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Like other species interactions in ecological systems, host-pathogen interactions

are influenced by environmental factors, landscape characteristics and the broader

community context. My thesis explores the potential influences of food-web in-

teractions (Chapter 2), climate change (Chapter 3), landscape structure and host

movement patterns (Chapter 4), and the combined influences of local community

context and regional processes (Chapter 5) on host-pathogen interactions.

Infectious diseases transmitted by vectors depend on the interactions between

the vector and other species within the community. In Chapter 2 I develop a the-

oretical model integrating predator-prey and host-pathogen theory to examine

the effect of predator-vector interactions on vector-transmitted diseases. Pre-

dation on a vector may drastically slow a pathogen’s spread, and increase host

abundance by reducing—or eliminating—infection in the host population. The

introduction of a predator can lead to a negative relationship between preva-



lence and vector fecundity, with the pathogen being driven out of the system at

high rates of predation or fecundity. Chapter 3 examines how temperature influ-

ences the biology of a parasite, Trypanosoma brucei rhodesiense, and its tsetse

fly vector in order to examine the potential effects of global warming on sleeping

sickness. Model results indicate that projected warming over the next 50–100

years is likely to significantly shift the distribution of sleeping sickness in Africa.

The modeling approach presented in Chapter 3 provides a framework for using

the climate-sensitive aspects of vector and pathogen biology to predict changes

in disease prevalence and risk due to climate change.

The spread and persistence of generalist pathogens that infect multiple host

species are influenced by spatial heterogeneity in host composition and the move-

ment patterns of different host species. Chapter 4 uses a metapopulation disease

model to identify the potential effects of landscape connectivity, patch hetero-

geneity, and host community composition on the spread, prevalence, and persis-

tence of multi-host pathogens at the local and regional scales. In an observational

study of barley and cereal yellow dwarf viruses (B/CYDV) in a set of Cascades

meadows, I found that patterns of disease prevalence are primarily driven by the

diversity and composition of the local host community (Chapter 5).



©Copyright by Sean M. Moore
June 8, 2010

All Rights Reserved



The Effects of Community Composition, Landscape Structure, and
Climate on Host-Pathogen Interactions

by
Sean M. Moore

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 8, 2010
Commencement June 2011



Doctor of Philosophy dissertation of Sean M. Moore presented on June 8, 2010.

APPROVED:

Major Professor, representing Zoology

Chair of the Department of Zoology

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of
my dissertation to any reader upon request.

Sean M. Moore, Author



ACKNOWLEDGEMENTS

I would like to thank my advisor, Elizabeth Borer. I feel privileged to have

been your first PhD student and I hope that some of your enthusiasm for ecolog-

ical research and the scientific endeavor has rubbed off on me. Your productivity

and the clarity with which you present your ideas are both qualities that I strive

for. My committee provided valuable assistance throughout my graduate stud-

ies. Andy Blaustein graciously stepped in as my major professor after Elizabeth

switched universities. Chris Mundt provided me with a strong background in the

history and theory of plant disease dynamics from both an agricultural and eco-

logical perspective. Phil Rossignol gave me a deeper understanding of theoretical

community ecology and the role of mathematics in ecology and epidemiology.

Dan Rosenberg was very supportive as my graduate council representative. Traci

Durrell-Khalife, Tara Bevandich, and Torri Givigliano have been extremely help-

ful and always had the answers to my questions. Joe Beatty and Doug Warrick

made sure that I always had financial support from the department.

Thanks to the other members of the Borer-Seabloom lab. Eric Seabloom pro-

vided advice on my proposed research, experimental design, and statistical anal-

ysis. Cara Benfield and Angela Brandt jointly shared in the adventure of being

Eric and Elizabeth’s first graduate students. I’m glad you guys were around for

those first few years as we all figured out what we were doing together. Thanks to



Elizabeth, Eric, Angela, and Cara, as well as Phoebe Zarnetske, Joe Dauer, Tony

Graziani, Kelly Farrell, Wendy Phillips, Lydia Ries, Vince Adams, and Autumn

Adams for providing feedback on my research proposals, manuscripts, and prac-

tice talks during lab meetings. Burl Martin, Emily Orling, and Shawn Gerritt

provided assistance with lab work, preparation for field season, and all sorts of

other issues minor and major. Garrett Wohlsein and Genevieve Layman provided

valuable assistance with field work. Thanks, Kelly, for sharing space in the lab

of semi-lost souls this past year. Thanks also to all of the graduate students in

the Zoology Department. In my experience, you all are the most supportive and

fun group of students anywhere.

Thanks to Dr. Charles Mitchell at UNC-Chapel Hill who allowed me to visit

for two weeks and use his lab equipment in order to complete the viral assays

for my research on B/CYDV. His lab technician Marty Dekkers also provided

invaluable technical assistance, without his help I would not have been able to

complete the lab work in my thesis. Several undergraduate students in Charles’

lab also helped prep my plant samples for ELISA. A big thanks to them for all

of the weighing and grinding of plant material. Miranda Welsh kindly provided

lodging during my stay in Chapel Hill. Thanks also to Dr. Todd Mockler in the

Botany and Plant Pathology Department at OSU for letting me use space and

equipment in his lab for my initial efforts at using PCR to analyze B/CYDV

infections. His graduate student, Sam Fox, provided helped me establish prelimi-

nary RNA extraction procedures and also helped me through the PCR procedure.



I would also like to thank Julia Jones and the IGERT Ecosystem Informatics

program for providing funding during my graduate career. Thanks to Katherine

Hoffman for logistical support related to the IGERT fellowship. I would also like

to thank DIMACS at Rutgers University and the African Institute for Mathemat-

ical Sciences in Muizenburg, South Africa for organizing a workshop and course

on mathematical epidemiology, and then inviting me back the following year to

continue our research on trypanosomiasis. I would also like to Carrie Manore,

Holly Vuong, Sourya Shresta, Kyle Tomlinson, and Alex Perkins for informa-

tive discussions about infectious diseases and mathematical modeling. Thanks

to Andy Dobson at Princeton University for serving as my advisor during my

IGERT internship and for taking everyone on game drives every morning and

evening in the Serengeti. Parviez Hosseini was instrumental in helping me learn

the essentials of mathematical modeling and theoretical ecology. Parts of my dis-

sertation research were conducted at the HJ Andrews Experimental Forest LTER

site and within the Willamette National Forest in Oregon. Thanks to Barbara

Bond and the rest of the HJ Andrews LTER Executive Committee for permitting

my research. Thanks also to former HJ Andrews director Kari O’Connell and

manager Kathy Keable for providing logistical support. I also received a Ruth

Spaniol Writing Grant from the HJ Andrews LTER site, which allowed me to

complete my dissertation in a timely manner. Thanks to Cheryl Friesen for pro-

viding access to my field sites on National Forest Service property.



I am also grateful for the love and support of my family. My mother and father,

Rhoda and Kevin Moore, made sure that I was provided with every opportunity

to pursue my interests. My father was also instrumental in sparking my interest

in nature and the environment growing up, even if it took me a while to decide

to make that interest a career choice. Last, but certainly not least, thanks to my

wife, Alison, for being extremely supportive over the past 5 years. Thank you for

providing editorial assistance, including proofreading several of my papers and

answering all of my questions during the editing process. I would never have

succeeded without your full support, both emotionally and financially. Thanks

for being so understanding when travel for field and course work kept us apart

for weeks or months at a time. Thank you for all the encouragement you gave

me and for always being there when I needed someone to talk to or laugh with

at the end of the day.



CONTRIBUTION OF AUTHORS

Chapter 2: Dr. Parviez R. Hosseini assisted with the development of the

mathematical models and provided valuable feedback during the writing

process.

Chapter 3: Sourya Shresta, Kyle Tomlinson, and Holly Vuong all assisted with

the design of the study, the development of the mathematical models, and a

literature search for model parameter variables. Sourya Shresta also helped

with mathematical analyses and all authors contributed to the writing process.



TABLE OF CONTENTS
Page

1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Predators indirectly control vector-borne disease: linking predator-
prey and host-pathogen models . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Equilibrium and invasion analysis . . . . . . . . . . . 14
2.2.2 Frequency-dependent transmission model . . . . . . . 17

2.3 Results - Constant host population . . . . . . . . . . . . . . . 18

2.4 Dynamic host population model . . . . . . . . . . . . . . . . 21

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Climate change and sleeping sickness (Trypanosoma brucei rhode-
siense) in Eastern and Southern Africa: integrating epidemiology
with parasite and vector biology . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Calculation of R0 and parameter values . . . . . . . . 53
3.2.2 Effect of temperature-dependent parameters on R0 . . 53
3.2.3 Model analysis . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Habitat fragmentation and host composition control the spread
of multi-host pathogens: synthesis of spatial heterogeneity and
disease dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.1 Multi-patch, multi-host model . . . . . . . . . . . . . 86



TABLE OF CONTENTS (Continued)
Page

4.2.2 Patch and regional-level invasion and persistence . . . 88
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Spatial heterogeneity in host community composition 89
4.3.2 Connectivity patterns and host traits – Pathogen in-

vasion (R0) . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.3 Connectivity patterns and host traits – Local and re-

gional prevalence . . . . . . . . . . . . . . . . . . . . . 96
4.3.4 Connectivity patterns and host traits – Rates of spread 100
4.3.5 Habitat fragmentation . . . . . . . . . . . . . . . . . 106

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 The influence of host diversity and composition on epidemiological
patterns at multiple spatial scales: Barley and cereal yellow dwarf
viruses in a Cascades meadow system . . . . . . . . . . . . . . . . 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Study system . . . . . . . . . . . . . . . . . . . . . . 132
5.2.2 Sampling design . . . . . . . . . . . . . . . . . . . . . 133
5.2.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . 136

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



LIST OF FIGURES
Figure Page

2.1 Regions of stability in parameter space for each of the system equi-
libria as a function of vector birth rate (bN) and predator attack
rate (α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Pathogen prevalence in the host and vector populations as a func-
tion of the predator attack rate (α). . . . . . . . . . . . . . . . . . 37

2.3 Model of an epidemic outbreak in the presence or absence of a
predator. At t = 0, the host population is entirely susceptible and
1% of the vector population is infectious. . . . . . . . . . . . . . . 38

