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Abstract The study of the diversity of multivariate

objects shares common characteristics and goals across

disciplines, including ecology and organizational manage-

ment. Nevertheless, subject-matter experts have adopted

somewhat separate diversity concepts and analysis tech-

niques, limiting the potential for sharing and comparing

across disciplines. Moreover, while large and complex

diversity data may benefit from exploratory data analysis,

most of the existing techniques emphasize confirmatory

analysis based on statistical metrics and models. This work

aims to bridge these gaps. First, by cross comparing the

analyses of species diversity, microbial diversity, and

workgroup diversity, we introduce a framework of diver-

sity concerns aligned across the three areas. The alignment

framework is validated and refined by feedback from

subject-matter experts. Then, guided by the framework and

theoretical information visualization and visual analytics

principles (as distinguished from scientific visualization),

we propose a unified taxonomy of common analytical tasks

for exploration of diversity.

Keywords Information visualization � Species diversity �
Microbial diversity � Workgroup diversity � Multivariate

data � Visual Analytics

Introduction

Understanding diversity patterns and their causes and

consequences (processes) is one of the greatest challenges

in ecology, both at the scales of species such as plants and

animals and of microorganisms, (e.g., Gunderson 2000;

Magurran 2003; Ogunseitan 2005; Fuhrman 2009). This

problem is critical because diversity is an important factor

for the assessment of complex systems: changes in biodi-

versity may influence the stability and functioning of the

ecosystem, (e.g., McCann 2000; Ives and Carpenter 2007).

Although the problem is shared by other disciplines,

ecologists might not be fully aware of the improvements

potentially gained from understanding diversity studies in

other arenas. For instance, researchers and managers of

human organizations are concerned with diversity of work

teams, (e.g., Lau and Murnighan 1998, Harrison and Klein

2007, and Bezrukova et al. 2009).

A common approach to understanding diversity pat-

terns and processes is hypothesis-driven or confirmatory

analysis that relies on rigorous statistical metrics and tests

of data observations (Magurran 2003; Gotelli and Ellison

2004; Harrison and Klein 2007; Thatcher and Patel 2012).

These techniques may work well when hypotheses are

falsifiable and testable with reasonable metrics and tests.

Otherwise, the utility of the current approach diminishes

quickly when the number of diversity attributes under

investigation is large, multiple subsets of data are

involved, and/or hypotheses are not pre-established. Still,

indices of diversity have greatly dominated over more

direct exploration of diversity in studies of ecology and

human organizations. In addition, discipline-specific

metrics may preclude the understanding of how diversity

functions and how it could be characterized similarly

across disciplines.
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Decades ago, Whittaker (1965), Sanders (1968), and

Hurlbert (1971) suggested that in addition to diversity

indices, ecologists should gauge diversity patterns by direct

observation of data. Following this advice, visual repre-

sentations of data such as histograms and rank-abundance

plots (Whittaker 1965) have been employed to communi-

cate species variety and abundance. Nevertheless, these

techniques supported a limited number of variables, with

no interaction, and thus limited exploration capacities—

perhaps due to a lack of computational interfaces and tools

at that time. Recently, experts who study human organi-

zations have also suggested that configurations of work

team structure are important and have direct consequences

on team outcome processes (Carton and Cummings 2012).

Yet no tools exist to enable direct investigation of team

structure, besides text- or table-based assessment of data.

Recently, visual analytics, ‘‘the science of analytical

reasoning facilitated by interactive visual interfaces’’

(Thomas and Cook 2006), offers a new, and powerful aid

to the analytical reasoning of diversity patterns and pro-

cesses in complex data. By leveraging the human visual

system, visual analytics—a subfield of data visualization—

provides a visual gateway to the data, complementing

existing diversity metrics and allowing users to explore

data directly and iteratively prior to further statistical

analysis (Fig. 1). As distinguished from confirmatory

analysis which is centered around hypothesis testing, data

exploration facilitates the generation of hypotheses and

insights into the data (Tukey 1977; Andrienko and Andri-

enko 2006).

The visualization community has shown considerable

interest in interactive visualization tools for exploring

diversity in ecology and its subfield—microbial ecology.

Notably, there are tools designed to facilitate understanding

of (1) patterns of species distributions in separate attributes,

e.g., the EcoDATE tool (Pham et al. 2013), (2) structures of

microbial populations, e.g., the MicrobiVis tool (Fernstad

et al. 2011), and (3) taxonomic classification and structure,

e.g., the TaxonTree tool (Lee et al. 2004). Unfortunately,

these tools serve specific subsets of information needs that

are somewhat separated and not transferrable from one to

another. To our understanding, very little work has focused

on abstracting diversity analyses from various fields to

unified analytical tasks that target all facets of diversity in

multivariate data sets. By analytical task, we mean one or a

series of actions carried out by the target users on the data

to fulfill an information need. Analytical tasks serve as

prerequisites for designing visual-analysis tools that in turn

support those tasks (Fig. 2).

This paper identifies and answers the following two

research questions:

RQ1: How is analysis of diversity conceptualized and

aligned across the multiple fields that study it? More

Fig. 1 Proposed visual-analysis process of exploring diversity data.

Each rectangle indicates an analysis stage and each arrow indicates a

path the analyst can take to navigate the stages. This work focuses on

exploratory analysis tasks (the orange rectangle), as distinguished

from data pre-processing or hypothesis testing tasks. Image redrawn

from Pham et al. (2013)

Fig. 2 A model of visualization creation with four nested layers

introduced by Munzner (2009) (left) and its application in the context

of diversity analysis (right). This paper emphasizes the two outer

layers: (1) characterize the problem in terms of diversity concerns and

information needs (‘‘the framework’’, see ‘‘Alignment of diversity

concerns’’) and (2) abstract the concerns into a list of common

analytical tasks (‘‘the taxonomy’’, see ‘‘A unified task taxonomy for

exploratory diversity analysis’’) that can be accomplished with visual-

analysis tools

Environ Earth Sci

123



specifically, what are the fundamental scientific ques-

tions and hypotheses of interest regarding the diversity

of multivariate objects?

RQ2: Given that analysis of diversity can be aligned

across the fields (RQ1), which common analytical tasks

are particularly useful in exploring diversity data?

In answering these questions, we draw upon our lessons

from designing diversity visualizations (Pham et al. 2010,

2011, 2013, 2014) and provide two contributions: (1) an

alignment framework of diversity concerns (RQ1)—the

orange outermost layer in Fig. 2 and (2) a classification/

taxonomy of analytical tasks for exploratory analysis of

diversity (RQ2)—the yellow layer in Fig. 2. Specifically,

to answer RQ1, we review, cross compare, and align

diversity concerns across the three areas of species diver-

sity (ecology), microbial diversity (ecology/ microbiology),

and workgroup diversity (organizational management). By

concerns, we mean elements of diversity that can be con-

ceptualized in a manner that transcends the three areas and

the type of question being asked. The aim of the alignment

framework is to set up a shared understanding between

subject-matter experts and visualization researchers in

terms of common diversity-related vocabulary and design

considerations.

We also illustrate these concerns with several examples

of commonly used visualization techniques. This work

emphasizes techniques that apply to datasets where the

objects of concern are described by abstract attributes that

do not necessarily have a natural mapping to 2D or 3D

space. Thus, this work falls under the field of Information

Visualization (InfoVis) (Spence 2007) as opposed to Sci-

entific Visualization (SciVis) that tends to deal with objects

with physical properties such as surface location or density,

that map naturally to 3D space. While the two areas

increasingly overlap under the umbrella of Data Visuali-

zation (Weiskopf et al. 2006), SciVis techniques have been

adopted by many related visualization work for environ-

mental science, including visualization of geotechnical

data (Orhan and Tosun 2010), of hydrology data and

models (Rink et al. 2012; Velasco et al. 2013).

Table 1 Alignment of diversity concerns across the analyses of species diversity (ecology), microbial diversity (microbial ecology and

microbiology), and workgroup diversity (organizational management) summarized using terminology that is common to or distinct between the

disciplines

Species diversity Microbial/genomic diversity Workgroup diversity Data behavior

characterization

Typical unit of study Community (a-

diversity)

Microbe sample (a-diversity) Work team N/A

Typical Unit of Observation Individual of known

species or biomass

Operational taxonomic units with

abundance (classified from microbe

sample)

Individual person N/A

Diversity components

concerning separate

attributes

Variety and abundance Variety and abundance Variety Distributions

MetricsNiche separation – Separation

Dominance/rarity Dominance/rarity Disparity

Diversity components

concerning interactions

among attributes

Functional diversity Functional diversity Faultines/subgroups Distributions

Clusters

Metrics

Taxonomic diversity Taxonomic diversity – Distributions

Clusters

Hierarchies

Metrics

Diversity in space and time b-diversity or turnover;

c-diversity

b-diversity or turnover Between-unit diversity;

Macro-faultlines

Spatial &

Temporal

characterization

Metrics

Diversity as responder (cause

of diversity)

Landscape patterns

(climate, disturbance,

land use)

Environmental patterns or biological

patterns (human body)

Organizational factors

(e.g., culture,

recruitment)

Correlations/

Regressions

Metrics

Diversity as driver or

moderator (effect of

diversity)

Ecosystem functions

and processes

Eco or human system functions and

processes

Workgroup functions

and outcomes

Table cells marked with ‘‘–’’ indicate missing concerns that may not yet be studied in the corresponding fields. The last column suggests how the

data behavior for each of the concerns (if applicable) should be characterized
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To address RQ2, we then translate these concerns into

analytical tasks that are well defined by existing generic

task taxonomies in visual analytics (e.g., Amar et al. 2005;

Andrienko and Andrienko 2006). Simply put, while the

diversity concerns are the vocabulary of subject-matter

experts that represent their information needs and tran-

scend disciplinary boundaries, the analytical tasks are the

vocabulary of computer science, or more specifically, of

visual analytics that represent user requirements that can be

met by design of visual-analysis tools.

