, maximum branch diameter, branch length, 

maximum branch length and branch insertion angle. Size- and distance-dependent 

competition indices are considered in the model development. First, individual models 

were developed for each branch attributes. Second, systematic branch models were 

developed with nonlinear seemly unrelated regression (NSUR). Crown profile was 

predicted with systematic model sets.   

5.2. Data and method 

5.2.1. Study site and field data collection  

The study site is located at Oregon Cascade HJ Andrews Experimental Forest. An 80 

× 100 m plot within a mature natural regime stand was scanned with a RIEGL VZ400i 

scanner. The plot was scanned from 22 spots, consisting of a 10-min scan with higher 
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resolution located at the center of the plot and 21 5-min scans evenly spread in the site. 

A set of 76 reference targets were placed inside the plot and their relative coordinates 

were surveyed with a Trimble RTS633 total station from 3 survey spots. Individual 

scans were aligned using reference targets as well as cloud-to-cloud comparison in 

Cyclone software. The overall mean absolute errors of target and cloud-to-cloud 

alignment are 0.009 m and 0.016 m respectively.  

A cluster of 42 neighboring Douglas firs, with DBH and tree height ranging from 27.6 

– 136 cm and 22 – 57 m respectively, are selected from the TLS point clouds and 

manually delineated in Leica Cyclone software. Tree crown adjacent relationships were 

identified from the above view of the point clouds. Eventually nine dominant and 

codominant trees, with total height as important indicator of site productivity, 

completely located within the center of the cluster were measured in their branch 

attributes. Other trees inside the cluster were only measured in their DBH and total 

height.  

5.2.2.  TSL-based branch estimates in Cyclone 

For each tree, I directly measured three tree-level and five branch-level variables with 

TLS-based point clouds (Table 5.1). I also computed four attributes, which are 

commonly used in forest modeling, namely branch relative height (RH), branch depth 

inside the crown (DINC), and branch relative depth into the crown (RDINC), branch 

relative height inside crown (RHC) (Table 5.1). Maximum branch diameter (BDmax) 

and length (BLmax) were also estimated and determined as the maximum values of 
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branch diameter or length within every one-meter interval along the crown height of a 

specific tree. 

TLS-based tree attribute measurements were performed in Leica Cyclone software. 

Tree height was estimated as the difference between Z value of the highest and the base 

points of the target tree (Figure 5.1 a). The branch base where it attaches to the stem 

was fitted as an approximate cylinder using Region Grow function in Cyclone. The 

operation of Region Grow requires selection of seed points from the target surface, then 

the algorithm automatically expand the selection of points by growing from seeds 

points until all the possible target points are included. Tree DBH was estimated as the 

diameter of cylinder at height of 1.3 m (Figure 5.1 a). Crown base was identified from 

the point clouds where lowest branches were identified. Crown length was estimated 

as the difference between Z values of points of lowest branch base and tree top (Figure 

5.1 a). Branch main skeletons were traced with line segments that connect vertexes 

defining the overall shape of branches (Figure 5.1 d). Branch diameter was estimated 

as the diameter of cylinder model at branch base (Figure 5.1 c). Branch length was 

estimated sum of the line segments of a branch skeleton (Figure 5.1 d). Branch insertion 

angle was estimated as angle between stem axis at branch insertion point and line 

segment of branch base (Figure 5.1 c). Crown radius is estimated as the projected 

distance between branch end point and the stem cylinder where the branch attaches to 

(Figure 5.1 d).  

TLS-based point cloud density decreases as canopy height increases. Considerable 

points that define the branch diameter were missing at the upper crown (Figure 5.1 b). 
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Since Region Grow in Cyclone requires sufficient points to fit the cylinders, missing 

points at crown top disabled cylinder fit of branches. However, points that define the 

branch skeleton and crow radius were still identifiable (Figure 5.1 b). Hence, branches 

at the top of the crown were still measured for their height, length, insertion angle, and 

crown radius, but only few branch diameters were estimated at height above 30 m.  

Table 5.1 Summary of involved variables branch profile modeling.  

Variable Definition 

 Tree Level 

DBHi  Diameter at breast height (1.3 m above the base) (cm) 

THTi  Total tree height (m) 

CLi  Crown Length (m) 

 Branch Level 

hij  Height of branch insertion point above the stem bottom (m) 

RHij   Branch relative height: 
hij

THTi
  

DINCij  Depth into the crown (m) 

RDINCij Relative depth into the crown: RDINCij =
DINCij

CLi
  

RHCij  
Branch relative height inside crown: RHCij =

hij−HCBi

CLi
, HCBi is height of 

crown base of tree i 

CRi  Crown Radius    

BDij  Branch diameter at the insertion point (cm) 

BDmaxij
  Maximum branch diameter of tree i, at DINC j 

BLij  Branch accumulative length of longest path (m)  

BLmaxij
  Maximum branch length of tree i, at DINC j 

Aij  Branch insertion angle (°) 



146 

 

 

Figure 5.1 An example of tree estimation in Cyclone. a. Tree-level attribute 

measurements: total height (THT), crown length (CL) and diameter at breast height 

(DBH). b. a considerable number of points were missing inside the crown, but branch 

skeletons were still traced with line segments. c. Branch diameter (BD) and insertion 

angle estimates with the cylinder models. d. Branch length (BL) and crown radius (CR) 

estimates. 

5.2.3. Competition indices 
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Five size- and distance-dependent competition indices were considered in the modeling 

procedure to reveal the neighboring trees’ impacts on the profile of the focal trees 

(Table 5.2). Although different studies used various buffering distances to decide the 

neighboring trees  (5 – 11 m) (Contreras et al., 2011; Rouvinen and Kuuluvainen, 1997; 

Woodall et al., 2003), we considered the neighboring trees as those whose crowns were 

directly in touch with the focal trees to avoid the arbitrary selection of the buffering 

distance. The distance between neighboring trees and the focal trees ranges from 2.98 

to 14.88 m with an average of 8.68 m. In Table 6.2, indices CI1 (Hegyi, 1974) and CI2 

(Figure 5.2 a) (Pukkala and Kolström, 1987) quantify the competition intensity as 

positive and negative effects of the neighboring trees’ DBH and their distances to the 

focal trees respectively. Corresponding to indices CI1 and CI2, indices CI3 (Braathe, 

1980) and CI4 (Figure 5.2 b)  (Rouvinen and Kuuluvainen, 1997) use the neighboring 

trees’ height instead of DBH to quantify the competition effects since neighbors’ 

canopy height, rather than DBH, is a more determinant factor of the light condition for 

the focal tree. A crown-length-based competition index (CI5 in Table 5.2 and illustrated 

in Figure 5.2 b) was also developed, because the crown dimensions of neighboring trees 

directly cause shading effect on the focal trees.  
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Figure 5.2 Illustration of angular measures in competition indices. a. The horizontal 

angular measure between the focal and the neighboring trees. The tree in the center is 

the focal tree; b. vertical angular measures between the focal and the neighboring trees . 

The tree in the middle is the focal tree.  𝛼𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐷𝐵𝐻𝑖

𝐷𝑖𝑠𝑡0𝑖
). 𝛽𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑇𝐻𝑇𝑖

𝐷𝑖𝑠𝑡0𝑖
). 

𝛾𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑇𝐻𝑇𝑖

𝐷𝑖𝑠𝑡0𝑖
) − 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑇𝐻𝑇𝑖−𝐶𝐿𝑖

𝐷𝑖𝑠𝑡0𝑖
), where 𝐷𝐵𝐻𝑖 is the DBH of the ith neighbor 

of the center tree, 𝐷𝑖𝑠𝑡0𝑖 is the distance between the center tree and the neighbor tree i, 

𝑇𝐻𝑇𝑖  and 𝑇𝐻𝑇0  are the total tree height of the neighbor tree i and the center tree 

respectively, 𝐶𝐿𝑖 is the crown length of the neighbor tree i. 
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Table 5.2 Definitions of competition indices.  

 

5.2.4. anch attribute modeling 

5.2.4.1. Individual modeling 

Branch diameter, length and insertion angle were individually regressed against 

predictor variables of tree-level attributes and height position of the branches (Table 

5.1). Whorl and interwhorl branches were not separated in TLS-based estimates. 

Branch length was modeled for all observations and the maximum values of groups by 

one-meter interval in the crowns. Complete sets of branch diameter estimates were not 

acquired from TLS measurements. Branch diameter was only modeled for its 

maximum observations by one-meter interval in the crowns. The maximum branch 

diameter and length are supposed to better associate with whorl branch features (Garber 

and Maguire, 2005a; Maguire et al., 1999; Roeh and Maguire, 1997), which are original 

branches initiated with the stem annual growth. Candidate models included 

Competition 

Index 
Definition Variables definition 

CI1 ∑

DBHi
DBH0

Dist0i

n
i=1    

DBHi and DBH0 are the DBH of neighbor tree i and 

center tree 0 respectively, Dist0i  is the distance 

between tree i and 0.  

CI2 ∑ 𝛼i
n
i=1

DBHi

DBH0
  

𝛼i = arctan (
DBHi

Dist0i
), DBHi is the DBH of tree i and 

Dist0i is the distance between tree i and 0. 

CI3 ∑

THTi
THT0

Dist0i

n
i=1   

THTi and THT0 are the total tree height of neighbor 

tree i and center tree 0 respectively, Dist0i  is the 

distance between the tree i and 0. 

CI4 ∑ 𝛽i
THTi

THT0

n
i=1   

𝛽i = arctan (
THTi

Dist0i
), THTi and THT0 are the total tree 

height of the neighbor tree i and the center tree 0, 

Dist0i is the distance between the tree i and 0. 

CI5 ∑ γi
THTi

THT0

n
i=1   

γi =  arctan (
THTi

Dist0i
) − arctan (

THTi−CLi

Dist0i
) , THTi  and 

THT0 are the total tree height of the neighbor tree i 

and the center tree 0, CLi is the crown length of the 

neighbor tree i, Dist0i is the distance between the tree 

i and 0.  
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weighed/unweighted simple linear and weighed/unweighted nonlinear model forms 

with various combination of predictor variables. Different error covariance structures, 

such as first-order autoregressive (AR(1)), compound symmetry and unstructured, 

were also tested in the selected models. The candidate models were evaluated with 

goodness-of-fit, root mean square error (RMSE), bias, Akaike information criterion 

(AIC), and significance of the estimated coefficients, as well as the examination of the 

residual plots. Final models were selected as those yielded the best evaluation measures 

(highest coefficient of determination R2, lowest RMSE, and lowest AIC value) and 

were explainable from ecological viewpoints. To remove the potential autocorrelation 

between measured branch attributes from the same individual tree, tree-level random 

effects were tested in modeling procedures (Garber and Maguire, 2003; Groot and 

Schneider, 2011; Maguire et al., 1999; Poudel et al., 2018).  

