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[1] We investigated scaling of conservative solute transport using temporal moment
analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams
located on five continents. The experiments span 7 orders of magnitude in discharge
(10�3 to 103 m3/s), span 5 orders of magnitude in longitudinal scale (101 to 105 m), and
sample different lotic environments—forested headwater streams, hyporheic zones, desert
streams, major rivers, and an urban manmade channel. Our meta-analysis of these data
reveals that the coefficient of skewness is constant over time (CSK ¼ 1:1860:08,
R2 > 0:98). In contrast, the CSK of all commonly used solute transport models decreases
over time. This shows that current theory is inconsistent with experimental data and
suggests that a revised theory of solute transport is needed. Our meta-analysis also shows
that the variance (second normalized central moment) is correlated with the mean travel
time (R2 > 0:86), and the third normalized central moment and the product of the first two
are very strongly correlated (R2 > 0:96). These correlations were applied in four different
streams to predict transport based on the transient storage and the aggregated dead zone
models, and two probability distributions (Gumbel and log normal).
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1. Introduction

[2] Two of the most challenging problems in surface
hydrology are scaling and predicting solute transport in
streams [Young and Wallis, 1993; Jobson, 1997; Wörman,
2000; O’Connor et al., 2010]. We must resolve these chal-
lenges to wisely manage water resources because there is a
need to understand controls on stream ecosystems at local,
regional, and continental scales, and because we need to
predict transport in environments and conditions that do
not have supporting tracer test data.

[3] Quantitative representations of hydrobiogeochemical
processes are based on mathematical and numerical simpli-
fications. Each simplification, the need to parameterize and
integrate spatial and temporal processes, and the limitation
of available observations to constrain models introduce
structural errors and uncertainty in the predictions derived
from such models [Beven, 1993; Wagener et al., 2004]. On
the other hand, the transferability of empirical relationships
from intensely instrumented catchments (mainly located
in developed countries) to ungauged catchments relies
on the similarity of hydrobiogeochemical characteristics

[Sivapalan, 2003], thus limiting their practical application
in regions where they are more needed.

[4] Solute transport and nutrient processing have been
analyzed from different modeling perspectives, i.e., physi-
cally based, stochastic [Botter et al., 2010; Cvetkovic et al.,
2012] and data-based mechanistic approaches [Young and
Wallis, 1993; Young 1998; Ratto et al., 2007]. Although
these approaches have increased our awareness about key
compartments and hydrologic conditions that exert impor-
tant influence on biogeochemical processes, i.e., identifica-
tion of hot spots and hot moments [McClain et al., 2003],
there is not yet a unified approach that has proven success-
ful to scale and predict solute transport and nutrient
processing.

[5] In the last three decades, research on solute transport
and nutrient processing has revealed complex interactions
between landscape and stream ecosystems, and attempts to
scale and predict these processes have been limited by the
difficulty of measuring and extrapolating hydrodynamic
and geomorphic characteristics [Scordo and Moore, 2009;
O’Connor and Harvey, 2008; O’Connor et al., 2010], and
by the qualitatively confusing analyses derived from poorly
constrained parametric interpretations of model-based
approaches. A literature review presented hereafter (chron-
ologically organized) shows contradictory evidence about
the relationship between transient storage (TS) [Bencala
and Walters, 1983; Beer and Young, 1983], the theory
most frequently used to explain solute transport and in-
stream processing. Valett et al. [1996] found a strong corre-
lation (R2 ¼ 0:77) between TS and NO3 retention in three
first-order streams in New Mexico. Mulholland et al.
[1997] found larger PO4 uptake rates in a stream with
higher TS, when they compared two forested streams.
Mart�ı et al. [1997] found no correlation between NH3
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uptake length and As=A (TS to main channel sizing ratio) in
a desert stream. Hall et al. [2002] found a very weak corre-
lation (R2 ¼ 0:14� 0:35) between TS parameters and NH4

demand in Hubbard Brook streams. In the 11 stream LINX-
I data set, Webster et al. [2003] found no statistically sig-
nificant relationship between NH4 uptake and TS. Thomas
et al. [2003] showed that TS accounted for 44%–49% of
NO3 retention measured by 15N in a small headwater
stream in North Carolina. Niyogi et al. [2004] did not find
significant correlations among soluble reactive phospho-
rous (P-SRP) and NO3 uptake velocities, and TS parame-
ters. Ensign and Doyle [2005] found an increase of As=A
and uptake velocities for NH4 and PO4, after the addition
of flow baffles to the streams studied. Ryan et al. [2007]
found strong relationships in two urban streams between P-
SRP retention and TS when the variables were measured at
different regimes in the same stream. Lautz and Siegel
[2007] found a modest correlation (R2 ¼ 0:44) between
NO3 retention efficiency and TS in the Red Canyon Creek
watershed (WY). Bukaveckas [2007] reported an indefinite
relationship between TS and NO3 and P-SRP retention
efficiencies. Lastly, the LINX-II data set from 15N-NO3

injections in 72 streams showed no relationship between
NO3 uptake and TS [Hall et al., 2009].

[6] One factor that might contribute to the absence of
strong relationships between TS and nutrient processing
is the use of metrics that obscure the importance of TS
across study sites (see discussions by Runkel [2002,
2007]). Also, it has become apparent that there are
important limitations to identifying TS parameters with
current techniques [Wagener et al., 2002; Schmid, 2003;
Camacho and Gonz�alez-Pinz�on, 2008], i.e., multiple sets
of parameters might represent field observations ‘‘equally
well’’ [Beven and Binley, 1992], and choosing a unique
set of parameters to describe the behavior of a system
might lead to misinterpretations of their physical meaning
(if any), especially when those parameter sets are used to
compare streams from different ecosystems and/or hydro-
logic conditions.

[7] In spite of the observed complexity of solute
transport processes in streams, it is surprising that sys-
tems governed by physical processes that are considered
‘‘well understood’’ and by reasonably predictable bio-
chemical interactions behave so unpredictably when
combined. More robust methods are required to decon-
volve signal imprints of solute transport and nutrient
processing, thus allowing the development and imple-
mentation of improved decision-making approaches for
stream management.

[8] In this paper, we investigated the existence of tempo-
ral patterns that can be used to scale and predict solute
transport processes using an extensive database of tracer
experiments that span 7 orders of magnitude in discharge, 5
orders of magnitude in longitudinal scale, and sample dif-
ferent lotic environments on five continents–forested head-
water streams, hyporheic zones, desert streams, major
rivers, and an urban manmade channel. From this meta-
analysis, which is only implicitly dependent on hydrogeo-
morphic characteristics, we have proposed an approach to
perform uncertainty analysis on solute transport processes
and discussed some inconsistencies of the classic solute
transport theory.

2. Methodology

2.1. Temporal Moments From Time Series

[9] We investigated conservative solute transport using
temporal moments of the histories of multiple conservative
tracer tests. Our analysis is based on an Eulerian approach,
where the time series have been collected at different fixed
spatial locations in each stream. Temporal moments have
been widely used in the study of solute transport and bio-
chemical transformations. Das et al. [2002] and Govindar-
aju and Das [2007] presented an extensive review of the
theory and applications of temporal moment analysis to
study the fate of conservative and reactive solutes.
Recently, Leube et al. [2012] discussed the efficiency and
accuracy of using temporal moments for the physically
based model reduction of hydrogeological problems.

[10] Moments of distributions are commonly expressed as
measures of central tendency. The nth absolute moment
(also referred to as the nth raw moment or nth moment about
0), �n, of a concentration time series, C tð Þ, is defined as

�n ¼
Z1
0

tnC tð Þdt ð1Þ

[11] The nth normalized absolute moment (also referred
to as the nth normalized raw moment or nth normalized
moment about 0), ��n, is defined as

��n ¼
�n

�0

ð2Þ

and the nth normalized central moment (also referred to as the
nth normalized moment about the mean), mn, is defined as

mn ¼
1

�0

Z1
0

t � ��1
� �n

C tð Þdt ð3Þ

mn ¼
Xn

i¼0

n
i

� �
��n�i ���1

� �
i ð4Þ

where i is an index. Note that (4) is an inverse binomial
transform that can be easily used to calculate the normal-
ized central moments of order 1 (mean travel time), 2 (var-
iance), and 3 (skewness) :

m1 ¼ ��1
m2 ¼ ��2 � ��12

m3 ¼ ��3 � 3��1�
�
2 þ 2��1

3
ð5Þ

[12] Temporal moments are also related to residence
time distributions and transfer functions of linear dynamic
systems [Jury and Roth, 1990; Sardin et al., 1991]. Aris
[1958] developed a method to compute the theoretical tem-
poral moments of linear functions, thus allowing the use of
experimental temporal moments (i.e., those estimated from
observed time series) to estimate the parameters of linear
dynamic models, i.e.,

�n ¼ �1ð Þnlim s!0
dn

dsn
C x; sð Þ
� �� 	

ð6Þ

where C x; sð Þ is the Laplace transform of C x; tð Þ and x is the
longitudinal distance in one-dimensional approximations.

[13] Theoretical temporal moments for most solute trans-
port models have been estimated for different types of
boundary conditions. A few examples of the progress on
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this topic are the development of temporal moment-
generating equations to model transport and mass transfer
[Harvey and Gorelick, 1995; Luo et al., 2008], and the
calculation of temporal moments for the TS model
[Czernuszenko and Rowinski, 1997; Schmid, 2002], equi-
librium and nonequilibrium sorption models [Goltz and
Roberts, 1987; Cunningham and Roberts, 1998], the aggre-
gated dead zone model [Lees et al., 2000], and the metabol-
ically active TS model [Argerich et al., 2011].

[14] Matching (or equating) experimental and theoretical
temporal moments is a useful technique to parameterize lin-
ear models [Nash, 1959]. The advantages of using experi-
mental moments to match theoretical moments come with
the challenge to completely recover the tracer experiment
signals, as it has been shown that truncation errors affect the
estimation of higher-order temporal moments. Using experi-
mental data, Das et al. [2002] and Govindaraju and Das
[2007] showed that when the error in mass recovery is 16%,
the errors in absolute nth moments can be as high as approxi-
mately nþ 1ð Þ � 16% for n ¼ 0 through n ¼ 4. This problem
is related to the early cutoff of data measurement or the lack
of instrumental resolution to detect low concentrations of
tracers, and is not related to the apparent incomplete mass re-
covery due to dilution effects (e.g., groundwater contribu-
tions). Note that correcting the observed breakthrough curves
(BTCs) uniformly (with a steady-state gain factor) for dilu-
tion only affects the magnitude of the absolute moments but
does not modify the magnitude of the normalized absolute
moments or that of the normalized central moments.