Our results aim to benefit various users. Subject-matter

experts can cross compare diversity concerns and scientific

findings as well as adopt analytical tasks and visualization

techniques. Further, visualization designers and researchers

have common vocabulary and abstractions for designing

and evaluating different diversity visual-analysis tools.

Finally, we are aware that the proposed framework and

taxonomy are by no means comprehensive considering the

complexity of ecological and human systems and their

interactions. Therefore, we expect this work will stimulate

further discussions regarding validation and improvement

to both the framework and the taxonomy.

Alignment of diversity concerns

To answer RQ1, we propose a framework for aligning

diversity concerns (‘‘the framework’’) across the analyses

of species diversity in ecology, microbial/genomic diver-

sity in microbial ecology, and workgroup diversity in

organizational management. By framework, we mean a set

of thoughts, theories, and approaches that are accepted by

subject-matter experts as the guiding principles for char-

acterizing the problem. The concerns of interest include (1)

characteristics of diversity data (see ‘‘Data characteris-

tics’’), (2) description of diversity patterns (see ‘‘Diversity

patterns’’), and (3) hypotheses regarding the causes and

consequences of diversity (processes) (see ‘‘Diversity

processes’’). The framework is summarized in Table 1.

Data characteristics

Ecologists typically make a distinction between two types

of phenomena concerning diversity: (1) the description of

diversity (diversity patterns) and (2) the causes and con-

sequences of diversity (diversity processes) (Magurran

2003). To understand these phenomena, a common

approach is to undertake scientific studies. Specifically,

experts collect data and make inferences about the under-

lying phenomena based on data behaviors (or data pat-

terns). Data behavior is defined as a set of inherent features

specific to a (sub)set of data observations considered as a

whole as opposed to individual observations (Andrienko

and Andrienko 2006). For instance, a data behavior may

manifest itself as notions of distributions, clusters, or

trends.

Diversity data are samples of independent observations

collected from the population of interest within one or

multiple units of study (Table 1, Rows 1 and 2). In work-

group diversity, a work team represents a typical unit of

study while an individual person represents a unit of obser-

vation (or measurement) (Harrison and Klein 2007; Thatcher

and Patel 2012). Comparatively, in species diversity, a typ-

ical unit of observation is an individual of a known species

such as animals and plants collected in a community or

assemblage (Magurran 2003). A typical unit of study of

microbial community diversity is a biological sample (i.e.,

biological specimen) that contains multiple so-called Oper-

ational Taxonomic Units (OTUs), which are a close

approximation to microbial species (as opposed to plant or

animal species) with corresponding abundances (Ogunseitan

2005; Fuhrman 2009). The identification of OTUs is per-

formed by extracting DNA from cells and then sequencing

DNA from the biological sample (Fuhrman 2009).

Each unit of observation may be characterized by mul-

tiple mix-typed and, in some cases, hierarchical charac-

teristics (attributes) necessary for gauging diversity of the

corresponding unit of study and its role in the examined

ecological or human system. For instance, a team member

may be characterized by multiple demographic and non-

demographic attributes; an individual of a known species,

whether macrobiotic or microbiotic, may be described by

multiple known characteristics, e.g., size, food type, and

physiology, and hierarchical levels of Linnaean taxonomy,

e.g., family, genus, and species. In addition, observations

can be collected in space and time (independent variables)

and associated with system process factors, e.g., team

performance or ecosystem functions. In essence, diversity

data sets are mix-typed, multivariate, and in many cases,

hierarchical, spatiotemporal, and large (up to thousands of

records/observations).

Diversity patterns

Diversity patterns are an overarching concept that includes

various and related components adopted by the three areas

of interest but usually under slightly different terms,

especially between species/microbial diversity and work-

group diversity. The components can be loosely classified

based on the ideas that (1) diversity is attribute-specific—

that is, attributes are not treated as equal and (2) one or

multiple diversity attributes can be investigated either

separately (i.e., one by one) or simultaneously (Lau and

Murnighan 1998; Magurran 2003; Harrison and Klein

2007). These two important ideas are captured in Table 1,

Rows 3 and 4 and demonstrated in this section.
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Diversity patterns concerning separate attributes

This section describes the common components of diver-

sity concerning separate attributes, demonstrates how they

are aligned across the three areas, and characterizes and

gives examples of visualizations that depict data behaviors

(Table 1, Row 3). For example, consider the investigation

of biodiversity at species level only. Species diversity (or

a-diversity) is ‘‘the variety and abundance of species in a

defined unit of study’’, as defined by Magurran (2003). This

definition emphasizes the two main components and cor-

responding metrics of richness of variety and evenness of

abundance of species (Fig. 3). Similarly but at the genomic

level, microbial community diversity also concerns variety

and abundance of microorganisms in a community. With

respect to data behaviors, in addition to diversity metrics,

richness of variety and evenness of abundance are typically

characterized by the shapes of distribution, as depicted by a

rank-abundance curve in Fig. 4.

Similar to species diversity, a widely accepted definition

of workgroup diversity in separate attributes is also cen-

tered on the generalization of diversity as distributions. The

definition is described as ‘‘the distribution of differences

among the members of a unit with respect to a common

attribute, X, such as tenure, ethnicity, conscientiousness,

task attitude, or pay’’ (Harrison and Klein 2007).

In addition, workgroup diversity is explicitly attribute-

specific. Depending on the attributes under investigation,

the experts conceptualize diversity not only as variety but

also as separation and disparity, as introduced by Harrison

and Klein (2007). Variety represents differences in kind or

category, e.g., different skill sets, and reflects information

in the unit. Separation represents differences in position or

opinion and is considered a horizontal difference between

members of a unit. For instance, different cultural values of

members represent team separation. Disparity represents

differences in concentration of valued social assets or

resources and is considered a vertical difference between

members of a unit. For example, difference in pay among

members may create disparity in a team. Disparity thus

reflects differences in possession.

While these diversity types have different names con-

ceptually, from an analysis point of view, their patterns

differ only in the shapes of the distribution of interest for

minimum, moderate, and maximum diversity (Fig. 5).

These shapes of distributions are in turn empirically asso-

ciated with different outcomes for the examined unit of

study (Harrison and Klein 2007).

Interestingly, ecologists also discuss species dominance

and niche separation, which correspond well to disparity

and separation in management if these components are

considered in separate attributes. Species dominance refers

to the degree to which a species is more numerous than

others are or makes up (or possesses) more of the biomass,

thus representing a vertical difference in makeup (as in

disparity) (Begon et al. 2005; Gobet et al. 2010, 2011).

Niche separation is the process of naturally partitioning

competing species into different patterns of resource use or

different niches so that they do not out-compete each other

(Lawlor 1980). For instance, food type of animals could be

considered as a separation attribute: carnivore (meat eater)

and herbivore (plant eater) may represent two extreme ends

of the food type spectrum; for microbes, it might be

autotrophic metabolic lifestyle compared to a heterotrophic

metabolic lifestyle.

In all, we argue that when diversity is considered in

separate attributes, the concept of species diversity matches

well with that of workgroup diversity in which team

members equate to individuals of species (or their equiv-

alents such as OTUs). These components are centered on

Fig. 3 Illustration of species richness and evenness. Each icon

represents an individual of a known species (e.g., insects). Species

richness refers to the number of different species represented in a unit

of study and species evenness concerns the degree to which the

respective species abundances are similar to one another, e.g., a

highly even distribution has equal numbers of individuals of all

represented species

Fig. 4 Rank abundance curve (with logarithmic scale) showing the

evenness of moth species in the moth dataset (Miller 2005). The

technique, which is limited to a single attribute, is a variation of the

histogram in which species are ranked from most to least abundant

and then plotted along the x-axis. ‘A’ shows the common moths, ‘B’

shows the rare moths, and ‘C’ shows the common through rare moths.

Note that ‘B’ excludes extremely rare moths because they do not

provide enough information to identify the diversity and abundance of

the respective moths. Image taken from Pham et al. (2011)
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the generalization of diversity as distributions. Further-

more, it is important that the analysts choose the correct

conceptualization, e.g. type of diversity, and apply the

appropriate data characterization, e.g. statistical metrics or

shapes of distribution. To summarize, we propose the fol-

lowing consideration for characterizing data behavior of

diversity patterns in separate attributes:

Data behavior characterization–Consideration 1.

From an analysis point of view, when diversity pat-

terns are considered in separate attributes, depend-

ing on the types of diversity under consideration, e.g.,

variety, separation, and disparity, the corresponding

data behaviors are typically characterized by the

shapes of distributions of observations in separate

attributes, in addition to summary statistics such as

diversity metrics. If time and space are involved, the

data behavior should also consider how the distri-

bution patterns and summary statistics vary over time

and space.