All the modeling procedures were performed using R package nlme (Pinheiro and 

Bates, 2019). The final selected model forms are summarized in Table 5.3. For all and 

the maximum branch length observations, the selected models were adapted from 

Kozak (2004) variable-exponent model form. The original variable-exponent model 

describes the stem taper evolvement along height as proportion of expected maximum 

stem diameter. In this study, the branch length is predicted as a proportion of the 

expected maximum estimate, which can be described as: 

 𝐵𝐿 = 𝑀𝐵𝐿 × 𝑍𝜔 5-1 
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where BL is branch length, 𝑀𝐵𝐿 is theoretically expected maximum estimates, 𝑀𝐵𝐿 =

𝑓(𝐷𝐵𝐻, 𝑇𝐻𝑇, 𝐶𝐿) , Z is a term of relative position, 𝑍 =
1−𝑅𝐻1/3

1−(0.01∗
𝐶𝐿

𝑇𝐻𝑇
)1/3

 ,  𝜔 is a function 

of the exponential rate.  

The final selected models for all and maximum branch length observations are 

presented in Table 5.3. For all branch length model, I found that the power function of 

DBH along explained most variation of MBL. Random effect terms were included to 

remove potential autocorrelation resulted from the repeated measurements on a single 

tree (Garber and Maguire, 2005a; Maguire et al., 1999). For maximum branch length 

model, the power function of crown length explained most variation of MBL. First-

order autoregressive (AR(1)) was used in the maximum branch length model to remove 

autocorrelation of repeated measurements. Both selected models were weighed by the 

square of RDINC to remove the heteroscedasticity. Error distribution of selected 

models is described as 𝑁(0, 𝜎2𝑅𝐷𝐼𝑁𝐶2), where 𝜎2 is the estimated overall variance.  

The final selected maximum branch diameter model is polynomial model (Table 5.3). 

Other candidate models, such as variable exponent model (Maguire et al., 1999) and 

power model ( BD ∝ DBHh1(𝐗1)THTh2(𝐗2)CLh3(𝐗3)DINCh4(𝐗4)  where hi(𝐗i) is the 

function of power term, 𝐗i is the corresponding predictors, i=1…n) could not provide 

comparable evaluation measures with a relative simple form. Since most available 

branch diameter estimates were located at the middle-lower crown, to avoid bias 

estimation, the selected branch diameter model was not constrained to pass the zero 

point at crown top. All the significant terms were included in the polynomial models. 
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Correspondingly, branch insertion angle was modeled for observations of branches 

with maximum length and diameter. Some candidate model forms were provided from 

previous studies (Osborne and Maguire, 2015; Roeh and Maguire, 1997; Weiskittel et 

al., 2007). However, none of these models yielded comparable evaluation measures as 

models selected in this study (Table 5.3 model AML and AMD), which can be 

described as: 

 
𝐴 = 𝑎0𝐶𝐿𝑖

𝑎1𝑓(𝐷𝐼𝑁𝐶, 𝐶𝐼5) 

 

5-2 

where A is the predicte 

           𝑎0𝐶𝐿𝑖
𝑎1 determines the expected value of insertion angle, 

𝑓(𝐷𝐼𝑁𝐶, 𝐶𝐼5) is an equation of DINC and CI5 and determines the changing 

rate of the insertion angle along the crown height.  

The change rate of model AML is an exponential function of RDINC and competition 

index CI5. However, the change rate of model AMD is a power term of DINC, allowing 

much more gradual change of insertion angle along canopy depth. Unlike studies 

conducted by Roeh and Maguire (1997) and Weiskittel et al. (2007), maximum branch 

diameter was not found significantly determining branch insertion angle in this study.  



153 

 

Table 5.3 Selected model forms for developing branch models 

Branch Attribute Model Form  

Branch length L 
BL𝑖𝑗 = a11DBH𝑖

a12𝑍
𝑖𝑗

{a13𝐷𝐵𝐻
𝑖

𝑅𝐷𝐼𝑁𝐶𝑖𝑗
+a14 exp(

DBH𝑖
THT𝑖

)
−1

+δ𝑖}

+ e𝑖𝑗    
(5-3) 

    

Maximum Branch 

Length 
LM BL𝑚𝑎𝑥𝑖𝑗

= a21CL
𝑖

a22𝐶𝐼4𝑖𝑍
𝑖𝑗

{a23+a24𝐷𝐵𝐻
𝑖

𝑅𝐷𝐼𝑁𝐶𝑖𝑗
+a25

DBH𝑖
THT𝑖

+a26𝐶𝐼5𝑖}

+ e𝑖𝑗  (5-4) 

    

Maximum Branch 

Diameter 
DM 

BD𝑚𝑎𝑥𝑖𝑗
= a31DINC𝑖𝑗 + a32𝐷𝐼𝑁𝐶𝑖𝑗

2 + a35𝑅𝐷𝐼𝑁𝐶𝑖𝑗
2 × 𝐶𝐼4𝑖

+ δ1𝑖 ∗ DBH𝑖 ×

RDINC𝑖𝑗 + 𝛿2𝑖 + e𝑖𝑗   
(5-5) 

    

Branch Insertion 

Angle 
AML A𝑖𝑗 =  a41𝐶𝐿𝑖

a42exp (a43 ∗ 𝑅𝐼𝑁𝐶𝑖𝑗 +  a44 ∗ 𝐶𝐼5𝑖
) + e𝑖𝑗  (5-6) 

Branch Insertion 

Angle 
AMD A𝑖𝑗 =  a51𝐶𝐿𝑖

a52𝐷𝐼𝑁𝐶
𝑖𝑗

{a53+a54𝐶𝐼5𝑖}
+ e𝑖𝑗  (5-7) 

*Note:  𝑍𝑖𝑗 =
1−𝑅𝐻𝑖𝑗

1/3

1−(0.01∗
𝐶𝐿𝑖

𝑇𝐻𝑇𝑖
)1/3
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5.2.4.2. Crown profile modeling 

 Crown profile models, outlining the crown shape, were developed based on the 

maximum crown radius (CR) through the canopy depth, which is derived from the 

branch length and branch described as follow: 

where CR is crown radius, BL is the branch length and A is the branch insertion angle.  

In section 5.2.4.1, maximum branch length and branch insertion angle were 

individually modeled as separate equations in which common tree-level variables serve 

as predictors. Universal correlations are widely present among tree-level variables. 

Furthermore, internal constraints of branches’ size and their corresponding insertion 

angle are not accounted by individual models. For example, individual models would 

yield similar estimates of length and insertion angle for branches located at a given 

height for different trees with similar size and competition conditions. However, the 

insertion angle could vary largely among trees as a response variable of the branch 

length. If strong correlations are present between branch length and insertion angle or 

other tree-level variables, individual models would not yield consistent and efficient 

estimates, as ordinary least square (OLS) does not account the relationships between 

variables across equations (Borders, 1989; Judge et al., 1982; Zellner, 1962).  

Instead of minimizing standard error individually for each equation as OLS, systematic 

modeling using seemingly unrelated regression (SUR) minimizes the standard errors 

of the estimates simultaneously by considering the correlations among variables across 

CR = BL ∗ sin (A) (5-8) 
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equations (Zellner, 1962). The estimation of coefficients is subject to minimizing the 

residual sum of square: 

R(𝛃) = 𝐞𝐓𝛙𝐓𝚺−𝟏𝐞𝛙 (5-9) 

where R(𝛃) is the sum of square residuals, e is the matrix of residuals, 𝛙 is the define 

diagonal matrix of weighs, and 𝚺 is covariance matrix between individual models.  

The estimation process of R(𝛃)  is documented by Parresol (2001) in detail. The 

estimation of R(𝛃) requires an estimator of 𝚺, which is acquired as the error covariance 

between individual models. The error covariance between individual models is 

estimated using generalized nonlinear least square (GNLS), which is described as 

σij =
1

(T−Ki)0.5(T−Kj)0.5  êi
Tψ̂j

Têjψ̂j, (5-10) 

 where T is total number of observation, Ki and Kj are the number of the coefficients 

of model i and model j respectively, êi and êj are the estimated vectors of residuals of 

model i and j respectively, and ψ̂i and ψ̂j are the estimated weighs of model i and j.  

An estimator �̂� is the matrix composed of σij. �̂�, ê and �̂� are then used in Eq. 6-9 to 

derive the estimator of  R(𝛃) using GNLS.  

Besides developing systematic crown models of maximum branch length and insertion 

angle, I also developed crown models based on maximum branch diameter, which 

serves as an endogenous variable to predict branch length and insertion angle. Branch 

diameter has been widely used as the predictor variable in models of crown attributes 

in previous studies (Ishii et al., 2000; Maguire et al., 1994; Roeh and Maguire, 1997), 
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since branch diameter is more accurately measured in field and strongly correlated with 

branch biomass. Table 5.4 provides the individual models in two crown model systems.  

Although Roeh and Maguire (1997) and Weiskittel et al. (2007) successfully predicted 

crown radius profile for young plantation trees with Eq. 6-8, the product of branch 

length and sine of insertion angle is accurate only when the branches maintain straight 

for the growth period. However, branch bend occurs to acquire sunlight or avoid 

crowdedness, which is more apparent at the lower canopy. A correction factor of crown 

competition and relative DINC is applied to Eq. 5-8 to account for the branch curvature 

effects. The corrected crown radius models can be described as: 

CR = a0CIa1 × DINCa2 × BL × sin (A)   (5-11) 

where CR is the crown radius,  

CI is selected competition index,  

RDINC is relative DINC, BL is branch length,  

A is branch insertion angle and a1 and a2 are fitted coefficients.  