2.4 Pathogen prevalence, represented as the proportion of the host and
vector population that is infected, as a function of the vector birth
rate (bN) either in the absence of predation (open symbols), or with
the predator present at its equilibrium density (closed symbols). . 40

2.5 Disease prevalence as a function of vector productivity with vary-
ing rates of (a) disease-induced mortality and (b) reductions in
host fecundity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Relationship between temperature and four different parameters
that influence R0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Relationship between temperature and R0 when T. b. rhodesiense
is vectored by G. m. morsitans or G. pallidipes. . . . . . . . . . . 77

3.3 Suitable geographic range for T. b. rhodesiense transmission based
on range where R0 > 1 for G. pallidipes. . . . . . . . . . . . . . . 78

3.4 Suitable geographic range for T. b. rhodesiense transmission in
(a) 2055 and (b) 2090 under the A2 emissions scenario using the
CCSM3 global circulation model. . . . . . . . . . . . . . . . . . . 79

4.1 Equilibrium infection prevalence in a reservoir host and a spillover
host at the (a) regional and (b) local scales across a connectivity
(as determined by the host movement rates). . . . . . . . . . . . . 120

4.2 R0 as a function of host movement rate when the density of (a)
good hosts, or (b) poor hosts varies between patches. . . . . . . . 121



LIST OF FIGURES (Continued)
Figure Page

4.3 Pathogen prevalence at the regional and local scales in a two patch
(source-sink) system where coupling between patches occurs via
movement by either the good host (dashed line), poor host (dot-
dashed line), or both (sold line). . . . . . . . . . . . . . . . . . . . 122

4.4 Spread rate of the pathogen as a function of the host movement
rate when movement between patches is by either the good (reser-
voir) or poor (spillover) host. . . . . . . . . . . . . . . . . . . . . 123

4.5 R0 as a function of the number of patches when (a) the average
patch population size remains constant as the number of patches
increases, or (b) the regional population size remains constant,
but the average patch population size decreases, as the number of
patches increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 R0 as a function of increasing fragmentation of a habitat where
host species richness declines from 5 to 1 as fragmentation increases.125

5.1 Proportion of infected individuals of three grass species: Bromus
carinatus, Elymus glaucus, and Festuca idahoensis . . . . . . . . . 159

5.2 Association of the proportion of infected hosts in a meadow with
host species richness . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 BYDV prevalence as a function of (a) total host abundance and (b)
the relative abundance of grass species other than F. idahoensis,
B. carinatus, and E. glaucus . . . . . . . . . . . . . . . . . . . . . 161



LIST OF TABLES
Table Page

2.1 Equilibrium equations for the vector-predator SI model with a con-
stant host population. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 SIR Model variables, parameters and default estimates used to
calculate R0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Parameters used to calculateGlossina morsitans population growth
rate and density as a function of the mean annual temperature (T ). 75

5.1 The single factor candidate models and the first 10 models from
the 95% confidence set of models for meadow-level prevalence. . . 157

5.2 Potential explanatory variables for site-level infection prevalence. . 158





LIST OF APPENDICES
Page

A Dynamic host population model equilibria . . . . . . . . . . . . . 204

B Frequency-dependent model formulation . . . . . . . . . . . . . . 206

C Additional model extensions . . . . . . . . . . . . . . . . . . . . . 208

C.1 Acquired host immunity . . . . . . . . . . . . . . . . . . . . . 208

C.2 Vector latency period . . . . . . . . . . . . . . . . . . . . . . 209

C.3 Predator functional response . . . . . . . . . . . . . . . . . . 210

C.4 Predator selectivity . . . . . . . . . . . . . . . . . . . . . . . 212

D Trypanosomiasis parameter values . . . . . . . . . . . . . . . . . . 218

E Further details for multi-host, multi-patch model . . . . . . . . . 222

E.1 Transmission terms . . . . . . . . . . . . . . . . . . . . . . . 222

E.2 Migration terms . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.3 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

F Model selection criteria for B/CYDV prevalence data . . . . . . . 225





LIST OF APPENDIX FIGURES
Figure Page

C.1 Disease prevalence in the host population as a function of predator
attack rate (α) for three different host recovery rates (γ) with
lifelong immunity for recovered individuals . . . . . . . . . . . . . 214

C.2 Model of an epidemic outbreak for different values of α′ for a preda-
tor with a type II functional response . . . . . . . . . . . . . . . . 215

C.3 Pathogen prevalence, represented as the proportion of the host
population that is infected, as a function of the vector birth rate
(bN) when the predator has a type II functional response . . . . . 217



DEDICATION

In memory of my mother, Rhoda Moore.



The Effects of Community Composition, Landscape Structure, and
Climate on Host-Pathogen Interaction



Chapter 1 – General introduction

Our understanding of disease ecology has evolved rapidly since Anderson and May

(1979); May and Anderson (1979) began to synthesize the fields of parasitology,

epidemiology, and population biology. Pathogens and parasites have been rec-

ognized as an important component of many ecological communities. Pathogens

can regulate host populations (Tompkins et al., 2002a) and influence commu-

nity structure (Hudson and Greenman, 1998; Collinge and Ray, 2006; Hatcher

et al., 2006). The local abundance and diversity of parasites can exceed that of

predators (Kuris et al., 2008), which has important implications for trophic inter-

actions and other food web properties (Hudson et al., 2006; Lafferty et al., 2006,

2008). In recent years there has been an increasing appreciation of the impor-

tance of studying diseases within the context of the larger ecological community

(Collinge and Ray, 2006; Keesing et al., 2006; Hudson et al., 2002; Grenfell et al.,

1995; Ostfeld and Holt, 2004). Although there has been an increased empha-

sis on studying host-pathogen dynamics within a community context, research

has largely focused on a limited set of interactions. My thesis explores the po-

tential influences of food-web interactions (Chapter 2), climate change (Chapter

3), landscape structure and host movement patterns (Chapter 4), and the com-

bined influences of local community context and regional processes (Chapter 5)

on host-pathogen interactions.
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Host-pathogen interactions are influenced by environmental factors, landscape

composition and structure, and the broader community context (Guernier et al.,

2004; Keesing et al., 2006; Ostfeld et al., 2006b; Plantegenest et al., 2007). In

particular, diseases that are transmitted by a vector are dependent on the popu-

lation dynamics of the vector species, as well as the interactions of the vector and

host populations with other species within the community(Ostfeld and Keesing,

2000; Keesing et al., 2006; Zavaleta and Rossignol, 2004). Previous theoretical

studies have explored the effect of predation on host-pathogen dynamics when a

predator and pathogen compete for the host as a resource (Packer et al., 2003;

Hall et al., 2005; Holt and Roy, 2007), or when predators influence the abundance

of disease reservoirs (Ostfeld and Holt, 2004). Because vector-borne pathogens

are dependent on a vector species for disease transmission, pathogen prevalence

and persistence may also be affected by predator-vector interactions.

Although recent theoretical work has incorporated vector interactions with

pathogen and host species, current models of disease dynamics have not yet con-

sidered the potential role of predators in regulating the vector and pathogen pop-

ulations. In Chapter 2 I develop a mathematical model that integrates predator-

prey and host-pathogen theory to examine the indirect effect of predators on

pathogen dynamics. The model predicts that predation on a vector may drasti-

cally slow the initial spread of a pathogen and decrease the proportion of hosts

infected at equilibrium. These results highlight the importance of studying in-

teractions that—within the greater community—may alter our predictions of the

outcome of host-pathogen interactions. It also suggests that the introduction of



3

biological control agents to control vector populations can reduce prevalence or

eradicate a pathogen, particularly in productive environments where the vector

population experiences a high turnover rate.

Climate warming over the next century is expected to have a large impact on

the interactions between pathogens and their animal and human hosts (Harvell

et al., 2002; Pascual and Bouma, 2009). Vector-borne diseases are particularly

sensitive to warming because temperature changes can alter pathogen and vec-

tor development rates and generation times, shift the geographical distribution of

vector or reservoir host populations, and alter transmission dynamics (Patz et al.,

2000; Gubler et al., 2001). Because climate conditions affect multiple parameters

involved in the epidemiology of a particular disease, often in different directions

and with different intensities, predicting the impact of climate change on disease

transmission and risk requires a framework that specifically incorporates the role

of each climate-sensitive parameter. In Chapter 3 I use a modeling framework pro-

posed by Rogers and Randolph (2006) to examine the likely effects of an increase

in mean annual temperatures on the epidemiology and risk of trypanosomiasis

(sleeping sickness) in Eastern and Southern Africa. The relationships between

temperature and several key epidemiological parameters, including the parasite

development rate and the vector biting and mortality rates, are used to calculate

the sensitivity of the parasite’s basic reproductive number, R0, to temperature.

The predicted suitable temperature range for sustained trypanosomiasis trans-

mission is then used to forecast changes to the parasite’s geographic range under

several climate change scenarios. Model results indicate that projected warming



4

over the next 50-100 years is likely to significantly shift the distribution of sleeping

sickness in Africa. The modeling approach presented in Chapter 3 also provides a

framework for using the climate-sensitive aspects of vector and pathogen biology

to predict changes in disease prevalence and risk due to climate change.