To demonstrate how this consideration may benefit

design of interactive visualization techniques, consider

Fig. 6, which depicts the multiple histogram representation

of the moth diversity and abundance data set supported by

the EcoDATE tool (Pham et al. 2013). Consideration 1

emphasizes the characterization of data behavior as shapes

of distributions in separate attributes. According to

information visualization design principles (Mackinlay

1986), a histogram is well suited to showing the distribu-

tion of objects within an attribute. Further, placing histo-

grams vertically side-by-side in parallel (Inselberg 2009)

aims to convey a holistic object distribution over multiple

attributes. Finally, the characterization of distributions

(Consideration 1) is further assisted by interaction features.

For instance, users can sort bins within a histogram by

abundances to form the rank-abundance curve (e.g., green

histogram LEP_NAME); annotate histograms with differ-

ent colors to distinguish attributes of different diversity

types (i.e., variety, separation, and disparity); subset data

by time (COLLECT_YEAR) or space (TRAP_ID) to see

how distribution patterns vary over time and space.

Diversity patterns concerning interactions among multiple

attributes

Diversity definitions that look at the diversity of each

attribute separately have a limitation. They do not take into

account the interaction among attributes. Consider an

example of two teams of employees that have four mem-

bers each in Table 2. While it is obvious that Team 2 is

divided into more subgroups, the current definition con-

cludes that both teams are at the same level of overall

diversity with respect to gender and age—that is, in each of

the two teams, members are uniformly distributed in both

gender and age. To address this limitation, here we discuss

Fig. 5 Illustration of the three

types of diversity within work

teams and the corresponding

shapes of distributions for the

three levels of diversity:

minimum, moderate, and

maximum. Each of the icons

represents a team member.

Examples of distribution shapes

include uniform distribution

depicting maximum variety,

bimodal distribution—

maximum separation, and

skewed distribution—maximum

disparity (third column from the

left). Image reused with

permission from Harrison and

Klein (2007). � 2007, Academy

of Management
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diversity patterns that consider interactions among multiple

attributes. In this regard, we also find parallel components

across the three areas (Table 1, Row 4). This section

describes and demonstrates how the common diversity

components can be aligned and gives examples of visual-

izations that depict the corresponding data behaviors of

interests.

Functional diversity is recognized by ecologists and

microbiologists as different roles or functions played by

species (or their equivalents) in communities and ecosys-

tems. These roles can be determined based on the com-

position of multiple functional traits such as rooting depth

and maximum growth rate of plants (Petchey and Gaston

2002). Technically, the ideas are (1) to cluster different

species (or their equivalents) present in a unit of study into

different functional groups based on composition of these

traits, (2) to derive, for example, the functional diversity

Fig. 6 The multiple histogram representation of common moths. The

visualized attributes from left to right are LEP NAME (moth scientific

name including genus and species), LEP GENUS, LEP FAMILY,

FOOD PLANT, TRAP ID, HABITAT, ELEVATION,

WATERSHED, COLLECT YEAR, COLLECT PERIOD,

TEMPERATURE. Note that LEP is short for Lepidoptera (moth). In

each of the histograms, the bars are pointing to the right (in contrast to

the familiar upward-pointing display). The structure of the moth data

set is described in Pham et al. (2011). The interactive version of the

visualization is available at http://purl.oclc.org/ecodate/commonmoth

Fig. 7 A dendrogram representation demonstrating how seven

species 1–7 are assigned to four functional groups based on

hierarchical clustering of the species across multiple functional traits.

The four functional groups include {1}, {2, 3}, {4, 5}, {6, 7}. The

dashed line indicates an arbitrary stopping condition for the clustering

process. Image reused with permission from Petchey and Gaston

(2002). Copyright � 2002, John Wiley and Sons

Table 2 Employee Diversity Example

Team 1

Female, over 50 Male, under 50

Female, over 50 Male, under 50

Team 2

Female, over 50 Male, over 50

Female, under 50 Male, under 50

Each of the two teams has four members

Environ Earth Sci
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(FD) metric (Petchey and Gaston 2002) (Fig. 7), and (3)

finally, to quantify and predict the associations between the

functional diversity metric and other system processes.

Ramette (2007) provides an in-depth review of cluster

analysis techniques for microbial diversity data.

Furthermore, species and OTUs are inherently hierar-

chical—that is, species are grouped into taxa. Therefore,

multiple traits or attributes under investigation might be

extended to taxonomic organization such as species, genus,

and family, resulting in taxonomic diversity (diversity

across taxa) and corresponding metrics such as taxonomic

distinctness (Warwick and Clarke 1998). Figure 8 illus-

trates an example of two hypothetical units of study whose

diversity levels are determined by not only species level

but also as composition of higher taxa. From an analysis

perspective, the hierarchy of different species present is the

primary data behavior of interest for taxonomic diversity.

It is important to note that functional diversity and

taxonomic diversity also concern richness of variety and

evenness of abundances within or between clusters, e.g.,

functional groups (Petchey and Gaston 2006), making the

generalization of diversity as distributions still applicable.

As an example, while the dendrogram alone in Fig. 7 does

not consider evenness of observations in each of the four

functional groups, a heatmap is commonly used along with

a dendrogram to communicate evenness of abundances as

demonstrated in Fig. 9.

Interestingly, in parallel with functional diversity in

ecology, the diversity faultlines concept in organizational

management, which is also derived from multivariate

clustering, concerns subgroups or clusters formed in a

work team based on alignment (or composition) of multiple

demographic or non-demographic characteristics of mem-

bers, as first introduced by Lau and Murnighan (1998).

Figure 10 depicts an example of how the faultlines concept

is applied to a work team. Just as ecologists studying

functional diversity, management experts are also inter-

ested in (1) structure of subgroups with respect to the

number of subgroups, evenness of subgroups, and subgroup

variety and abundance; and (2) faultlines or attributes in

which subgroups are separable or far apart from each other

(Bezrukova et al. 2009; Carton and Cummings 2012; Pham

et al. 2014). The goal is not necessarily to identify objects

that cluster together but to determine how attribute space is

divided or shared across the attributes of interest by clus-

tered subgroups. Surveys of various faultline concerns and

metrics can be found in Thatcher and Patel (2012) and

Meyer and Glenz (2013).

In all, we argue that the concept of faultlines in organi-

zational management could be matched with that of func-

tional diversity in ecology from an analysis perspective. Both

are derived from multivariate cluster analysis. Therefore,

appropriate operationalizations of the concepts in terms of

diversity metrics or data behaviors of interest could poten-

tially be exchangeable. We summarize a consideration for

characterizing data behavior of diversity patterns concerning

interactions among multiple attributes as follows:

Data behavior characterization—Consideration 2.

From an analysis point of view, when diversity pat-

terns involve interaction among multiple attributes

simultaneously, the corresponding data behaviors are

typically characterized by the shapes of distributions

of observations that are grouped into clusters across

multiple attributes, in addition to summary statistics

such as diversity metrics. The term cluster may refer a

functional group of species in an ecological unit of

study, e.g., communities, or a subgroup of people in an

organizational unit of study, e.g., work teams; clusters

may also represent different units of study under

comparison. In addition, in some cases, the data

behavior of interest is the hierarchical relationships if

the patterns of interest concern taxonomic organiza-

tion, e.g., taxonomic diversity, or hierarchical clus-

tering. If time and space are involved, the data

behavior should also consider how these distribu-

tions, clusters, and/or hierarchies as well as corre-

sponding summary statistics vary over time and space.

Fig. 8 A node-link diagram (tree) representation of two hypothetical

units of study (e.g., assemblages) with the same level of species

richness (i.e., five species represented) but different levels of

taxonomic diversity when higher taxa such as genus and family are

considered; unit of study (a) is more diverse than unit of study (b).

Image reused with permission from Magurran (2003). Copyright �
2003, John Wiley and Sons
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Figures 11 and 12 demonstrate a multiple linked stacked

histogram design (HIST) of diversity faultlines in work

teams that follow closely Consideration 2 (Pham et al.

2014). First, to depict distributions of observations across

attributes, the design reuses multiple histograms (Fig. 6).

Then, to help discern whether distributions of different

subgroups overlap or separate along an attribute space, bars

for each of the subgroups are stacked within each bin

(Fig. 12). Finally, distinct color hues on a white back-

ground are used to differentiate stacked subgroups. Fol-

lowing this design, the holistic structure of each of the

subgroups is conveyed across attributes. In addition, a total

separation of subgroups at a nominal attribute is indicated

by distinct subgroups (or distinct colors) occupying distinct

positions along the vertical axis. At a numeric or ordinal

attribute, total separation further demands that these

Fig. 9 A hybrid representation of dendrogram and heatmap used to

depict the taxonomic diversity of archaeal and bacteria phyla along

with corresponding abundances detected in several samples of a

microbial diversity study. The term phylotype refers to an OTU that

has been detected in a sample but for which there may be no microbe

cultured. Image reused with permission from Briggs et al. (2011).

Copyright � 2011, American Society for Microbiology
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distinct positions—including ones without objects (zero-

length bars)—are adjacent. The visual representation in

Fig. 11 makes it obvious that the two subgroups formed in

a group of baseball players are totally separated in all four

attributes under investigation; the team visualized in

Fig. 12 represents a less extreme example of faultline

separation in a work team: the three subgroups are sepa-

rated along several attributes but the members overlap in

other attributes.