2.2. Experimental Database

[15] We created a database that includes 384 concentration
time series, or BTCs, from 98 conservative tracer experiments
conducted in 44 streams under different quasi-steady hydro-
logic conditions (10�3 to 103 m3/s), different experimental
conditions (BTCs observed from 101 to 105 m downstream
the injection point), and different types of lotic environments
(Table 1). We grouped the database by the orders of magni-
tude of discharge (Table 2) to facilitate the analysis and pre-
sentation of the statistical regressions in Figures 1 and 2. All
BTCs were zeroed to background concentrations and cor-
rected by discharge changes during the experiments as speci-
fied in the references or recorded in experimental notes.

3. Results and Discussion

3.1. Statistical Relationships Derived From Temporal
Moment Analysis

[16] Information regarding longitudinal mixing and
exchange processes can be found in the normalized central
moments (moments about the mean). Figure 1a shows that
the variance scales in a nonlinear (non-Fickian) form with
the mean travel time. If dispersion processes in streams were
Fickian, the regression presented in Figure 1a would have a
slope of �1.0, still preserving a scatter pattern that would be
associated with the magnitudes of the dispersion coefficient
for each experiment (i.e., different intercepts). Non-Fickian
dispersion processes have been widely observed in stream
ecosystems [e.g., Fischer, 1967; Nordin and Sabol, 1974;
Nordin and Troutman, 1980; Bencala and Walters, 1983,
and references therein], and in heterogeneous porous media
[e.g., Rao et al., 1980; Haggerty and Gorelick, 1995; Dentz
and Tartakovsky, 2006]. A non-Fickian behavior is, broadly

defined, the result of the presence of multiscale heterogene-
ities that cannot be integrated into a singular dispersion coef-
ficient [Neuman and Tartakovsky, 2009]. To date, several
approaches have been proposed to better represent non-
Fickian transport, which are largely based on the conceptual-
ization of TS processes and/or the definition of smaller rep-
resentative elementary volumes, where local homogeneities
can be integrated in space and time.

[17] We also correlated m3 versus m2 and m3 versus
f m1;m2ð Þ. Figure 2a suggests that solute transport data
have a small range in their coefficient of skewness (CSK ,
equation (7)). The coefficient of skewness is a measure of
asymmetry, i.e., when CSK ¼ 0 the data is perfectly sym-
metrical (no tailing), but it is known that solute transport
experiences tailing effects due to surface and hyporheic
TS, regardless of the type of stream ecosystem. For the 98
tracer tests (384 BTCs), CSK ¼ 1:1860:08 (95% confi-
dence bounds). In Figure 2b, we show that the product m1 �
m2 is a quasi-linear estimator of m3 (R2 ¼ 0:96). This
result, although not representing a predefined statistical
descriptor on its own, will be later used to define objective
functions for predictive solute transport models (see section
3.3.). Not unexpectedly, based on the results from Figure 1,
m1 is a much weaker predictor of the ratio m3=m2

(R2 ¼ 0:66, results not shown), suggesting that a satisfac-
tory bottom-up estimation of normalized central moments
is restricted to one level at most.

CSK ¼ m3

m2ð Þ3=2 ; ln ðm3Þ ¼
3

2
ln ðm2Þ þ ln ðCSK Þ ð7Þ

3.2. Observed Scale Invariance in Streams and Solute
Transport Models

[18] Nordin and Sabol [1974] first reported observations
revealing persistent skewness (longitudinally) from Eulerian
observations of solute transport time distributions. Nordin
and Troutman [1980] investigated the performance of the
Fickian-type diffusion equation (advection dispersion equa-
tion (ADE)), and the inclusion of dead zone processes (i.e.,
TS model (TSM)) to account for the persistence of skew-
ness, concluding that ‘‘ . . . the observed data deviate consis-
tently from the theory in that the skewness of the observed
concentration distributions decreases much more slowly
than the Fickian theory predicts,’’ and that although the
inclusion of dead zones ‘‘ . . . yields a theoretical skewness
coefficient [CSK ] considerably larger than that given by the
ordinary Fickian diffusion equation,’’ ‘‘ . . . the skewness of
the observed concentrations does not appear to be decreasing
as rapidly as the theory predicts.’’ The skewness of BTCs
also do not begin with values as high as those predicted by
the TSM (cf. Nordin and Troutman, 1980, Figure 3).

[19] The work by van Mazijk [2002] reported that tracer
experiments conducted to develop the River Rhine alarm
model also showed time distributions with persistent
CSK along the extensive reach studied (100 km < L
< 1000 km; Q ¼ 1170m3=s; cf. van Mazijk, 2002,
Figure 6), i.e., 0:93 � CSK � 1:24. These observations
justified the use of the Chatwin-approximation (Edgeworth
series) [Chatwin, 1980] to predict solute concentrations in
space and time, by fixing CSK ¼ 1 for the whole river.
Further tracer experiments in the River Rhine
(Q ¼ 663m3=s;Q ¼ 1820m3=s) supported the existence of a
persistent CSK [van Mazijk and Veling, 2005].
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[20] Schmid [2002] investigated the conditions under
which the TSM could represent the persistence of skew-
ness in solute transport processes. Schmid [2002] exam-
ined the case of a slug injection into a uniform channel
and concluded that a small parametric region (a loop
right bounded by As=A < 0:008; cf. Schmid [2002, Fig-
ure 1]) could generate a nondecreasing CSK . However,
this condition was hypothetical and does not play a
major role in practice. Such conditions, if they exist,
would be logically inconsistent because tailing effects
would be inversely proportional to TS. Schmid [2002]
also examined a more general scenario with a time-

varying concentration distribution as an upstream bound-
ary condition, the division of long reaches into hydrauli-
cally uniform subreaches and a routing procedure to link
temporal moments at both ends of the subreaches. This
analysis suggested that ‘‘ . . . the TS model has the poten-
tial to explain persistent or growing temporal skewness
coefficients, if applied to a sequence of subreaches with
respective parameter sets different from each other.’’
However, predicting solute transport meeting these con-
ditions is rather impractical.

[21] If a transport theory is to be capable of scaling and
predicting solute transport processes, it will have a

Table 1. Conservative Solute Transport Databasea

Stream
Reach

Length (km)
Discharge

(m3/s)
State, Country,

(Continentb) References

Canal Molinos 0.2 0.2–0.4 Colombia (SA) As referenced by Gonz�alez-Pinz�on [2008]
Quebrada Lej�ıa 0.3 0.1–0.5 Colombia (SA)
Subachoque 1 0.3–0.4 0.2–1.3 Colombia (SA) Gonz�alez-Pinz�on [2008] and Camacho and Gonz�alez-

Pinz�on [2008]Subachoque 2 0.1–0.2 0.3–1.9 Colombia (SA)
Teusac�a 1 0.1–0.2 0.3–0.4 Colombia (SA)
Teusac�a 2 0.3–0.4 0.2–1.4 Colombia (SA)
Rio Magdalena 36–207 1200–1390 Colombia (SA) Torres-Quintero et al. [2006]

Shaver’s Cr. 0.1–0.4 0.2 PA, USA (NA) Unpublished data

Cherry Cr. 0.7–1.3 0.2 WY, USA (NA) Briggs et al. [2013]

Oak Cr. 0.04–0.3 0.02 OR, USA (NA) Experiments conducted during the Ph.D.
dissertation of the first author.Fuirosos 1 0.2–0.3 0.01 Spain (EU)

Fuirosos 2 0.2–0.3 0.01 Spain (EU)

Antietam Cr. 2.6–67 1.2–12.7 MD, USA (NA)

As referenced by Nordin and Sabol [1974, Appendix A].

Monocacy River 7.5–34 12.7–22.1 MD, USA (NA)
Conococheague Cr. 4.4–34 2.6–30.6 MD, USA (NA)
Chattahoochee River 10.5–104 108–180 GA, USA (NA)
Salt Cr. 9.3–52 2.5–4.1 NE, USA (NA)
Difficult Run 0.6–2 0.9–1.1 VA, USA (NA)
Bear Cr. 1.1–10.9 10.2–10.5 CO, USA (NA)
Little Piney Cr. 0.6–7.3 1.4–1.6 MO, USA (NA)
Bayou Anacoco 11–38 2.0–2.7 LA, USA (NA)
Comite River 6.8–79 0.8–1.0 LA, USA (NA)
Bayou Bartholomew 3.2–117 4.1–8.1 LA, USA (NA)
Amite River 10–148 5.7–8.9 LA, USA (NA)
Tickfau River 6.4–50 2.0–2.9 LA, USA (NA)
Tangipahoa River 8.2–94 3.5–18.7 LA, USA (NA)
Red River 5.7–199 108–249 LA, USA (NA)
Sabine River 7.9–209 127–433 LA, USA (NA)
Sabine River 17–121 0.7–9.5 TX, USA (NA)
Mississippi River 35–294 1495–6824 LA, USA (NA)
Wind/Bighorn River 9.1–181 55–255 WY, USA (NA)
Copper Cr. 0.2–8.4 1.0–8.7 VA, USA (NA)
Clinch River 0.7–6.6 5.7–110 VA, USA (NA)
Powell River 1.0–7.1 3.9–4.1 TN, USA (NA)
Coachella Canal 0.3–5.5 25.4–26.9 CA, USA (NA)
Missouri River 66–227 883–977 IA, USA (NA)

WS1 0.02–0.3 1 l/s–0.06 OR, USA (NA) Gooseff et al. [2003, 2005];
Haggerty et al. [2002], unpublishedWS3 0.04–0.7 1 l/s–0.03 OR, USA (NA)

Lookout Cr. 0.2–0.4 0.3 OR, USA (NA) Gooseff et al. [2003]

Huey Cr. 0.5–1.0 0.1 AN Runkel et al. [1998]

Swamp Oak Cr. 0.1–0.3 0.1 AUS Lamontagne and Cook [2007]

Clackamas River 9.3 36.8 OR, USA (NA) Lee [1995]

Uvas Cr. 0.04–0.4 0.01 CA, USA (NA) Bencala and Walters [1983]

River Mimram 0.1–0.2 0.3 UK (EU) Lees et al. [2000]

aA total of 98 tracer experiments with 384 BTCs were used in this meta-analysis.
bSA: South America; NA: North America; EU: Europe; AUS: Australia; AN: Antarctica.
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persistent and statistically constant CSK . Our observations
of CSK being statistically constant for widely different
hydrodynamic conditions suggest that CSK is not only per-
sistent for a given stream (with distance traveled down-
stream), but can also be used to scale and predict solute
transport processes across ecosystems. At a minimum, a
persistent value of CSK is a test that a theory of solute
transport must pass.