The selected model systems are presented in Table 5.4. Nonlinear seemly unrelated 

regression was performed in R with package systemfit version 1.1-24 (Henningsen and 

Hamann, 2007). The systematic models require the modeled branches to contain all the 

involved attributes. For model system C1, all the modeled branches’ length and 

insertion angles were measured. Similarly, all the modeled branches’ diameter, length 

and insertion angles were measured in model system C2. Branches that have missing 

attributes from TLS measurements were excluded in the systematic models. 
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Table 5.4 System modeling model forms 

*Note:  𝑍 =
1−𝑅𝐻1/3

1−(0.01∗
𝐶𝐿

𝑇𝐻𝑇
)1/3

System Model Form  

C1 

LMs1 
BL𝑖𝑗 = a11DBH𝑖

a12𝑍
𝑖𝑗

{a13+a14𝐷𝐵𝐻
𝑖

𝑅𝐷𝐼𝑁𝐶𝑖𝑗
+a15 exp(

DBH𝑖
THT𝑖

)
−1

+δ𝑖}

+ e𝑖𝑗   
(5-12) 

As1 A𝑖𝑗 =  a21𝐶𝐿𝑖
a22exp (a23 ∗ 𝑅𝐼𝑁𝐶𝑖𝑗 +  a24 ∗ 𝐶𝐼5𝑖

) + e𝑖𝑗   (5-13) 

CRs1 CR𝑖𝑗 = a30𝐷𝐼𝑁𝐶𝑖𝑗
a31𝐶𝐼𝑖

a32BL𝑖𝑗 × sin (A𝑖𝑗)  (5-14) 

C2 

DMs2 
BD𝑚𝑎𝑥𝑖𝑗

= 𝑏11DINC𝑖𝑗 + 𝑏12𝐷𝐼𝑁𝐶𝑖𝑗
2 + 𝑏13𝐷𝐵𝐻𝑖 + 𝑏14𝑇𝐻𝑇𝑖 + 𝑏15𝑅𝐷𝐼𝑁𝐶𝑖𝑗

2 × exp (
𝐷𝐵𝐻𝑖

𝑇𝐻𝑇𝑖
) +

e𝑖𝑗      
(5-15) 

LMs2 BL𝑚𝑎𝑥𝑖𝑗
= b21𝐵𝐷𝑚𝑎𝑥𝑖𝑗

b22 𝐶𝐿𝑖
𝑏23𝐷𝐼𝑁𝐶

𝑖𝑗

b24+b25CI3𝑖 𝑍𝑖𝑗
b26 + e  (5-16) 

As2 A𝑖𝑗 =  𝑏31𝐶𝐿𝑖
𝑏32𝐷𝐼𝑁𝐶

𝑖𝑗

{b33+𝑏34𝐶𝐼5𝑖}
+ e𝑖𝑗  (5-17) 

CRs2 CR𝑖𝑗 = 𝑏40𝐷𝐼𝑁𝐶𝑖𝑗
𝑏41𝐶𝐼𝑖

𝑏42BL𝑚𝑎𝑥𝑖𝑗
× sin(A𝑖𝑗)  (5-18) 
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5.2.5. Model evaluation  

Models were evaluated with leave-one-out validation. For each iteration, TLS-based 

branch estimates from eight trees were used to fit the model, then the fitted model was 

used to predict branch attributes of the left tree. Model are evaluated with four measures:  

𝐹𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 = 𝐹𝐼 = 1 −
∑ ∑ (yij − ŷij)

2𝑛𝑖
𝑗=1

𝑁
𝑖=1

∑ ∑ (yij − �̅�)
2𝑛𝑖

𝑗=1
𝑁
𝑖=1

 (5-19) 

Root mean square error = RMSE =

∑ √∑
∑ (yij − ŷij)

2ni
j=1

ni

N−1
i

N
k

N

⁄
 

(5-20) 

Bias =

∑ (
∑ (yij − ŷij)

ni
j=1

ni
)N

k

N

⁄
 

(5-21) 

Percentation of mean absolute bias = %MAB =

∑ (
∑ |yij−ŷij|

ni
j=1

y𝑖𝑗
)N

k

𝑁
× 100%  

(5-22) 

where RMSE, bias and MAB are the mean measures of nine validation iterations, N is 

the number trees as well as the number of iterations of validation, ni is the number of 

branches in tree i, yij is the jth branch estimate of tree i, and ŷij is the model predicted, 

�̅� is the overall mean of all the observations.  

5.3. Results 

5.3.1. Branch attribute models 

5.3.1.1. Branch length 

All branch length observations exhibit large variation within and among individual 

trees (Figure 5.4). The variation of branch length is most pronounced in the middle to 

lower crown. The fitted coefficients of the modified variable-exponent models are 

provided in Table 5.5. Model L only explained 40% of the branch length variation 
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across the canopy depth with the %MAB of 28.22%. Model L could fit the mean of the 

branch length at a given canopy depth, with the RMSE and bias of 1.19 and 0.06 m 

respectively. Strong autocorrelation was not detected in model L. Abnormal pattern 

was not shown in the residual plot (Figure 5.3). Two types of branch length distribution 

shapes were identified from model L: 1) round or ellipsoid shape with maximum branch 

length located at the middle crown (tree 1, 3, 4, 5, 7, and 9); and 2) conic shape with 

maximum branch length located at the crown base (tree 2, 6, and 8). For tree 6, model 

L largely underestimated the lower branch length and did not capture the conic shape 

(Figure 5.4). Unlike other tree crown shapes with the maximum length located at the 

lower middle or bottom of the crown, tree 10 with DBH greater than 100 cm exhibits 

its maximum length at the upper crown.  

Compared with model L, the model of maximum branch length (model ML) reached 

higher agreement between the observation and the predicts. Model ML explained 78% 

variation of the maximum branch length observations (Table 5.6). Values of RMSE 

and %MAB (0.82 m and 15.93%) are much lower for model ML than model L. Model 

ML included competition indices CI4 and CI5, as they could largely improve the model 

fitness. The negative coefficients of CI4 and CI5 indicate the reducing effects from the 

neighbors’ competition on the branch maximum length. The model estimated 

autocorrelation between adjacent pairs of estimates is 0.31. The variation of the 

maximum branch length observations is smaller at the crown top but much greater at 

the middle and lower crown. Model ML apparently underestimated the maximum 

branch lengths located at the middle- to lower crown for several trees. Especially for 
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trees 6 and 9, their maximum branch lengths exhibit conic shapes but were predicted 

as round shape by model ML. 

Figure 5.3 a. Residual plot of model L: all branch length observations; b. Residual 

plot of model ML: the maximum branch length. 
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Table 5.5 Fitted coefficients of individual branch attributes models. 

 

Table 5.6 Evaluation of individual branch models.

 

 

 

 

Branch 

attributes 
Model Coefficients 

Branch length 

 a11 a12 a13 a14 σδ
2   

L 
21.2993 

-

0.2506 
1.1547 0.0047 0.0459   

10.4752 0.1201 0.0924 0.0010 0.0010   

Maximum 

branch Length 

 a21 a22 a23 a24 a25 a26 φ 

LM 
16.2837 

-

0.0134 
0.7923 0.0068 

-

0.1882 

-

0.0914 
0.3134 

2.5331 0.0044 0.0515 0.0012 0.0164 0.0167  

Maximum 

branch diameter 

 a31 a32 a33 σδ1

2  σδ2

2    

DM 
0.8008 

-

0.0182 

-

0.4910 
0.0383 1.9589   

0.0457 0.0017 0.2051 0.0010 0.0126   

Insertion angle 

of branches 

with maximum 

length 

AML 

a41 a42 a43 a44    

264.7904 
-

0.2909 
0.1929 

-

0.0717 
   

51.2068 0.0573 0.0309 0.0132    

Insertion angle 

of branches 

with maximum 

basal diameter 

AMD 

a51 a52 a53 a54    

331.3268 
-

0.4459 
0.1817 

-

0.0367 
   

162.4055 0.1509 0.0318 0.0133    

Branch Attributes Model FI RMSE  Bias  %MAB  

BL (m) L 0.40 1.16 -0.06 28.22% 

Maximum BL (m) ML 0.78 0.82 -0.04 15.93% 

Maximum BD (cm) MD 0.61 1.52 0.12 21.03% 

Insertion angle of branches 

with maximum length (°) 
AML 0.49 9.75 0.91 8.36% 

Insertion angle of branches 

with maximum basal 

diameter (°) 

AMD 0.70 7.15 0.43 5.47% 
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Figure 5.4 TLS-based branch length and maximum branch length estimates and their 

model fits for nine sample trees.  
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5.3.1.2. Branch diameter  

Most branches that were measured in basal diameters were located at the lower-

middle crown, ranging from DINC of 10 m to 30 m. Successful branch diameter 

measurements were not available at upper crown from TLS due to reducing point 

cloud density. For all the observations, branch diameter exhibits large variation across 

the canopy depth and scatters from 2 – 10 cm (Figure 5.6). In comparison to all 

branch diameter observations, the maximum branch diameter variation is much 

smaller in the middle-lower crown, ranging from 5 – 10 cm. The selected polynomial 

model MD conforms with the model form of the segmented polynomial model as 

documented by Max and Burkhart (1976). Instead of fitting a segmented polynomial 

equation with first-order derivative continuity, model MD fits the maximum branch 

diameter as an entire continuous function. Because the random effect of intercept was 

included, model MD was not constrained to the zero point at the tree top. The upper 

segment of the original segmented model is constrained to the zero point at the crown 

top, because the upper segment assumes branch diameter only response to the change 

of canopy depth not to the tree size effect. But for the lower segment, a non-canopy-

depth related term is added to account for the effect of tree size on branch diameter. 

In this study, since most observations were located at the middle-lower canopy, the 

random effect of intercept could be viewed as the correction factor accounting for the 

individual tree effect on branch diameter. Table 5.5 provides the fitted coefficients of 

model MD. The polynomial model form could account for 61% variation of 

maximum branch diameter, and yielded RMSE and bias of 1.52 cm and 0.12 cm 

respectively. Residual plots of model MD did not show strong abnormal pattern 
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(Figure 5.5). Residual variance is slightly higher for great diameter predictions. 

Strong autocorrelation was not detected after individual tree random effects were 

included in model MD. The exponential factor of DBH/THT, negatively related to 

stand density (Garber and Maguire, 2005a; Weiskittel et al., 2007), is included as an 

interaction term with RDINC2. The negative value of fitted coefficient a3 implies 

DBH to THT ratio limits the growth of the maximum branch diameter. The 

polynomial model depicts the round shape distribution of branch diameter in which 

the the smallest and maximum estimates are located at the top and middle of the 

crown respectively. For most sample trees, the maximum branch diameter estimates 

peaks in the middle crown at DINC of 15 - 20 m.  

