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Abstract. Large-scale observational data from citizen science efforts are becoming increas-
ingly common in ecology, and researchers often choose between these and data from intensive
local-scale studies for their analyses. This choice has potential trade-offs related to spatial
scale, observer variance, and interannual variability. Here we explored this issue with phenol-
ogy by comparing models built using data from the large-scale, citizen science USA National
Phenology Network (USA-NPN) effort with models built using data from more intensive stud-
ies at Long Term Ecological Research (LTER) sites. We built statistical and process based phe-
nology models for species common to each data set. From these models, we compared
parameter estimates, estimates of phenological events, and out-of-sample errors between mod-
els derived from both USA-NPN and LTER data. We found that model parameter estimates
for the same species were most similar between the two data sets when using simple models,
but parameter estimates varied widely as model complexity increased. Despite this, estimates
for the date of phenological events and out-of-sample errors were similar, regardless of the
model chosen. Predictions for USA-NPN data had the lowest error when using models built
from the USA-NPN data, while LTER predictions were best made using LTER-derived mod-
els, confirming that models perform best when applied at the same scale they were built. This
difference in the cross-scale model comparison is likely due to variation in phenological
requirements within species. Models using the USA-NPN data set can integrate parameters
over a large spatial scale while those using an LTER data set can only estimate parameters for
a single location. Accordingly, the choice of data set depends on the research question. Infer-
ences about species-specific phenological requirements are best made with LTER data, and if
USA-NPN or similar data are all that is available, then analyses should be limited to simple
models. Large-scale predictive modeling is best done with the larger-scale USA-NPN data,
which has high spatial representation and a large regional species pool. LTER data sets, on the
other hand, have high site fidelity and thus characterize inter-annual variability extremely well.
Future research aimed at forecasting phenology events for particular species over larger scales
should develop models that integrate the strengths of both data sets.

Key words: budburst; data integration; flowering; forecasting; Long Term Ecological Research; scale;
USA National Phenology Network.

INTRODUCTION

Plant phenology, the timing of recurring biological
events such as flowering, plays an important role in eco-
logical research extending from local to global scales (Cle-
land et al. 2007, Richardson et al. 2013, Tang et al. 2016).
At large scales the timing of spring leaf out and fall senes-
cence influence the carbon budget of earth system models,

which has implications for correctly accounting for bio-
sphere–atmosphere feedbacks in long-term climate fore-
casts (Richardson et al. 2012). At smaller scales, species-
specific responses to temperature and precipitation can
alter flower communities (Diez et al. 2012, CaraDonna
et al. 2014, Theobald et al. 2017) and affect the abun-
dance and richness of both pollinators (Ogilvie and For-
rest 2017, Ogilvie et al. 2017) and organisms at higher
trophic levels (Tylianakis et al. 2008). Plant phenology
models that are robust at multiple ecological scales, or
deemed appropriate for a particular scale, are needed to
better understand and forecast the timing of key biological
events.
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Many plant phenology studies use intensively collected
data sets from a single location over a long time-period by
a single research group (Cook et al. 2012, Wolkovich et al.
2012, Iler et al. 2013, Roberts et al. 2015). These data sets
have regular sampling and large numbers of samples over
long periods of time. As a result, the biological and cli-
matic variability at that site is well represented. It is com-
mon for phenology models built with observations from a
single site to not transfer well to other sites (Garc�ıa-Mozo
et al. 2008, Xu and Chen 2013, Olsson and J€onsson 2014,
Basler 2016). This lack of transferability can be driven by
plasticity in phenology requirements, local adaptation,
microclimates, or differences in plant age or population
density (Kramer 1995, Diez et al. 2012). For these rea-
sons, data from a single location are not adequate for lar-
ger scale phenology modeling. Accurately forecasting
phenology at larger scales will require models that account
for the full range of variation across a species’ range
(Richardson et al. 2013, Tang et al. 2016, Chuine and
R�egni�ere 2017), which will necessitate the use of data
sources beyond traditional single-site studies.
Data from citizen science projects are becoming