[22] We used the theoretical temporal moments of three
models commonly used for the analysis of in-stream solute
transport (ADE, TSM, and the aggregated dead zone model
(ADZM)) to calculate their theoretical CSK . If these
models were systematically capable of representing the

Figure 1. Meta-analysis (n¼ 384 BTCs) of conservative solute transport experiments in streams dem-
onstrates the general occurrence of non-Fickian dispersion processes. (a) The growth rate of the variance
is nonlinear (therefore non-Fickian) with respect to the mean travel time; the thick dashed line represents
the slope pattern of Fickian dispersion. (b) Skewness as a function of the mean travel time. Coefficients
were fitted with 95% confidence bounds. Thin dashed lines represent 95% prediction bounds.

Table 2. Conservative Solute Transport Database Grouped by the
Orders of Magnitude of Dischargea

Discharge
Group Q Gr.

Discharge Order
of Magnitude (m3/s)

Number of
Experiments

1 10�3 19
2 10�2 37
3 10�1 68
4 100 131
5 101 59
6 102 53
7 103 17

aThe regressions presented in Figures 1 and 2 were labeled as described
hereafter.
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scale-invariant patterns observed in our meta-analysis, the
parameters would be self-consistent when describing CSK .
The model equations and the theoretical temporal moments
and CSKs (calculated for an impulse-type boundary condi-
tion, e.g., Cunningham and Roberts [1998]) are shown
below, along with the consequences of the invariance of
CSK on the model parameters. We also included in our
analysis (see section 3.2.4) three additional transport mod-
els less commonly used to describe solute transport in
streams, but that have been used in groundwater systems.

3.2.1. Advection Dispersion Equation
[23] dC

dt
¼ �Q

A

dC

dx
þ D

d2C

dx2
ð8Þ

m1 ¼ �
m2 ¼ 2�2=Pe

m3 ¼ 12�3=Pe2

CSK ADE ¼ 3
ffiffiffi
2
p

=
ffiffiffiffiffiffi
Pe
p

ð9Þ

Figure 2. (a) Meta-analysis (n¼ 384 BTCs) of conservative solute transport experiments from con-
trasting stream ecosystems suggests that the coefficient of skewness holds statistically constant. Fitted
coefficients defined CSK ¼ 1:1860:08. (b) The factor [m1m2] is a quasi-linear estimator of m3. How-
ever, using m1 to define the ratio [m3=m2] yields an R2 ¼ 0:66, showing that a satisfactory bottom-up
estimation of normalized central moments is restricted to one level, at most. Coefficients were fitted with
95% confidence bounds. Thin dashed lines represent 95% prediction bounds.
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where C [ML�3] is the concentration of the solute in the main
channel; Q [L3T�1] the discharge; A [L2] the cross-sectional
area of the main channel; D [LT�2] the dispersion coefficient;

x [L] the reach length; t [T] time; � ¼ x=u [T] is the conserv-
ative mean travel time; Pe ¼ xu=D the Peclet number; and
u ¼ Q=A the mean velocity in the main channel [LT�1].

Figure 3. Predicted results using empirical relationships derived from normalized central moment
meta-analysis (n¼ 384 BTCs) and the moment-matching technique for the TSM. The known variables
were L, Q and m1est:, and all others were predicted from 1000 Monte Carlo simulations. The effects of
uncertainty in estimating m1 (i.e., m1est: ¼ ’m1obs:, with ’ ¼ 0:8� 1:2½ �), the parameters of the TSM
and the fitting coefficients from our meta-analysis are shown as uncertainty bounds. (a) River Brock,
(b) River Conder, (c) River Dunsop, and (d) River Ou Beck. Experimental observations from Young and
Wallis [1993]. The best parameter sets from the simulations are presented in Table 3. Goodness of fit
was estimated with the Nash–Sutcliffe model efficiency coefficient (E).

Table 3. Best Parameter Sets From 1000 Monte Carlo Simulations Using Empirical Relationships Derived From Normalized Central
Moment Meta-Analysis (n¼ 384 BTCs) and the Moment-Matching Techniquea

River

TSM ADZM

Q (m3/s) L (m) D (m2/s) � � � 105 (s�1) E �ADZ (s) E

Brock 4.5 3 10�1 128 2.33 1.31 3 10�2 9.77 0.96 218.01 0.98
Conder 1.0 116 2.20 8.12 3 10�3 8.08 0.99 151.95 0.97
Dunsop 5.4 3 10�1 130 1.33 1.45 3 10�2 7.89 0.98 332.55 1.00
Ou Beck 3.5 3 10�2 127 0.67 4.40 3 10�3 8.92 1.00 135.95 0.76

aStudy case of four rivers located in the United Kingdom [Young and Wallis, 1993; pp. 160–165]. Goodness of fit was estimated with the Nash–Sut-
cliffe model efficiency coefficient (E).
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[24] Equation (9) suggests that if CSK ADE is constant,
the Peclet number should also be constant. This implies
that, under steady-state flow conditions, the dispersion
coefficient must scale linearly with the distance traveled.
This violates the assumption of spatially uniform coeffi-
cients. Therefore, the ADE with spatially uniform coeffi-
cients is incapable of representing the experimental
observations. Dispersion coefficients scaling with distance
have been widely observed in porous media [e.g., Pickens
and Grisak, 1981; Silliman and Simpson, 1987, Pachepsky
et al., 2000, and references therein]. Note that the ADE
with constant coefficients predicts BTCs with longitudi-
nally decreasing skewness (CSK ADE � x�1=2), becoming
asymptotically Gaussian (i.e., CSK ADE x!1ð Þ ¼ 0).
3.2.2. Transient Storage Model

[25] @C

@t
¼ �Q

A

@C

@x
þ D

@2C

@x2
� As

A
�2 C � Csð Þ ð10aÞ

@Cs

@t
¼ �2 C � Csð Þ ð10bÞ

m1 ¼ � 1þ �ð Þ

m2 ¼
2 1þ �ð Þ2�2

Pe
þ 2��

�2

m3 ¼
12 1þ �ð Þ3�3

Pe2
þ 12�2� 1þ �ð Þ

�2Pe
þ 6��

�2ð Þ2

CSK TSM ¼
3� Pe2� þ 2�2�Pe� 1þ �ð Þ þ 2�2

2�2 1þ �ð Þ3
� �

ffiffiffi
2
p

�2
2Pe2

��

�2
þ 1þ �ð Þ2�2

Pe

 !3=2

ð11Þ

where Cs [ML�3] is the concentration of the solute in the
storage zone; As [L2] is the cross-sectional area of the stor-
age zone; �2 [T�1] is the mass-exchange rate coefficient
between the main channel and the storage zone; and
� ¼ As=A. Other variables are as defined for the ADE. The
TSM in equation (10a) is the same presented by Bencala
and Walters [1983] and Runkel [1998] for a reach without
lateral inputs, with a slightly different definition of
�2 ¼ �=�. Note that CSK TSM ¼ CSK ADE when � ¼ 0.

[26] If dispersion effects were assumed negligible [e.g.,
Wörman, 2000; Schmid, 2002], CSK TSM in equation (11)
would simplify to

CSK TSM : D¼0ð Þ ¼
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2��
p ¼ 3ffiffiffiffiffiffiffiffi

2��
p ð12Þ

[27] Using the CSK value found in our meta-analysis,
the mean residence time in the storage zones (ts ¼ 1=�2)
normalized by � scale linearly with travel time (�), i.e.,

ts

�
¼ � 2

9
CSKð Þ2 ) ts

�
	 �

3:2360:4ð Þ ð13Þ

[28] Equations (11) and (12) suggest that the standard
TSM generates BTCs with longitudinally decreasing
skewness (CSK TSM � x�1=2), becoming asymptotically
Gaussian (i.e., CSK TSM x!1ð Þ ¼ 0). The physical meaning
of the parameters describing CSK TSM ¼ constant is
unclear unless dispersion is assumed negligible (D ¼ 0). In

this case, equation (13) suggests that the TSM model
parameters are not independent and that their ratio grows
with distance traveled. This analysis supports the results of
other studies showing problems of equifinality for the TSM
[e.g., Wagner and Harvey, 1997; Wagener et al., 2002;
Camacho and Gonz�alez-Pinz�on, 2008; C. Kelleher et al.,
Stream characteristics govern the importance of transient
storage processes, submitted to Water Resources Research,
2012]. Equations (11) and (13) suggest that the physical
meaning of the TSM parameters is limited, and that rela-
tionships between TSM parameters and biogeochemical
processing may be site dependent (as was discussed in
section 1) or even experiment dependent.
3.2.3. Aggregated Dead Zone Model

[29] dC

dt
¼ 1

Tr
Cu t � �ADZð Þ � C tð Þ½ � ð14Þ

m1 ¼ n �ADZ þ Trð Þ
m2 ¼ nTr

2

m3 ¼ 2nTr
3

CSK ADZM ¼ 2=
ffiffiffi
n
p

ð15Þ

where Tr [T] is the lumped ADZ residence time parameter
representing the component of the overall reach travel time
associated with dispersion; Cu [ML�3] is the known con-
centration at the input or upstream location; and �ADZ [T]
is the time delay describing solute advection due to bulk
flow movement.

[30] Equation (14) describes the mass balance of an
imperfectly mixed system (ADZ representative volume),
where a solute undergoes pure advection, followed by dis-
persion in a lumped active mixing volume [Lees et al.,
2000]. In the ADZM, the distance x implicitly appears in
the model description through the time parameters. Note
that when n ¼ 1, the mean travel time (m1) could be written
as m1 ¼ x=u. In equation (15), the parameter n represents
the number of identical ADZ elements serially connected
(n ¼ 1 for a single ADZ representative volume) to route
the upstream boundary condition. The serial ADZM,
although capable of representing a persistent CSK , would
require the specification of the nonphysical parameter n.
More complex ADZM structures can be defined under the
database mechanistic approach [e.g., Young, 1998], but we
restricted our discussion to those that have been more com-
monly used in stream solute transport modeling [Young
and Wallis, 1993; Lees et al., 2000; Camacho and
Gonz�alez-Pinz�on, 2008; Romanowicz et al., 2013].
3.2.4. Alternative Solute Transport Models

[31] Similar sets of calculations also show that the multi-
rate mass transfer (MRMT) model [Haggerty and Gorelick,
1995; Haggerty et al., 2002] (Appendix A) and a
decoupled continuous time random walk (dCTRW) model
[e.g., Dentz and Berkowitz, 2003; Dentz et al., 2004;
Boano et al., 2007] (Appendix B) are equally incompatible
with observations of persistent skewness. The CSK in both
of these models also scales as CSK � x�1=2.