 

Figure 5.5 Residual plot of model MD: the maximum branch diameter. 
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Figure 5.6 TLS-based branch diameter and maximum branch diameter estimates and 

maximum branch diameter models fit for nine sample trees. 
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5.3.1.3. Branch insertion angle 

TLS-based insertion angle estimates vary remarkably within and cross individual trees 

(Figure 5.8), especially in the middle crown. Insertion angle of tree 3, 4, 6, and 7 are 

apparently more variable through the canopy depth than others. Overall, branch 

insertion angle averages around 90° and increases as canopy depth increases (Figure 

5.8). Table 5.5 provides the fitted coefficients of the branch insertion angle models for 

branches identified with maximum length (AML) and maximum diameter (AMD) 

respectively. Residual plots of models AML and AMD do not show an abnormal 

pattern (Figure 5.7). Model AML only accounts for 49% variation of insertion angle 

and yielded RMSE and bias of 9.75° and 0.91° respectively. Model AMD, though 

developed with less observations, yielded much higher FI than model AML (Table 5.6), 

and explained 70% variation of the insertion angle with RMSE and bias of 7.15° and 

0.43° respectively. and explained 70% variation of the insertion angle with RMSE and 

bias of 7.15° and 0.43° respectively. In comparison with model AML, model AMD 

exhibits more gradual change in branch insertion angle as canopy depth increase 

(Figure 5.8). For trees 1, 2, 7, 8 and 9, the model AMD and AML yielded similar 

insertion angle estimates along DINC. Whereas, for tree 3, 4, 5 and 6, model AMD 

yielded much higher insertion angle estimates than model AML. 
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Figure 5.7 a. Residual plot of model AMD: the insertion angle of branches with 

maximum diameter; b. Residual plot of model AML: the insertion angle of branches 

with maximum length.  
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Figure 5.8  TLS-based branch insertion angle estimates and model fits for nine 

sample trees.  
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5.3.2. Systematic crown profile modeling 

According to the model curves in Figure 5.9, the crown shapes are distinguished as 

conic and round, in which the largest crown width is observed at the bottom and the 

middle of the crown respectively. Table 5.7 provides the fitted coefficients of crown 

profile models.  In comparison with individual branch models, systematic branch 

models with NSUR did not improve the model fit and bias for maximum branch length, 

branch diameter and branch insertion angle (Table 5.8). In system C1, model MLs1 and 

As1 are the same forms as their corresponding individual models ML and AML. Model 

MLs1 , in comparison with model ML, slightly decreased estimated standard error 

(Table 5.7). In system C2, MDs2 explained 20% less variation of the maximum branch 

diameter than the individual model MD, because model MDs2 did not account for the 

random effects. In system C2, the maximum branch diameter serves as a predictor 

variable in branch length model MLs2, which only explained 32% of the branch length 

variation.  

Strong correlation was not present among residuals of equations within the model 

systems (Table 5.9). None of the competition indices were found significant factor 

crown models Cs1 and Cs2. Perhaps, competition indices in branch length and insertion 

angle models could adequately explain the crowding and shading effects on branch 

structural arrangements. According to model Cs1 , crown radius of branches with 

maximum length is increasingly impacted by branch bend as canopy depth increases. 

However, DINC is not a significant factor in model Cs2, implying intensity of branch 

bend maintains constant for branches with maximum diameter along the canopy.  

Model Cs1  and Cs2 are similar in their FI values but leave-one-out validation shows 
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model Cs1 performed much better in terms of RMSE (0.93 m vs. 1.51 m), bias (-0.02 

m vs. -0.07 m), and %MAB (19.84% vs. 47.30%). Model Cs1  yielded overall 1 m 

larger crown radius estimates than model Cs2 (Figure 5.9). Overall model Cs1 yielded 

slight overestimation of max crown width, especially for the lower crown (Figure 5.10). 

Model Cs2, instead, underestimated crown width at the upper and middle crown (Figure 

5.10). Model system C1 could flexibly fit the variable conic (tree 2 and 8) and round 

(tree 1, 3, 4, 5, 7 and 9) crown shapes than model system C2. Model system C2 could 

not adequately capture the variation of crown width along the canopy and predicted 

only cylindrical-like crown shape, in which constant crown width is identified through 

the canopy depth. Except for tree 6, model system C1 could not well fit the conic shape 

which was better fitted by model system C2.  
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Table 5.7 Fitted coefficients of crown shape models. C1 and C2 systematic crown 

model sets developed with nonlinear seemly unrelated regression (NSUR). C1 is model 

set developed based on maximum branch length. C2 is model set developed based on 

maximum branch diameter.  

 

 

 

 

 

 

 

System Model Coefficients  

  a11 a12 a13 a14 a15 a16 a17 

C1 

LMs1 22.2861 
-

0.0172 
0.5770 0.0104 

-

0.1170 

-

0.1117 

0.3334 

 2.7146 0.0038 0.0657 0.0014 0.0283 0.0202  

 a21 a22 a23 a24    

As1 230.0181 
-

0.2400 
0.1710 

-

0.0800 
  

 

 46.4795 0.0626 0.0343 0.0135    

 a40 a41      

Cs1 1.0614 
-

0.0452 
    

 

 0.0440 0.0146      

C2 

 𝑏11 b12 b13 𝑏14 𝑏15   

DMs2 0.8828 
-

0.0190 
0.0699 

-

0.1169 

-

0.7203 
 

 

 0.0981 0.0021 0.0151 0.0384 0.1361   

 𝑏21 𝑏22 𝑏23 𝑏24 𝑏25 𝑏26  

LMs2 8.1031 0.4148 
-

0.7106 

-

0.9369 

-

0.2043    
1.1062 

 

 2.1811 0.1176 0.3764 0.3168 0.0788 0.2801  

 b31 b32 b33 b34    

As2 347.6240 
-

0.4454 
0.1574 

-

0.0358 
  

 

 54.0638 0.0520 0.0187 0.0038    

 b40       

Cs2 0.9196       

 0.0081       
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Table 5.8 Evaluation of individual models within each systematic model set. 

 

 

 

 

 

Table 5.9 Correlation between residuals of individual models in each systematic 

model set. 

C1 

 LMs1 As1 Cs1  

LMs1 1 -0.0252 -0.0420  

As1  1 0.1516  

Cs1   1  

C2 

 DMs2 LMs2 As2 Cs2 

DMs2 1 0.0315 0.0965 -0.0075 

LMs2  1 0.0261 0.3087 

As2   1 0.0697 

Cs2    1 

System Model FI RMSE Bias %MAB 

C1 

LMs1 0.70 0.88 m -0.07 m 15.52% 

As1 0.46 10.43° -0.05° 8.97% 

Cs1 0.93 0.93 m -0.02 m 19.84% 

C2 

DMs2 0.40 1.40 cm 0.13 cm 18.78% 

LMs2 0.32 1.47 m -0.04 m 33.42% 

As2 0.72 7.01° 0.04° 5.56% 

Cs2 0.93 1.51 m -0.07 m 47.30% 
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 Figure 5.9 Crown radius estimates from four models. C1 and C2 are branch model 

systems fitted with NSUR.  
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Figure 5.10 Crown width estimation error distributions of systemic models. Upper: 

model estimation error of model C1; Lower: model estimation error of model C2.  
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5.4. Discussion   

5.4.1. Branch attributes models 

In this study, we used TLS-based branch structural estimates to develop allometric 

models. Meanwhile, we incorporated competition indices derived based on the 

neighboring trees’ size and proximity to the focal trees in the branch models. Attributed 

to the availability of TLS-based branch estimates, as well as the underlying 

mechanisms driving branch woody mass allocation, allometric models of branch 

attributes reached different levels of goodness-of-fit.  

5.4.1.1. Branch length  

Previously, branch length was seldom directly modeled as a response variable of tree-

level attributes. It appeared in most studies as a dependent variable of branch diameter 

(Monserud and Marshall, 1999; Roeh and Maguire, 1997; Weiskittel et al., 2007), since 

branch diameter is the most important variable describing branch biomass and is more 

easily measured in field. From the perspective of lidar point clouds, estimating branch 

length requires only a few vertex points, which allows successful branch length 

estimation even for the upper crown where point clouds are sparse. Most branches’ 

lengths were measured with TLS point clouds. But accurately measuring branch 

diameter was not available at the crown top. Due to the missing diameter estimates of 

most branches, branch length was directly modeled as a dependent variable of tree-

level attributes.   

Both all and the maximum branch lengths were modeled with the modified variable 

exponent model form. For the all branch length model (L), the expected maximum 

length is modeled as a power function of DBH and the inclusion of competition index 



 

176 

 

did not improve the model explanation power. Hence, all branch lengths are more likely 

driven by tree size-related lateral allocation rather than competition intensity induced 

by canopy closure. For the maximum branch length model ML, the expected maximum 

branch length value is modeled as a power function of crown length, because crown 

length explained 3% more variation of the maximum expected than DBH. In 

comparison with tree DBH, crown length dynamic is more driven by the intensity of 

competition (Vanninen and Mäkelä, 2000), light resource availability (Ameztegui et 

al., 2012), and stand spacing of tree initiation (Winter et al., 2002). We observed large 

reductions of the crown length of trees with DBH greater than 80 cm (trees 3 and 4). 

Hypothetically, as a shade-intolerant species, large Douglas-fir could take a strategy of 

enhancing terminal allocation for tree height growth instead of lateral allocation for 

branch expansion, results in height increment but losses of branches at lower canopy 

(Chen et al., 1996; Klinka et al., 1992).  

A single competition index is hard to comprehensively explain the variation of the 

maximum branch length (Kaitaniemi and Lintunen, 2010). Competition indices CI5 

and CI4, related to stem vertical competition conditions, were included in model ML 

and explained 7% variation of the maximum branch length. Other horizontal 

competition indices did not provide a comparable gain in the model prediction ability, 

suggesting shading and crowding effects induced by the vertical aspects of the 

neighbors are the determinant factors limiting the branch length expansion. 

Surprisingly, we observed a negative effect of the DBH-THT ratio on the maximum 

branch length in model ML. The increasing value of the DBH-THT ratio, indicating an 

increase in spacing between trees, allows crown expansion (Garber and Maguire, 2005b; 
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Weiskittel et al., 2007). Since the sample trees were all in dominant crown position and 

similar in their total height but much more different in their DBH, smaller values of the 

DBH-THT ratio could be associated with trees in lower social positions, which tend to 

allocate resources for branch elongation rather than height increment (Gilmore and 

Seymour, 1997).  

The highest FI value yielded by the model of maximum branch length can be two-fold. 

First, the maximum branch length is the most accurately estimated attribute from TLS 

point clouds. In comparison, measuring all branch length was increasingly challenging 

as crown height increases, because distinguishing points from different branches was 

difficult for small branches intertwined inside the crown and obstruction reduced the 

available points outlining the skeleton of small branches. Second, branches, that are 

identified with the maximum branch length, are likely initiated with the annual growth 

of stem and follow seasonal growth patterns. In contrast, small epicormic branches 

were initiated as the presence of irregular canopy gaps due to different initiation periods 

and complex growth conditions (Ishii et al., 2000; Ishii and Wilson, 2001; Pelt and 

Sillett, 2008). Thereby, a single equation cannot adequately interpret variation of all 

branch lengths through the canopy but can explain much more variation of the overall 

crown shape determined by the maximum branch length.  