increasingly important for ecological research (Kelling
et al. 2009, Dickinson et al. 2010, Tulloch et al. 2013).
Because these data are often collected by large numbers
of volunteers, it is possible to gather data at much larger
scales than with individual research teams. A relatively
new citizen science project started in 2009, Nature’s
Notebook run by The USA National Phenology Net-
work (USA-NPN), collects phenology observations from
volunteers throughout the United States and makes the
data openly available (Schwartz et al. 2012). Data from
this project have already been used to study variation in
oak phenology at a continental scale (Gerst et al. 2017),
develop large-scale community phenology models (Mel-
aas et al. 2016), and forecast long-term phenology trends
(Jeong et al. 2013). Large-scale data sets from China and
Europe have already contributed considerably to pheno-
logical research (Xu and Chen 2013, Olsson and J€onsson
2014, Basler 2016, Zhang et al. 2017), and the USA-
NPN data set has the potential to meet these needs for
North American plant species and communities. How-
ever, the features that allow citizen science projects to col-
lect data at large scales can also introduce spatial biases
toward cities and easily-accessible areas, and variation in
sampling effort and observer skill (Dickinson et al. 2010).
With thousands of participants, the potential for varia-
tion among observers in their determination of species
identification and dating of phenological events is high.
While volunteers have been shown to be accurate at dis-
tinguishing different leaf and flower stages for plants
(Fuccillo et al. 2015) and can have high agreement on
abundance estimates (Feldman et al. 2018), contributions
to USA-NPN are sometimes made sporadically across
seasons, years, and locations. This means that the quan-
tity and quality of data at a specific site will typically be
more variable for citizen science efforts than for intensive,
long-term studies.

In order to accurately model and forecast phenology,
it is important to understand how the strengths and
weaknesses of intensive local studies and large-scale citi-
zen science projects influence both our inferences about
biological processes driving phenology (e.g., warming
requirements for a specific plant) and our ability to pre-
dict future phenology events (e.g., forecasting when
flowering or leaf out occurs). Here, we fit a suite of plant
phenology models for the budburst and first-flowering
phenophases of 24 plant species to data from both the
USA-NPN and a set of intensive long-term studies from
the Long Term Ecological Research (LTER) network.
We compare the resulting models based on both infer-
ence about models and parameters and predictions for
unobserved events. We then use this comparison to
assess the best methods for both local- and large-scale
phenology modeling and to point the way forward for
integrating large-scale and local-scale data to determine
the best possible models across scales.

METHODS

Data sets

The USA National Phenology Network (USA-NPN)
protocol uses status-based monitoring, where via a
phone app or web based interface observers answer
“yes,” “no,” or
“unsure” when asked if an individual plant has a specific
phenophase present (Denny et al. 2014). Phenophases
refer to specific phases in the annual cycle of a plant,
such as the presence of emerging leaves, flowers, fruit, or
senescing leaves. Sites in the USA-NPN data sets are
located across the United States and generally clustered
around populated areas (Fig. 1). To represent long-term,
intensive, phenology studies we used four data sets from
North America representing three major ecosystem
types (Table 1, Fig. 1). All four long-term studies are
located in the United States and are part of the Long
Term Ecological Research network (LTER). The Har-
vard Forest and Hubbard Brook Long Term Experimen-
tal Forest are located in the northeastern United States
and are dominated by deciduous broadleaf species. The
H.J. Andrews Experimental Forest is a coniferous forest
in the coastal range of the western United States The
Jornada Experimental Range is in the Chihuahua desert
of the southwestern U.S.
We downloaded all USA-NPN observations from

2009, when collections began, to 2016 for the following
phenophases: Breaking Leaf Buds, Breaking Needle
Buds, Emerging Needles, and Open Flowers (USA
National Phenology Network, 2017). The first three phe-
nophases apply to the “leaf out” phase for deciduous
broadleafs, evergreen conifers, and pines, respectively.
The “Open Flowers” phenophase refers to fully open
flowers and applies to all angiosperms. Hereafter, we will
refer to these as either “Flowers” for the Open Flower
phenophase, or “Budburst” for all other phenophases.
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We subset the USA-NPN observations similar to meth-
ods outlined in Crimmins et al. (2017). First, “yes”
observations for individual plants were kept only if they
were preceded by a “no” observation within 30 d. Obser-
vations for “Budburst” that were past day of year (DOY)
172, and for “Flowers” that were past DOY 213 were
dropped to minimize any influence from outliers. We
inferred the observed DOY of each phenophase as the
midpoint between each “yes” observation and the pre-
ceding “no” observation. Finally, only species that had
>30 total observations were kept. Crimmins et al. (2017)
only kept observations that were preceded by a “no”
within 15 d, and also grouped multiple individuals at
single sites to a single observation. We used 30 d to
allow for a greater number of species to be compared.
We tested the sensitivity of this choice by also perform-
ing the analysis using a 15-d cutoff. We chose not to
group multiple individuals at a single site to better incor-
porate intra-site variability.
In the LTER data sets observation metrics varied