[32] We also explored a L�evy-flight dynamics model
(LFDM) (Appendix C) [e.g., Shlesingerm et al., 1982;
Pachepsky et al., 1997, 2000; Sokolov, 2000], which
describes the motion of particles behaving similarly to
Brownian motion, but allowing occasional clusters of large
jumps (significant deviations from the mean). L�evy-flight
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models have constant transition times, combined with tran-
sition length distributions that are characterized by power-
law behaviors for large distances. Therefore, such models
represent processes characterized by large velocities for
long transitions and low velocities for short transitions, and
would account for transport in the continuum of river and
storage, with the high velocities present in the stream. We
were able to generate an LDFM with persistent CSK for a
L�evy distribution parameter � ¼ 1 (this � is different
from the mass-exchange rate coefficient used in the TSM
and MRMT model, (cf. (C2) and (C31)). However, � ¼ 1
gives an inconsistent scaling of the variance with distance,
i.e., m2 � x2 (cf. (C25)). Furthermore, this distribution
parameter would imply a velocity distribution in the stream
that scales as p uð Þ � u�2 at large velocities, which does not
appear realistic.
3.2.5. Remarks on Existent Solute Transport Models

[33] To preserve CSK , the parameters in the solute
transport models, including common versions of the
CTRW and MRMT, must change with travel distance.
Solute transport parameters therefore have some degree of
scale dependence (and arbitrariness) imposed by the con-
stant CSK . Furthermore, these parameters have scaling
patterns that are unrelated to anything that can currently be
measured in the field. These inconsistencies might be
because (1) the common solute transport models and
assumptions are partly incorrect or (2) we (the stream
research community) have collected erroneous observa-
tions for decades. The latter condition is possible, but is not
likely the explanation for a problem that has been observed
across so many data sets. The worst-case scenario in our
meta-analysis is that all BTCs were truncated prematurely,
due to lack of instrument sensitivity or other reasons. How-
ever, this would generate BTCs with larger CSK and
would contradict the asymptotic behavior shown for CSK
in the transport models discussed above. Consequently, we
suspect that our models do not correctly represent one or
more aspects of solute transport processes from the field.

3.3. Use of Moments Scaling Properties to Predict
Solute Transport

[34] While the models contain an error that needs
correction, it may be possible (in the meantime) to
adjust the parameters in a way that is predictive of
field behavior. In this section, we use the regressions
from the temporal moment analysis (section 3.1.) to
predict solute transport. We provide the parameteriza-
tion of the TSM, ADZM, and two probability distribu-
tions. We then provide an example using data from
tracer experiments that were conducted in the River
Brock, River Conder, River Dunsop, and River Ou
Beck in the United Kingdom [Young and Wallis, 1993,
pp. 160–165]. The first three rivers are natural, and
River Ou Beck is a concrete urban channel.

[35] The methodology requires an independent estima-
tion of the mean travel time (m1). One way to do this is to
regress m1 against discharge (Q) using a power law or an
inverse relationship in Q [Young and Wallis, 1993; Wallis
et al., 1989; Pilgrim, 1977; Calkins and Dunne, 1970].
Once m1 is estimated, the results from our temporal
moment analysis can be used to constrain predictive (for-
ward) simulations of solute transport models. We exem-

plify this methodology using the experiments by Young
and Wallis [1993], which were not used in the previous
moment analysis, because they show the technique to esti-
mate mean travel times from discharge.
3.3.1. Predicted Solute Transport With Classic Solute
Transport Models

[36] The parameters of solute transport models can be
determined by matching theoretical and experimental
moments. Here, we show how the empirical scaling rela-
tionships described in section 3.1 can be used to direct the
search of the parameters of the TSM and the ADZM in pre-
dictive simulations.
3.3.1.1. Predicted Solute Transport With TSM

[37] We used the empirical relationships derived for m3

versus m2 and m3 versus f m1;m2ð Þ (Figure 2) to match the
theoretical moment equations presented by Czernuszenko
and Rowinski [1997]. These theoretical equations have
been developed for a general upstream boundary condition
with tracer distribution C tð Þ. The parameters for the TSM
are those defined by Bencala and Walters [1983] and
Runkel [1998].

m1 ¼
2D

u2
þ L

u
1þ �ð Þ ð16Þ

m2 ¼
8D2

u4
þ L

u

2D

u2
1þ �ð Þ þ 2L

u

�2

�
ð17Þ

m3 ¼
2L2

u2

D

u2
1þ �ð Þ2� þ 64D3

u6

þ L

u

12D2

u4
1þ �ð Þ2 þ 4D

u2

�2

�
� þ 2ð Þ þ 6�3

�2


 � ð18Þ

[38] We have eight variables, i.e., the dispersion coeffi-
cient D, � (� ¼ As=A), the mass-transfer rate �, the length
of the reach L, the discharge Q (u ¼ Q=A), and the normal-
ized central moments m1, m2, m3. We have five equations:
three for the theoretical moments (equations (16)–(18)) and
two empirical relationships (derived from Figure 2). To
balance the degrees of freedom (n ¼ 8), we therefore need
to specify three (3 ¼ 8� 5) variables, namely L, Q, and
m1. We used a Newton-Raphson algorithm to solve for the
five unknowns by minimizing the objective function (OF )
shown in equation (19). We estimated the mean travel time
as: m1est : ¼ ’m1obs :, with ’ ¼ 0:8� 1:2½ �, and randomly
varied the regression coefficients of our meta-analysis
within the 95% confidence bounds.

OF1¼abs 1� CSKtheor:

CSKempirical


 �
¼abs 1� CSKtheor:

1:18 60:08ð Þ


 �

OF2¼abs 1� ln m3theor:½ �
ln m3empirical

� �
" #

¼abs 1� ln m3theor:½ �
0:932 60:04ð Þln m1est:m2½ �


 �

OF�3¼abs 1�m1theor:

m1est:


 �
OF¼OF1þOF2þOF�3

ð19Þ

[39] In the optimization routine, we allowed the TSM
parameters to vary within ranges typically found in similar
streams, i.e., D ¼ 10�3; 101

� �
(m2/s), As ¼ 10�5; 101

� �
(m2), A ¼ 10�3; 101

� �
(m2), � ¼ 10�7; 10�4

� �
(s�1). Once

the system of equations was optimized for each random set
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of estimated mean travel time and fitting coefficients
(n¼ 1000), we ran a forward simulation using the optimum
parameters. Results from the Monte Carlo simulations are
presented in Figure 3 and Tables 3 and 4. We used the
Nash–Sutcliffe model efficiency coefficient (E) [Nash and
Sutcliffle, 1970] to estimate the goodness of fit of the pre-
dictions, i.e., how well the plot of observed versus simu-
lated data fits a 1:1 line.
3.3.1.2. Predicted Solute Transport With ADZM

[40] The two parameters of this model are the advection
time delay, �ADZ , and the residence time, Tr ¼ t � �ADZ ,
where t is the mean travel time (m1). The theoretical
moments of the ADZM for one first-order ADZ element
(n ¼ 1) were presented in equation (15). Since the mean
travel time is a measured or estimated quantity, we only
need to solve for the advection time delay, �ADZ . We
applied the same optimization routine described for the
TSM, and the results obtained are presented in Figure 4 and
Tables 3 and 4.
3.3.2. Predicted Solute Transport With Probability
Distributions

[41] Time series described by probability distributions
can be used to predict solute transport processes. Here, we
show how the empirical scaling relationships described in
section 3.1 can be used to estimate the temporal moments
of two probability distributions and then to perform predic-
tive simulations.
3.3.2.1. Predicted Solute Transport With Gumbel
Distribution

[42] We chose the Gumbel (Extreme Value I) probability
distribution because of its constant CSK Gumbel ¼ 1:1395,
which closely agrees with the empirical relationships
derived from our meta-analysis (CSK ¼ 1:1860:08). This
distribution is typically used to describe hydrologic events
pertaining to extremes [Brutsaert, 2005]. The concentration
distribution of a solute BTC using this distribution takes
the form:

C tð Þ ¼ m0
exp �z tð Þð Þ � exp �exp �z tð Þð Þð Þ

�

z tð Þ ¼ t � �
�

� ¼ m1 � � � 0:5772

� ¼
ffiffiffiffiffiffiffiffi
6m2

�2

r ð20Þ

where � and � are the location (mode) and scale parame-
ters, respectively. Note that these parameters, and those of

any other probability distribution, have no direct physical
interpretation.

[43] The use of probability distributions requires the
explicit definition of moments beyond the mean travel
time, i.e., variance and in some cases the skewness. There-
fore, we would need to use empirical relationships such as
those derived in Figure 1, even though R2 < 0:9. In our
predictive analysis, we used m1est : ¼ ’m1obs :, with ’ ¼
0:8� 1:2½ � to estimate the uncertainty of m1est :, and

m2est : ¼ m1est :ð Þ�, with � ¼ 1:601� 1:629½ �, as it was
suggested by our meta-analysis (i.e., ln m2 ¼
1:615 1:601; 1:629ð Þ � ln m1, R2 ¼ 0:86, regression not
shown in Figure 1). The results obtained are presented in
Figure 5 and Table 4.
3.3.2.2. Predicted Solute Transport With Lognormal
Distribution

[44] A random variable described by a lognormal distri-
bution comes from the product of n variables, each with its
own arbitrary density function with finite mean and var-
iance. This distribution has been widely used in hydrologic
modeling of flood volumes and peak discharges, duration
curves for daily streamflow, and rainfall intensity-duration
data [Chow, 1954; Stendinger, 1980]. Applications in sol-
ute transport suggested that the solute velocity, saturated
hydraulic conductivity, and dispersion coefficient are log-
normally distributed [Rogowski, 1972; Van De Pol et al.,
1977; Russo and Bresler, 1981]. The concentration distri-
bution of a solute BTC with this distribution takes the
form:

C tð Þ ¼ m0

�nt
ffiffiffiffiffiffi
2�
p exp � 1

2

ln tð Þ � �n

�n

� �2
" #

m1 ¼ exp �n þ �2
n=2

� �
m2 ¼ m2

1 exp �2
n

� �
� 1

� � ð21Þ

where �n and �n are the mean and the standard deviation of
ln tð Þ. In our predictive analysis, we followed the same pro-
cedure described for the Gumbel distribution. The results
obtained are presented in Figure 6 and Table 4.
3.3.3. Analysis of Predictive Solute Transport
Modeling

[45] In our predictive analyses, we used two classic mod-
els (TSM and ADZM) and hypothesized that these models
could adequately predict solute transport if the results of
our meta-analysis were defined as objective functions to
minimize the differences between the theoretical and
empirical temporal moments. Our main goal therefore was