To further show that analyses of team faultlines and

ecological functional diversity can be aligned, we also

visualize the two groups of common moths and rare moths

from the moth data set using HIST (Fig. 13). To some

extent, the two groups of moths represent two functional

groups in their respective communities. The visualization

helps reveal the possible separation between the two

groups with respect to species, genus, and family as well as

food plant: while common moths are mostly conifer-feed-

ers (i.e., gymno), rare moths are mostly hardwood and herb

feeders (Fig. 13).

Diversity processes

Thus far, we have focused on diversity patterns; however

these patterns are causally associated with other phenom-

ena in the system under investigation. This section

describes the component of diversity as cause or conse-

quence, demonstrates how these are aligned across the

Fig. 10 An example of how a faultline metric (Bezrukova et al. 2009)

is used to cluster a group of starting pitchers of an MLB team into two

subgroups (subgroup 1 and subgroup 2) based on the similarity of

group members across the attributes of interest: AGE, COUNTRY (of

origin), RACE, and MLB TENURE (in years). The table does not

clearly show how the subgroups (or clusters) are separable or far apart

across the attributes under investigation. Figure 11 depicts a multi-

variate visualization technique that addresses this issue. Data courtesy

of Katerina Bezrukova and Chester Spell

Fig. 11 Multiple linked stacked

histograms (HIST) of the group

of starting pitchers in Fig. 10. In

all four attributes of

COUNTRY, RACE, AGE, and

MLB TENURE, the two

subgroups (subgroup 1 and

subgroup 2) are totally

separated. In addition, the

design automatically computes

and draws connecting dashed

lines to reveal the holistic

separation between the two

subgroups. Image reused with

permission from Pham et al.

(2014). Copyright � 2014,

Elsevier
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Fig. 12 Multiple linked stacked

histograms (HIST) of an

example team of 18 members

clustered into three subgroups:

subgroup 1 (smallest), subgroup

2, and subgroup 3 (biggest).

Along ETHNICITY,

EDUCATION, and

EXPERIENCE, the three

subgroups occupy different

subsets of values; therefore, the

subgroups are totally separated.

Along GENDER and AGE, the

three subgroups overlap. Image

reused with permission from

Pham et al. (2014). Copyright �
2014, Elsevier

Fig. 13 Multiple linked stacked histograms (HIST) of two groups (or

clusters) of common moths and rare moths. Bar lengths are scaled

according the logarithm with base 10 because the common moths are

significantly more abundant than the rare moths. The view helps

ecologists hypothesize that the two groups may be functionally

separated in terms of species, genus, and family as well as food

plant—attribute axes 1–4 from left to right. However, the two groups

overlap in the other attributes. The structure of the moth data set is

described in Pham et al. (2011). Image reused with permission from

Pham et al. (2014). Copyright � 2014, Elsevier
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three areas, and characterizes and gives examples of

visualizations that depict data behaviors (Table 1, Rows 6

and 7).

Across the three examined areas, we can find parallels in

the roles of diversity as responder (cause), driver (effect),

or moderator (effect). For instance, ecologists refer to

positive effects of diversity such as sustainability and

resilience in an ecological system (e.g., Gunderson 2000;

Begon et al. 2005) while organizational management

experts seek innovation and flexibility, just to name a few

(e.g., Harrison and Klein 2007; Knippenberg et al. 2004;

Meyer et al. 2011). The causes of diversity in ecology are

related to climate, disturbance, and land use while in

organizational management they are organizational factors

such as culture or recruitment.

During the data exploration, there are two main

approaches to making sense of diversity processes. First,

the analyst may be able to make inferences about the

diversity processes from direct observation of diversity

patterns considering that the causal links are well under-

stood (Andrienko and Andrienko 2006; Fernstad et al.

2011; Pham et al. 2011). For example, ecologists found that

the richness of species tends to be higher in lower latitudes

than in higher latitudes (Hillebrand 2004). Second, based

on information needs of users and availability of process

data (e.g., environmental factors or performance), visual

analysis tools may support users in examining the associ-

ations between observed diversity patterns and system

processes directly via correlation and regression analyses,

before further statistical analysis. Note that regression and

correlation indicate only how or to what extent data vari-

ables are associated with each other. To make conclusions

about the causal relationships, analysists may need to

involve their domain knowledge. We introduce another

consideration for characterizing data behavior of diversity

processes as follows:

Data behavior characterization—Consideration 3.

From an analysis point of view, the data behaviors of

diversity processes are typically characterized by

how diversity patterns and system processes are

correlated, if the observed diversity patterns are

investigated as a driver or responder; or by how

diversity patterns moderate correlations between

system processes, if the observed diversity patterns

are investigated as a moderator. If time and space

are involved, the data behavior should also consider

how these correlations/regressions vary over time

and space. Note that following Consideration 1 and

2, diversity patterns and system processes may be

characterized by corresponding data behaviors, e.g.,

distributions, clusters, hierarchies, or summary sta-

tistics, e.g., diversity metrics.

To demonstrate the relevance of this consideration to

designing visual representations, we present two examples

from ecology and organizational management. According

to information visualization guidelines, scatter plots and

line charts are effective for communicating relationships

between two variables (Seo and Shneiderman 2005). In

Fig. 14, scatter plots are used to demonstrate possible

correlations between measures of species richness, func-

tional diversity, and ecosystem processes, e.g., retention of

nitrogen, total aboveground biomass. In Fig. 15, a line

chart is used to depict the role of diversity faultlines as

‘‘moderator’’. These two static examples, which are taken

from research papers, serve the primary purpose of

explaining the correlations and regressions found from

hypothesis testing. Nevertheless, the techniques, if equip-

ped with appropriate interaction features such as highlight/

select and filter/subset (Heer and Shneiderman 2012),

would be still applicable for enabling exploration of the

correlations. On a related note, in both examples, the

examined diversity patterns and system processes are

quantified by summary statistics, as opposed to more

descriptive data behaviors such as distributions or clusters,

which is demonstrated in Pham et al. (2011).

Summary of the diversity concerns

In answering the first research question RQ1, we synthesize

a variety of diversity concerns that represent information

needs aligned across the three areas into a framework.

There are two key points. First, exploratory analysis of

diversity patterns aims to reveal the descriptive structure of

multivariate objects of interest, e.g., species individuals,

team members, in units of study of interest, e.g., commu-

nities, work teams. Such structure may manifest itself in

the observed data as distributions, clusters, and/or hierar-

chies (Considerations 1 and 2). Second, exploration of

diversity processes concerns the existence of the causal

relationships between the diversity patterns and system

processes. Such relationships are typically characterized by

correlations and regressions among values of correspond-

ing data variables (Consideration 3).

Moreover, conceptualization of diversity varies with

different compositions of diversity attributes. Based on

research questions of interest and data collected, it

becomes very important that experts choose correct

diversity concerns and apply the appropriate operational-

ization such as statistical metrics or visual representations

of data behaviors such as those in Table 1, Column 5. The

process could be iterative and exploratory (Fig. 1). We

accompany each of the diversity concerns with selected

examples of appropriate visualizations. By discussing these

examples, we wish to emphasize how visualization design
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should be guided by the information needs of users that can

be abstracted into corresponding data behaviors.

Motivations for the taxonomy of analytical tasks. The

alignment framework is only the first layer in the nested

model of visualization creation process (Fig. 2). The

framework does not yet illuminate possible analysis pro-

cesses of these aligned diversity concerns. For instance,

investigation of diversity patterns typically precedes that of

diversity processes. In other scenarios, ecologists may wish

to experiment with different combinations of functional

traits and different clustering algorithms when investigating

functional diversity; management researchers may wish to

conceptualize the ‘age’ attribute as variety in one case (age

comes with experience) and as separation in other cases (age

represents generation gaps). These analytical tasks and

processes represent user requirements that can be met by

design of visual representation and interaction techniques

(the third layer in Fig. 2).

Moreover, the framework, which is expressed in the

vocabulary of the domains, e.g., richness, evenness, func-

tional diversity, faultlines, must be translated into the

vocabulary of visual analytics, e.g., characterize distribu-

tion, clusters, etc. (Fig. 2). The aim is to establish a shared

understanding between subject-matter experts and visuali-

zation researchers.

Next, to answer research question RQ2, we review

existing generic taxonomies of analytical tasks

(see ‘‘Assessment of existing generic taxonomies of ana-

lytical tasks’’) and introduce a specific task taxonomy for

diversity analysis unified across ecology and organizational

management (see ‘‘A unified task taxonomy for explor-

atory diversity analysis’’).

Assessment of existing generic taxonomies of analytical

tasks

Design of our taxonomy of analytical tasks was informed

by existing generic task taxonomies in the fields of

information visualization and visual analytics. In this

section, we assess applicability of a subset of relevant

taxonomies to diversity analysis. More thorough reviews

of existing task taxonomies can be found in Amar et al.

(2005) and Andrienko and Andrienko (2006).