Disease ecology studies have largely been limited to exploring host-pathogen

interactions within a local community, ignoring regional and landscape level pro-

cesses and patterns. Epidemiological studies that have incorporated spatial dy-

namics or landscape heterogeneity have largely been restricted to single host-

pathogen metapopulation dynamics or the analysis of non-dynamic spatial dis-

tributions of disease incidence or risk (Hess et al., 2002; Keeling et al., 2004;

Ostfeld et al., 2005). Heterogeneity in community composition and movement

patterns of different host species among landscape fragments will influence the

spread and persistence of generalist pathogens that infect multiple host species

(Smith et al., 2002; Collinge et al., 2005; Real and Biek, 2007). In Chapter 4, I

develop a multi-host, multi-patch metapopulation disease model to identify the

potential effects of landscape connectivity, patch heterogeneity, and host commu-

nity composition on the initial spread, prevalence, and persistence of multi-host

pathogens at the patch and regional scales. In addition, I also examine how the

correlation of host traits associated with resistance to fragmentation, host quality

and dispersal ability may affect the invasion and spread of multi-host pathogens

in fragmented landscapes. I also review empirical studies of multi-host pathogens

and use the model to illustrate the ways that spatial heterogeneity may influence

disease dynamics in natural and disturbed communities.
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The spread of infectious disease epidemics, as well as spatial patterns of dis-

ease incidence, are influenced by the spatial structure of host populations (Hess

et al., 2002). Spatial dynamics are particularly important for plant pathogens be-

cause natural plant communities exist in spatially heterogeneous landscapes, and

host species are often distributed in patches that will influence how pathogens

spread and persist (Plantegenest et al., 2007). In Chapter 5 I investigate the

role of local community interactions and the effects of landscape structure and

regional processes on the dynamics of plant pathogens in the open meadows

of the Cascade Mountains of Oregon. Barley and cereal yellow dwarf viruses

(B/CYDV) are a group of generalist, aphid-vectored plant viruses that infect

over 100 grass species in both agricultural and natural systems (D’Arcy and Bur-

nett, 1995). Host susceptibility to B/CYDV varies, with some species suffering

increased mortality and reduced fecundity when infected and other species expe-

riencing little change in their overall fitness (Irwin and Thresh, 1990; Power and

Mitchell, 2004; Malmstrom et al., 2005). Studies have also shown that the pres-

ence of highly competent reservoir species can increase the prevalence of B/CYDV

in local host communities (Power and Mitchell, 2004). Host-aphid interactions

also vary by host, with aphids showing preference for and experiencing higher

fitness on certain host species (Borer et al., 2009). While the effect of these host

community differences have been investigated at the local level their importance

for regional patterns of B/CYDV spread and persistence have not been fully ex-

plored. Both local, within-field movements and long-distance dispersal by aphids

are important for B/CYDV transmission (Irwin et al., 1988; McElhany et al.,
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1995), and host-vector interactions at multiple spatial scales may influence local

and regional disease dynamics. This complexity of B/CYDV epidemiology makes

it an ideal study system for the exploration of spatial community dynamics and

disease ecology.

Spatial patterns of pathogen prevalence are determined by ecological pro-

cesses acting across multiple spatial scales. I used variance components analysis

and model selection techniques to partition the sources of variation in B/CYDV

prevalence and determine which abiotic and biotic factors influence host-pathogen

interactions in a Cascades meadow system. B/CYDV prevalence in Cascades

meadows varied by host species identity, with a significantly higher proportion of

infected Festuca idahoensis individuals than Elymus glaucus or Bromus carina-

tus. While there was significant variation in prevalence between host species and

between meadows in the same meadow complex, there was no evidence of any sig-

nificant variation in prevalence between different meadow complexes. Variation

in prevalence between meadows was primarily associated with the local commu-

nity context—host identity, the relative abundance of different host species, and

host species richness—and the physical landscape attributes of the meadow.
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Chapter 2 – Predators indirectly control vector-borne disease:

linking predator-prey and host-pathogen models

Abstract

Pathogens transmitted by arthropod vectors are common in human populations,

agricultural systems, and natural communities. Transmission of these vector-

borne pathogens depends on the population dynamics of the vector species as

well as its interactions with other species within the community. In particu-

lar, predation may be sufficient to control pathogen prevalence indirectly via

the vector. To examine the indirect effect of predators on vectored-pathogen

dynamics, we developed a theoretical model that integrates predator-prey and

host-pathogen theory. We used this model to determine whether predation can

prevent pathogen persistence or alter the stability of host-pathogen dynamics.

We found that, in the absence of predation, pathogen prevalence in the host in-

creases with vector fecundity, whereas predation on the vector causes pathogen

prevalence to decline, or even go extinct, with increasing vector fecundity. We

also found that predation on a vector may drastically slow the initial spread of

a pathogen. The predator can increase host abundance indirectly by reducing

or eliminating infection in the host population. These results highlight the im-

portance of studying interactions that, within the greater community, may alter
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our predictions when studying disease dynamics. From an applied perspective,

these results also suggest situations where an introduced predator or the natu-

ral enemies of a vector may slow the rate of spread of an emerging vector-borne

pathogen.

2.1 Introduction

Pathogens are a critical component of many ecological communities, often reg-

ulating host populations and influencing community structure. In recent years

there has been an increasing appreciation of the importance of studying diseases

within the context of the larger ecological community (Grenfell et al., 1995; Hud-

son et al., 2002; Ostfeld and Holt, 2004; Keesing et al., 2006; Collinge and Ray,

2006). In particular, diseases that are transmitted by a vector are dependent on

the population dynamics of the vector species as well as the interactions of the

vector and host populations with other species within the community (Ostfeld

and Keesing, 2000; Keesing et al., 2006; Zavaleta and Rossignol, 2004). Diseases

transmitted by arthropod vectors are common in wildlife, agricultural and human

communities (Anderson and May, 1991). Zoonotic diseases such as Lyme disease

and West Nile Virus are transmitted to humans and animals by arthropod vec-

tors, and many emerging or resurgent infectious diseases are vector-transmitted

(Gubler, 1998; Gratz, 1999; Daszak et al., 2000; Dobson and Foufopoulos, 2000;

Taylor et al., 2001).
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Although there has been an increased emphasis on studying host-pathogen

dynamics within a community context, research has largely focused on a lim-

ited set of interactions. Community epidemiology studies have tended to focus

on interactions between hosts sharing a common pathogen (Holt and Pickering,

1985; Begon et al., 1992; Woolhouse et al., 2001; Holt et al., 2003), or between

pathogens that infect the same hosts (Holmes and Price, 1986; Esch et al., 1990;

Kuris and Lafferty, 1994). Previous theoretical studies have explored the effect

of predation on host-pathogen dynamics when a predator and pathogen compete

for the host as a resource (Hochberg et al., 1990; Packer et al., 2003; Ostfeld

and Holt, 2004; Hall et al., 2005; Holt and Roy, 2007). Predation intensity on

host populations can alter host-pathogen dynamics (Hudson et al., 1992; Packer

et al., 2003; Dwyer et al., 2004), and even affect pathogen persistence in the host

population (Grenfell et al., 1995; Hall et al., 2005; Duffy et al., 2005). In general,

predation often has major impacts on community structure via direct suppression

of prey populations and indirect effects such as trophic cascades (Hairston et al.,

1960; Paine, 1966; Price et al., 1980; Sih et al., 1985; Schmitz et al., 2000). Be-

cause vector-borne pathogens are dependent on a vector species for transmission,

pathogen persistence may be affected by predator-vector dynamics in addition

to predator-host interactions. For example, a variety of predators consume the

larvae of different disease-transmitting mosquito species (see Kumar and Hwang

2006; Floore 2007 for recent reviews), and these predators are capable of regu-

lating mosquito populations (Chase and Knight, 2003; Stav et al., 2005; Juliano,

2007, 2009; Seng et al., 2008). To date, however, there has not been a theoretical
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exploration of the impact of predator-vector interactions on the transmission or

persistence of vector-borne pathogens.

The potential for predation to prevent pathogen invasion or reduce disease

prevalence in a host population also has implications for the biological control of

vector populations. Predators have been introduced, or proposed, as biological

control agents of vectors for various diseases such as malaria, dengue fever, and

Lyme disease (Jenkins, 1964; Legner, 1995; Stauffer et al., 1997; Samish and Re-

hacek, 1999; Scholte et al., 2005; Kumar and Hwang, 2006; Ostfeld et al., 2006a;

Walker and Lynch, 2007). Several recent studies suggest that predator introduc-

tions led to a decline in local cases of dengue fever in Vietnam and Thailand (Kay

and Nam, 2005; Kittayapong et al., 2008), and malaria in India (Ghosh et al.,

2005; Ghosh and Dash, 2007). However, many control efforts have been unsuc-

cessful or have had unintended consequences, such as the displacement of native

fish species by mosquito fish (Gambusia affinis) introduced to control malaria

(WHO, 1982; Pyke, 2008). The goal of biological control is not necessarily to

eliminate the vector (Murdoch et al., 1985), but to reduce pathogen prevalence

and the risk of disease outbreaks in the host population. Natural enemies and

introduced predators could accomplish this goal by directly reducing the density

of the vector population, or by lowering the infectious proportion of the vector

population. The identification of a target vector population threshold density,

below which the pathogen cannot persist, is an important step in determining

whether predation could sufficiently lower the vector population density. Bio-

logical control efforts are often used in concert with other vector control efforts
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(WHO, 2004) such as insecticide spraying; therefore it is also important to inves-

tigate how predator-vector dynamics may influence or be influenced by additional

vector mortality factors.

Although recent theoretical work has incorporated vector interactions with

pathogen and host species, current models of disease dynamics have not yet

considered the potential role of predators in regulating vector and pathogen pop-

ulations. Here we developed a mathematical model that integrates predator-prey

and host-pathogen theory to examine the indirect effect of predators, via a vec-

tor, on pathogen dynamics. Using the model we examined how predation on a

vector population may affect disease prevalence as measured by the proportion

of infected individuals in a host population. In particular, we investigated the

relationship between predation strength and pathogen prevalence. We also deter-

mined whether predation can prevent pathogen persistence and examine different

scenarios to determine under what conditions predation is most likely to effec-

tively eradicate a pathogen. Lastly, we determined whether the form of disease

transmission affects the model results.

2.2 The Model

We designed our model to examine the effects of a vector’s predator on disease

dynamics, by incorporating both vector population dynamics and a predator.

The main version of our model assumes that the host population is at a constant

equilibrium and that pathogen transmission is density-dependent (following e.g.,
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Anderson and May 1991; Hethcote 2000). We also examined model formulations

incorporating host population demographics (Section 2.4), frequency-dependent

transmission (Section 2.2.2), host immunity, vector latency, a saturating preda-

tor functional response, and selective predation (Appendix C). Incorporating

host population demographics can be particularly important because disease-

induced mortality and reductions in host fecundity often have a large effect on

host-pathogen dynamics. We begin without host dynamics to set a baseline

for us to examine the potentially interactive effects of predation and the vector

population’s growth rate. Predator-vector dynamics are represented by a set of

Lotka-Volterra predator-prey equations (Gurney and Nisbet, 1998). For simplic-

ity, the predator is modeled as an obligate dietary specialist, dependent on the

vector population for survival. However, this model also adequately represents a

generalist predator capable of regulating the vector population.