5.4.1.2. Branch diameter 

Like branch length estimates, all branch diameter observations vary remarkably in 

growth conditions such as facing aspect, initiation time, and light conditions. Since 

TLS-based branch diameter estimates were only available for the lower-middle portion 

of the crown, models of all branch diameter observations are difficult to interpolate for 
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the upper crown. We only modeled the maximum branch diameter for the lower portion 

of the crown. The application of TLS-based branch diameter estimates would be 

sufficient to test competition effect at the lower crown where competition effect is the 

most pronounced (Hein et al., 2008). 

Accuracy of branch diameter estimates is decreasing dramatically as canopy height 

increases, where the scanned branches were further away from the terrestrial sensor. 

Fang and Strimbu (2019) found the accuracy of TLS-based branch diameter estimates 

is related to the height of branches and first-order autoregressive (AR(1)) structure 

could quantify the error covariance along the canopy. Garber and Maguire (2005a) also 

suggested the presence of autocorrelation among residuals of the branch diameter 

model along whorl lag. In this study, we only observed a marginal gain in model fit 

from the inclusion of AR(1) in the maximum branch diameter model.  The 

autocorrelation between errors of adjacent measurements on an individual tree was 

largely reduced by the inclusion of random effects.   

The polynomial model MD predicted round shape distribution of maximum branch 

diameter through the canopy height.  Similar patterns were observed for old-growth 

(Ishii et al., 2000) and plantation (Maguire et al., 1999) trees in which the occurrence 

of maximum estimates is located at the middle-lower crown. Model MD is a 

polynomial function of DINC with an additive term of the interaction between 𝑅𝐷𝐼𝑁𝐶2 

and the exp(DBH/THT). Terms of tree DBH and height were not significant in model 

MD. Therefore, it implies, at least for the lower canopy, the maximum branch diameter 

did not vary strongly within the DBH and height classes of the sample trees and are 



 

179 

 

primarily determined by the position of the branches inside the canopy and the spacing 

effect at a given position of relative DINC. As none of the competition indices could 

ehance the model explanation power of model MD, the underlying cause of large 

variation of maximum branch diameter among individual tress is still unclear.  

5.4.1.3. Branch insertion angle  

Branch insertion angle is important in determining the crown form and knot size of the 

timbers (Osborne and Maguire, 2015; Weiskittel et al., 2007). In previous studies, 

models of the branch insertion angle have been developed as a response variable to the 

increasing canopy depth, light resource availability, plastic stress from the competition 

with neighbors and other biological causes resistant to gravity (Lintunen and 

Kaitaniemi, 2010; Osborne and Maguire, 2015; Wilson, 2000). The TLS-based 

insertion angle estimates exhibit great versatility and are averaged on 90°, with a mean 

increasing trend responding to the increasing canopy depth.  The diverse branch 

insertion angle of Douglas-fir enables an abundance of light under otherwise scarce 

light conditions, which is observed during the transformation from young to mature 

crowns (Pelt and Sillett, 2008).  

Canopy depth, crown length and competition index CI5 are the significant factors 

explained most variation of insertion angles for branches having either maximum 

diameter or length at given canopy heights. Similarly, Lintunen and Kaitaniemi (2010) 

found relative height in the crown and interaction between competition indices and 

species significantly explain the variation of the branch insertion angle. Weiskittel et 

al. (2007) and Hein et al. (2008) found stand density exerts little effect on the branch 

insertion angles, but increasing height to DBH ratio and crown length, confounding 
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with stand density, reduce branch insertion angle, which are supported by our 

observation of the negative effects from  crown-length-related competition index CI5 

on the branch insertion angle, indicating surrounding trees’ shading effect is a source 

of formation and orientation of the branches.  

The form of model AML suggests a drastic increase in the insertion angle of branches 

that have the maximum lengths as canopy depth increases. Our observations support 

the previous findings that branch length growth induces variation in the insertion angle 

corroborating to light resource and gravity (Castera and Morlier, 1991; Weiskittel et 

al., 2007). Comparatively, model AMD indicates a more gradual change in the insertion 

angle of branches that have the maximum diameter through canopy depth. Model AMD 

had much greater FI value than model ALD, although model AMD was developed with 

fewer observations, due in part to more accurate insertion angle estimates at the lower 

crown, and in part to constant light conditions at the lower crown causing less variation 

of the insertion angle.    

5.4.2. Crown form modeling 

Two sets of crown profile model systems were based on the maximum branch diameter 

and length respectively. For both systems, strong correlations between residuals were 

not present across equations within the system, probably because of small sample size 

and inconsistent accuracy of TLS-based branch attribute estimates. Besides, the high 

structural complexity of mature crowns may decrease the strength of internal allometric 

relationships between crown attributes and tree-level attributes, as the crown structure 

is increasingly determined by complex light conditions (Ishii and Wilson, 2001). 

Nevertheless, the application of NSUR would ensure the crown profile models are 



 

181 

 

consistent with observed branch diameter, length, and insertion angle of a specific 

branch. The modeling process with NSUR requires complete sets of attribute 

measurements for all the observations, which challenges field measurements, as some 

attributes are easier to acquire than others (Roeh and Maguire, 1997). Thus, NSUR 

could be biased towards the reduced datasets. 

Since the inclusion of random effects and autocorrelation increases the difficulty of 

applying NSUR, the autocorrelation effect was not considered in the modeling process 

of NSUR. An alternative approach to account for autocorrelation issues in 

multicollinear models could be a tapering approach that incorporates a tapering factor 

in the estimation of error covariance matrices of Eq. 9 (Dahlhaus, 1988).  In comparison 

with ordinary NSUR, the tapering approach does not essentially change the mean of 

the estimated coefficients but only reduces the standard error of estimates (Asikgil, 

2014; Aşıkgil and Erar, 2013). Since none of the individual models were detected with 

the presence of strong autocorrelation between adjacent pairs of branch measurements 

and the objective of this study is to develop sets of systematic models that depict the 

mean trend of the crown radius, ordinary NSUR is adequate to address the scopes of 

this study.  

Crown profile models of Douglas-fir have been generalized as a single equation that 

directly describes the shape of the crown. These models include individual geometric 

models that are defined as cone, cylinder, ellipsoid, paraboloid (Van Pelt and North, 

1996), distribution models such as Weibull and beta equations (Ferrarese et al., 2015), 

and adjustable segmented model (Hann, 1999). But a generalized model omits large 
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detailed information inside the crown and would not be adequte to explain large 

variation of crown radius observed in this study.   

5.4.3. Application and limitation  

Measuring branch structural attributes with TLS is a computer-aid nondestructive 

approach.  The TLS-based estimation accuracy largely depends on the density of point 

clouds. Thus, TLS-based branch structural estimates are more accurate for lower crown. 

Especially for branch diameter, considerable point clouds are required to fit cylinder 

models. Fusion of terrestrial and airborne lidar data would potentially bring consistency 

to the accuracy of the structural estimates.  

The selected focal trees are a cluster of neighboring trees with varying DBH classes in 

a natural regime forest. The selections of neighboring trees excluded potential 

variations caused by environment factors. All the identified whorl and epicormic 

branches are exhaustively measured for an individual tree. The allometric models 

developed from this study reveals the mean trend of branch length, branch diameter 

and branch insertion angle across canopy depth. In inclusion of competition indices in 

the models reveal neighboring trees’ shading and crowding effect on the focal trees’ 

branch allocation. I need to notice that statistical significance of the competition indices 

in branch models do not necessarily imply a cause and effect relationship between 

neighboring competition and branch attributes.  

In this study, neighbor trees are visually identified and delineated. The definition of 

competition trees would cause large variations in computation of competition indices 

(Metz et al., 2013). I aim to minimize the difficulty and variation introduced by 
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operation of TLS point clouds and develop measures that are consistent with field 

measurements. For future application, applying different TLS-derived competition 

indices might improve the model fit, since some TLS-derived competition indices 

quantified the deep crown interlocking effects.  

5.5. Conclusion  

A cluster of mature Douglas-fir trees’ crown attributes were exhaustively measured 

using structural models developed with TLS-based point clouds. Branch length was 

most accurately measured attributes with TLS data. Numeric models were developed 

for all branch length, length and diameter of branches with maximum length and 

maximum diameter respectively, and their insertion angles. Model of maximum branch 

length achieved the highest goodness-of-fit among all the models, following by models 

of insertion angles for branches with maximum diameter. However, maximum branch 

diameter is relatively hard to predict with TSL-based estimates. The models imply 

branch structural attributes were increasingly determined by the canopy depth and 

correlated light condition shaped by crowding and competition effects. Impact from 

tree size related attribute DBH is less significant as crown matures and arrival of 

canopy closure. Two systematic model sets were developed with NSUR for crown 

radius prediction. As branch length is primary attribute estimates from TLS points, 

model system based on maximum branch length outperform system based on 

maximum branch diameter in outlining the maximum edge of the crown profile. 

Although systematic models did not show strong improvement in terms of model fit, 

RMSE and bias, they are theoretically superior to individual models in terms of 

predicting crown profile for its consistency of coefficient estimates.  
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Chapter 6 General Discussion and Conclusion 

Information on the conifer crown structure is vital for ecosystem conservation and 

silvicultural practices. Previous studies have widely documented structural 

characteristics and models of conifer trees in various types of forests and species 

(Baldwin and Peterson, 1997; Ishii et al., 2000; Ishii and McDowell, 2002; Kershaw Jr. 

and Maguire, 1996; Maguire et al., 1999; Roeh and Maguire, 1997; Weiskittel et al., 

2007). Most of these studies were based on traditional fieldwork. However, as 

technology advances, the emerging application of point clouds provides promising 

opportunities for displaying, measuring, and analyzing canopy structure. Advantages 

of point cloud datasets include lively visualization, comparable accuracy as field 

measurements, reduced efforts for fieldwork, broad coverage of spatial and temporal 

scales, richness of detailed structural attributes at fine scale, and permanent storage. 

Through Chapters 2 – 5, this thesis presents the successful utilization of terrestrial point 

clouds in structural estimation and modeling for conifer species in plantation and 

natural regime stands.  