To guide the design of information visualization tools,

Shneiderman (1996) proposed the now well-known visual

information seeking mantra ‘‘overview first, zoom and

Fig. 14 An example of scatter plots used to illustrate possible

relationships between species richness, functional diversity metric,

and ecosystem processes. Data points may represent unique units of

study or a unit of study repeatedly measured over time. The two rows

(a, b, c) and (d, e, f) depict how the relationship between ecosystem

process and species richness can be determined by a combination of

the relationships between ecosystem process and functional diversity

and between functional diversity and species richness. Image reused

with permission from Petchey and Gaston (2006). Copyright � 2006,

John Wiley and Sons

Fig. 15 An example of a line chart used to depict the role of diversity

faultline as ‘‘moderator’’: psychological distress of team members

was positively related to their perceived injustice in the team (the

dashed line); strong group faultlines weakened that positive relation-

ship (the solid line). Image reused with permission from Bezrukova

et al. (2010). Copyright � 2010 Wiley Periodicals, Inc
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filter, then details on demand’’ followed by a classification

of corresponding analytical tasks. The mantra and tasks are

potentially useful to guide analysis strategies. Neverthe-

less, the tasks are somewhat driven by the tool capabilities,

e.g., support of zoom and filter features, and there are no

explicit mappings between the tasks and specific informa-

tion needs in the context of diversity studies, e.g., what is

the purpose of overview or filter?

Following a different approach based on user analytical

activities when using visualization tools, Amar et al. (2005)

introduced a taxonomy of ten low-level tasks (top 10 rows

of Table 3). Applied to diversity analysis, these tasks,

while not necessarily comprehensive, are relevant as

building blocks since they aim to capture fundamental

analytical operations, e.g., filter/subset, sort, characterize

distribution. Nevertheless, to be more useful, the low-level

operations need to be coupled with specific high-level

information needs, e.g., which components of diversity

require the tasks of characterizing distributions, hierar-

chies, and/or clusters?

Our proposed taxonomy is further motivated by the

work of Andrienko and Andrienko (2006), who intro-

duced a classification of tasks strongly based on infor-

mation needs of analysts and tied closely to

spatiotemporal data. In their framework, a task is defined

as a query to find the unknown information (target) cor-

responding to the specified or known information (one or

more constraints). The target represents data behaviors of

interest such as distributions, clusters, and/or correlations

fulfilled by one or many constraints such as population,

space, and time. The classification, whose general outline

is illustrated in Fig. 16, makes a distinction between the

two classes of task: elementary tasks—which concern

individual elements of data, e.g., what is the height of a

given tree measured in a given date?, and synoptic

tasks—which involves data behaviors in a set or subset of

data as a whole, e.g., what is the shape of distribution of

moth species caught in a given date and location? Syn-

optic tasks are further classified into descriptive (e.g.,

characterize distributions) and connectional (e.g., charac-

terize correlation) tasks. Since the classification presents

high-level analytical tasks, it can potentially serve as a

generic framework for building a task taxonomy for field-

specific needs like diversity analysis.

A unified task taxonomy for exploratory diversity

analysis

While the generic task taxonomies do not necessarily

consider or readily support specific tasks in diversity ana-

lysis, they serve as a framework and building blocks for our

proposed unified task taxonomy (RQ2). In fact, our

taxonomy offers an application, combination, and exten-

sion of the taxonomy of data-centric queries by Andrienko

and Andrienko (2006) and the analytic low-level opera-

tions by Amar et al. (2005) in the context of a specific

analysis. Figure 17 outlines our proposed taxonomy.

The taxonomy can be viewed at three levels of organi-

zation (or abstraction), representing the reasoning process

of transforming information needs into knowledge and

insights via analytical tasks. An information need starts in

an abstract form of synopsis (Generic Level), then is real-

ized with specific queries on diversity patterns and pro-

cesses in the analyst’s mind (Data-Centric Level), and

finally can be achieved with low-level operations on

appropriate analysis tools (Analytic Low Level). The fol-

lowing subsections describe each of the three levels.

Generic-level tasks

At the generic and also highest level, the taxonomy con-

siders only synoptic tasks (Fig. 17, top orange level) as

opposed to both elementary and synoptic tasks as in An-

drienko and Andrienko’s framework (Andrienko and An-

drienko 2006) (Fig. 16). We made that decision based on

the understanding that diversity patterns and processes

concern behaviors of (sub)sets of observations as a whole

as opposed to individual data elements (Table 1). While

specific individual observations, for instance, rare or

extreme observations, may be of interest to researchers,

these observations are usually assessed in relation to other

(sub)sets of observations and are still considered as a

whole. Also, the value of a visualization typically lies in its

capacity to uncover patterns or behaviors in data as a

whole. Investigation of individual observations may be

better served by raw tables coupled with database queries.

Data-centric queries

Decomposed from synoptic tasks, data-centric queries

(Fig. 17, middle green level) encompass specific informa-

tion needs regarding building, detecting, or comparing

diversity patterns and processes as presented in the align-

ment framework (Table 1). To some extent, patterns and

processes match the descriptive and connectional tasks in

Andrienko and Andrienko’s framework (Andrienko and

Andrienko 2006) (Fig. 16). At this level, we also adopt

their definition of task as query, which consists of two

parts: one target (unknown information) and one or many

constraints (known information).

Diversity patterns. These queries aim to gain knowledge

into diversity patterns. The main objective is to charac-

terize data behaviors (targets) as distributions, hierarchies,

clusters, or summary statistics, following the three
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considerations. The primary constraint is population, which

is represented by collected samples of independent obser-

vations characterized by multiple attributes. In addition,

data samples could be collected in the context of space and

time, two additional secondary constraints. For example,

information needs regarding functional diversity in ecology

as well as faultlines in organizational management may

involve building, detecting, or comparing distributions of

clusters of data observations (targets) collected from a

specific population—and in some cases—in space and time

(constraints) (Consideration 2, see ‘‘Diversity patterns

concerning interactions among multiple attributes’’).

Diversity processes. These queries examine the scientifi-

cally meaningful relationships between diversity patterns

and system processes. Diversity patterns can play multiple

roles in such causal relationships: diversity as driver, as

responder, and/or as moderator (Table 1). These roles are

characterized by the correlation between data behaviors of

diversity patterns/metrics and of system processes. As an

example, in ecology, as the name suggests, functional

diversity, which is often characterized by statistical metrics

or distribution of functional groups, is directly correlated

with various ecosystem processes (Petchey and Gaston

2002). During exploratory analysis, the queries on diversity

patterns usually serve as prerequisites for understanding

diversity processes. This kind of ‘‘workflow’’ is represented

as horizontal dashed arrows in the task taxonomy (Fig. 17).

Fig. 16 General outline of the classification of analytical tasks

proposed by Andrienko and Andrienko (2006). Image redrawn from

Andrienko and Andrienko (2006)

Table 3 Ten low-level analytical tasks by Amar et al. (2005) followed by the three additional tasks of Characterize Hierarchy, Annotate, and Fit

Models/Metrics. The tasks are described in the context of diversity analysis

Task Description Example

Retrieve value Given a set of observations, find attributes of those observations What is the tenure of a given player in a given

baseball team (Fig. 10)?

Filter/subset Given some concrete conditions on attribute values, find observations

satisfying those conditions

What are the moth observations collected in

HJA Forest in 2008?

Compute

derived value/

Metric

Given a set of observations, compute an aggregate numeric representation of

those observation

What is the faultline level of a given team

(Fig. 10)?

Find extremum Find data observations possessing an extreme value of an attribute over its

range within the data set

What is the moth species with highest

abundance (Fig. 4)?

Sort Given a set of observations, rank them according to some ordinal metric Sort the moth species observations by

abundances (Fig. 4)

Determine

range

Given a set of observations and an attribute of interest, find the span of

values within the set

What is the age range of members in a given

team (Fig. 11)?

Characterize

distribution

Given a set of observations and an attribute of interest, describe the

distribution of that attributes values over the set

What is the tenure distribution of members in

given team (Fig. 11)?

Find anomalies Identify any anomalies within a given set of observations with respect to a

given relationship or expectation, e.g., statistical outliers

Are there any rare moth species (Fig. 4)?

Characterize

clusters

Given a set of observations and multiple attributes of interest, find clusters

of similar attribute values

Are there functional groups of trees with

similar traits (Fig. 7)?

Correlate Given a set of observations and two attributes, determine useful

relationships between the values of those attributes

Is there a correlation between species richness,

functional diversity, and ecosystem processes

(Fig. 14)?

Characterize

hierarchy

Given a set of data observations and hierarchy-based attributes, describe the

hierarchical classification of the set over the attributes

What is the hierarchy of species in a unit of

study (Fig. 8)?

Annotate Note or distinguish among attributes or observations based on their common

or user-defined characteristics

Annotate ’age’ attribute as variety or as

separation

Fit models/

metrics

Given a set of observations, fit a statistical or computational model to those

observations—usually in the forms of visual indicators such as lines or

colors

Fit a specific distribution curve to the data (i.e.,

dash line on the data histogram)
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Low-level analytical operations

Data-centric queries in the analyst’s mind are finally real-

ized with low-level operations to be fulfilled by visual-

analysis tools (Fig. 17, bottom blue level). All Amar

et al.’s operations (Amar et al. 2005) described in Table 3

are relevant to diversity analysis. Note that secondary

operations can be combined to accomplish a primary

operation, which is denoted as bold texts in Fig. 17. For

instance, characterizing distribution of a data subset may

require filtering data first, and then sorting the data.