We initially assumed a constant host population size based on the Ross-

MacDonald susceptible-infected (SI) model for malaria (Ross, 1910; Macdonald,

1957; Anderson and May, 1991). We modified the Ross-MacDonald model by

adding a predator (P ) to the system and making the vector population dynamic:

dI

dt
= βV H(H − I)V − γI,

dU

dt
= bN(U + V )− βHV IU − (mN + dN(U + V ))U − αUP,

dV

dt
= βHV IU − (mN + dN(U + V ))V − αV P,

dP

dt
= εα(U + V )P −mPP.

(2.1)
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In these equations, I represents infected hosts. Because the total host popu-

lation size is constant, we only need to keep track of infecteds, and represent

susceptible hosts as S = H − I. βV H is the transmission coefficient for hosts

acquiring infection from vectors, and γ represents the removal rate of individuals

from the infected class as a result of death or recovery to the susceptible class.

Disease transmission from the vector to the host is dependent on the densities of

susceptible hosts (H − I) and infectious vectors (V ).

Unlike hosts, vectors have a dynamic population size. U and V represent

uninfected and infectious vectors, respectively. All vectors are born uninfected

into class U with a per-capita birth rate of bN . Infectiousness does not af-

fect vector birth rate or mortality. Vectors only acquire infection from hosts,

with the transmission coefficient βHV . Host-to-vector disease transmission is also

density-dependent, determined by the densities of infected hosts (I) and unin-

fected vectors (U). Vectors in both classes experience density-independent (mN)

and density-dependent (dN) mortality in addition to death from predation. Vec-

tor predators (P ) have a conversion efficiency of ε, an attack rate of α, and a

density-independent mortality rate of mP . Thus, the vectors experience logistic

growth, while their predators have a linear, Type I functional response.

2.2.1 Equilibrium and invasion analysis

The main model with a constant host population has five biologically relevant

equilibria (negative equilibrium values are excluded): (i) populations other than
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the host (H) are absent; (ii) the host and vector (N) are present, but the pathogen

and predator are absent; (iii) vectors (N) and predators (P ) are present in the

absence of the pathogen; (iv) the pathogen is present in the host and vector

populations, but the predator is absent; and (v) all populations including the

pathogen coexist at nonzero densities (Table 2.1). Because host density remains

constant, the host is present in each of these equilibria as long as the parameter

H > 0.

Equilibrium (i) is stable and the host population (H) is disease-free if bN ≤

mN . If bN > mN , then equilibrium (i) is unstable and, at a minimum, the vector

population can invade the system. Equilibrium (ii) represents the disease-free,

predator-free system where the host population, H, is disease-free (i.e., I∗ = 0)

and the vector population, N , is at equilibrium N∗ = bN−mN

dN
≡ KV , which is the

vector’s carrying capacity. When predation is strong enough to regulate vector

dynamics—as determined by the inequality mP/εα < KV—the predator can

invade and shift the system to equilibrium (iii). When the pathogen is absent,

dynamics between the vector and predator are described by the traditional Lotka-

Volterra predator-prey model with a self-limiting prey population (Gurney and

Nisbet, 1998).

For analyzing the effect of predation on the invasion or persistence of a

pathogen, it is useful to consider the pathogen’s basic reproduction number,

R0—the number of individuals infected by the initial infectious case in an en-

tirely susceptible population (Diekmann et al., 1990). If R0 > 1, each infectious

host will infect more than one susceptible individual, and the pathogen can invade
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and persist upon introduction into a susceptible population. If R0 < 1, infected

individuals do not fully replace themselves in the population, which leads to the

elimination of the pathogen from the host population. Therefore, R0 = 1 serves as

a threshold parameter for the invasion of the pathogen into a susceptible popula-

tion. With the next-generation method (Diekmann et al., 1990; van den Driessche

and Watmough, 2002), and the total vector population defined as N = U +V for

convenience, the pathogen’s basic reproduction number from equation (2.1) is

R0 =
√
NH

√
βV HβHV√

γ(mN + dNN + αP )
. (2.2)

This equation for R0 is sensitive to our initial assumptions; R0 will be altered

when host demographics are included or disease transmission is frequency-dependent.

When the predator is absent, as in equilibrium (ii), R0 =
√

(N∗HβV HβHV /γmN).

From this equation we can see that there is a host density threshold HT =

γbN/N
∗βV HβHV , such that H > HT is required for pathogen invasion and per-

sistence. If the predator is present the host density threshold for a successful

pathogen invasion is HT = εαγbN/mPβV HβHV .

In addition to a host density threshold, there is also a minimum vector density

required for pathogen persistence:

NT = γ(mN + αP ∗)
(HβV HβHV − dNγ) . (2.3)
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The vector density threshold depends on the equilibrium predator density (P ∗).

In the absence of a predator, the minimum vector density for pathogen persistence

simplifies to NT = γbN/HβV HβHV .

2.2.2 Frequency-dependent transmission model

The initial model assumed density-dependent transmission, in which the number

of contacts between the vector and host is proportional to host density. In con-

trast, when disease transmission is frequency-dependent, the number of contacts

depends on the proportion of infected host individuals rather than host density.

It has been argued that the transmission of many vector-borne pathogens is bet-

ter described by the frequency, rather than the density, of infected individuals in

the host population (Getz and Pickering, 1983; Thrall et al., 1993; Antonovics

et al., 1995; Rudolf and Antonovics, 2005).

Disease transmission is likely to be frequency-dependent when the vector only

feeds on one or a few hosts during its lifetime, a feeding strategy employed by

many mosquitoes, ticks, and other arthropods that transmit disease (Antonovics

et al., 1995). Many models with frequency-dependent transmission predict host-

pathogen dynamics that differ from the results of density-dependent transmis-

sion models (Getz and Pickering, 1983; Thrall et al., 1993; Wonham et al.,

2006). Therefore we modify our model by making disease transmission frequency-

dependent; formulation details for the frequency-dependent transmission model

are described in Appendix B.
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2.3 Results - Constant host population

Adding a predator reduces the region of pathogen persistence at equilibrium

(Figure 2.1). Because an increase in the predator’s attack rate, α, or conversion

efficiency, ε, leads to a decrease in R0, an increase in predation strength leads to a

decrease in the equilibrium proportion of infected hosts (Figure 2.2). In addition

to reducing equilibrium infection levels, predation can also delay the onset of an

epidemic (Figure 2.3). By decreasing the vector’s lifespan, predation decreases the

average number of new hosts infected during the lifespan of each infectious vector,

thereby slowing the spread of disease. Even the relatively moderate predation

rates used in Figure (2.3), decrease the equilibrium pathogen prevalence by 30%

and increase the time to equilibrium from 50 to 150 days.

In the absence of predation, an increase in the vector birth rate leads to

an increase in the proportion of infected hosts (Figure 2.4a). However, when the

predator is introduced into the system, an increase in the vector birth rate leads to

a decline in the prevalence of disease in the host population (Figure 2.4a), because

an increase in the vector birth rate leads to an increase in the predator population.

Predation increases turnover in the vector population, and the average individual

vector is infectious for a shorter period because it is alive for a shorter period.

In addition, higher vector fecundity leads to more non-infectious vectors, thereby

diluting the infectious potential of the vector population. Nonintuitively, in a

tri-trophic system, increased vector fecundity leads to reduced host infection.

When the predator is present, the proportion of infected hosts at equilibrium
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is sensitive to the vector birth rate, bN , but not to the vector mortality rate,

mN , or density-dependent mortality term, dN (Figure 2.4b). Increases in the

vector mortality rate lead to a gradual reduction in pathogen prevalence in the

absence of the predator. However, when a predator is present, moderate increases

in the non-predation vector mortality rate do not affect pathogen prevalence,

because the predator regulates the vector population. At equilibrium, vector

density is determined solely by the predator population’s parameter values (Table

2.1). Therefore increasing mN reduces predator density, but does not change

vector density or pathogen prevalence until the additional vector mortality is

high enough that the predator cannot persist by feeding on the vector.

Introducing a predator to the system will lower the proportion of infected

hosts, except in a narrow parameter range where the vector’s birth rate is barely

higher than its mortality rate. Equation (2.3) for the minimum vector population

threshold, NT , suggests that an increase in bN increases the minimum vector

density required for pathogen persistence. There is also an inverse relationship

between vector productivity (as measured by bN) and the strength of predation,

α. At low vector productivity levels, pathogen persistence is possible except

at very high levels of predation. As vector productivity increases, the predation

strength needed to exclude the pathogen from the system decreases (Figure 2.1b).

Increasing the predator’s conversion efficiency, ε, also reduces disease prevalence.

The presence of the predator also increases the minimum host density, HT ,

required for disease persistence when disease transmission is density-dependent.

As the strength of predation increases, HT also increases. The other parameters
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that affect pathogen persistence and prevalence are identifiable by examination

of equation (2.2) for R0. An increase in transmission rates βV H or βHV leads to

increased pathogen prevalence. A decrease in the density of the host population

causes a decrease in the proportion of infected hosts, and below a critical threshold

density, HT , the pathogen cannot persist in the host population. There is also

a negative relationship between the rate of host recovery or turnover, γ, and

pathogen persistence. At high recovery rates the pathogen cannot invade and

persist in the host population.

Frequency-dependent model results

When disease transmission is frequency-dependent, increasing host density leads

to a decrease in disease prevalence. R0 is no longer positively related to host

density, but instead scales with the inverse of host density (see Appendix B).

Likewise, the predation strength required to exclude the pathogen is also lower

at higher host densities. Except at low host densities, the region of parameter

space permitting pathogen persistence will be greater under density-dependent

transmission than under frequency-dependent transmission. However, the mode

of transmission does not affect the relationship between vector productivity, pre-

dation strength, and disease prevalence. An increase in predation strength or the

vector birth rate, with predators present, still leads to a decrease in the proportion

of infected hosts.
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2.4 Dynamic host population model

The assumption of a constant host population is useful for simplifying the dy-

namics of a relatively complex system and may be justified in the case of a disease

with a short infectious period and limited effects on host mortality or fecundity.