In the next decade, lidar and photogrammetric point clouds are likely to be the main 

sources of acquiring forest inventory data. For determining tree stem diameter and 

volume the two remote sensing techniques have supplied values comparable with 

ground measurements but a fraction of the cost. The use of point cloud data depends 

on the targets and the scale of the inventory. Compared with estimates of taper models, 

direct stem diameter and volume estimates using 3D models constructed with point 

clouds could be more accurate for individual trees. At the least, stem diameter across 

several distinct heights of individual tree stem should be sampled to calibrate taper 
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equation for accurate estimates (Harold E Burkhart and Tomé, 2012; Cao, 2009). For 

regional inventory, the results of Chapter 3 indicate greater variation of volume 

estimates from lidar-based individual tree model than the existing FIA equation, which 

also yielded the smallest volume estimates among all the compared methods. There is 

an increasing need to update the current inventory equation with estimates from the 

latest technology. Instant DBH and tree height extraction algorithms are also available 

for plot level sampling with point cloud data (Liang et al., 2014a; Liu et al., 2018; 

Mikita et al., 2016; Piermattei et al., 2019; Ye et al., 2020). The combination of point 

clouds sampling and traditional modeling could merge the consistency of contemporary 

forest sampling methods with existing forest inventory databases. 

In this thesis, 3D stem models were developed for plantation loblolly pine trees 

(Chapter 2) and natural regime Douglas-fir trees (Chapter 3). In our case, the selection 

of the data source depended on the stand conditions. PPC was developed for plantation 

loblolly pine trees, as the clear understory and open canopy ensured the successful RGB 

photo alignment. By contrast, the relatively low light penetration and increasing 

complexity of the natural regime stand could lower the success rate of photo alignment 

in SfM. Laser scanning, which is not restricted by the light condition, was therefore 

selected as the data source of the natural regime Douglas-fir plot.  

The 3D stem models constructed with PPC and lidar point clouds were based on 

different methods. PPC-based 3D models were developed as polygon mesh, in which 

point clouds were the vertices of a set of polygon faces that define the surface of objects, 

whereas the 3D stem models developed from lidar point clouds were cylinders fitted 

with cross-sectional stem points. While the mesh model reflected the actual shape of 
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the stem, the cylinder model reflected an approximation of stem shape.  The two 

modeling methods were not restricted by the type of point clouds: mesh models also 

could be developed from lidar point clouds, and cylinder models could be used to 

approximate PPC. However, the trade-off is between the model actuality and 

processing time. The creation of mesh models requires manual clearance of all noise 

points, as automatic seed point selection is not involved in the model creation approach. 

Since plantation loblolly pine trees were photographed individually, the reconstructed 

3D point clouds for stems were easily segmented from the surrounding. Point clouds 

of Douglas-fir trees were scanned as the entire plot; thus, manual segmentation of 

individual tree stem is difficult and time-consuming. Cylinder model fitting could 

automatically select seed points and reduce the effort of manual removal of noise points. 

Many sources could introduce bias to 3D models constructed with SfM (Schindler and 

Bischof, 2003; Zucchelli and Kosecka, 2001; Zucchelli and Košecká, 2008). The usage 

of PPC requires careful study of the bias in different directions (Smith and Cheeseman, 

1986). The bias correction is a trade-off with increasing error variance (Figure 2.6 and 

Daniilidis and Spetsakis, 1997). The bias could also be alleviated by distance scaling 

in multiple directions.   

Fine-scale branch model constructed with point clouds, although more difficult to 

construct than stem model, provides detailed crown structural information that would 

not be acquirable by fieldwork alone. Even though a large sample of field measured 

branch data was not available, the simulation suggests branch estimates from lidar 

points using Cyclone and TreeQSM fit in the range of existing branch observations 

(Chapter 4). The poor performance of automatic branch model construction with 
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TreeQSM for the upper crown is a result of incomplete point cloud coverage plus the 

interference of leaf points rather than internal shortcomings of the algorithm. The 

foliage filtering process could reduce the model construction error introduced by leaf 

points. To filter the leaf points, radiometric features of lidar point clouds are used to 

distinguish leaf points from wood points (Belgiu and Drăguţ, 2016; Zhu et al., 2018). 

However, using intensity value could lead to inconsistent estimates for individual trees 

or different locations, because intensity value varies largely with the distance between 

the scanned surface and the scanner, the scanning angle, texture of the surface, and 

moisture conditions. However, extra normalization of intensity could bring consistency 

to the estimates, but in the present research, the intensity was not normalized because 

the only geo-coordinate information was used in creating branch structural models. For 

the semi-automatic method in Cyclone, leaf points were manually excluded from the 

selection of seed points, and the constructed models were visually examined to reduce 

the error. For the TreeQSM, automatic removal of leaf points is not available, but leaf-

on points were used for 3D model construction with TreeQSM by previous studies 

(Calders et al., 2015; Krishna Moorthy et al., 2020; Lau et al., 2019, 2018; Tanago et 

al., 2018). According to Lau (2019), leaf-on points introduce more errors to higher 

order branches, which were not the targets of this study, as only first-order branches 

were modeled.  

Only semi-automatic branch estimates with the highest accuracy were used in 

developing branch profile models (Chapter 5). The branch length was the most 

accurately measured attribute with the semi-automatic method, as the longest of first-

order branches was visually assessed. For TreeQSM, the definition of branch length 
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could be interpreted as either the cumulative length from the stem insertion point to the 

end of the longest sub-branch or as the length from the stem insertion point to the 

branch’s furthest extension out from the stem. The ambiguity of branch length 

definition resulted in uncertainty in branch length estimates with TreeQSM (Lau et al., 

2018). Compared with branch length, which only requires a few vertices to estimate 

accurately, branch diameter requires a higher coverage of point clouds to achieve 

similarly accurate estimates; this led to diameter missed in the upper canopy. The 

model of maximum branch diameter did not reach a high agreement with the predictor 

variables, due to incomplete coverage of estimates for upper canopy. By contrast, the 

model of maximum branch length yielded the highest goodness-of-fit, which reflects 

the combination of effects from the crown length, neighboring competition, crowding 

condition, and relative position inside the crown. The branch length model, despite 

being developed from estimates with complete coverage of canopy depth, reached a 

low agreement with predictor variables, because the mixture of epicormic and original 

branches are driven by increasing variability of light conditions and internal tree 

physiology (Ishii et al., 2000; Ishii and Ford, 2001; Pelt and Sillett, 2008).  

According to the individual branch and systematic crown models in Chapter 5, the 

cluster of neighboring trees exhibit two types of crown types: conic and ellipsoid. 

However, simply categorizing the crown shape into these two types did not adequately 

encapsulate the large variation of the branch length and crown shapes of individual 

trees. The observation indicated a weak relationship between crown shape and tree size, 

as both conic and ellipsoid crown shapes were observed for different DBH classes. The 

upward migration of the crown gravity center and increasing gaps between branches 
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were observed for large trees (Chapter 4 and 5).  The observations are inconsistent with 

previous studies (Ishii and McDowell, 2002), indicating light condition is the primary 

driver of crown development of trees at closed canopy. Other factors including tree 

interlocking effects, tree genetics, and stand growth conditions may also contribute to 

the formation of crown shape and its dynamic. Detailed individual tree structural 

models could support solving unknown factors that drive tree crown development. 

6.1. Summary of contributions 

Chapters 2 focused on the application of photogrammetry-based point clouds. Chapter 

2 demonstrated the applicability and reliability of PPC in stem diameter measurements 

and modeling for loblolly pines in a plantation. The results of this chapter support PPC 

as an economically friendly alternative to lidar scanning, as it provides high-quality 3D 

models for lower stem and improved RGB visualization. Chapter 2 provided the 

workflow for using affordable photogrammetry for fast and accurate forest inventory. 

The workflow is easily replicable and could be followed by forestry practitioners with 

a limited computer programming background.  

Chapters 3 to 5 extended the research from the lower stem to upper stem, from the 

prominent stem features to finer-scale features inside the crown, and from plantation 

trees to a group of typical trees growing under natural regime.  

Chapter 3 continued the study of Chapter 2 and measured Douglas-fir stem diameter 

with quantitative models derived from lidar point clouds and developed taper equations 

with the measurements. Chapter 3 compared stem volume estimates from lidar-related 

models (physical and taper) with an existing taper equation and FIA regional equation. 

According to the results of the simulation for large samples covering different tree size 
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class, I found the stem volume estimates varied strongly among various estimation 

methods and the DBH classes. I demonstrated the possibility of creating lidar-based 

estimation systems that bridge the inconsistency of estimates at various scales.   

Chapter 4 documented crown attributes (branch diameter, branch length, branch 

insertion angle, and branch azimuth) developed from lidar point clouds using two 

methods semi-automatic and automatic TreeQSM measurements. The semi-automatic 

branch estimates fit well in the simulated ranges of existing models of plantation 

(Maguire et al., 1999) and old-growth (Ishii and Wilson, 2001) trees with similar DBH.  

The conceptual crown profiles developed with semi-automatic methods are also in 

agreement with previous studies of mature Douglas-fir crown (Ishii and McDowell, 

2002). However, automatic measurements could only yield accurate estimates for the 

lower crown. This chapter contributes to the body of literature from three aspects:  

• It documents the sparse research focused on mature Douglas-fir profiles; 

• It uses point clouds to estimate tall conifer branch attributes at the upper canopy, 

which has been rarely executed from terrestrial point clouds; 

• It demonstrates that the widely used automatic method QSM is currently 

unreliable for detailed structural estimates for upper canopy.  

Chapter 5 used branch attributes derived from lidar point clouds to develop allometric 

models of mature Douglas-fir crown profiles. Five individual models of branch 

attributes and two sets of systematic crown profile models were developed with 

consideration of neighboring competition effects.  The allometric models were added 
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to the pool of models for forest inventory. The models also enhanced the understanding 

of neighborhood effects on crown development.  

6.2. Limitation and future work 

In this study, all point clouds were acquired from terrestrial sensors. Therefore, 

complete coverage of point clouds through the depth of canopy was not available, and 

the resulting estimate accuracy is biased towards the lower and understory canopy. 

Future improvements of point-clouds-based applications rely on two aspects: 1) 

increasing the point clouds coverage by fusing datasets acquired from multiple 

platforms, and 2) advancing algorithms for automatic metric extraction.  

The structural complexity of dense canopy challenges successful alignment of images 

via SfM, since the key features connecting sequential images are not easily 

distinguishable from the surrounding. The advancement of image pattern recognitions 

would bring opportunities to accurate feature extraction of objects having complex 

edges. Meanwhile, powerful cloud computing and utilization of graphics processing 

unit (GPU) will largely reduce image processing time and enable the operation of SfM 

at a greater spatial scale.  

For lidar-based applications, the fusion of terrestrial and airborne lidar point clouds can 

capture complete coverage of canopy data. Although this thesis demonstrated the 

inaccurate structural estimates from TreeQSM of fine branches at the upper canopy, the 

automatic estimation algorithm is desirable for delivering fast tree structural estimates 

for larger branches.  Increasing point clouds coverage throughout the entire canopy 

depth would reduce the modeling error at the upper canopy. Single or sets of traditional 

numeric models could not adequately generalize the crown structural development. For 
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future studies, digitization of individual trees point clouds will eventually contribute to 

large amassed ecological databases. A wealth of crown information would shift crown 

studies from model-driven to data-driven, and comprehensive knowledge of crown 

development will be gained from these big databases.  The insights provided through 

this thesis will serve as a foundation for the next wave of computer-supported crown 

structure analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

198 

 

Reference 

Baldwin, J., V. Clark, Peterson, K.D., 1997. Predicting the crown shape of loblolly 

pine trees. Can. J. For. Res. 27, 102–107. 