The ten original operations Amar et al. (2005) are not

comprehensive. Guided by the alignment framework of

diversity concerns, we introduce three additional low-level

operations: Characterize Hierarchy, Annotate, and Fit

Models/Metrics (Table 3). Hierarchy characterization is

required when users inspect taxonomic diversity of species

(or their equivalents) (Consideration 2, see ‘‘Diversity pat-

terns concerning interactions among multiple attributes’’).

Annotation is useful when analysts wish to note or distin-

guish among attributes or observations based on their

common or user-defined characteristics (Consideration 1,

see ‘‘Diversity patterns concerning separate attributes’’).

For example, management researchers may wish to annotate

the ‘age’ attribute as variety in one case and as separation in

other cases. Fitting Models/Metrics represents a scenario in

which analysts, given a set of observations, may want to fit a

statistical or computational model to those observations—

usually in the forms of visual indicators. For example, they

may want to fit a straight line to a set of observations in a

scatter plot to represent linear correlation (Fig. 15); they

may want to see some visual indicator to represent separa-

tion among clusters of observations (Figs. 11, 12).

Summary of the task taxonomy

Guided by the alignment framework and existing generic

task taxonomies, our proposed taxonomy aims to capture all

possible queries and operations in the process of exploring

diversity data. The reasoning process of the analyst may

start with high-level queries on scientific phenomena such

as ‘‘what are the functional diversity patterns?’’, followed

by low-level analytical operations such as ‘‘characterize

clusters of the observed data’’. The data behavior charac-

terization in turn enables the analyst to understand and make

inferences about the underlying scientific phenomena.

Understanding the reasoning process as well as the specific

queries and operations on diversity data is a critical

requirement for the design of visual-analysis tools.

Discussion

This work presents the first cross-disciplinary synthesis

study targeting exploratory analysis of diversity. Our study

provides two contributions: (1) understanding of the

diversity concerns aligned across the analyses of macrobi-

otic species, microbial taxa, and workgroup diversity (RQ1)

and (2) a unified taxonomy of analytical tasks guiding the

design of visual-analysis tools to address these concerns

Fig. 17 Proposed task

taxonomy for exploratory

analysis of diversity organized

at three levels of abstractions:

(1) Generic Tasks, (2) Data-

centric Queries, and (3) Low-

level Analytical Operations.

Vertical solid arrows represent

how the tasks in an upper level

can be mapped to one or many

tasks in a lower level.

Horizontal dashed arrows

suggest the workflow between

tasks within the same level
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(RQ2). Here we extend our discussion on (1) validation and

refinement of the alignment framework with subject-matter

experts, (2) limitations and future work, and (3) implica-

tions for diversity studies and design of visualizations.

Formative evaluation of the alignment framework

with subject-matter experts

Feedback from experts is critical to ensure the alignment

framework fulfills its intended purpose of characterizing

the diversity analysis problem (RQ1). Our formative

evaluation of the framework consists of two phases: (1) a

pilot phase with our two domain expert collaborators and

(2) a survey study with other external experts. To stimulate

our discussion, we adopt the following feedback criteria

(Ahn et al. 2013) (Table 4): comprehensiveness, ease of

use, precision, usefulness, discoverability, and alignability

of the framework.

Pilot feedback. In developing the alignment framework, we

have set up multiple face-to-face and email discussions

between two visualization researchers and two domain

expert collaborators, who co-author this paper: one ecolo-

gist and one microbiologist/microbial ecologist. The aims

are to understand their information needs and to collect

feedback on early thoughts on the framework before a full

survey study.

Our ecologist (Jones) was instrumental in helping vali-

date the analysis of species diversity as well as refine the

overall framework vocabulary and presentation. Discussing

the framework’s comprehensiveness, she pointed out niche

separation and dominance in ecology as potentially parallel

concepts to separation and disparity in organizational

management, respectively. With regards to the usefulness

criterion, she requested compelling examples to demon-

strate the operationalizations of diversity concepts as well

as their alignment across the three areas. We responded

with examples of visualization and introduced the three

considerations for data behavior characterization. Interest-

ingly, after seeing how multiple stacked histograms are

used to communicate subgroups and faultlines in organi-

zational management (Fig. 11), the ecologist immediately

requested the same chart for comparison of the structure of

different groups of moths from the moth data set (Fig. 13).

We take that request as a positive sign that the framework

helped the ecologist discover new diversity concerns she

had not thought of, such as separation between clusters of

observations or functional groups.

The discussions with our microbiologist/microbial

ecologist (Colwell) suggested that between microbial

diversity and macrobiotic species diversity, while there are

some parallels in analysis approach, there also exist

distinctions in information needs and characteristics of

diversity data. Specifically, microbial diversity analysis

emphasizes exploration of genomic information to identify

previously unknown microorganisms and ultimately, to

understand their functionality. The classification is usually

performed in the data pre-processing stage (Fig. 1), using

DNA extracting and sequencing (Sogin et al. 2006; Fuhr-

man 2009). Microbial genomic information is often rich in

terms of representative OTUs but can be limited in terms of

the number of biological samples and the number of

attributes (e.g., spatial and temporal) because in many

conditions such as subsurface environments, sampling

remains a challenge. However, surface microbial commu-

nities such as in soils, waters, humans, and animals can be

sampled much more frequently as in the MicrobiVis

example (Fernstad et al. 2011). In addition, the costs of

genomic analyses have decreased dramatically, making it

possible to analyze more samples. On the other hand,

species diversity deals with already known species and

their well-understood characteristics, e.g., taxonomic clas-

sification, food types, habitats, so its analysis emphasis is

really on the diversity patterns of multiple observations and

their causes and consequences, providing that ecologists

have access to larger number of observations and other

environmental factors.

In all, our microbiologist assessed that the alignment

framework was useful for cross-comparison of diversity

studies. It helped him discover new diversity concerns such

as diversity faultlines and corresponding techniques such as

multiple stacked histograms. It is also encouraging to hear

his comment that the future of microbiology would benefit

from a similar species diversity analysis, and essentially

from the alignment framework, providing that microor-

ganisms are well classified and more data replicates are

available. He also recommended related work on microbial

diversity that we reference in this work.

Table 4 Criteria and corresponding questions for validation and

refinement of the alignment framework of diversity concerns

Feedback Criterion Question

Comprehensiveness Are any concerns missing from the framework?

Ease of use Is the framework easy to understand?

Precision Does the framework describe precisely the

concerns and the corresponding data

behaviors?

Usefulness Can the framework be used by experts to

organize and cross compare their studies?

Discoverability Does the framework help experts discover new

concerns they had not thought of?

Alignability Would the experts think concerns could be

aligned across the three fields of interest?

The criteria are adopted from Ahn et al. (2013)
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Survey study with other experts. After the pilot phase, we

further evaluated the framework in a survey study involv-

ing nine domain experts whose expertise was in species

diversity (four), both species and microbial diversity (one),

and workgroup diversity (four). All of them, who authored

published research work cited in this paper, volunteered to

participate in the survey in response to our emails soliciting

their feedback. They answered the survey after reading a

technical report presenting the framework.

The evaluation survey consisted of six Likert-style

statements (Table 4), in which the experts were asked to

indicate their level of agreement on a scale of one

(Strongly Disagree) to five (Strongly Agree), and two

open-ended questions: (1) if you disagree with any of the

above statements, please explain your reason and (2) please

comment on any aspects concerning the framework or the

technical report.

The survey results were encouraging (Fig. 18). Most of

the experts strongly agreed or agreed on the framework’s

comprehensiveness (seven out of nine), ease of use (six),

precision (seven), usefulness (seven), discoverability (six),

and alignability (seven). Several experts expressed their

enthusiasm for the work, especially its novelty, necessity,

and timeliness: ‘‘I really like how you bring together three

so different disciplines in the first cross-disciplinary syn-

thesis study about diversity’’;. ‘‘It’s [the framework]

looking great! I’m so happy that you’re tackling this

challenge—it’s sorely needed’’; and ‘‘The subject is also

very timely’’.

Nevertheless, some experts also pointed out several

limitations of the work. With respect to comprehensiveness

of the framework, one mentioned the lack of diversity

components concerning data acquisition and pre-process-

ing, which we elaborate in the next subsection. Com-

menting on the role of visual exploration in diversity

analysis, one expressed concern about the issue with post-

hoc analysis—that is, the use of visualization to look for

patterns that were not specified a priori. We respond to that

comment that visual exploration, which is only part of a

larger analysis process (Fig. 1), may prompt further

statistical tests (that take into account post hoc analysis) or

graphical inference tests (Wickham et al. 2010), additional

data collection, and experiments. We also argue that tra-

ditional statistical tests may not be able to uncover unex-

pected data behaviors such as shapes of distribution,

outliers, or separation of clusters of interest to diversity

analysis. Complementing statistics, visualizations are par-

ticularly effective for those tasks.

In addition to critical comments, the experts also offered

suggestions for improvement. One pointed out related

domains that may share common diversity analysis such as

community detection among social networks and addi-

tional analysis techniques such as Bayesian approaches for

workgroup data. Several of them suggested other related

work as well as minor changes for the terms used in

Table 1, such as correlation vs. regression and taxonomy

vs. ontology vs. typology. We considered them carefully,

followed up with the corresponding experts via email if

necessary, and incorporated them into the framework.