Table 4. List of Estimated Parameters and Prediction Efficiencies for Each Predictive Model Exploreda

Predictive Model
Estimated Parameters

Besides m1est: ¼ 0:8� 1:2½ � � m1obs:

Prediction Efficiency (E)

River Brock River Conder River Dunsop River Ou Beck

TSM As=A, �, D, Qb, Lb 0.74–0.96 0.71–0.99 0.39–0.99 0.26–1.00
ADZM �ADZ 0.50–0.98 0.21–0.97 0.48–1.00 �0.26–0.76

Gumbel dist. m2 0.39–0.96 0.45–0.95 0.38–0.99 0.18–0.77
Lognormal dist. m2 0.42–0.94 0.47–0.92 0.45–0.97 0.18–0.74

aThe 1000 Monte Carlo simulations were run per model using empirical relationships derived from normalized central moment meta-analysis (n¼ 384
BTCs). Study case of four rivers located in the United Kingdom [Young and Wallis, 1993, pp. 160–165]. m2est: ¼ m1est:ð Þ�, with � ¼ 1:601� 1:629½ �

bIn the predictive TSM simulations, we entered the actual discharge Q and reach length L.
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to fix a constant CSK regardless of the longitudinal posi-
tioning. The predictive results presented in Figures 3 and 4
and Tables 3 and 4 show that this approach required only
basic information (i.e., Q, L, and an estimation of the mean
travel time) to adequately predict the behavior of the solute
plumes traveling downstream. For the TSM (four parame-
ters), the best predictions in the uncertainty analysis had E >
0:96 for the four rivers. For the ADZM (two parameters),
the best predictions had E > 0:97 for all natural rivers, and
E ¼ 0:76 for the concrete channel. Although satisfactory
results can be achieved with this predictive methodology, it
is important to bear in mind that good fittings do not neces-
sarily come from adequate interpretations of mechanistic
processes and, therefore, the physical meaning of the param-
eters should not be taken literally in both inverse (used for
calibration) and forward (predictive) simulations.

[46] Besides from predicting solute transport with classic
models, we explored the use of probability distributions.
We developed predictive models through the parameteriza-
tion of the Gumbel and lognormal probability distributions,
using the results from our meta-analyses and performing
uncertainty estimations. The results of our predictive simu-
lations can be summarized as (Table 4): (1) the Gumbel
distribution (CSK Gumbel ¼ 1:1395) yielded better predic-
tions when the distributions were parameterized with the
observed m1 and m2, suggesting that CSK ¼ 1:1860:08 is
a consistent pattern derived from our meta-analysis and (2)
estimating the variance (m2) of the distributions from the
mean travel time (m1) can be highly uncertain, and it is ex-
plicitly required for using probability distributions in pre-
dictive mode; therefore, uncertainty analysis must be
always included. Importantly, the parameters of these

Figure 4. Predicted results using empirical relationships derived from normalized central moment meta-
analysis (n¼ 384 BTCs) and the moment-matching technique for the ADZM. The known variable was m1

(or t), and �ADZ was predicted from 1000 Monte Carlo simulations. The effects of uncertainty in m1 (i.e.,
m1est: ¼ ’m1obs:, with ’ ¼ 0:8� 1:2½ �) and the fitting coefficients from our meta-analysis are shown as
uncertainty bounds. (a) River Brock, (b) River Conder, (c) River Dunsop, and (d) River Ou Beck. Experi-
mental observations from Young and Wallis [1993]. The best parameter sets from the simulations are pre-
sented in Table 3. Goodness of fit was estimated with the Nash–Sutcliffe model efficiency coefficient (E).
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distributions do not have direct physical meaning, and this
has two main consequences: (1) solute transport under-
standing cannot be mechanistically advanced and (2) erro-
neous parametric interpretations from physically based, but
poorly constrained models are explicitly avoided.

[47] In summary, we found that the regressions from our
meta-analysis can be used to adequately predict solute
transport processes using either transport models (fixing
CSK ) or probability distributions. We consider this a tran-
sitional methodology (‘‘a patch solution’’) between our cur-
rent understanding and an improved transport theory that
better represents the experimental results.

3.4. Implications for Scale-Invariant Patterns

[48] Other experimental findings reveal intriguing
similarities to the scale-invariant patterns that we have

highlighted here. These include the linear relationship
between cross-sectional maximum and mean velocities
[Chiu and Said, 1995; Xia, 1997; Chiu and Tung, 2002],
and the relatively constant behavior of the dispersive frac-
tion (a parameter derived from the ADZM) in alluvial and
headwater streams [Young and Wallis, 1993; Gonz�alez-
Pinz�on, 2008]. These observations suggest that stream
cross sections establish and tend to maintain a quasi-
equilibrium entropic state by adjusting the channel charac-
teristics, i.e., erodible channels adjust their geomorphic
characteristics with discharge (bedform and type of sedi-
ment transported, slope, alignment, etc.) and nonerodible
channels adjust their velocity distributions by changing the
maximum velocity and flow depths [Chiu and Said, 1995;
Chiu and Tung, 2002]. An improved solute transport theory
should address these observed scale-invariant hydrody-
namic patterns and explore the physical meaning of the

Figure 5. Predicted results using empirical relationships derived from normalized central moment meta-
analysis (n¼ 384 BTCs) and the Gumbel distribution, which has a constant CSK Gumbel¼1:1395. Uncer-
tainty bounds represent 1000 Monte Carlo simulations where m1est: ¼ ’m1obs:, with ’ ¼ 0:8� 1:2½ �, and
m2est:¼ m1est:ð Þ�, with � ¼ 1:601� 1:629½ �. The ‘‘Gumbel¼f(Obs.)’’ simulation uses the actual m1 and m2

moments derived from the observed data. (a) River Brock, (b) River Conder, (c) River Dunsop, and
(d) River Ou Beck. Experimental observations from Young and Wallis [1993]. Goodness of fit was esti-
mated with the Nash–Sutcliffe model efficiency coefficient (E).
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persistence of skewness, which perhaps could be based on
principles of thermodynamics and fluid dynamics.

[49] The coefficient of skewness of the classic solute
transport models discussed in section 3.2 shows that Fick-
ian dispersion is inconsistent with the experimental results.
The inclusion of macroscopic Fickian dispersion generates
a system where the variance of a dispersing solute grows
linearly with the distance traveled, generating skewed dis-
tributions that later become asymptotically Gaussian
[Fisher et al., 1979; Nordin and Troutman, 1980]. This
behavior is independent of the assumption of hydraulically
uniform stream reaches, suggesting that a revised disper-
sion approach would be needed unless other mechanisms
included in the transport theory (e.g., TS) were capable of
counteracting the ever decreasing skewness represented by
Fickian dispersion.

[50] Although we have not yet investigated scale-
invariant behaviors of temporal distributions in processes
other than solute transport, we predict that similar patterns
can be derived from meta-analysis of flow routing BTCs.
We ground this prediction in the fact that the conservative
tracers used in our analyses have marked up how water
flowed through the different stream ecosystems considered,
experiencing similar physical characteristics and processes
involved in flow routing (i.e., shear effects, heterogeneity
and anisotropy, and dual-domain mass transfer). Regardless
of the adequacy of current transport and flow routing mod-
eling approaches, clear similarities appear when comparing
the BTCs of these hydrologic processes, and the temporal
moments of (for example) the ADZM and those of the
Nash cascade [Nash, 1960] and the Linear (and Multilin-
ear) Discrete (Lag) Cascade channel routing models

Figure 6. Predicted results using empirical relationships derived from normalized central moment
meta-analysis (n¼ 384 BTCs) and the lognormal distribution. Uncertainty bounds represent 1000 Monte
Carlo simulations where m1est: ¼ ’m1obs:, with ’ ¼ 0:8� 1:2½ �, and m2est: ¼ m1est:ð Þ�, with
� ¼ 1:601� 1:629½ �. The ‘‘L-N¼f(Obs.)’’ simulation uses the actual m1 and m2 moments derived from
the observed data. (a) River Brock, (b) River Conder, (c) River Dunsop, and (d) River Ou Beck.
Experimental observations from Young and Wallis [1993]. Goodness of fit was estimated with the Nash–
Sutcliffe model efficiency coefficient (E).
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[O’Connor, 1976; Perumal, 1994; Camacho and Lees,
1999]. If similar patterns were found with respect to the
persistence of skewness in solute transport and flow rout-
ing, this could be advantageously used to better understand,
scale, and predict solute transport processes under flow
dynamic conditions, which is a problem that still remains
largely unresolved [Runkel and Restrepo, 1993; Graf,
1995; Zhang and Aral, 2004].

4. Conclusions

[51] Despite numerous detailed studies of in-stream
transport processes [e.g., Bencala and Walters, 1983; Har-
vey and Bencala, 1993; Elliott and Brooks, 1997a, 1997b;
Gooseff et al., 2005; Wondzell, 2006; Cardenas et al.,
2008], scaling and predicting solute transport can be highly
uncertain. This is primarily due to the difficulties of meas-
uring and incorporating stream hydrodynamic and geomor-
phic characteristics into models. A consequence of these
simplifications is that parameters cannot be obtained
uniquely from physical attributes. The parameters are func-
tions of a combination of several processes and physical
attributes. Therefore, model parameters interact with each
other, and the overall model response to different parameter
sets might be numerically ‘‘equal’’ and mechanistically
misleading.

[52] Our (model-free) meta-analysis of the BTCs
from conservative tracer experiments conducted in a
wide range of locations and hydrodynamic conditions
suggests that the coefficient of skewness (CSK ) is scale
invariant and equal to approximately 1.18. Considering
the limited information that is currently available on
solute transport processes in different catchments around
the world, this methodology is perhaps the least biased
(different personnel and instrumentation were used to
collect the data) and most informative (BTCs sampled
a wide range of multiscale heterogeneities) to investi-
gate scaling patterns in stream ecosystems. The self-
consistent relationships derived from our extensive data-
base for normalized central temporal moments can be
used to adequately predict solute transport. Such rela-
tionships also revealed systematic limitations of the sol-
ute transport models currently used in hydrology and
suggest that we need a revised solute transport theory
that is capable of representing the observed scaling
patterns.

[53] Because solute transport is the foundation of
biogeochemical models, if transport models with
unidentifiable parameters are used to investigate the
coupling between TS and biochemical reactions across
ecosystems, it is not unexpected that the relationships
derived are inconclusive, as it has been extensively
shown to date. Ultimately, model structural errors gen-
erate equifinal systems that can lead to biased conclu-
sions with respect to the nature of mechanistic
relationships.