widely due to different protocols. To match the USA-
NPN data we converted all metrics to binary “yes” and
“no” observations for each phenophase (see Appendix S1

for details). Three of the LTER data sets (Hubbard
Brook, Harvard Forest, and H.J. Andrews) had a sam-
pling frequency of 3–7 d during the growing season. The
Jornada data set had a sampling frequency of 30 d. As
with the USA-NPN data, we inferred the date for each
phenophase as the midpoint between the first “yes” obser-
vation and most recent “no” observation, and only kept
species and phenophase combinations that had at least 30
total observations. After data processing there were 38
species and phenophase combinations (with 24 unique
species) common to both the USA-NPN and LTER data
sets to use in the analysis (Table 1; Appendix S2:
Table S1). Using a 15 d cutoff in the USA-NPN data set
resulted in 35 unique combinations with 23 species.

Models

It is common to fit multiple plant phenology models
to find the one that best represents a specific species and
phenophase (Chuine et al. 2013). For each of the 38 spe-
cies and phenophase combinations in the five data sets
(USA-NPN and four LTER data sets), we fit eight phe-
nology models (Table 2). The Naive model uses the

TABLE 1. LTER data sets used in the analysis.

Data set name Habitat Phenological event (no. species) Source

Harvard Forest Northeast deciduous forest Budburst (17) Flowering (7) O’Keefe (2015)
Jornada Experimental Range Chihuahuan Desert Flowering (2)
H.J. Andrews Experimental Forest Northwest wet coniferous forest Budburst (5) Flowering (4) Schulze (2017)
Hubbard Brook Northeast deciduous forest Budburst (3) Bailey (2018)

FIG. 1. Locations of USA National Phenology Network sites used (black points) and Long Term Ecological Research sites
(LTER; labeled circles), with gray scale showing elevation.
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mean DOY from prior observations as the estimated
DOY. The Linear model uses a regression with the mean
spring (1 January–31 March) temperature as the inde-
pendent variable and DOY as the response variable. For
the six remaining models, the general form is based on
the idea that a phenological event will occur once suffi-
cient thermal forcing units, F�, accumulate from a par-
ticular start day of the year (t1). Forcing units are a
transformation of the daily mean temperature and are
calculated differently for each model (Table 2). The start
day can either be estimated or fixed. For the Growing
Degree Day (GDD) model, forcing units are the total
degrees above the threshold Tbase (R�eaumur 1735, Wang
1960, Hunter and Lechowicz 1992). The Fixed GDD
model uses the same form but has fixed values for start
day (t1 = 1 January) and temperature threshold
(Tbase = 0°C). The Alternating model has a variable
number of required forcing units defined as a function
of the total number of days below 0°C since 1 January
(number of chill days; NCD). The Uniforc model is like
the GDD model but with the forcing units transformed
via a sigmoid function (Chuine 2000).
We also fit two models that attempt to capture spatial

variation in phenological requirements. The first spatial
model, M1, is an extension of the GDD model which
adds a correction in the required forcing using the pho-
toperiod (L, Bl€umel and Chmielewski 2012). The second,
the Macroscale Species-specific Budburst model (MSB),
uses the mean spring temperature as a linear correction
on the total forcing required in the Alternating model
(Jeong et al. 2013). Since there is little to no spatial varia-
tion in the LTER data sets, we fit the two spatial models

to data from the USA-NPN only. We compared the
resulting parameters, estimates, and errors for the USA-
NPN derived M1 and MSB models to their non-spatial
analogs (the GDD and Alternating models, respectively)
for each species and phenophase in the LTER data.
We extracted corresponding daily mean temperature