However, when a pathogen has an effect on host fecundity or mortality, or a long

infectious period, the presence of a pathogen can have a large impact on host pop-

ulation dynamics. Including host population dynamics is also appropriate if host

and vector population dynamics occur on a similar time scale. Here, the initial

model of density-dependent transmission in a constant host population (equation

(2.1)) is altered to include host demographics. The host has a per-capita mortal-

ity rate, mH , and a per-capita birth rate, bH , with a density-dependent control,

φ. The modified model also explores the effect of the pathogen on host fecundity,

ρ, and an additional disease-induced mortality rate, δ:

dS

dt
= bH(1− φH)(S + ρI)− βV HSV −mHS,

dI

dt
= βV HSV −mHI − δI,

dU

dt
= bN(U + V )− βHV IU − (mN + dN(U + V ))U − αUP,

dV

dt
= βHV IU − (mN + dN(U + V ))V − αV P,

dP

dt
= εα(U + V )P −mPP.

(2.4)
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After including host demographics, the pathogen reproduction number is

R0 =
√
NH

√
βV HβHV√

(δ +mH)(mN + dNN + αP )
. (2.5)

The only difference between this equation and equation (2.2) is that, instead of

1/γ, the average infectious period of an infected host is now 1/(δ +mH).

The equilibrium equations for the total host density (H∗) when the pathogen

is present are too complex to display succinctly. However, the equilibrium values

for the other model equations can be solved as a function of H∗ (see Appendix A).

The equilibrium solutions to the dynamic-host-population model as a function of

H∗ are very similar to those for the constant-host-population model, where host

density was represented as a parameter, H. In fact, when there is no disease-

induced mortality (δ = 0) and no reduction in the fecundity of infected individuals

(ρ = 1), the equilibrium solutions of the two models are identical when H∗ = H.

Results - Dynamic host model

Disease-induced changes in host mortality and fecundity decrease the proportion

of infected hosts at equilibrium, but they do not modify the qualitative relation-

ship between predation intensity and disease prevalence in the host population

compared to the initial model. If infected hosts are subject to additional mor-

tality, the proportion of infected hosts at equilibrium decreases (Figure 2.5a). In

addition, an increase in the disease-induced mortality rate leads to a decrease in
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the predation intensity required to prevent pathogen persistence. Reducing the

fecundity of infected hosts also leads to a reduction in pathogen prevalence, but

it does not affect pathogen persistence (Figure 2.5b). Even if infected hosts are

sterile (ρ = 0), the threshold for pathogen persistence does not change.

When host demographics are included in the model, the pathogen can also

affect the equilibrium host density. When the pathogen does not affect host

mortality or fecundity, the equilibrium host density is at its carrying capacity,

KH = (bH − mH)/(bHφ), whether or not the pathogen is present. If infection

increases the host mortality rate (δ > 0) or reduces fecundity (ρ < 1), the host

population density will remain below the carrying capacity when the pathogen

is present at equilibrium. Increasing the negative effect of infection on host fe-

cundity reduces the host population density, but the relationship between the

disease-induced mortality rate and host density is non-linear. Initial increases in

the disease-induced mortality rate reduce the equilibrium host population den-

sity; further increases minimally increase host population density, although equi-

librium host density remains below the carrying capacity unless the pathogen is

extirpated. Equilibrium host population density is higher in the presence of the

predator for a given set of parameter values. In addition, increasing the predator

attack rate or predator conversion efficiency increases the equilibrium host den-

sity (a standard trophic cascade) and decreases pathogen prevalence in the host

population as we saw when host population size was constant.
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2.5 Discussion

Numerous ecological studies have shown that, in addition to directly affecting

their prey, predators often indirectly affect other species in a community (Holt,

1977; Sih et al., 1985; Wootton, 1994; Shurin et al., 2002; Caceres et al., 2009).

Our analysis indicates that predators may have important indirect effects on

the prevalence or persistence of a vector-borne pathogen in a host population

by controlling the vector population. If predation intensity is strong enough, the

predator can prevent the establishment of a pathogen in a susceptible population.

In addition, introducting a predator into a system where an endemic pathogen is

at equilibrium with the host and vector populations can eliminate the pathogen

(as long as R0 < 1 in the presence of the predator). These predictions are

robust to assumptions about host population dynamics and disease transmission

as well as the addition of acquired immunity in the host population, a vector

latency period, a saturating response of predation to vector density, and selective

predation on infectious or non-infectious vectors (Appendix C).

A non-intuitive prediction of this model is that predation on the vector popu-

lation reverses the relationship between vector productivity and pathogen preva-

lence. Pathogen prevalence increases with vector productivity (defined here as

the vector’s birth rate, bN) in the absence of predation, whereas in the presence

of the predator, pathogen prevalence declines with increasing vector productivity.

The effect of predation on pathogen prevalence or persistence is not dependent on

whether disease transmission is modeled as density- or frequency-dependent and
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provides an indication of situations where natural predation or biological control

may successfully control vector-borne diseases. Interestingly, the results of several

studies are consistent with this prediction. In particular, vector control methods

are essential for managing dengue fever and dengue hemorrhagic fever—a com-

mon mosquito-transmitted viral disease in humans—because of limited treatment

options and no approved vaccine (Kroeger and Nathan, 2007). Predaceous cope-

pods in the genera Mesocyclops and Macrocyclops have been used successfully as

biological control agents to control Aedes spp. mosquitoes that transmit dengue

(Marten et al., 1994; Kay et al., 2002; Kay and Nam, 2005; Nam et al., 2005;

Kittayapong et al., 2008). In Vietnam, biological control efforts targeted larval

breeding sites where the productivity of Aedes aegypti was especially high (Kay

et al., 2002). These control efforts helped eradicate the vector from 32 of 37 com-

munities; no new dengue cases were reported in any of the treated communities

over a period of several years (Kay and Nam, 2005; Nam et al., 2005). The intro-

duction of Mesocyclops in combination with other control measures also led to a

significant reduction in dengue cases in Chachoengsao Province, Thailand (Kit-

tayapong et al., 2008), and larvivorous fishes significantly reduced the long-term

(> 12 months) density of A. aegypti in rural Cambodia (Seng et al., 2008).

Targeting sites of high vector productivity is likely to have the largest ef-

fect on vector abundance. Our model suggests that introducing a predator to

these sites could also lead to large reductions in pathogen prevalence due to a

predator-induced reversal in the relationship between vector productivity and

pathogen prevalence. In addition to targeting highly productive larval sites for
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dengue control, several researchers have suggested that malarial control efforts

should target the most productive larval habitats (Gu and Novak, 2005; Gu et al.,

2008). Although these efforts are aimed at targeting productive habitats for en-

vironmental management and source reduction, our model predicts that these

productive habitats could be targets for successful biological control efforts, par-

ticularly when elimination of the habitat is not feasible. Although controlling

malaria by introducing predators has a controversial history (Pyke, 2008), several

recent reviews suggest that native or introduced predators can reduce the abun-

dance of Anopheles larvae in certain habitats (Walker and Lynch, 2007; Chandra

et al., 2008). For example, Wu et al. (1991) found that introducing carp to rice

paddies in Guangxi, China, significantly reduced larval mosquito density and

may have reduced malaria transmission at the village and county levels. Ku-

mar et al. (1998) found that replacing DDT and pyrethum treatments with the

introduction of Bacillus thuringiensis and a native larvivorous fish Aplocheilus

blocki to the major breeding habitats of Anopheles stephensi in Goa, India, led

to a significant reduction in larval A. stephensi abundance. In addition, malaria

incidence declined when compared with nearby towns that did not receive the

new treatments. These studies, along with others reviewed by Walker and Lynch

(2007) and Chandra et al. (2008), suggest that predator control of Anopheles

mosquitoes can reduce malaria incidence in certain situations. Although quan-

titative evaluation of vector productivity is often difficult (Killeen et al., 2005),

recent efforts to quantify the productivity of Anopheles (Mutuku et al., 2006)

and Aedes (Kay et al., 2002; Chadee, 2007) mosquitoes show promise and sug-
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gest that using measures of habitat-based vector productivity to guide biological

control efforts may prove useful. Our model suggests that targeting these highly

productive sites would lead to the largest reduction in pathogen prevalence.

Classical biological control strategies have emphasized the use of specialist

predators to maintain pest populations at low, stable equilibrium levels (Murdoch

et al., 1985; Stiling and Cornelissen, 2005). Our model also suggests that it is not

essential for the predator to extirpate the vector population in order to eradicate

the pathogen. The minimum vector population threshold predicted by our model

(NT , equation (2.3)) provides a target for vector control. Biological control agents

are often successful at reducing vector abundance, at least in the short term (see

Legner 1995; Kumar and Hwang 2006; Ostfeld et al. 2006a; Walker and Lynch

2007; Chandra et al. 2008 for examples); although they will not eradicate the

pathogen if the equilibrium vector density remains above NT . For example, in

three communities examined by Nam et al. (2005) in which predaceous copepods

were used to control Aedes mosquitoes, dengue cases dropped to 0 in both 2002

and 2003 even though mosquitoes were still present at low densities. These

results are consistent with our prediction that biological control can maintain

vector density below NT .

Even if predation intensity is not high enough to remove the pathogen from

the host population, predation can still decrease disease prevalence in the host

population to low levels, potentially delaying the onset of an epidemic. For hu-

man diseases, an increase in the time between the introduction of a pathogen

and an outbreak would provide additional time for disease control efforts (such
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as vaccination or quarantine) to be implemented (Anderson and May, 1991). In

agricultural systems, farmers are often concerned about an economic threshold

where crop losses become great enough to trigger economic losses (Kogan, 1998).

In this case, the reduction in the rate of disease spread due to predation may

be sufficient to allow crop harvest before an epidemic outbreak. For example,

vector-transmitted plant pathogens such as the barley and cereal yellow dwarf

viruses (BYDV/CYDV) can have detrimental effects on crop yields by causing

stunted growth, reduced seed-set, or early senescence (Irwin and Thresh, 1990;

D’Arcy and Burnett, 1995); therefore, reducing disease prevalence within the

host population could limit crop losses to acceptable levels. Natural predators

and biological control agents have been used in agricultural settings to reduce the

abundance and slow the population growth of several different aphid species that

transmit BYDV/CYDV (Chiverton, 1986; Brewer and Elliott, 2004), but the cor-

responding effects on BYDV/CYDV have not yet been investigated. Laboratory

studies of aphid predators have found either no impact on BYDV infection rates

or a transient reduction in spread of the virus (Christiansen-Weniger et al., 1998;

Smyrnioudis et al., 2001). However, these studies were short term and did not

continue long enough for the predator to regulate the aphid population, which is

required to observe large reductions in pathogen prevalence in our model.