Appendix A: MRMT Model
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þ �
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@Cs �2ð Þ
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¼ �2 C � Cs �2ð Þð Þ; 0 < �2 <1 ðA2Þ

[54] The theoretical temporal moments were computed
in a manner similar to Cunningham and Roberts [1998]:

m1 ¼ � 1þ �ð Þ
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2�2 1þ �ð Þ2

Pe
þ 2���̂
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Pe

0
@

1
A

3=2

ðA3Þ

where Cs �2ð Þ [ML�3] is the concentration of the solute in
the storage zone; p is the probability density function of
mass transfer exchange rates; and �̂ and �̂2 are the mean
and variance of the distribution of TS residence times
[cf., Haggerty and Gorelick, 1995; Cunningham and
Roberts, 1998]. Other variables are as defined for the TSM.
When � ¼ 0, CSK MRMT ¼ CSK ADE . If dispersion is
negligible (D ¼ 0):

CSK MRMT: D¼0ð Þ ¼
3�� �̂2 þ �̂2

� �
ffiffiffi
2
p

��̂�ð Þ3=2
ðA4Þ

[55] If CSK MRTM is not fixed, the MRMT model will
represent BTCs with longitudinally decreasing skewness
(CSK MRMT � x�1=2), becoming asymptotically Gaussian
(i.e., CSK MRMT x!1ð Þ ¼ 0).

Appendix B: The dCTRW Model

[56] The Laplace transform (LT) of f x; tð Þ for a dCTRW
model is given by Dentz et al. [2004]:

f x; sð Þ ¼ exp � xu

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M sð ÞD

u2

r
� 1

 !" #
ðB1Þ

where s is the LT variable. Other variables have been
defined previously in the ADE. The memory function M sð Þ
is defined by

M sð Þ ¼ 1� 	 sð Þ
�1	 sð Þ

ðB2Þ

where 	 sð Þ 

X

	 x; sð Þ is the LT of the time transition
probability density function; 	 x; sð Þ ¼ p xð Þ	 sð Þ is the LT
of a joint space (p xð Þ) and time transition probability den-
sity function; and �1 is a median transition time. We esti-
mated the temporal moments using the method by Aris
[1958].
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m1 ¼
x

u

M sð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M sð ÞD

u2

r
�����
s¼0

m2 ¼ �
x

u

M sð Þ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M sð ÞD

u2

r þ 2xD

u3

M sð Þ0
� �2

1þ 4M sð ÞD
u2

� �3=2

�����
s¼0

m3 ¼
x

u

M sð Þ000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M sð ÞD

u2

r � 4xD

u3

M sð Þ0 M sð Þ0
� �2

1þ 4M sð ÞD
u2

� �3=2

þ 12xD2

u5

M sð Þ0
� �3

1þ 4M sð ÞD
u2

� �5=2

�����
s¼0

ðB3Þ

[57] The solution for the Fickian case is found when
M sð Þ ¼ s, which yields CSK Fickian ¼ 3

ffiffiffi
2
p

=
ffiffiffiffiffiffi
Pe
p

, as it was
shown for the ADE (section 3.2.1). A general pattern for
the CSK dCTRW can be inferred from this particular condi-
tion, and the specifics will depend on the memory function
defined for the model. In summary, if CSK dCTRW is not
fixed, a dCTRW model will represent BTCs with longitudi-
nally decreasing skewness (CSK dCTRW � x�1=2), becom-
ing asymptotically Gaussian (i.e., CSK dCTRW x!1ð Þ ¼ 0).

Appendix C: L�evy-Flight Dynamics Model

[58] We consider here a L�evy-flight type dynamics
model, which has a fractal dependence on the sampling
position and takes the form:

xnþ1 ¼ xn þ 
n

tnþ1 ¼ tn þ �0
ðC1Þ

where �0 is a constant time increment, and 
n > 0 are inde-
pendent identically power law distributed random variables
such that :

p xð Þ / x�1�� ðC2Þ

[59] For large � (L�evy-flight variable), p xð Þ could be a
Pareto distribution, for example. The spatial Laplace trans-
form of p xð Þ for 1 < � < 2 then would be

p �ð Þ ¼ 1� a�þ b�� ðC3Þ

[60] We are interested in the distribution of arrival times
t xð Þ at a position x, which is given by

t xð Þ ¼ tnx ðC4Þ

where nx ¼ max njxn < xð Þ is the number of steps needed
to arrive at position x by the L�evy process shown in equa-
tion (C1). It is equivalent to xn < x < xnþ1. Thus, we obtain
for the arrival time density:

f x; tð Þ ¼ h� t � tnxð Þi ðC5Þ

where � tð Þ denotes the Dirac delta distribution and the
angular brackets denote the noise average over 
n. Expres-
sion (C5) can be written as

f x; tð Þ ¼
X1
n¼0

� t � tnð Þh�n;nxi ¼
X1
n¼0

� t � tnxð ÞhI 0 � x� xn � 
nð Þi

ðC6Þ

where I 0 � x < 
ð Þ is an indicator function that is 1 if the
condition in its argument is true and 0 otherwise. The latter
equation can be further developed as

f x; tð Þ ¼
Zx

0

X1
n¼0

� t � tnxð Þh� x0 � xnð ÞihI 0 � x� x0 � 
nð Þidx0

ðC7Þ

[61] Computing the second average we get:

f x; tð Þ ¼
Zx

0

R x0; tð Þdx0
Z1

x�x0

p 
ð Þd
 ðC8Þ

R x0; tð Þ ¼
X1
n¼0

� t � tnð Þh� x0 � xnð Þi ðC9Þ

[62] The latter satisfies the Kolmogorov type equation:

R x; tð Þ ¼ � xð Þ� tð Þ þ
Z1
0

p 
ð ÞR x� 
; t � �0ð Þd
 ðC10Þ

[63] Combining equations (C8) and (C10) in Laplace
space, we get

�f �; tð Þ ¼ � tð Þ þM �ð Þ f �; t � �0ð Þ � f �; tð Þ
� �

ðC11Þ

M �ð Þ ¼ �p �ð Þ
1� p �ð Þ ðC12Þ

[64] The time increment �0 is supposed to be small com-
pared to the observation time, so that we can write (C11) as

�f �; tð Þ ¼ � tð Þ �M �ð Þ�0
@f �; tð Þ
@t

ðC13Þ

[65] In real space, it reads as

@f x; tð Þ
@t

¼ �
Zx

0

M 
ð Þ�0
@f x� 
; tð Þ

@t
d
 ðC14Þ

[66] Defining the moments of f x; tð Þ by

�n xð Þ ¼
Z1
0

tnf x; tð Þdt ðC15Þ

[67] We obtain from equation (C14) the moment
equations

@�n xð Þ
@x

¼ n

Zx

0

M 
ð Þ�0�i�1 x� 
ð Þd
 ðC16Þ

where �n xð Þ ¼ 0 for n < 0. This equation can, again, be
solved in Laplace space:

��n �ð Þ ¼ �n0 tð Þ þ nM �ð Þ�0�n�1 �ð Þ ðC17Þ

[68] For n ¼ 1 we obtain:

�1 �ð Þ ¼ M �ð Þ��2 ðC18Þ
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because �0 �ð Þ ¼ ��1. We are interested in the behavior at
large distances, which means at small �. Inserting equation
(C12) above gives

�1 �ð Þ ¼ �0�
�1 p �ð Þ

1� p �ð Þ ðC19Þ

[69] Inserting now equation (C3) and expanding up to
leading order gives

�1 �ð Þ ¼ �0�
�1 1

a�� b��
¼ �0

a2
�2 þ ::: ðC20Þ

[70] Thus, the first moment is given by

�1 xð Þ ¼ x�0

a
ðC21Þ

[71] For the second moment, we have

�2 �ð Þ ¼ 2�2
0�
�1 p �ð Þ2

1� p �ð Þ½ �2
ðC22Þ

[72] Inserting equation (C3) and expanding up to leading
orders we have

�2 �ð Þ ¼ 2
�2

0

a2�3
þ 4

�2
0b

a3
���4 þ ::: ðC23Þ

[73] Inversion of this expression gives

�2 xð Þ ¼ �
2
0

a2
x2 þ 4

�2
0b

a3G 4� �ð Þ x
3�� ðC24Þ

[74] The second normalized central moment is

m2 xð Þ ¼ 4
�2

0b

a3G 4� �ð Þ x
3�� ðC25Þ

[75] For the third moment, we have

�3 �ð Þ ¼ 6�3
0�
�1 p �ð Þ3

1� p �ð Þ½ �3
ðC26Þ

[76] Inserting equation (C3) and expanding up to leading
orders, we have

�3 �ð Þ ¼ 6
�3

0

a3�4
þ 18

�3
0b

a4
���5 þ ::: ðC27Þ

[77] Inversion of this expression gives:

�3 xð Þ ¼ �
3
0

a3
x3 þ 18�3

0b

a4G 5� �ð Þ x
4�� ðC28Þ

[78] The third normalized central moment is

m3 xð Þ ¼ 3�3
0b

a4

6

G 5� �ð Þ � 4
G 4��ð Þ

" #
x4�� ðC29Þ

[79] We can now estimate the scaling of CSK as

CSK LFDM ¼
m3 xð Þ

m2 xð Þ1:5
� x4��

x3� 1:5ð Þ��� 1:5ð Þ ðC30Þ

[80] For CSK LFDM to be independent of x (or persistent)
we need:

� ¼ 4� 3 � 1:5ð Þ
1� 1:5

¼ 1 ðC31Þ

[81] Acknowledgments. This work was funded by NSF grant EAR
08–38338. Funding was also available from the HJ Andrews Experimental
Forest research program, funded by the National Science Foundation’s
Long-Term Ecological Research Program (DEB 08–23380), U.S. Forest
Service Pacific Northwest Research Station, and Oregon State University.
We thank the Associate Editor, Olaf Cirpka, Adam Wlostowski, and an
anonymous reviewer for providing insightful comments that helped to
improve this manuscript.

References
Argerich, A., R. Haggerty, E. Mart�ı, F. Sabater, and J. Zarnetske (2011),

Quantification of metabolically active transient storage (MATS) in two
reaches with contrasting transient storage and ecosystem respiration,
J. Geophys. Res., 116, G03034, doi:10.1029/2010JG001379.

Aris, R. (1958), On the dispersion of linear kinetic waves, Proc. R. Soc.
London Ser. A, 245, 268–277.

Beer, T., and P. Young (1983), Longitudinal dispersion in natural streams,
J. Environ. Eng., 109(5), 1049–1067.

Bencala, K. E., and R. A. Walters (1983), Simulation of solute transport in
a mountain pool-and-riffle stream: A transient storage model, Water
Resour. Res., 19(3), 718–724, doi:10.1029/WR019i003p00718.