for all USA-NPN and LTER observations from the grid-
ded PRISM data set using the latitude and longitude of
the site associated with each observation (PRISM Cli-
mate Group, 2004). We parameterized all models using
differential evolution to minimize the root mean square
error (RMSE) of the estimated DOYof the phenological
event. Differential evolution is a global optimization algo-
rithm that uses a population of randomly initialized mod-
els to find the set of parameters that minimize the RMSE
(Storn and Price 1997). Confidence intervals for parame-
ters were obtained by bootstrapping, in which individual
models were refit 250 times using a random sample, with
replacement, of the data. We made predictions by taking
the mean DOYestimated from the 250 bootstrapped iter-
ations. A random subset consisting of 20% of observa-
tions from each species and phenophase combination was
held out from model fitting for later evaluation.

Analysis

As described above, we fit two sets of models for each
species and phenophase: one set of models parameter-
ized using only USA-NPN data, and one set parameter-
ized using only LTER data (with the exception of the
M1 and MSB models, see Models). We performed three
primary analyses from these model outputs by

TABLE 2. Phenology models used in the analysis.

Name DOYestimator Forcing equations
Total

parameters Source

Naive DOY – 1 –
Linear DOY ¼ b1 þ b2Tmean – 2 –
GDD

PDOY
t¼t1 Rf ðTiÞ�F� Rf ðTiÞ ¼ maxðTi � Tbase; 0Þ 3 R�eaumur (1735), Wang (1960),

Hunter and Lechowicz (1992)
Fixed GDD

PDOY
t¼1 Rf ðTiÞ�F� Rf ðTiÞ ¼ maxðTi; 0Þ 1 R�eaumur (1735), Wang (1960),

Hunter and Lechowicz (1992)
Alternating PDOY

t¼1 Rf ðTiÞ� aþ becNCDðtÞ Rf ðTiÞ ¼ maxðTi � 5; 0Þ 3 Cannell and Smith (1983)

Uniforc PDOY
t¼t1 Rf ðTiÞ�F� Rf ðTiÞ ¼ 1

1þebðTi�cÞ 4 Chuine (2000)

M1 PDOY
t¼t1 Rf ðTiÞ� Li

24

� �k
F� Rf ðTiÞ ¼ maxðTi � Tbase; 5Þ 4 Bl€umel and Chmielewski (2012)

MSB PDOY
t¼1 Rf ðTiÞ� aþ becNCDi þ dTmean Rf ðTiÞ ¼ maxðTi � 5; 0Þ 4 Jeong et al. (2013)

Notes: For all models, except the Naive and Linear models, the daily mean temperature Ti is first transformed via the specified forc-
ing equation. The cumulative sum of forcing is then calculated from a specific start date (either DOY ¼ 1 or using the fitted parameter
t1). The phenological event is estimated as the DOY in which cumulative forcing is greater than or equal to the specified total required
forcing (either F� or the specified equation). Parameters for each model are as follows: for the Naive model DOY is the mean day of
year of a phenological event; for the Linear model, b1 and b2 are the intercept and slope, respectively, and Tmean is the average daily
temperature between 1 January and 31 March; for the GDD model F� is the total accumulated forcing required, t1 is the start date of
forcing accumulation, and Tbase is the threshold daily mean temperature above which forcing accumulates; for the Fixed GDD model,
F� is the total accumulated forcing required; for the Alternating model, NCD is the number of chill days (daily mean temperature
below 0°C) from DOY ¼ 0 to the DOY of the phenological event, a, b, and c are the three fitted model coefficients; for the Uniforc
model, F� is the total accumulated forcing required, t1 is the start date of forcing accumulation, and b and c are two additional fitted
parameters that define the sigmoid function; the M1 model is the same as the GDD model, but with the additional fitted parameter k
that adjusts the total forcing accumulation according to day length; the MSB model is the same as the Alternating model, but with
the additional fitted parameter d to correct the model according to mean spring temperature.
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comparing (1) the model parameters, (2) estimates from
the models, and (3) out-of-sample errors from each
model.
To compare the inferences about process made by the

two data sets, we compared the distribution of each param-
eter between LTER and USA-NPN derived models for
each species and phenophase combination. Using the mean
value of each bootstrapped parameter, we also calculated
the coefficient of determination (R2) between LTER and
USA-NPN derived models among the 38 species-pheno-
phases. In three cases where a species phenophase combina-
tion occurred in two LTER sites (Budburst for Acer
saccharum, Betula alleghaniensis, and Fagus grandifolia in
the Harvard and Hubbard Brook data sets), they were
compared separately to the USA-NPN data.
Next we compared the estimates of phenological events