In the absence of predation, an increase in the vector mortality rate leads to

a decline in disease prevalence. However, when a predator with a type I linear

functional response is present, an increase in the vector mortality rate from factors

other than predation does not change disease prevalence. Because the predator
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regulates the vector population, an increase in non-predation mortality reduces

predator, but not vector, abundance. The overall vector mortality rate stays the

same because the increase in the background mortality rate is compensated by a

decrease in mortality due to predation. If the predator has a type II saturating

functional response, pathogen prevalence may decline with an increase in non-

predation mortality if the predator’s consumption rate is already saturated (see

Appendix C for details). However, even with a type II response, once the vector

density decreases to a level at which the predator consumption rate is no longer

saturated, pathogen prevalence will level off despite further increases in non-

predation mortality.

As a result, predator regulation of the vector population may have implica-

tions for the use of other vector control methods (such as pesticides) in conjunc-

tion with biological control. Biological control is often part of an integrated pest

management (IPM) strategy that includes other vector control methods, such

as spraying insecticides, environmental manipulation, or the application of larvi-

cides to vector breeding sites (WHO, 2004). Ideally these integrated approaches

will have synergistic effects, but our model suggests that predator regulation of

the vector population could reduce or prevent the effectiveness of other control

methods aimed at increasing vector mortality. Instead, these additional mortality

factors may reduce predator abundance, limiting the regulatory effects of preda-

tion on the vector population as Chansang et al. (2004) and Snyder and Ives

(2001) have observed in mosquitoes and aphids, respectively. Chansang et al.

(2004) found that the application of Bacillus thuringiensis alone or in combina-
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tion with Mesocyclops thermocyclopoides initially reduced Aedes aegypti densities

more than a Mesocyclops-only treatment, but after 16 weeks the Mesocyclops-

only treatment had higher Mesocyclops densities and lower A. aegypti densities

than the combined treatment. This suggests that B. thuringiensis prevented

Mesocyclops from strongly regulating the A. aegypti population. Other sources

of density-independent vector mortality besides vector control efforts, such as the

presence of other predators, can interfere with pathogen regulation by a special-

ist predator. Snyder and Ives (2001) found that specialist parasitoids introduced

to control the pea aphid (Acyrthosiphon pisum), which transmits several crop

viruses, were disrupted by generalist predators that fed on both the aphid and

its parasitoid.

Previous work has explored how predation on a host population affects host-

pathogen dynamics (Packer et al., 2003; Ostfeld and Holt, 2004; Duffy et al.,

2005; Hall et al., 2005; Holt and Roy, 2007; Duffy and Hall, 2008; Caceres et al.,

2009). Packer et al. (2003) detailed how predation often reduces the incidence

of parasitic infections and increases the overall size of the prey population. Our

model reveals that predation on a vector can similarly reduce pathogen preva-

lence in both the host and vector. In addition, when the pathogen regulates

the host by increasing mortality or reducing fecundity, predation can weaken

the pathogen’s negative impact on the host, thereby increasing host abundance.

When predation on immune individuals occurs predation can increase pathogen

prevalence in a prey population (Holt and Roy, 2007). We found that including

acquired immunity in the host does not alter the qualitative effects of predation
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on pathogen prevalence (see Appendix C for details). Because our model does

not include recovery or acquired immunity of infectious vectors, predation on the

vector population cannot lead to an increase in pathogen prevalence in the host or

vector; however, relaxing this assumption by incorporating predation on vectors

resistant to infection could increase pathogen prevalence. This could affect dis-

ease control efforts; predation on mosquitoes that have been genetically modified

to be incapable of transmitting malaria or other pathogens (Alphey et al., 2002;

Scott et al., 2002) could limit the effectiveness of their introduction.

In addition to predator effects on the pathogen, predation may indirectly in-

crease host abundance by reducing the negative impacts of infection. Indirect

effects of predators on lower trophic levels, i.e. trophic cascades, are common in

nature (Pace et al., 1999; Shurin et al., 2002), and are predicted to be stronger

in highly productive systems (Oksanen et al. 1981; Polis 1999; but see Borer

et al. 2005). In a system with direct predation on the host population, Hall et al.

(2005) found that high ecosystem productivity (as measured by the carrying ca-

pacity of the host population) could facilitate invasion of a parasite. However,

increasing the strength of predation in a highly productive environment desta-

bilized parasite-host dynamics leading to extinction of both the parasite and its

host. In our model, the predator, vector, and host populations form a tri-trophic

system with both direct trophic interactions and indirect interactions mediated

by the pathogen. The indirect effects of predation on pathogen prevalence and

host abundance are predicted to be strongest when the vector population ex-

periences high growth rates, as may be expected to occur in highly productive
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environments. For vectors such as mosquitoes that complete different life stages

in different environments, population growth rates often are influenced primarily

by productivity in the larval environment rather than by host density (South-

wood et al., 1972; Juliano, 2007), and therefore we would expect the strength

of the indirect effects of predation to be related to larval vector productivity.

However, the productivity of other vectors that remain in the same environment

throughout their life cycle, such as many fleas, ticks or aphids, may be positively

influenced by host density (Dixon, 1998).

Our model results suggest that predation on a vector can strongly influence

pathogen prevalence and host abundance in both intuitive and non-intuitive ways.

The introduction of biological control agents to control vector populations can

reduce prevalence or eradicate the pathogen, particularly in productive environ-

ments where the vector population experiences a high turnover rate. In the

absence of predation, these productive environments would be expected to have

the highest infection rates. This predator-induced reversal in disease prevalence

indicates that reductions in the abundance of natural predators due to invasive

species, habitat modifications, or climate change may be partially responsible for

the increased frequency of disease outbreaks caused by vector-borne pathogens

(Gubler, 1998; Gratz, 1999; Daszak et al., 2000). The presence of a predator

could also decrease the risk of zoonotic diseases such as Lyme disease and West

Nile virus spilling over from reservoir hosts to humans (Bernard et al., 2001;

Schmidt and Ostfeld, 2001; LoGiudice et al., 2003). With the emergence and re-

emergence of many vector-borne diseases, determining the potential interactions
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of the host(s) and pathogen with other species in the community is essential for

predicting potential disease risks and guiding control efforts. Our model results

suggest that empirical research into the role of native and introduced predators

across a range of vector productivity and mortality will be essential to determin-

ing the influence of predators on vectored disease transmission.
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Figure 2.1: Regions of stability in parameter space for each of the system equilib-
ria as a function of vector birth rate (bN) and predator attack rate (α). (a) When
there is no predator in the system, the pathogen reproduction number, R0, and
pathogen persistence are a function of vector birth rate. (b) When a predator is
added the pathogen reproduction number and pathogen persistence depend on
bN and α. The solid line represents the R0 = 1 isocline, and the dashed line
represents the P ∗ = 0 isocline. The other model parameters values are H = 1,
βV H = 0.15, βHV = 0.15, γ = 0.05, mN = 0.1, dN = 0.05, ε = 0.25, mP = 0.1.
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Figure 2.2: Pathogen prevalence in the host and vector populations as a function
of the predator attack rate (α). Pathogen prevalence is measured as the propor-
tion of infected hosts (I∗/H) and vectors (V ∗/N∗) in their respective populations
at equilibrium. The other model parameters values are H = 1, βV H = 0.15,
βHV = 0.15, γ = 0.05, bN = 0.35, mN = 0.1, dN = 0.05, ε = 0.25, mP = 0.1.
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Figure 2.3: Model of an epidemic outbreak in the presence or absence of a preda-
tor. At t = 0, the host population is entirely susceptible and 1% of the vector
population is infectious. Parameters values are H = 1, βV H = 0.15, βHV = 0.15,
γ = 0.05, bN = 0.35, dN = 0.05, mN = 0.1, α = 0.2, ε = 0.25, mP = 0.1.
R0 = 2.54 when predator is absent, and R0 = 1.60 when predator is present at
its equilibrium density.
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Figure 2.4: (a) Pathogen prevalence, represented as the proportion of the host
and vector population that is infected, as a function of the vector birth rate
(bN) either in the absence of predation (open symbols), or with the predator
present at its equilibrium density (closed symbols). When bN < mN (mN = 0.1),
the vector population is absent at equilibrium, and by necessity the pathogen
cannot persist. (b) Pathogen prevalence in the host and vector populations as a
function of the non-predation vector mortality rate (mN). In the absence of the
predator an increase in the vector mortality rate leads to a decrease in pathogen
prevalence, while pathogen prevalence does not respond to an increase in vector
mortality when a predator is present. The other model parameters values are
H = 1, bV = 0.5 (b only), βV H = 0.15, βHV = 0.15, γ = 0.05, dN = 0.05,
α = 0.2, ε = 0.25, mP = 0.1.
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Figure 2.5: Disease prevalence as a function of vector productivity with varying
rates of (a) disease-induced mortality and (b) reductions in host fecundity. The
other model parameters values are bH = 0.20, mH = 0.05, φ = 0.2, δ = 0,
βV H = 0.15, βHV = 0.15, mN = 0.1, dN = 0.05, α = 0.2, ε = 0.25, mP = 0.1,
ρ = 1 (a only), δ = 0 (b only).



43

Climate change and sleeping sickness in Eastern and
Southern Africa (Trypanosoma brucei rhodesiense):

integrating epidemiology with parasite and vector biology

Sean Moore, Sourya Shresta, Kyle Tomlinson, Holly Vuong



44

Chapter 3 – Climate change and sleeping sickness (Trypanosoma
brucei rhodesiense) in Eastern and Southern Africa: integrating

epidemiology with parasite and vector biology

Abstract

Climate warming over the next century is expected to have a large impact on the

interactions between pathogens and their animal and human hosts, and vector-

borne diseases are particularly sensitive to warming because temperature changes

can alter vector development rates and generation times, shift their geographi-

cal distribution, and alter transmission dynamics. Because the distribution of

tsetse flies in Africa is strongly correlated with temperature and other climatic

variables, trypanosomiasis (causative agent Trypanosoma brucei rhodesiense) was

recently identified as one of the twelve wildlife or zoonotic diseases most likely to

spread due to predicted climate changes during the 21st century. To examine the

potential impacts of projected warming on trypanosomiasis epidemiology we con-

structed a model of disease transmission dynamics that incorporates the effect of

temperature on several epidemiological parameters including tsetse feeding, mor-

tality, and the parasite’s incubation period. The model predicts that sleeping

sickness epidemics are can occur between 20.7-26.1 °C. The predicted suitable

range for T. b. rhodesiense in 2090 is predicted to be 85-112% of its current

size depending on greenhouse gas emissions. Although we do not predict a large
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expansion in the size of the suitable range, there is a large shift of as much as over

50% in the geographic extent of the range. The model also predicts that 46-77

million people who are not currently at risk of exposure live within the projected

range for 2090 (including portions of South Africa, the Ethiopian highlands, and

Rwanda). The modeling approach presented here provides a framework for using

the climate-sensitive aspects of vector and pathogen biology to predict changes

in disease prevalence and risk due to climate change.