Finally, in addition to the interaction with domain

experts, this manuscript draws upon our lessons from

designing and evaluating diversity visualizations (Pham

et al. 2010, 2011, 2013, 2014). Our previous publications

describe and discuss our in-depth and long-term interdis-

ciplinary collaboration processes in more detail.

Limitations and future work

This work emphasizes the exploration stage of the analysis

process (i.e., hypothesis generation), following data

acquisition and pre-processing stages and preceding further

hypothesis testing, as illustrated in Fig. 1. Other stages may

involve additional diversity concerns and corresponding

analytical tasks. For example, microbe samples could be

pre-classified into OTUs at different taxonomic levels using

the Ribosomal Database Project (RDP) (Cole et al. 2009)

and the process could benefit from dedicated analytical

tasks such as dimensionality reduction using principal

component analysis (PCA) and Nonmetric multidimen-

sional scaling (NMDS) (Ramette 2007). In another

Fig. 18 Boxplot of responses

from nine domain-experts to

each of the six Likert-style

feedback criteria/statements

(Table 4). The experts were

asked to indicate their level of

agreement on a scale of 1

(Strongly Disagree) to 5

(Strongly Agree)
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example, data acquisition (or sampling) plays a critical role

because it affects diversity patterns and processes. Species

richness, for instance, tends to increase when the number of

samples increases (Magurran 2003). The dependence of

species richness on sample size can be revealed by dedi-

cated analytical tasks such as constructing and comparing

species accumulation curves or rarefaction curves (Ma-

gurran 2003). Extending this work beyond the exploration

stage deserves deeper investigation in future work.

To keep our proposed taxonomy concise, we excluded

analytical tasks necessary for collaborative exploration. For

instance, analysts may wish to keep track of their findings

and share their findings with other users (Pham et al. 2013).

These tasks are generic and relevant to almost all scientific

analysis workflows (Heer and Agrawala 2008).

Our literature review examines only three areas, ecol-

ogy, microbiology, and organizational management

because understanding diversity patterns and processes are

fundamental problems in these areas (Gunderson 2000;

Magurran 2003; Ogunseitan 2005; Fuhrman 2009; Lau and

Murnighan 1998; Harrison and Klein 2007; Bezrukova

et al. 2009). Additionally, the three areas cover the diver-

sity of multivariate objects at three encompassing scales:

microbial taxa (ecology/microbiology), species (ecology),

and human beings (organizational management). Finally,

although adopting somewhat separate vocabularies, inter-

estingly, the three areas share many common characteris-

tics and analysis goals as synthesized throughout this

paper.

However, diversity represents itself in many other fields.

For example, chemists consider the similarity/diversity of

molecular models in exploring the multitude of designs

generated by simulation (Izrailev and Agrafiotis 2004);

scholars study language diversity in order to understand

societies (Nettle 1998). All of these fields are advancing

and new findings and analysis techniques may prompt

revision of the framework and the taxonomy. Alternatively,

we may have to create new ones for specific fields.

Implications for diversity studies

The alignment framework aims to support experts in

adopting new diversity concerns within their own field of

expertise or across fields. In addition to the examples

presented in ‘‘Alignment of diversity concerns’’, we dis-

cuss several other usage scenarios here.

The first scenario demonstrates how the three types of

diversity as variety, separation, and disparity in separate

attributes could be extended to interaction among multiple

attributes (Table 1, Rows 3 and 4). In fact, depending on

the types of attribute under investigation, experts studying

workgroups already conceptualize variety-based, separa-

tion-based, and disparity-based faultlines and subgroups, as

introduced by Carton and Cummings (2012). For example,

composition of disparity attributes such as pay, rank, and

decision power may form disparity-based faultlines and

subgroups in a team (Carton and Cummings 2012). The

same conceptualization might be applied to functional

diversity in ecology, depending on the types of examined

functional traits. For example, composition of resource-

based functional traits for plants such as nutrient con-

sumption, tree density, body size could create disparity-

based functional groups in the examined unit of study.

The second usage scenario extends our discussion on the

alignability between diversity faultlines in organizational

management and functional diversity in ecology. Across the

two areas, it would be informative to cross compare sta-

tistical metrics (Petchey and Gaston 2002, 2006; Thatcher

and Patel 2012) and visual representations. For example,

while the faultline metric used in the baseball data (Fig. 10)

does not involve a hierarchy of clusters (Bezrukova et al.

2009), hierarchical clustering algorithms such as the FD

metric in ecology (Petchey and Gaston 2002) could

potentially be adopted and vice versa. Other modern cluster

algorithms from the field of data mining such as Affinity

Propagation (Frey and Dueck 2007) could be potentially

utilized. Further, configuration of attribute weighting is

another unique feature of diversity faultlines potentially

applicable to ecological functional diversity. For example,

management researchers studying the impact of faultlines

in workgroups may ask how many years of age difference

between team members should be considered as equally

important as a difference in gender or ethnicity (Thatcher

et al. 2003). Ecologists studying functional diversity may

adopt similar configuration of the relative importance of

functional traits (Petchey and Gaston 2006), depending on

the corresponding system processes of interest.

The third usage scenario discusses the missing compo-

nent of taxonomic diversity in workgroup diversity

(Table 1). To our understanding, experts studying work-

groups have not yet examined hierarchical classification of

attributes. That missing link may suggest a potential

research direction. For example, functional expertise of

team members is potentially hierarchical (e.g., ecology and

microbiology majors are closely related since they are

classified under life sciences) and the hierarchical infor-

mation can be taken into account during investigation of

faultlines and subgroups.

Implications for the design of visualization

Use of the alignment framework and the task taxonomy

also has implications for the design of visualizations.

Specifically, it provides visualization designers and

researchers with a common vocabulary and considerations

for designing and evaluating different visual-analysis tools
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targeting diversity data. We expect a set of base visuali-

zation techniques and tools for illuminating various com-

ponents of diversity and providing new ways of looking at

data across fields.

Typical visual representations. Following the three con-

siderations and examples of visualization presented in the

Alignment Framework Section, Table 5 is a useful list of

typical visual representations that are well-suited to com-

municating the data behaviors of interest concerning

diversity. The techniques, which by no means represent an

exhaustive list, are suggested based on the understanding of

their pros and cons from the field of information visuali-

zation (Pham et al. 2010, 2011, 2014). This classification

would serve as a useful reference for visualization

designers targeting specific diversity concerns. A thorough

survey of various existing visualization techniques for

general purpose can be found in Keim (2002).

This tabulation (Table 5) could be extended to include

techniques targeting diversity in space and time. Recall that

the three considerations suggest that if time and space are

involved, the techniques should support users to explore

how the data behaviors of interest (e.g., summary statistics,

distributions, clusters, and/or hierarchies) vary over time

and space. To communicate spatial distributions or clusters

in univariate data, a geographical map with an additional

encoding (e.g., a heat map) is widely used. However,

visualizing data behaviors of multivariate data on a map

remains a challenge. Potential solutions include overlaying

other representations on a geographical map or alterna-

tively, presenting geographical maps and other represen-

tations in separate windows connected by interactions

(Andrienko and Andrienko 2006). On the other hand, to

convey how the data behaviors of interest vary over time,

one possible solution is to employ multiple snapshots of

visual representations—for example, multiple histo-

grams—one for each time point. Alternatively, animation

of visualization states over time may potentially be useful.

Andrienko and Andrienko (2006) present a thorough

investigation of exploratory analysis of spatial and tem-

poral data in their book.

Assessment of existing visual-analysis tools. In addition

to guiding the invention of future visualizations, the three

data behavior characterization considerations (see ‘‘Diver-

sity patterns and Diversity processes’’) could be used to

assess existing techniques and tools. For example, consider

the MicrobiVis tool (Fernstad et al. 2011), which employed

parallel coordinate plot (PCP)—among other techniques—

to convey the separation between two groups of microbial

samples across multiple OTUs (Fig. 19). PCP is well suited

to make the data observations visible as well as to convey

the correlation between two neighboring attribute axes

(Inselberg 2009) (Table 5). However, we argue that the

choice of PCP does not support Consideration 2—PCP is

Table 5 Data behaviors of interest to diversity analysis and corresponding typical visual representations

Data Behavior Examples of Diversity

Concern

Data

Characteristics

Typical visual representations (with example citations)

Distributions Variety and abundance in

separate attributes

Univariate Boxplot (Tukey 1977)

Histogram (Magurran 2003)

Stacked Bar Chart (Caporaso et al. 2010)

Rank-abundance Curve (Whittaker 1965; Magurran 2003)

Cumulative Frequency Curve (Magurran 2003)

Multivariate 2D Scatter plot and its variants (2D Heatmap, Fluctuation Diagram)

Multiples of univariate representations, e.g., Boxplot (Tukey 1977), Histogram,

Scatter plot matrix (Cleveland and McGill 1984), Diversity Map (Pham et al.