between models. Models with different parameter values,
and even entirely different structures, can produce similar
estimates for the date of phenological events (Basler
2016). Therefore, to compare the predictions and potential
forecasts for models fit to the different data sets, we com-
pared the estimated DOY predicted by the LTER and
USA-NPN derived models for all held out observations.
For each of the eight models, we calculated the coefficient
of determination (R2) between LTER and USA-NPN
derived estimates for estimates made at the four LTER
sites and across all USA-NPN sites.
Finally, we directly evaluated performance using out-

of-sample errors from the four combinations of models
and observed data: (1) LTER-derived models predicting
LTER observations, (2) USA-NPN derived models pre-
dicting LTER observations, (3) LTER-derived models
predicting USA-NPN observations, and (4) USA-NPN
derived models predicting USA-NPN observations.
Using the RMSE values from held out observations, we
compared the performance of LTER and USA-NPN
derived models on different data types in two different
ways. First, we focused on local-scale prediction by calcu-
lating the difference in the RMSE of LTER and USA-
NPN derived models solely with LTERobservations. Sec-
ond, to focus on large-scale prediction, we calculated the
difference in RMSE using solely USA-NPN data. These
differences were calculated for each of the model types
and 38 species–phenophase combinations. Negative val-
ues indicate that LTER-derived models perform better,
while positive values indicate that the USA-NPN derived
model performed better. We used a t test to test the differ-
ence from zero in these values. In the three cases where
the same species and phenophase combination occurred
in two LTER sites, we made the LTER-LTER compar-
ison within each site, not across sites, to focus on local-
scale prediction when LTER data are available. Absolute
RMSE values as well as Pearson correlation coefficients
are provided in the supplement for specific species
(Appendix S2: Figs. S5–S7) and with all observations
aggregated together (Appendix S2: Table S2).
We performed all analysis using both the R and

Python programming languages (R Core Team, 2017;

Python Software Foundation, 2018). Primary R pack-
ages used in the analysis included dplyr (Wickham et al.
2017), tidyr (Wickham and Henry 2018), ggplot2 (Wick-
ham 2016), lubridate (Grolemund and Wickham 2011),
prism (Hart and Bell 2015), raster (Hijmans 2017), and
sp (Pebesma and Bivand 2005). Primary Python pack-
ages included SciPy (Jones et al. 2001), NumPy (Oli-
phant 2006), Pandas (McKinney 2010), and MPI for
Python (Dalcin et al. 2011). Code to fully reproduce this
analysis is available online (see Data Availability).

RESULTS

Throughout the analysis there were no qualitative dif-
ferences between a 30-d or a 15-d threshold between the
first yes and most recent no observation in the USA-
NPN data set. Results presented here reflect the 30-d
cutoff; see the Figs. S2–S4 in Appendix S2 for matching
figures using a 15-d cutoff.
The best matches between parameter estimates based on

USA-NPN and LTER data were the Fixed GDD model
(R2 = 0.49) and the Linear model (R2 = 0.39 for b1 and
�0.05 for b2). The parameters for all other models had R2

values <0 indicating that the relationship was worse than
no relationship between the parameters (but with match-
ing mean parameter values across the two sets of models;
Fig. 2). The Naive model showed a distinct late bias in
mean DOYestimates for phenological events, likely result-
ing from the LTER data sets being mostly in the northern
United States compared to the site locations of the USA-
NPN data set (Fig. 2). The large outlier for the Fixed
GDD model is Larrea tridentata; this species’ flower phe-
nology is largely driven by precipitation, which is not con-
sidered in the Fixed GDDmodel (Beatley 1974). While the
Fixed GDD and Linear models showed reasonable corre-
spondence between parameter estimates, all parameters for
individual species and phenophase combinations had dif-
ferent distributions between USA-NPN and LTER-
derived models (Appendix S2: Figs. S10 and S11).
When comparing estimates of phenological events