3.1 Introduction

Global climate changes have been implicated in the emergence, reemergence,

or range expansion of many wildlife and human diseases in recent years, such

as cholera, West Nile virus, malaria, and amphibian chytridiomycosis (Daszak

et al., 2000; Pascual et al., 2000; Hay et al., 2002; Pascual et al., 2006; Pounds

et al., 2006). The global mean temperature has increased by 0.7 ◦C during the

past 100 years and is predicted to increase by an additional 1.1 ◦C to 6.4 ◦C dur-

ing the 21st century (IPCC, 2007). Additional warming is likely to affect the

epidemiology of vector-borne diseases by altering pathogen and vector develop-

ment rates and generation times, shifting the geographical distribution of vector

or reservoir host populations, altering transmission dynamics, or modifying host

susceptibility to infection (Patz et al., 2000; Gubler et al., 2001). Such changes

could cause pathogen range expansions and host declines, or release hosts from
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disease control by interfering with the precise conditions many parasites require

for persistence (Harvell et al., 2002, 2009; Lafferty, 2009; Ostfeld, 2009b).

As the evidence for climate impacts on disease has increased, there has been

a move towards incorporating climate effects into models of disease transmission

and potential distributions of vectors (Rogers and Williams, 1993; Rogers and

Randolph, 2006). Since climate changes affect multiple parameters involved in

the epidemiology of a particular disease, often in different directions and with

different intensities, predicting the impact of climate change on disease trans-

mission and risk requires a framework that specifically incorporates the role of

each climate-sensitive parameter. One such approach, as proposed by Rogers and

Randolph (2006), focuses on understanding the effects of climatic changes on the

basic reproductive number, R0, of the parasite. R0 provides a threshold quantity

for predicting the pathogen’s ability to persist, and also provides other valuable

information regarding the nature of the epidemic (Anderson and May, 1979; May

and Anderson, 1979; Heesterbeek, 2002). Here we use the approach of Rogers

and Randolph (2006) to examine trypanosomiasis, which was recently identified

by the Wildlife Conservation Society as one of twelve wildlife or zoonotic diseases

that are likely to increase in incidence or expand their geographic range due to

predicted climate changes during the 21st century.

An estimated 70,000 cases of Human African Trypanosomiasis (HAT), com-

monly known as sleeping sickness, occur each year, and 60 million people are

currently estimated to be at risk of infection in sub-Saharan Africa (WHO, 2006;

Fèvre et al., 2008). HAT infections are caused by the parasitic protozoa Try-
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panosoma brucei gambiense in West and Central Africa and T.b. rhodesiense in

East Africa, and can be transmitted to humans by over 20 species of Glossina

tsetse flies (WHO, 1998; Rogers and Robinson, 2004). In Eastern and Southern

Africa G. morsitans morsitans and G. pallidipes, along with other species and

subspecies classified in the Morsitans subgroup are the major vectors of T. b.

rhodesiense (Leak, 1999; Rogers and Robinson, 2004). These species are poten-

tial vectors for sleeping sickness because their distributions occur in areas with

suitable climate conditions for trypanosome reproduction, and they prefer habi-

tats, such as open savannah or riverine areas, that lead to potential interactions

with humans (Leak, 1999).

In addition to differences between the identity of their major vector species,

the two Trypanosoma brucei subspecies also differ epidemiologically. T. b. gam-

biense infections are chronic and may be asymptomatic for several months or

years, while the progression of T. b. rhodesiense infections is typically much

quicker, with symptoms developing within days and almost 80% of deaths occur-

ring within 6 months of the onset of illness (WHO, 1998). Importantly, given

the timelines and profiles of the diseases, it is presumed that humans may be

a primary reservoir for chronic T. b. gambiense infections but not for acute T.

b. rhodesiense infections, which likely require a wildlife or livestock reservoir to

maintain the parasite between outbreaks (Welburn et al., 2001).

Since the Great Epidemic of the 1900s in eastern Africa that infected half

a million people (Bruce, 1903; Christy, 1903; Hide et al., 1996), periodic sleep-

ing sickness outbreaks have occurred throughout eastern and southern Africa
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(Berrang-Ford et al., 2006). Outbreaks tend to occur at historical endemic foci

where the parasite appears to persist at endemic levels in the reservoir popula-

tions between outbreaks (Welburn et al., 2001; Berrang-Ford et al., 2006). By

the 1960s, new case loads had dropped due to prevention methods and medical

assistance to these areas (WHO, 1998). However, since the 1960s there has been

a resurgence in sleeping sickness cases in certain historic foci, as well as a spread

of trypanosomiasis into several new areas (Fèvre et al., 2001; Picozzi et al., 2005),

due to the discontinuation of control programs, civil disturbances, and economic

problems (Stich et al., 2001). As a result, a recent epidemic of the Rhodesian

form of sleeping sickness occurred in Uganda (Fèvre et al., 2005), and outbreaks of

Gambian sleeping sickness have occurred in Angola, Sudan, Democratic Republic

of Congo, Uganda, and Cameroon (Moore and Richer, 2001; van Nieuwenhove

et al., 2001; Abel et al., 2004; Welburn et al., 2006; WHO, 2006). It is unclear

what triggered these epidemics, but one hypothesis is that periodic tsetse range

shifts expose naive animal and human populations (WHO, 1998). This possibility

is relevant because projected changes to the regional climate regime are likely to

cause changes in the distribution of certain tsetse species and alter the suitability

of the environment for the parasite.

The distribution of different Glossina species throughout sub-Saharan Africa

appears to be strongly correlated with climate variables (Rogers and Robinson,

2004). The strongest predictor of Glossina morsitans distribution in Zimbabwe

was the maximum of the mean monthly temperature—correctly predicting the

flies’ presence/absence over 82% of the country (Rogers and Williams, 1993). G.
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morsitans is also highly sensitive to changes in mean temperatures; the average

temperature difference between areas of fly presence and absence may be less

than 1◦C (Rogers and Randolph, 1993; Rogers and Robinson, 2004). In West

Africa, temperature was the most important variable for describing the distribu-

tion of 8 different species of Glossina (Rogers et al., 1996), and efforts to predict

the distribution and abundance of various Glossina species using a combination

of temperature, moisture, and vegetation variables derived from remote sensing

satellite data typically achieve greater than 80% accuracy (Rogers and Williams,

1993; Rogers et al., 1996; Robinson et al., 1997a,b; Rogers and Robinson, 2004).

The importance of meteorological variables, particularly temperature, in deter-

mining tsetse abundance and distribution suggests that climate change will likely

alter the distribution of suitable tsetse habitat throughout much of sub-Saharan

Africa.

In addition to influencing tsetse range distributions, temperature is also the

main abiotic driver of tsetse population dynamics that influence trypanosomia-

sis epidemiology (Hargrove, 2004). The length of the pupal development period

decreases with temperature, while larval production and both pupal and adult

mortality increase with temperature above a certain threshold (Hargrove, 2004).

Supporting this field-based evidence, laboratory studies of tsetse physiology have

also shown that tsetse survival and metabolic rates are temperature-dependent

(Terblanche et al., 2005; Terblanche and Chown, 2007; Terblanche et al., 2008).

In addition to affecting tsetse distribution and population dynamics, temperature

has been shown to influence other important aspects of trypanosomiasis epidemi-
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ology, including reservoir host population dynamics and the development time of

the trypanosome parasite (Desowitz and Fairbairn, 1955).

Here we focus on modeling R0 for sleeping sickness, and incorporating the ef-

fect of mean annual temperature on the important epidemiological parameters in

order to understand the likely impacts of climate change on the geographic range

of T. b. rhodesiense in Southern and Eastern Africa. The predicted suitable

temperature range for T. b. rhodesiense is then used to forecast changes to the

parasite’s range under several climate change scenarios. We assess the degree to

which the current distribution of the Morsitans group of tsetse flies overlaps with

both the current and future T. b. rhodesiense ranges predicted by the model.

We also compare the model predictions with the current human population dis-

tribution in the region to determine how the human risk of exposure might shift

during the 21st century.

3.2 Model

We model the dynamics of trypanosomiasis transmission and infection between

the tsetse vector population and the human and animal host populations using

an SIR framework (Anderson and May, 1991; Hethcote, 2000). The human and

animal host populations consist of susceptible (SH and SA) and infected (IH

and IA) individuals, while the tsetse vector population includes susceptible (SV ),

exposed (EV ), and infectious (IV ) individuals. Humans and animals are born into

their susceptible classes at per-capita rates bH and bA respectively, and we assume
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that only uninfected humans and animals reproduce. Susceptible humans become

infected with a force of infection, λH , and recover from infection and return to the

susceptible class at rate, γH , which represents the rate of successful treatment

of infected individuals. Humans are removed from the population with a per-

capita mortality rate, dH , and infected individuals are subject to an additional

disease-induced mortality factor, κH . The animal host population demographics

and transmission dynamics are identical to human dynamics, except that animal

hosts recover from infection at rate, γA, and enter the recovered class (RA), while

successfully treated humans re-enter the susceptible class.

dSH
dt

= bH NH − dH SH − βH SH + γH IH

dIH
dt

= λH SH − dH IH − κH IH − γH IH
dSA
dt

= bANA − dA SA − βA SA
dIA
dt

= λA SA − dA IA − κA IA
dRA

dt
= γA IA − dARA

dSV
dt

= bV NV − dV SV − βV SV
dEV
dt

= λV SV − dV EV − µEV
dIV
dt

= µEV − dV IV

(3.1)

Tsetse flies are born into the susceptible class at rate, bV , and die from all

classes at a rate of dV . Susceptible tsetse flies are subject to a force of infection,

λV . Once infected, tsetse flies move into the exposed class and become infectious
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at a rate, µV , that depends on the parasite’s development rate in the fly. Once

infectious, we assume that tsetse flies remain in that state for the duration of

their lifespan.