Beven, K. (1993), Models of channel networks: Theory and predictive
uncertainty, in Channel Network Hydrology, edited by K. Beven and M.
J. Kirby, pp. 129–173, John Wiley, Chichester, England.

Beven, K. J., and A. M. Binley (1992), The future of distributed models:
Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279–
298.

Boano, F., A. I. Packman, A. Cortis, R. Revelli, and L. Ridolfi (2007), A
continuous time random walk approach to the stream transport of solutes,
Water Resour. Res., 43, W10425, doi:10.1029/2007WR006062.

Botter, G., N. B. Basu, S. Zanardo, P. S. C. Rao, and A. Rinaldo (2010),
Stochastic modeling of nutrient losses in streams: Interactions of cli-
matic, hydrologic, and biogeochemical controls, Water Resour. Res., 46,
W08509, doi:10.1029/2009WR008758.

Bukaveckas, P. A. (2007), Effects of channel restoration on water velocity,
transient storage, and nutrient uptake in a channelized stream, Environ,
Sci. Technol., 41, 1570–1576.

Briggs, M. A., Lautz, L. K., Hare, D. K., and R. Gonz�alez-Pinz�on (2013),
Relating hyporheic fluxes, residence times and redox-sensitive
biogeochemical processes upstream of beaver dams, Freshwater Sci., 32,
622–641.

Brutsaert, W. (2005), Hydrology: An Introduction, Cambridge Univ. Press,
U. K.

Calkins, D., and T. Dunne (1970), A salt tracing method for measuring
channel velocities in small mountain streams, J. Hydrol., 11(4), 379–
392.

Camacho, L. A., and R. Gonz�alez-Pinz�on (2008), Calibration and predic-
tion ability analysis of longitudinal solute transport models in mountain
streams, J. Environ Fluid Mech., 8(5), 597–604.

Camacho, L. A., and M. J. Lees (1999), Multilinear discrete lag-cascade
model for channel routing, J. Hydrol., 226, 30–47.

Cardenas, M. B., J. L. Wilson, and R. Haggerty (2008), Residence time of
bedform-driven hyporheic exchange, Adv. Water Resour., 31(10), 1382–
1386.

Chatwin, P. (1980), Presentation of longitudinal dispersion data,
J. Hydraul. Div., 106(1), 71–83.

Chiu, C.-L., and A. A. Said (1995), Maximum and mean velocities and en-
tropy in open-channel flow, J. Hydraul. Eng., 121(1), 26–35.

Chiu, C.-L., and N.-C. Tung (2002), Maximum velocity and regularities in
open channel flow, J. Hydraul. Eng., 128(4), 390–398.

Chow, V. T. (1954), The log-probablity law and its engineering applica-
tions, Proc. Am. Soc. Civ. Eng., 80(5), 536-1–536-25.

Cunningham, J. A., and P. V. Roberts (1998), Use of temporal moments to
investigate the effects of nonuniform grain-size distribution on the trans-
port of sorbing solutes, Water Resour. Res., 34(6), 1415–1425,
doi:10.1029/98WR00702.

GONZ�ALEZ-PINZ�ON ET AL.: SCALING SOLUTE TRANSPORT IN STREAMS

16



Cvetkovic, V., C. Carstens, J.-O. Selroos, and G. Destouni (2012), Water
and solute transport along hydrological pathways, Water Resour. Res.,
48, W06537, doi:10.1029/2011WR011367.

Czernuszenko, W., and P. M. Rowinski (1997), Properties of the dead-zone
model of longitudinal dispersion in rivers, J. Hydraul. Res., 35(4), 491–
504.

Das, B. S., R. S. Govindaraju, G. J. Kluitenberg, A. J. Valocchi, and J. M.
Wraith (2002), Theory and applications of time moment analysis to study
the fate of reactive solutes in soil, in Stochastic Methods in Subsurface
Contaminant Hydrology, edited by R. S. Govindaraju, pp. 239–279,
ASCE Press.

Dentz, M., and B. Berkowitz (2003), Transport behavior of a passive solute
in continuous time random walks and multirate mass transfer, Water
Resour. Res., 39(5), 1111, doi:10.1029/2001WR001163.

Dentz, M., and D. Tartakovsky (2006), Delay mechanisms of non-Fickian
transport in heterogeneous media, Geophys. Res. Lett., 33, L16406,
doi:10.1029/2006GL027054.

Dentz, M., A, Cortis, H. Scher, and B. Berkowitz (2004), Time behavior of
solute transport in heterogeneous media: Transition from anomalous to
normal transport, Adv. Water Resour., 27, 155–173.

Elliott, A. H., and N. H. Brooks (1997a), Transfer of nonsorbing solutes to
a streambed with bedforms: Theory, Water Resour. Res., 33, 123–136.

Elliott, A. H., and N. H. Brooks (1997b), Transfer of nonsorbing solutes to
a streambed with bedforms: Laboratory experiments, Water Resour.
Res., 33, 137–151.

Ensign, S. H., and M. W. Doyle (2005), In-channel transient storage and
associated nutrient retention: Evidence from experimental manipula-
tions, Limnol. Oceanogr., 50(6), 1740–1751.

Fischer, H. B. (1967), The mechanics of dispersion in natural streams,
J. Hydraul. Div. Am. Soc. Civ. Eng., 93(HY6), 187–216.

Fisher, H. B., E. J. List, R. C. Koh, J. Imberger, and N. H. Brooks (1979),
Mixing in Inland and Coastal Waters, Academic, New York.

Goltz, M. N., and P. V. Roberts (1987), Using the method of moments to
analyze three-dimensional diffusion-limited solute transport from tempo-
ral and spatial perspectives, Water Resour. Res., 23(8), 1575–1585,
doi:10.1029/WR023i008p01575.

Gonz�alez-Pinz�on, R. A. (2008), Determinaci�on del comportamiento de la
fracci�on dispersiva en r�ıos caracter�ısticos de monta~na, M.Sc. thesis,
Dep. de Ingeniert�ıa Civ. y Agr�ıcola, Univ. Nacl. de Colombia, Bogot�a.

Gooseff, M. N., S. M. Wondzell, R. Haggerty, and J. Anderson (2003),
Comparing transient storage modeling and residence time distribution
(RTD) analysis in geomorphically varied reaches in the Lookout Creek
basin, Oregon, USA, Adv. Water Resour., 26, 925–937.

Gooseff, M. N., J. LaNier, R. Haggerty, and K. Kokkeler (2005), Determin-
ing in-channel (dead zone) transient storage by comparing solute trans-
port in a bedrock channel–alluvial channel sequence, Oregon, Water
Resour. Res., 41, W06014, doi:10.1029/2004WR003513.

Govindaraju, R. S., and B. S. Das (2007), Moment Analysis for Subsurface
Hydrologic Applications, Springer, Dordrecht, Netherlands.

Graf, B. (1995), Observed and predicted velocity and longitudinal disper-
sion at steady and unsteady flow, Colorado River, Glen Canyon Dam to
Lake Mead, J. Am. Water Resour. Assoc., 31(2), 265–281.

Haggerty, R., and S. M. Gorelick (1995), Multiple-rate mass transfer for
modeling diffusion and surface reactions in media with pore-scale heter-
ogeneity, Water Resour. Res., 31(10), 2383–2400, doi:10.1029/
95WR10583.

Haggerty, R., S. M. Wondzell, and M. A. Johnson (2002), Power-law
residence time distribution in the hyporheic zone of a 2nd-order
mountain stream, Geophys. Res. Lett., 29(13), 1640, doi:10.1029/
2002GL014743.

Hall, R. O., Jr., E. S. Bernhardt, and G. E. Likens (2002), Relating nutrient
uptake with transient storage in forested mountain streams, Limnol.
Oceanogr., 47(1), 255–265.

Hall, R. O., Jr., et al. (2009), Nitrate removal in stream ecosystems meas-
ured by 15N addition experiments: Total uptake, Limnol. Oceanogr.,
54(3), 653–665.

Harvey, J. W. and K. E. Bencala (1993), The effect of streambed topogra-
phy on surface-subsurface water exchange in mountain catchments,
Water Resour. Res., 29(1), 89–98, doi:10.1029/92WR01960.

Harvey, C. F., and S. M. Gorelick (1995), Temporal moment-generating
equations: Modeling transport and mass transfer in heterogeneous aqui-
fers, Water Resour. Res., 31(8), 1895–1911, doi:10.1029/95WR01231.

Jobson, H. E., (1997), Predicting travel time and dispersion in rivers and
streams, J. Hydraul. Eng., 123(11), 971–978.

Jury, W. A., and K. Roth (1990), Transfer Functions and Solute Movement
Through Soil: Theory and Applications, Birkh€auser, Basel, Switzerland.

Lamontagne, S. and P. G. Cook (2007), Estimation of hyporheic water resi-
dence time in situ using 222Rn disequilibrium, Limnol. Oceanogr.:
Methods, 5, 407–416.

Lautz, L. K., and D. I. Siegel (2007), The effect of transient storage on ni-
trate uptake lengths in streams: An inter-site comparison, Hydrol. Proc-
esses, 21, 3533–3548.

Lee, K. K. (1995), Stream velocity and dispersion characteristics deter-
mined by dye-tracer studies on selected stream reaches in the Willamette
River Basin, Oregon, U.S. Geol. Surv. Water-Resour. Invest. Rep. 95–
4078, Portland, Oreg.

Lees, M. J., L. A. Camacho, and S. Chapra (2000), On the relationship of
transient storage and aggregated dead zone models of longitudinal solute
transport in streams, Water Resour. Res., 36(1), 213–224, doi:10.1029/
1999WR900265.

Leube, P. C., W. Nowak, and G. Schneider (2012), Temporal moments
revisited: Why there is no better way for physically based model reduc-
tion in time?, Water Resour. Res., 48, W011527, doi:10.1029/
2012WR011973.

Luo, J., O. A. Cirpka, M. Dentz, and J. Carrera (2008), Temporal moments
for transport with mass transfer described by an arbitrary memory func-
tion in heterogeneous media, Water Resour. Res., 44, W01502,
doi:10.1029/2007WR006262.

Mart�ı, E., N. B. Grimm, and S. G. Fisher (1997), Pre- and post-flood nutri-
ent retention efficiency in a desert stream ecosystem, J. N. Am. Benthol.
Soc., 16, 805–819.

McClain, M. E., et al. (2003), Biogeochemical hot spots and hot moments
at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6(4),
301–312, doi:10.1007/s10021-003-0161-9.