between the two sets of models, many USA-NPN and
LTER models produced similar estimates (Fig. 3). The
Fixed GDD model had the highest correlation between
the two model sets at USA-NPN sites (R2 ¼ 0:82), while
the GDD, M1, and Uniforc models had the highest corre-
lation at LTER sites (R2 = 0.51, 0.52, and 0.51, respec-
tively). Comparing models with spatial corrections to the
non-spatial alternatives, the MSB (an extension of the
Alternating model with a spatial correction based on
mean spring temperature, see Table 2 and Methods)
improved the correlation between the two data sets over
the Alternating model. The MSB model improved the R2

from 0.36 to 0.45 at LTER sites, and from �0.23 to
�0.15 at USA-NPN sites. The M1 model (an extension
of the GDD model with a spatial correction based on day
length) improved the correlation over the GDD model
only slightly at LTER sites (from 0.51 to 0.52) and did
not improve the correlation at USA-NPN sites.
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FIG. 2. Comparisons of parameter estimates between USA National Phenology Network (USA-NPN) and LTER derived mod-
els. Each point represents a parameter value for a specific species and phenophase and is the mean value from 250 bootstrap itera-
tions. The black line is the 1:1 line. The R2 is the coefficient of determination, which can be negative if the relationship between the
two parameter sets is worse than no relationship but with the same mean values. Models and parameters are defined in Table 2.
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FIG. 3. Comparison of predicted day of year (DOY) of all phenological events between USA-NPN and LTER-derived models.
Top panels show comparisons at LTER sites and bottom panels show comparisons at USA-NPN sites. Each point is an estimate
for a single held-out observation. Colors indicate observations for a single species and phenophase combination.
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When comparing the predictive performance using
out-of-sample errors, USA-NPN derived models made
more accurate predictions for held-out USA-NPN
observations, and LTER-derived models performed bet-
ter on held-out LTER observations (all P < 0.001;
Fig. 4). The Naive and Linear models had the largest
differences between the two model sets, while the Fixed
GDD model had relatively similar errors when evaluated
on both USA-NPN and LTER held-out observations.
Although the Fixed GDD model had the highest agree-
ment in accuracy between USA-NPN and LTER-
derived models, it was not the best performing model
overall. The GDD and Uniforc models made the best
out of sample predictions, having the lowest RMSE and

Pearson coefficient when aggregating all observations
together (Appendix S2: Table S2). One exception was
that the Fixed GDD model had a slightly higher Pearson
value when using LTER-derived models to make predic-
tions for USA-NPN data. The best model for specific
species and phenophases varied, but was commonly
the Uniforc or GDD models (Appendix S2: Figs. S5
and S6).

DISCUSSION

Data used to build phenology models typically fall into
two categories: intensive long-term data with long time-
series at a small number of locations (e.g., LTER data in

FIG. 4. Differences in prediction error between USA-NPN and LTER-derived models. Density plots for comparisons of predic-
tions on LTER data (top row) and USA-NPN data (bottom row). Each plot represents the difference between the RMSE for
LTER-derived model and the USA-NPN derived model, meaning that values less than zero indicate more accurate prediction by
LTER-derived models and values greater than zero indicate more accurate prediction by NPN-derived models. P < 0.001 for all t
tests. Differences are calculated pairwise for the 38 species/phenophase comparisons.
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this study), and large-scale data with less intensive sam-
pling at hundreds of locations (e.g., USA-NPN data;
Table 3). This data scenario, a small amount of intensive
data and a large amount of less intensive data, is common
in many areas of science and makes it necessary to under-
stand how to choose between, or combine, data sources
(Hanks et al. 2011). We explored this issue for phenology
modeling in relation to making predictions and inferring
process from models. For inference, we found that models
based on different data sources resulted in different
parameter estimates for all but the simplest models. For
prediction we found that models fit to different data
sources tended to make similar predictions, but that mod-
els better predicted out-of-sample data from the data type
to which they were fit. These results are consistent with
other research showing that phenology model perfor-
mance decreases when transferring single-site models to
other locations (Garc�ıa-Mozo et al. 2008, Xu and Chen
2013, Basler 2016), and with the call for models that bet-
ter incorporate spatial variation in phenology require-
ments (Richardson et al. 2013, Chuine and R�egni�ere
2017). Understanding and making predictions for the
phenology of a single location is best served by intensive
local-scale data, when available, but large-scale data sets
work better for extrapolating phenology predictions
across a species range. Thus, the best choice of both data
and models depends on the desired research goals.
In this study, parameter estimates differed widely