2011)

Distributions

? clusters

Functional diversity;

Subgroups/ Faultlines

Bivariate Scatter Plot (Sedlmair et al. 2012)

Mosaic Plot (Hartigan and Kleiner 1981)

Multivariate Multiple Stacked Histograms (Pham et al. 2014)

Scatter Plot Matrix (Pham et al. 2014)

Distributions

? hierarchies

Taxonomic Diversity

(Richness?Evenness)

Multivariate Treemap (Shneiderman 1992; Horn et al. 2009)

Sunburst, Icicle (Stasko and Zhang 2000)

Hierarchies Taxonomic diversity

(Richness)

Multivariate Node-link diagram and its variants, e.g., Tree (Lee et al. 2004), Dendrogram

(Briggs et al. 2011)

Correlations Processes of diversity Bivariate Scatter plot or line chart (Petchey and Gaston 2006; Bezrukova et al. 2010)

Multivariate Scatter plot matrix (Cleveland and McGill 1984)

Parallel coordinates (Inselberg 2009; Fernstad et al. 2011)

Parallel sets (Kosara et al. 2006)
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not effective in supporting users in comparing the distri-

butions and separation of clusters across multiple attributes

(Pham et al. 2014). Fundamentally, a more effective design

should start with synotic tasks in mind, as opposed to

elementary tasks. Figure 20 presents an alternative design

in which stacked histograms are selectively overlaid along

the axes to convey the distribution of clusters as well as

separation among clusters across the attributes of interest.

Conclusions

Ecologists are increasingly concerned about changes in

diversity patterns of species communities and how they

influence ecosystem functioning and stability. However,

ecologists may not be aware of statistical and visual ana-

lysis techniques in other fields, such as organizational

management, that may help improve their own under-

standing. Reciprocally, understanding concerns and ana-

lysis techniques of diversity in ecosystems may widen the

perspectives of researchers who study diversity in human

organizations. Aiming to connect that missing link, this

interdisciplinary work abstracts diversity concerns across

the analyses of species diversity, microbial diversity, and

workgroup diversity in an alignment framework and offers

an operationalization of these concerns in terms of data

behaviors of interest and common analytical tasks. Subject-

matter experts and tool designers may take advantage of

this work to find a common ground for the diversity ana-

lysis problem. We expect this work will help guide the

evaluation and refinement of existing visualization tech-

niques as well as the invention of future ones. We also

anticipate further discussions regarding validation and

amendment to both the alignment framework and the uni-

fied task taxonomy.
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Gobet A, Böer SI, Huse SM, van Beusekom JE, Quince C, Sogin ML,

Boetius A, Ramette A (2011) Diversity and dynamics of rare and

of resident bacterial populations in coastal sands. ISME J

6(3):542–553

Gobet A, Quince C, Ramette A (2010) Multivariate cutoff level

analysis (multicola) of large community data sets. Nucl Acids

Res 38(15):e155

Gotelli N, Ellison A (2004) A primer of ecological statistics. Sinauer

Associates, Sunderland

Gunderson LH (2000), Ecological resilience-in theory and applica-

tion. Ann Rev Ecol Systemat pp 425–439

Harrison DA, Klein KJ (2007) What’s the difference? Diversity

constructs as separation, variety, or disparity in organizations.

Acad Manag Rev 32(4):1199–1228

Hartigan JA, Kleiner B (1981) Mosaics for contingency tables. Proc

Interf 1981:268–273

Heer J, Agrawala M (2008) Design considerations for collaborative

visual analytics. Inf Visual 7(1):49–62

Heer J, Shneiderman B (2012) Interactive dynamics for visual

analysis. ACM Queue 10(2):30

Hillebrand H (2004) On the generality of the latitudinal diversity

gradient. Amer Nat 163(2):192–211

Horn MS, Tobiasz M, Shen C (2009) Visualizing biodiversity with

voronoi treemaps. In: Sixth international symposium on Voronoi

diagrams (ISVD’09). IEEE, pp 265–270

Hurlbert SH (1971) The nonconcept of species diversity: a critique

and alternative parameters. Ecology 52(4):577–586

Inselberg A (2009) Parallel coordinates: visual multidimensional

geometry and its applications. Springer, Berlin

Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems.

Science 317(5834):58–62

Izrailev S, Agrafiotis DK (2004) A method for quantifying and

visualizing the diversity of QSAR models. J Mol Graph Model

22(4):275–284

Keim DA (2002) Information visualization and visual data mining.

IEEE Trans Visual Comput Graph 8(1):1–8

Kosara R, Bendix F, Hauser H (2006) Parallel sets: interactive

exploration and visual analysis of categorical data. IEEE Trans

Visual Comput Graph 12(4):558–568

Lau DC, Murnighan JK (1998) Demographic diversity and faultlines:

the compositional dynamics of organizational groups. Acad

Manag Rev 23(2):325–340

Lawlor LR (1980) Overlap, similarity, and competition coefficients.

Ecology, pp 245–251

Lee B, Parr CS, Campbell D, Bederson BB (2004) How users interact

with biodiversity information using taxontree. In: Proceedings of

the working conference on Advanced visual interfaces. ACM,

New York, pp 320–327

Mackinlay J (1986) Automating the design of graphical presentations

of relational information. ACM Trans Graph (TOG)

5(2):110–141

Magurran AE (2003) Measuring biological diversity. Wiley-Black-

well, New York

McCann KS (2000) The diversity–stability debate. Nature

405(6783):228–233

Meyer B, Glenz A (2013) Team faultline measures a computational

comparison and a new approach to multiple subgroups. Organ

Res Meth 16(3):393–424

Meyer B, Shemla M, Schermuly CC (2011) Social category salience

moderates the effect of diversity faultlines on information

elaboration. Small Group Res 42(3):257–282

Miller J (2005) Spatial and temporal distribution and abundance of

moths in the Andrews experimental forest. http://andrewsforest.

oregonstate.edu/data/abstract.cfm?dbcode=SA015

Munzner T (2009) A nested model for visualization design and

validation. IEEE Trans Visual Comput Graph 15(6):921–928

Nettle D (1998) Explaining global patterns of language diversity.

J Anthropol Archaeol 17(4):354–374

Ogunseitan O (2005) Microbial diversity: form and function in

prokaryotes. Blackwell Publishing, UK

Orhan A, Tosun H (2010) Visualization of geotechnical data by

means of geographic information system: a case study in

eskisehir city (nw turkey). Environ Earth Sci 61(3):455–465

Petchey OL, Gaston KJ (2002) Functional diversity (FD), species

richness and community composition. Ecol Lett 5(3):402–411

Petchey OL, Gaston KJ (2006) Functional diversity: back to basics

and looking forward. Ecol Lett 9(6):741–758

Pham T, Hess R, Ju C, Zhang E, Metoyer R (2010) Visualization of

diversity in large multivariate data sets. IEEE Trans Visual

Comput Graph 16(6):1053–1062

Pham T, Highland S, Metoyer R, Henshaw D, Miller J, Jones J (2011)

Interactive visualization of spatial and temporal patterns of

diversity and abundance in ecological data. In: Proceedings of

Environmental Information Management. Publisher of Univer-

sity of California, California, pp 104–110

Pham T, Jones J, Metoyer R, Swanson F, Pabst R (2013) Interactive

visual analysis promotes exploration of long-term ecological

data. Ecosphere 4(9). doi:10.1890/ES13-00121.1

Pham T, Metoyer R, Bezrukova K, Spell C (2014) Visualization of

cluster structure and separation in multivariate mixed data: A

case study of diversity faultlines in work teams. Comput Graph

38(2014):117–130

Environ Earth Sci

123

http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=SA015
http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=SA015
http://dx.doi.org/10.1890/ES13-00121.1


Ramette A (2007) Multivariate analyses in microbial ecology. FEMS

Microbiol Ecol 62(2):142–160

Rink K, Kalbacher T, Kolditz O (2012) Visual data exploration for

hydrological analysis. Environ Earth Sci 65(5):1395–1403

Sanders HL (1968) Marine benthic diversity: a comparative study.

American Naturalist, USA

Sedlmair M, Tatu A, Munzner T, Tory M (2012) A taxonomy of

visual cluster separation factors. Comput Graph Forum

31(3pt4):1335–1344

Seo J, Shneiderman B (2005) A rank-by-feature framework for

interactive exploration of multidimensional data. Info Visual

4(2):96–113

Shneiderman B (1992) Tree visualization with tree-maps: 2D space-

filling approach. ACM Trans Graph (TOG) 11(1):92–99

Shneiderman B (1996) The eyes have it: a task by data type taxonomy

for information visualizations. In: Proceedings of Symposium on

Visual Languages. IEEE, pp 336–343

Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR,

Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea

and the underexplored ‘‘rare biosphere’’. In: Proceedings of the

National Academy of Sciences 103(32): 12,115–12,120

Spence R (2007) Information visualization: design for interaction.

Prentice Hall, New Jersey

Stasko J, Zhang E (2000) Focus?context display and navigation

techniques for enhancing radial, space-filling hierarchy visual-

izations. In: IEEE symposium on information visualization

(InfoVis 2000). IEEE, pp 57–65

Thatcher SM, Jehn KA, Zanutto E (2003) Cracks in diversity

research: the effects of diversity faultlines on conflict and

performance. Group Dec Negot 12(3):217–241

Thatcher SM, Patel PC (2012) Group faultlines a review, integration,

and guide to future research. J Manag 38(4):969–1009

Thomas JJ, Cook KA (2006) A visual analytics agenda. IEEE Comput

Graph Appl 26(1):10–13

Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Boston

Van Knippenberg D, De Dreu CK, Homan AC et al (2004) Work

group diversity and group performance: an integrative model and

research agenda. J Appl Psychol 89(6):1008–1022
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