Mulholland, P. J., E. R. Marzolf, J. R. Webster, D. R. Hart, and S. P. Hen-
dricks (1997), Evidence of hyporheic retention of phosphorus in Walker
Branch, Limnol. Oceanogr., 42, 443–451.

Nash, J. E. (1959), Systematic determination of unit hydrograph parame-
ters, J. Geophys. Res. 64(1), 111–115, doi:10.1029/JZ064i001p00111.

Nash, J. E. (1960), A unit hydrograph study with particular reference to
British catchments, Proc. Inst. Civ. Eng., 17, 249–282.

Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through con-
ceptual models. Part I—A discussion of principles, J. Hydrol., 10(3),
282–290.

Neuman, S., and D. M. Tartakovsky (2009), Perspective on theories of non-
Fickian transport in heterogeneous media, Adv. Water Resour., 32(5),
670–680.

Niyogi, D. K., K. S. Simon, and C. R. Townsend (2004), Land use and
stream ecosystem functioning: Nutrient uptake in streams that contrast
in agricultural development, Arch. Hydrobiol., 160, 471–486.

Nordin, C. F., and G. B. Sabol (1974), Empirical data on longitudinal dis-
persion in rivers, U.S. Geol. Surv. Water-Resour. Invest. Rep. 74–20,
Denver, Colorado.

Nordin, C. F., Jr., and B. M. Troutman (1980), Longitudinal dispersion in
rivers: The persistence of skewness in observed data, Water Resour.
Res., 16(1), 123–128, doi:10.1029/WR016i001p00123.

O’Connor, K. M. (1976), A discrete linear cascade model for hydrology,
J. Hydrol., 29, 203–242.

O’Connor, B. L., and J. W. Harvey (2008), Scaling hyporheic exchange and
its influence on biogeochemical reactions in aquatic ecosystems, Water
Res. Res., 44(12), W12423, doi:10.1029/2008WR007160.

O’Connor, B. L., M. Hondzo, and J. W. Harvey (2010), Predictive model-
ing of transient storage and nutrient uptake: Implications for stream
restoration, J. Hydraul. Eng., 136(12), 1018–1032.

Pachepsky, Y. A., D. Gimenez, S. Logsdon, R. Allmaras, and E. Kozak
(1997), On interpretation and misinterpretation of fractal models, Soil
Sci. Soc. Am. J., 61, 1800–1801.

Pachepsky, Y. A., D. Benson, and W. Rawls (2000), Simulating scale-
dependent solute transport in soils with the fractional advective–disper-
sive equation, Soil Sci. Soc. Am. J., 64, 1234–1243.

Perumal, M., (1994), Multilinear discrete cascade model for channel
routing, J. Hydrol., 158, 135–150.

Pickens, J. F., and G. E. Grisak (1981), Modeling of scale-dependent
dispersion in hydrogeologic systems, Water Resour. Res., 17(6), 1701–
1711, doi:10.1029/WR017i006p01701.

Pilgrim, D. H. (1977), Isochrones of travel time and distribution of flood
storage from a tracer study on a small watershed, Water Resour. Res.,
13(3), 587–595.

GONZ�ALEZ-PINZ�ON ET AL.: SCALING SOLUTE TRANSPORT IN STREAMS

17



Rao, P. S. C., D. E. Rolston, R. E. Jessup, and J. M. Davidson (1980), Solute
transport in aggregated porous media: Theoretical and experimental
evaluation, Soil Sci. Soc. Am. J., 44(6), 1139–1146.

Ratto, M., P. C. Young, R. Romanowicz, F. Pappenberger, A. Saltelli, and
A. Pagano (2007), Uncertainty, sensitivity analysis and the role of data
based mechanistic modeling in hydrology, Hydrol. Earth Syst. Sci.,
11(4), 1249–1266.

Rogowski, A. S. (1972), Watershed physics: Soil variability criteria, Water
Resour. Res., 8, 1015–1023.

Romanowicz, R., M. Osuch, and S. Wallis (2013), Modelling of solute
transport in rivers under different flow rates: A case study without tran-
sient storage, Acta Geophys., 61(1), 98–125.

Runkel, R. L. (1998), One dimensional transport with inflow and storage
(OTIS): A solute transport model for streams and rivers, U.S. Geol. Surv.
Water-Resour. Invest. Rep. 98–4018, 73 p, Denver, Colorado.

Runkel, R. L. (2002), A new metric for determining the importance of tran-
sient storage, J. N. Am. Benthol. Soc., 21, 529–543.

Runkel, R. L. (2007), Toward a transport-based analysis of nutrient spira-
ling and uptake in streams, Limnol. Oceanogr. Methods, 5, 50–62.

Runkel, R. L., and P. J. Restrepo (1993), Solute transport modeling under
unsteady flow regimes: An application of the Modular Modeling System,
in Water Management in the ’90s: A Time for Innovation, edited by K.
Hon, Proc. Water Resour. Plann. Manage. Div. ASCE, Seattle, Wash.

Runkel, R. L., D. M. McKnight, and E. D. Andrews (1998), Analysis of
transient storage subject to unsteady flow: Diel flow variation in an Ant-
arctic stream, J. N. Am. Benthol. Soc., 17(2), 143–154.

Russo, D., and E. Bresler (1981), Soil hydraulic properties as stochastic
processes: An analysis of field spatial variability, Soil Sci. Soc. Am. J.,
45, 682–687.

Ryan, R. J., A. I. Packman, and S. S. Kilham (2007), Relating phosphorus
uptake to changes in transient storage and streambed sediment character-
istics in headwater tributaries of Valley Creek, an urbanizing watershed,
J. Hydrol., 336, 444–457.

Sardin, M., D. Schweich, F. J. Leij, and M. Th. van Genuchten (1991),
Modeling the nonequilibrium transport of linearly interacting solutes in
porous media: A review, Water Resour. Res., 27(9), 2287–2307,
doi:10.1029/91WR01034.

Schmid, B. H. (2002), Persistence of skewness in longitudinal dispersion
data: Can the dead zone model explain it after all?, J. Hydraul. Eng.,
128(9), 848–854.

Schmid, B. H. (2003), Temporal moments routing in streams and rivers
with transient storage, Adv. Water Resour., 26, 1021–1027.

Scordo, E. B., and R. D. Moore (2009), Transient storage processes in a
steep headwater stream, Hydrol. Processes, 23, 2671–2685.

Shlesingerm, M. F., J. Klafter, and Y. M. Wong (1982), Random
walks with infinite spatial and temporal moments, J. Stat. Phys., 27, 499–
512.

Silliman, S. E., and E. S. Simpson (1987), Laboratory evidence of the scale
effect in dispersion of solutes in porous media, Water Resour. Res.,
23(8), 1667–1673, doi:10.1029/WR023i008p01667.

Sivapalan, M. (2003), Prediction in ungauged basins: A grand challenge
for theoretical hydrology, Hydrol. Processes, 17(5), 3163–3170.

Sokolov, I. M. (2000), L�evy flights from a continuous-time process, Phys.
Rev. E., 63, 011104.

Stendinger, J. R. (1980), Fitting log normal distributions to hydrologic data,
Water Resour. Res., 16(3), 455–468.

Thomas, S. A., H. M. Valett, J. R. Webster, and P. J. Mulholland (2003), A
regression approach to estimating reactive solute uptake in advective and
transient storage zones of stream ecosystems, Adv. Water Resour., 26,
965–976.

Torres-Quintero, E., G. Mun�arriz, and D. Villaz�on (2006), Determinaci�on
de caudal, tiempos de tr�ansito, velocidad y coeficiente de dispersi�on en el
R�ıo Bogot�a, Fr�ıo y Magdalena utilizando t�ecnicas nucleares, Avances
Invest. Ing., 5, 21–31.

Valett, H. M., J. A. Morrice, and C. N. Dahm (1996), Parent lithology,
surface-groundwater exchange, and nitrate retention in headwater
streams, Limnol. Oceanogr., 41, 333–345.

van Mazijk, A. (2002), Modelling the effects of groyne fields on the trans-
port of dissolved matter within the Rhine Alarm-Model, J. Hydrol., 264,
213–229.

van Mazijk, A., and E. J. M. Veling (2005), Tracer experiments in the Rhine
Basin: Evaluation of the skewness of observed concentration distribu-
tions, J. Hydrol., 307, 60–78..

Van De Pol, R. M., P. J. Wierenga, and D. R. Nielsen (1977), Solute move-
ment in a field soil, Soil Sci. Soc. Am. J., 41, 10–13.

Wagner, B. J., and J. W. Harvey (1997), Experimental design for estimating
parameters of rate-limited mass transfer: Analysis of stream tracer stud-
ies, Water Resour. Res., 33(7), 1731–1741, doi:10.1029/97WR01067.

Wagener, T., L. A. Camacho, and H. S. Wheater (2002), Dynamic identifi-
ability analysis of the transient storage model for solute transport in riv-
ers, J. Hydroinformatics, 4(3), 199–211.

Wagener, T., H. S. Wheater, and H. V. Gupta (2004), Rainfall-Runoff Mod-
elling in Gauged and Ungauged Catchments, Imperial College Press,
London, England.

Webster, J. R., et al. (2003), Factors affecting ammonium uptake in
streams—An inter-biome perspective, Freshwater Biol., 48, 1329–1352.

Wallis, S. G., P. C. Young, and K. J. Beven (1989), Experimental investiga-
tion of the aggregated dead zone model for longitudinal solute transport
in stream channels, Proc. Inst. Civ. Eng., 87(Pt. 2), 1–22.

Wondzell, S. (2006), Effect of morphology and discharge on hyporheic
exchange flows in two small streams in the Cascade Mountains of Ore-
gon, USA, Hydrol. Processes, 20(2), 267–287.

Wörman, A. (2000), Comparison of models for transient storage of solutes
in small streams, Water Resour. Res., 36(2), 455–468, doi:10.1029/
1999WR900281.

Xia, R. (1997), Relation between mean and maximum velocities in a natural
river, J. Hydraul. Eng., 123(8), 720–723.

Young, P. C. (1998), Data-based mechanistic modelling of environmental,
ecological, economic and engineering systems, Environ. Modell. Soft-
ware, 13(2), 105–122.

Young, P. C., and S. G. Wallis (1993), Solute transport and dispersion in
channels, in Channel Network Hydrology, edited by K. Beven and M. J.
Kirby, pp. 129–173, John Wiley, Chichester, England.

Zhang, Y. and M. M. Aral (2004), Solute transport in open-channel net-
works in unsteady flow regime, Environ. Fluid Mech., 4, 225–247.

GONZ�ALEZ-PINZ�ON ET AL.: SCALING SOLUTE TRANSPORT IN STREAMS

18


	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