within the same phenology model when fit to the two dif-
ferent types of data, except for the simplest process-
oriented model: the Fixed GDD (Fig. 2). These differ-
ences may be caused by a variety of factors that have dif-
ferent implications for interpreting process-oriented
models and their parameters. First, the differences could
result from limitations in the sampling of the USA-NPN
data set, such as irregular sampling of the same location
within or between seasons, leading to less accurate
parameter estimates. If this is the case, it would suggest
that using LTER data is ideal for making inferences
about plant physiology, and that focusing on the Fixed
GDD model is best for making inferences when USA-
NPN data are all that is available. Second, spatial varia-
tion (e.g., from local adaptation, acclimation, microcli-
mates, or plant age) in phenology requirements and
drivers could contribute to these differences (Diez et al.

2012, Zhang et al. 2017). Models built using USA-NPN
data integrate over that spatial variation, while models
built using LTER data only estimate the phenological
requirements for a specific site. In this case, USA-NPN
data would provide a better estimate of the general phe-
nological requirements of a species, but LTER datawould
provide a more accurate understanding for a single site.
The best solution to this issue would be the development
of models that accurately incorporate spatial variation,
such as including genetic variation between different pop-
ulations (Chuine and R�egni�ere 2017), although localized
models could also be generated when large-scale predic-
tions are unnecessary. Third, these differences could result
from issues with model identifiability: since different
parameter values can yield nearly identical estimates of
phenological events, parameter estimates can differ
between data sets even when the underlying processes
generating the data are the same. Information about
which of these issues may be causing the differences
between data sets can be explored using the analyses in
the current study, as will be explained below.
Despite substantial differences in parameter estimates,

LTER and USA-NPN derived models produced similar
estimates for phenological events in most cases (Fig. 3).
This greater correspondence between predictions than
parameters suggests that more complex models may have
identifiability issues. For example, two GDD models with
parameters of t1 = 1, F = 10, Tbase = 0 and t1 = 5,
F = 5, Tbase = 0 produce nearly identical estimates in
many scenarios. This possibility is supported by the fact
that the highest correlation between parameter estimates
is seen in models with only one or two parameters. In
addition, bootstrap results for more complex models sug-
gest a high degree of variability in parameter estimates
and potentially multiple local optima in fits to both
USA-NPN and LTER data (Appendix S2: Figs. S10 and
S11). Finally, parameter estimates of more complex mod-
els are also not consistent among models for the same
species when comparing multiple LTER data sets
(Appendix S2: Figs. S8 and S9). These results are consis-
tent with research showing that models failed to estimate
the starting day of warming accumulation solely from
budbreak time-series, thus producing parameter estimates
that were not biologically realistic (Chuine et al. 2016).
Basler (2016) suggests that the key component in phenol-
ogy models is the thermal forcing, with additional param-
eters being sensitive to over-fitting. Here, our simplest
model, the Fixed GDD model, which uses only a warm-
ing component, had the highest correlation among
parameters between LTER and USA-NPN data sets. In
combination with the aforementioned studies, our results
indicate that caution is warranted in interpreting parame-
ter estimates from complex phenology models regardless
of the data source used for fitting the models.
While more complex phenology models appear to

have identifiability issues, there is also evidence that they
capture useful information, beyond the Fixed GDD
model, based on their ability to make out-of-sample

TABLE 3. Attributes of the two data sets used in this study.

Parameter LTER USA-NPN

Time-series length High Low
Spatial extent Low High
Local species representation High Low
Regional/Continental species
representation