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of 

applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 

24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Burkhart, H.E., Tomé, M., 2012. Modeling forest trees and stands. Springer Science 

& Business Media. 

Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., 

Culvenor, D., Avitabile, V., Disney, M., Armston, J., Kaasalainen, M., 2015. 

Nondestructive estimates of above-ground biomass using terrestrial laser 

scanning. Methods Ecol. Evol. 6, 198–208. https://doi.org/10.1111/2041-

210X.12301 

Cao, Q.V., 2009. Calibrating a segmented taper equation with two diameter 

measurements. South. J. Appl. For. 33, 58–61. 

Daniilidis, K., Spetsakis, M.E., 1997. Understanding noise sensitivity in structure 

from motion. 

Ishii, H., Clement, J.P., Shaw, D.C., 2000. Branch growth and crown form in old 

coastal Douglas-fir. For. Ecol. Manag. 131, 81–91. 

Ishii, H., Ford, E.D., 2001. The role of epicormic shoot production in maintaining 

foliage in old Pseudotsuga menziesii (Douglas-fir) trees. Can. J. Bot. 79, 251–

264. https://doi.org/10.1139/b00-158 

Ishii, H., McDowell, N., 2002. Age-related development of crown structure in coastal 

Douglas-fir trees. For. Ecol. Manag. 169, 257–270. 

Ishii, H., Wilson, M.E., 2001. Crown structure of old-growth Douglas-fir in the 

western Cascade Range, Washington. Can. J. For. Res. 31, 1250–1261. 

Kershaw Jr., J.A., Maguire, D.A., 1996. Crown structure in western hemlock, 

Douglas-fir, and grand fir in western Washington: horizontal distribution of 

foliage within branches. Can. J. For. Res. 26, 128–142. 

https://doi.org/10.1139/x26-014 

Krishna Moorthy, S.M., Raumonen, P., Van den Bulcke, J., Calders, K., Verbeeck, 

H., 2020. Terrestrial laser scanning for non-destructive estimates of liana stem 

biomass. For. Ecol. Manag. 456, 117751. 

https://doi.org/10.1016/j.foreco.2019.117751 

Lau, A., Bentley, L.P., Martius, C., Shenkin, A., Bartholomeus, H., Raumonen, P., 

Malhi, Y., Jackson, T., Herold, M., 2018. Quantifying branch architecture of 

tropical trees using terrestrial LiDAR and 3D modelling. Trees 32, 1219–

1231. https://doi.org/10.1007/s00468-018-1704-1 

Lau, A., Martius, C., Bartholomeus, H., Shenkin, A., Jackson, T., Malhi, Y., Herold, 

M., Bentley, L.P., 2019. Estimating architecture-based metabolic scaling 

exponents of tropical trees using terrestrial LiDAR and 3D modelling. For. 

Ecol. Manag. 439, 132–145. https://doi.org/10.1016/j.foreco.2019.02.019 



 

199 

 

Liang, X., Jaakkola, A., Wang, Y., Hyyppä, J., Honkavaara, E., Liu, J., Kaartinen, H., 

2014. The use of a hand-held camera for individual tree 3D mapping in forest 

sample plots. Remote Sens. 6, 6587–6603. 

Liu, J., Feng, Z., Yang, L., Mannan, A., Khan, T.U., Zhao, Z., Cheng, Z., 2018. 

Extraction of Sample Plot Parameters from 3D Point Cloud Reconstruction 

Based on Combined RTK and CCD Continuous Photography. Remote Sens. 

10, 1299. https://doi.org/10.3390/rs10081299 

Maguire, D.A., Johnston, S.R., Cahill, J., 1999. Predicting branch diameters on 

second-growth Douglas-fir from tree-level descriptors. Can. J. For. Res. 29, 

1829–1840. 

Mikita, T., Janata, P., Surový, P., 2016. Forest stand inventory based on combined 

aerial and terrestrial close-range photogrammetry. Forests 7, 165. 

Pelt, R.V., Sillett, S.C., 2008. Crown development of coastal Pseudotsuga menziesii, 

including a conceptual model for tall conifers. Ecol. Monogr. 78, 283–311. 

Piermattei, L., Karel, W., Wang, D., Wieser, M., Mokroš, M., Surový, P., Koreň, M., 

Tomaštík, J., Pfeifer, N., Hollaus, M., 2019. Terrestrial Structure from Motion 

Photogrammetry for Deriving Forest Inventory Data. Remote Sens. 11, 950. 

https://doi.org/10.3390/rs11080950 

Roeh, R.L., Maguire, D.A., 1997. Crown profile models based on branch attributes in 

coastal Douglas-fir. For. Ecol. Manag. 96, 77–100. 

Schindler, K., Bischof, H., 2003. On robust regression in photogrammetric point 

clouds, in: Joint Pattern Recognition Symposium. Springer, pp. 172–178. 

Smith, R.C., Cheeseman, P., 1986. On the representation and estimation of spatial 

uncertainty. Int. J. Robot. Res. 5, 56–68. 

Tanago, J.G. de, Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., 

Martius, C., Goodman, R.C., Disney, M., Manuri, S., Burt, A., Calders, K., 

2018. Estimation of above-ground biomass of large tropical trees with 

terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234. 

https://doi.org/10.1111/2041-210X.12904 

Weiskittel, A.R., Maguire, D.A., Monserud, R.A., 2007. Modeling crown structural 

responses to competing vegetation control, thinning, fertilization, and Swiss 

needle cast in coastal Douglas-fir of the Pacific Northwest, USA. For. Ecol. 

Manag. 245, 96–109. 

Ye, W., Qian, C., Tang, J., Liu, H., Fan, X., Liang, X., Zhang, H., 2020. Improved 3D 

Stem Mapping Method and Elliptic Hypothesis-Based DBH Estimation from 

Terrestrial Laser Scanning Data. Remote Sens. 12, 352. 

https://doi.org/10.3390/rs12030352 

Zhu, X., Skidmore, A.K., Darvishzadeh, R., Niemann, K.O., Liu, J., Shi, Y., Wang, 

T., 2018. Foliar and woody materials discriminated using terrestrial LiDAR in 

a mixed natural forest. Int. J. Appl. Earth Obs. Geoinformation 64, 43–50. 

https://doi.org/10.1016/j.jag.2017.09.004 



 

200 

 

Zucchelli, M., Košecká, J., 2008. Motion bias and structure distortion induced by 

intrinsic calibration errors. Image Vis. Comput. 26, 639–646. 

https://doi.org/10.1016/j.imavis.2007.08.002 

Zucchelli, M., Kosecka, J., 2001. Motion bias and structure distortion induced by 

calibration errors., in: BMVC. pp. 1–10.  



 

201 

 

Appendix A. Photogrammetric trees 

This appendix describes the point clouds representing the stem of three loblolly pine 

trees used in Chapter 2.  After the images needed for the 3D rendering were captured, 

the sample trees were felled and their diameters at breast height and at every meter 

along the stem starting at 1 m above the ground were measured. The diameters 

measured in the field were stored as ASCII files. The reconstructed models reached 

over 50% of the relative height – the proportion of the stem on which the majority of 

the merchantable volume is located. For each tree, two files were produced, a point 

cloud and a mesh data, to represent the 3D stem and some branches. The point cloud 

was stored in the LAS format and the mesh in the DXF format. Diameter at breast 

height was marked on all trees by red rings. The files describing the three trees provide 

a calibrated dataset that can be used for development of taper models, testing and 

calibration of segmentation algorithms, and identification of products that can be 

obtained from a stem. 

The photogrammetric point clouds (PPC) were developed for loblolly pines (Pinus 

taeda Lindl.) positioned in the dominant and codominant crown classes. Field data 

collection was conducted in February, March, and April 2014. Before any measurement 

or photo was recorded the trees were prepared for subsequent data processing, 

particularly scaling of point clouds. To scale the point clouds two metal bars of 304.8 

mm (i.e., 1 foot) were freely hanged on the stem, close to breast height, on opposing 

sides. The diameter at breast height (DBH) was marked with red paint, which provided 

additional information for calibration. To identify each tree, on the stem on two 

opposing sides were written the number of the tree (i.e., id of the tree within the study) 
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and the side of the tree (i.e. 1 or 2). Once preparation was completed, for standing trees, 

DBH was measured and a sequence of photographs were captured for each standing 

tree. After the photographs were recorded the trees were cut. On the fallen trees, the 

diameters every meter and at breast height were measured. Diameter measurement 

were accurate at 1 mm while stem length was measured with 10 mm accuracy. The 

precision of the measurements was 1 mm for both diameter and length. 

To estimate the total height of the trees, the study site was scanned with airborne laser 

scanners four months earlier than the actual field sampling. The average point density 

for the LIDAR point cloud is 30 points / m2. The total heights for the three trees were 

determined as the largest normalized elevation, which supplied 25.36 m for tree#1, 

26.81 m for tree#2, and 18.91 m for tree #2. The comparison between the LIDAR based 

values and the the fallen trees measurements suggested the difference was within 3 cm. 

Larger height estimated from LIDAR is likely the results of breaking the top part of the 

tree during the falling process, which justifies the heights based on LIDAR. The 

corresponding DBH measured in the field are 398.5 mm, 326.0 mm, and 268 mm. Table 

A.1 provided the stem diameters measured for every 1 m increasing along the stem.  

The red-green-blue (RGB) images of trees were captured with a Nikon D3200 camera 

equipped with a Nikkor AF-S DX VR 18–55 mm zoom lens (aperture3.5–5.6). The 

minimum focal length was used to acquire the images with the largest exposure of the 

stem of the trees. Multiple images were captured from an approximate circular 

trajectory surrounding each tree (Figure A.1). Two images were taken at each spot; one 

was captured for the perpendicular view of the lower part of the stem (i.e., the lens was 
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approximately horizontal), and one was captured with the lens facing the upper part of 

the stem (i.e., the lens was tilted upwards). Each pair of such images had at least 50%  

overlap to ensure the successful feature extraction for 3D construction. 