Low High

Number of observers Low High
Site fidelity High Low

Note: Bold text indicates an attribute is expected to increase
over time.
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predictions. Based on the RMSE, the GDD and Uniforc
models produce the best out-of-sample predictions for
the majority of species and phenophases at both USA-
NPN and LTER data sets (Appendix S2: Figs. S5 and
S6). This demonstrates that the more complex models
are capturing additional information about phenology,
and that some of the differences between data sets result
from differences in either the scales or the sampling of
the data. Spatial variation in phenological requirements
is known to exist in plants (Zhang et al. 2017). In combi-
nation with our results showing observed differences in
parameter estimates between LTER sites (Appendix S2:
Figs. S8 and S9), this suggests that variation in pheno-
logical requirements across the range is likely important.
However, the models that attempted to address this by
incorporating spatial variation did not yield improve-
ments over their base models in our analyses. Specifi-
cally, correspondence between parameter estimates
(Fig. 2), estimates of phenological events (Fig. 3), and
out-of-sample error rates (Fig. 4) for the MSB and M1
models were essentially the same as the Alternating and
GDD models, respectively. This lack of improvement
from incorporating spatial variation could be caused
either by models not adequately capturing the process
driving the spatial variation, the USA-NPN data set
having biases from variation in sampling effort and/or
spatial auto-correlation, or some combination of these
factors. Basler (2016) used the M1 model to predict bud-
burst for six species across Europe and found it was gen-
erally among the best models in terms of RMSE, albeit
never by more than a single day. Their result was
strengthened by having a 40-yr time-series across a large
region. Chuine and R�egni�ere (2017) listed the incorpora-
tion of spatial variation in warming requirements in
models as a primary issue in future phenology research.
Large-scale phenology data sets, like USA-NPN, will be
key in addressing this and other phenological research
needs.
In addition to exploring differences between phenology

data sets, our analyses provide guidance on which models
to use when making predictions at a local scale using
models built from large-scale data, or vice versa. Among
the eight models tested, the Uniforc and GDD models
performed the best overall in the cross data set compar-
ison in terms of Pearson correlation and RMSE
(Appendix S2: Figs. S5 and S6, Table S2). The GDD
model has one less parameter than the Uniforc model,
thus the GDD model is a suitable choice for making pre-
dictions when there is little to no information at the loca-
tion of interest (e.g., making phenology forecasts at a new
location distant from any observed data). This guidance
can vary between species, though, and model testing
should still be performed when suitable data are available.
In conclusion, our results suggest that both LTER and

USA-NPN data provide valuable information on plant
phenology. Models built using both data sources yield
effective predictions for phenological events, but param-
eter estimates from the two data sources differ and

models from each source best predict that data source’s
phenology events. The primary difference in the data sets
is spatial scale, but due to trade-offs in data collection
efforts, the larger scale USA-NPN data have shorter
time series, less site fidelity and other differences from
the intensively collected LTER data (Table 3). These dif-
ferences can be strengths or potential limitations. Obser-
vers sampling opportunistically allows the USA-NPN
data set to have a large spatial scale, but also leads to
low site fidelity, which limits the ability to measure long-
term trends at local scales (Gerst et al. 2016). Tracking
long-term trends is the major strength of LTER data,
but having a relatively small species pool limits their use
in species-level predictive modeling. Due to these differ-
ences, the best data source for making predictions
depends on the scale at which the predictions are being
made. Identifying the most effective data sources for dif-
ferent types and scales of analysis is a useful first step,
but the ultimate solution to working with diverse data
types is to focus on integrating all types of data into
analyses and forecasts (Hanks et al. 2011, Melaas et al.
2016). Our results suggest that methods that can learn
from the intensive information available in LTER data
in regions where they are available, and simultaneously
use large-scale data to capture spatial variation in phe-
nological requirements will help improve our ability to
understand and predict phenology. Data integration
efforts should also leverage data from remote sensing
sources such as the PHENOCAM network or satellite
imagery, which have both a large spatial extent and high
temporal resolution (Peng et al. 2017, Richardson et al.
2018a,b). Data integration provides the potential to use
data from many sources to produce the best opportunity
for accurate inference about, and forecasting of, the tim-
ing of biological events.
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archived on Zenodo at https://doi.org/10.5281/zenodo.1256705.

Article e02568; page 12 SHAWND. TAYLOR ET AL. Ecology, Vol. 100, No. 2

http://prism.oregonstate.edu
http://prism.oregonstate.edu
http://www.python.org
http://www.r-project.org
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=TV075
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=TV075
https://doi.org/10.5066/f78s4n1v
 https://cran.r-project.org/package=tidyr
 https://cran.r-project.org/package=tidyr
http://onlinelibrary.wiley.com/doi/10.1002/ecy.2568/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.2568/suppinfo
https://github.com/sdtaylor/phenology_dataset_study
https://doi.org/10.5281/zenodo.1256705