Table A.1 Diameter along the stem measured in the field for the three trees 

 

 

Figure A.1 Position of the cameras to reconstruct the three trees: a. Tree#1, b. Tree#2, 

c. Tree#3 
 

 

 

 

 

Length on the stem 

[m] 

Diameter [mm] 

Tree 1 Tree 2 Tree 3 

1.0 397.19 332.42 280 

1.3 398.5 326 268 

2 408.62 319.72 272 

3 375.6 303.21 262 

4 381.95 301.94 256 

5 378.14 287.97 253 

6 369.25 286.7 237 

7 362.9 276.54 228 

8 350.2 268.92 225 
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The reconstruction of the trees with SfM was executed in Agisoft PhotoScan version 

1.2 (Agisoft LLC 2014). The SfM workflow in Agisoft PhotoScan contains three serial 

steps: (1) align photos, (2) build dense point cloud, and (3) build mesh. Photo alignment 

generates the sparse point cloud, which are the features outlining the tree structure. 

Then, the dense point clouds were generated based on the sparse points to depict the 

detailed texture of the stem surface. Finally, the mesh model was derived as polygonal 

network from the dense point clouds. 

The accuracy of the 3D models is determined by the quality of the original images and 

the settings of the parameter defining each step. However, higher accuracy is achieved 

at the cost of longer computation time. Thus, the selections of the model accuracy rely 

on the objectives of the study. There are five accuracy options for photo alignment in 

Agisoft, varying from lowest to highest. The highest accuracy setting allows the 

program to use the maximum resolution (i.e., in our case: 3872 2592 pixels) to 

determine the locations of the cameras. For every decreasing level of accuracy, the 

program downscales each side of images with half. The images were recorded under 

the canopy, where GPS signal was weak (i.e., inaccurate positions), which forced their 

alignment only on the images themselves. To compensate the lack of GPS, I set the 

accuracy to high. The key point and tie point limits were set to 600,000 and 100,000 

respectively. After the images were successfully aligned, Agisoft built the dense point 

cloud based on the tie points selected during photo alignment. To ensure that the 

measurements based on PPC are comparable with the field measurements, I set the 

quality of building dense points to high, with depth filtering disabled. The number of 

points describing each tree are 2,283,160 for tree #1, 5,148,910 for tree #2, and 
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1,321,536 for tree #3. After the dense point clouds were created, the mesh was 

constructed using an arbitrary surface type and the interpolation disabled. Arbitrary 

surface type is applicable to many types of surfaces, included tree bark. To ensure 

accurate representation of the stem by the mesh, no interpolations were allowed (Figure 

A.2- Figure A.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 3D reconstruction of the tree#1, seen from three perspectives (a. south 

view, b. east view, and c. north view). The top number on the tree represent the tree 

id, while the bottom the north (i.e., 1) and south (i.e., 2) side. 
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Figure A.2 3D reconstruction of tree#2, seen from three perspectives (a. south view, b. 

east view, and c. north view). The top number on the tree represent the tree id, while 

the bottom the north (i.e., 1) and south (i.e., 2) sides. 

Figure A.3 3D reconstruction of the tree#3, seen from three perspectives (a. south 

view, b. east view, and c. north view). The top number on the tree represent the tree 

id, while the bottom the north (i.e., 1) and south (i.e., 2) sides 
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The data is hosted by the ScholarArchive@OSU, a digital service supported by Oregon 

State University. The data can be accessed at the persistent URL 

http://hdl.handle.net/1957/61881. The metadata are located at the same address and are 

stored in the file README_PPC_3Dtrees.txt. The data can be used without restrictions, 

but acknowledgement of their origin is necessary.  

For each of the three trees the following files are available: 

• an ASCII file with two fields:  

o field #1, titled “Length_m” contains the height in meters along the 

stem, and  

o field #2, titled “Diameter_mm”, contains the diameter in millimeters 

at the respective height;  

• a LAS file with the colored point clouds, and  

• an Autodesk drawing interchange format file (DXF) that stores the mesh 

model.  

The files are identified using the following convention: Tree#_field.txt, for the field 

measurements, Tree#_PPC.las for the photogrammetric point cloud, and 

Tree#_mesh.dxf for the mesh model of the tree. The “#” represents the tree number: 1, 

2, or 3. 
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Appendix B. Proof of the linear bias reduction for PPC-

based tree stem diameter estimates 

Estimation of residual bias after application of Eq. 2-7 

The selected function to eliminate bias (Eq. 2-7) was not tailored to the data or to the 

error structure. Therefore, it is likely that bias was reduced not eliminated. After bias 

reduction, the error, εht, become: 

 𝜀ℎ = 𝑒𝑟𝑟𝑜𝑟ℎ– 𝐵𝐶ℎ  = 𝑑ℎ,𝑓𝑖𝑒𝑙𝑑– 𝑑ℎ,𝑝𝑝𝑐 – 𝑑1.3,𝑓𝑖𝑒𝑙𝑑 – 𝑑1.3,𝑝𝑝𝑐 – 𝑅𝐻 ×

𝑒𝑟𝑟𝑜𝑟𝐴𝑔𝑖𝑠𝑜𝑓𝑡     

B-1 

        where the h subscript represents the height at which the respective statistic is 

computed. 

According to Agisoft documentation, the scaling error is a result of the difference 

between the distance estimated from the point cloud and the distance assigned by the 

operator after the identification of two points inside ppc: 

 errorAgisoft = dppc - doperator    B-2 

Figure 2.5 suggests that a linear function could describe the relationship between bias 

and relative height (RH). A simple linear regression between error and relative height 

supplied a significant equation (p=0.02), with both coefficients significant: 

 𝑒𝑟𝑟𝑜𝑟ℎ = −1.36 –  1.42 × 𝑅𝐻 B-3 

The two coefficients were close to the d1.3, error, 1.20 mm, (i.e., intercept in Eq. 2-7) 

and to the reported error by Agisoft, 1.22, (i.e., slope in Eq. 2-7). In fact, there was no 

significant difference between the coefficients of regression Eq. 2-7 and the two 

statistics. The choice of which one will be the intercept and which one will be the 
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slope was driven by the magnitude of the bias reduction as well as the variation. The 

model with d1.3 error as slope has a residual bias of 0.15 mm while the alternative 

was 0.18 mm. However, even that bias was smaller when d1.3 error was slope, the 

variance was larger (i.e., 2.97 vs. 2.88), which suggested selection of the Eq. 2-7 to 

reduce the bias.  

To assess bias, I computed the expectation of the residual errors εh: 

𝐸[𝜀ℎ] = 𝐸[𝑒ℎ − 𝐵𝐶ℎ]

= 𝐸[𝑒ℎ − 𝑒𝑟𝑟𝑜𝑟𝑑1.3

− 𝑒𝑟𝑟𝑜𝑟𝐴𝑔𝑖𝑠𝑜𝑓𝑡 × 𝑅𝐻ℎ] = 

= 𝐸[𝑒ℎ] − 𝐸[𝑒𝑟𝑟𝑜𝑟𝑑1.3] − 𝑅𝐻ℎ𝐸[𝑒𝑟𝑟𝑜𝑟𝐴𝑔𝑖𝑠𝑜𝑓𝑡] = 

= 𝐸[𝑑ℎ,𝑓𝑖𝑒𝑙𝑑 − 𝑑ℎ,𝑝𝑝𝑐] − 𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑
− 𝑑1.3,𝑝𝑝𝑐]

− 𝑅𝐻ℎ𝐸[𝑑ℎ,𝑝𝑝𝑐 − 𝑑ℎ,𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟] 

B-4 

 

Diameter estimated by the operator from Agisoft suffers from the same lack of accuracy 

as the one measured in the field; therefore, it can be assumed that  

 𝐸[𝑑ℎ,𝑝𝑝𝑐 − 𝑑ℎ,𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟] = 𝐸[𝑑ℎ,𝑝𝑝𝑐 − 𝑑ℎ,𝑓𝑖𝑒𝑙𝑑]   B-5 

Table 2.3 reveals that errord1.3 is the smallest among all heights (except for 

height 9 m, which likely is a random occurrence), a direct result of closeness to the 

operator, and consequently to the camera, of that section of the tree.  
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Figure 2.6 supports the existence of a linear relationship between the expectation of the 

error anywhere on the stem and d1.3,error: 

 𝐸[𝑑ℎ,𝑓𝑖𝑒𝑙𝑑 − 𝑑ℎ,𝑝𝑝𝑐] =
𝑏

(1+𝑅𝐻ℎ)
𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3,𝑝𝑝𝑐]   B-6 

where b is a coefficient 

Based on Eq. B-4 and Eq. B-5, Eq. B-6 can be rearranged as 

 
𝐸[𝜀ℎ] ≈

𝐸𝑞.16
(1 + 𝑅𝐻ℎ) × 𝐸[𝑑ℎ,𝑓𝑖𝑒𝑙𝑑 − 𝑑ℎ,𝑝𝑝𝑐] − 𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 −

𝑑1.3,𝑝𝑝𝑐] ≈
𝐸𝑞.17

  

≈ 𝑏𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3𝑝𝑝𝑐] − 𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3,𝑝𝑝𝑐] = (𝑏 −

1)𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3,𝑝𝑝𝑐]    

B-7 

Eq. B-7 depends on coefficient b, whose value can be approximated from the 

observation that 

 𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3,𝑝𝑝𝑐] =
𝑏

(1+𝑅𝐻ℎ)
𝐸[𝑑1.3,𝑓𝑖𝑒𝑙𝑑 − 𝑑1.3,𝑝𝑝𝑐] → 𝑏 = 1 +

1.3/(𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡)   

 B-8 

Therefore, the remaining bias after the application of Eq. 2-7 is 1.3×E[𝑒𝑟𝑟𝑜𝑟𝑑1.3]/(total 

height). Considering that field measurements are executed for stands that require 

immediate attention, such as thinning or regeneration harvests, it can be assumed that 

the total height of the trees is larger than 13 m, which means that the expected residual 

bias is less than 10% of E[𝑒𝑟𝑟𝑜𝑟𝑑1.3]. According to Table 2.3, E[𝑒𝑟𝑟𝑜𝑟𝑑1.3] is the 

smallest among errors at all heights (except for 12 m), therefore the residual bias is 

expected to be approximately1 mm. 
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Appendix C. Doulgas-fir double bark thickness equation 

Double bark thickness is predicted from segmented polynomial equation developed 

by Maguire and Hann (1990): 

dbtij = DBT ∗ (1 + Z1 + a2Z2 + a2Z3)  

DBT = predicted double bark thickness at dbh 

DBT = DOB − DIB  

DIB =0.3592699DOB0.989388  

Z1 = I {[
X−1

k−1
] [1 +

k−X

k−1
] − 1}  

Z2 = X + I {[
X−1

k−1
] [X +

k(k−X)

k−1
] − X}  

 Z3 = X2 