Trypanosomiasis transmission to humans occurs with a force of infection,

λH , that depends on the proportion of susceptible human hosts in the total host

population (NH+NA), the density of infected tsetse vectors (IV ), the vector biting

rate (a), the probability of transmission from tsetse to humans upon contact

(βV→H), and the relative preference of tsetse flies for human blood meals relative

to blood meals from an animal host (1−ρ). The force of infection, λA, for animal

hosts is similar to λH , except it depends on the proportion of susceptible animals

rather than humans, the probability of transmission from tsetse to animals upon

contact (βV→A), and the tsetse’s preference for animal blood meals (ρ). The force

of infection experienced by the tsetse population, λV , depends on their biting rate

(a), their relative preference for animal and human blood meals (ρ and (1− ρ)),

the proportions of susceptible human and animals in the total host population,

and the probabilities of disease transmission from humans or animals to the tsetse

when bitten (βH→V and βA→V ).

λH = a (1− ρ)( IV
NH +NA

)βV→H

λA = a ρ ( IV
NH +NA

) βT→A

λV = a (1− ρ)( IH
NH +NA

)βH→V + a ρ ( IA
NH +NA

) βA→V
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3.2.1 Calculation of R0 and parameter values

Using the next-generation method described by van den Driessche and Watmough

(2002) to calculate the basic reproductive number, R0, for the model described

by equation (3.1), we arrive at the following formulation:

R0 =

√√√√[
a2 (1− ρ)2 µNH NV βH→V βV→H

(NH +NA)2 dV (µ+ dV ) (dH + κH + γH)

]
+

[
a2 ρ2 µNANV βA→V βV→A

(NH +NA)2 dV (µ+ dV ) (dA + κA)

]
(3.2)

From this formulation, R0, can be separated into human and animal compo-

nents:
RH

0 = a2 (1− ρ)2 µNH NV βH→V βV→H
(NH +NA)2 dV (µ+ dV ) (dH + κH + γH)

RA
0 = a2 ρ2 µNANV βA→V βV→A

(NH +NA)2 dV (µ+ dV ) (dA + κA)

(3.3)

Hence, R0 =
√
RH

0 +RA
0 .

Parameter values were taken from field studies, lab experiments, and other

trypanosomiasis models found in the literature (see Table 3.1 for parameter values

and Appendix D for details on how these values were selected).

3.2.2 Effect of temperature-dependent parameters on R0

The effects of climate change on trypanosomiasis (HAT) epidemiology can be

determined by examining how climate affects the values of the variables and

parameters in equation (3.2) (Rogers and Randolph, 2006). Because R0 = 1



54

represents an important threshold for parasite invasion and persistence, any in-

fluence of climate on R0 will influence the ability of the parasite to establish in

a susceptible host community. Climate-induced changes to the parameters that

determine R0, such as the biting rate (a) or the vector latent period (µ), will

have a corresponding effect on R0. The sensitivity of R0 to climate change can

be examined by analyzing the effect of climate on each parameter value, coupled

with the effect that such changes in each parameter value will have on R0. We

initially assume that the only influence of climate changes on HAT will occur due

to changes in the mean annual temperature (T̄ ). Tsetse flies are also susceptible

to humidity levels (Hargrove, 2004), but the effect of changes in humidity are

more difficult to quantify and sparsely documented in the literature. For our

analysis, unless otherwise stated, we use the estimates presented in Table (3.1).

Evidence suggests that the vector biting rate (a), vector mortality rate (dV ),

and parasite development rate in the vector (µ) are all sensitive to changes in tem-

perature. In addition, the distribution and abundance of different tsetse species

are highly sensitive to temperature (Rogers, 1979, 2000; Rogers and Robinson,

2004). Because vector density appears in equation (3.2), any changes to tsetse

abundance will also alter R0. Transmission rates from the vector to human

(αV→H) and animal (αV→A) hosts, and from the hosts back to the vector (αA→V ,

αA→V ) may also be affected by temperature, but the data needed to estimate

such a relationship is lacking, so we will assume that all transmission rates are

constant. The change in R0 with a change in mean temperature can be deter-

mined by the sum of the effects of temperature on each temperature-sensitive
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component of R0 coupled with the corresponding change to R0:

dR0

dT
= da

dT

dR0

da
+ ddV

dT

dR0

ddV
+ dµ

dT

dR0

dµ
+ dNV

dT

dR0

dNV

. (3.4)

The mathematical relationships between R0 and the temperature-sensitive bio-

logical parameters are as follows:

dR0

da
= R0

a
, (3.5)

dR0

dµ
= dV

2µ(µ+ dV ) R0. (3.6)

dR0

ddV
= −(µ+ 2dV )

2dV (µ+ dV ) R0. (3.7)

dR0

dNV

= R0√
NV

(3.8)

Equations (3.5−3.8) indicate that increases in a, µ, or NV will all have a positive

effect on R0, while an increase in dV will have a negative effect. However, the

quantitative effect of temperature change on R0 will depend on both the indi-

vidual relationships of these parameters with temperature and their combined

impact within the R0 equation. While the relationship between R0 and changes

to its various components is relatively straight forward there is a greater deal of

uncertainty in determining the relationship between temperature and the various

model parameters, because these parameters often incorporate various aspects of

the physiology, behavior, and ecology of tsetse flies and their hosts (Leak, 1999).

In some cases, the directional effect of temperature can be predicted, but even
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for these parameters an accurate quantitative relationship to temperature is typ-

ically not available. In the sub-sections that follow we describe the quantitative

effects of temperature on several parameters for which plausible estimates can be

derived, namely tsetse abundance (NV ), tsetse mortality rates, (dV ), biting rates

(a) and the parasite development rate in tsetse (µ). These temperature equations

can then be coupled with the appropriate equations (3.5 − 3.8) to examine how

R0 is influenced by parameter-specific temperature effects.

3.2.2.1 Tsetse mortality rate, dV and temperature

Temperature has a nonlinear effect on the mortality rate of tsetse flies; mortal-

ity rates are high at both low and and high temperatures with optimal rates

occurring at intermediate temperatures (Hargrove, 2004). The relationships be-

tween temperature and the mortality rates of G. pallidipes and G. m. morsitans

were determined via a mark-recapture study on Antelope Island, Lake Kariba,

Zimbabwe (Hargrove, 2001). Mean temperatures explained the majority of the

variance in mortality rates, although the exact relationship between tsetse mor-

tality rates and temperature depends on both the species and sex of the fly. Here

we will use the general equation derived by Hargrove (2004):

dV = ek1T̄−k2

100 . (3.9)
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The estimated parameter values were k1 = 0.071 and k2 = 0.19 for G. m. mor-

sitans males, k1 = 0.083 and k2 = 0.85 for G. m. morsitans females, k1 = 0.181

and k2 = 3.50 for G. pallidipes males, and k1 = 0.106 and k2 = 1.47 for G.

pallidipes females. For G. pallidipes, equation (3.9) only applies when T̄ > 24 ◦C,

when T̄ ≤ 24 ◦C mortality is assumed to be a constant dV = 0.0286 (Hargrove,

2004). We averaged the male and female estimates of k1 and k2 for each species

to get species-specific parameter values (Figure 3.1a). The derivative of dV with

respect to temperature (T̄ ) is therefore

ddV

dT̄
= k1(ek1T̄−k2)

100 . (3.10)

3.2.2.2 Biting rate, a, and temperature

The biting rate, a, represents the frequency of feeding activity by tsetse flies.

As ectotherms, tsetse internal rates of reaction, which affect growth and cellular

differentiation, are particularly sensitive to environmental temperatures (Cossins

and Bowler, 1987). In lab experiments, Terblanche et al. (2005); Terblanche and

Chown (2007); Terblanche et al. (2008) found that the basal metabolic rates of

several Glossina species increased log-linearly with temperature. Because adult

tsetse flies tend to remain inactive in a resting location between blood meals,

and only emerge to search for an appropriate host when hungry (Leak, 1999;

Hargrove, 2004), we assume that their feeding rate will show the same rate-

temperature response as their metabolic rate. Therefore, the slope for the biting



58

rate-temperature equation is the same as the slope of the relationship between

temperature and log metabolic rate for G. m. morsitans and G. pallidipes over

a range of 20 to 32 ◦C as experimentally determined by Terblanche and Chown

(2007):

log10(a) = b+ c T̄

da

dT
= c 10(b+c T̄ ) log(10),

where c = 0.031 for G. pallidipes and c = 0.0329 for G. morsitans. The y-

intercept, b, is parameterized so that a = 0.25 at 21 ◦C for each species. Al-

though the metabolic rate-temperature response is subject to a maximum tol-

erance threshold, above which rates can drop rapidly due to enzyme inactivity

(van der Have and de Jong, 1996), the maximum temperature of 32 ◦C in this

study is higher than the maximum temperature at which positive population

growth rates occur for either species (see Section 3.2.2.4). Therefore, we can

justify the assumption of a log-linear relationship between biting rate and tem-

perature over the range of temperatures considered in this article (Figure 3.1b).

3.2.2.3 Parasite development rate, µ, and temperature

An early study by Kinghorn and Yorke (1912) found that the length of the T. b.

rhodesiense development cycle in G. morsitans tended to be negatively correlated

with ambient temperatures. A laboratory study by Desowitz and Fairbairn (1955)
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found that the development period for T. vivax in G. p. palpalis decreased in

a linear fashion as temperature increased from 21 to 30 ◦C. By assuming that

the recruitment rate of tsetse flies into the infectious class (µ) is 1/(development

period), we derive the following equations from Desowitz and Fairbairn (1955)’s

experimental data:

µ = 0.00681 T̄ − 0.2833,
dµ

dT
= 0.00681.

We have assumed that the development rate of T. b. rhodesiense will show the

same quantitative relationship to temperature as T. vivax (Figure 3.1c). We also

parameterized the y-intercept so that the development rate is µ = 0.056d−1 at

25 ◦C to match estimates from a laboratory study by Dale et al. (1995).

3.2.2.4 Tsetse density, NV , and temperature

Mean temperature is one of the key influences on the distribution and abundance

of several tsetse species (Rogers, 1979; Williams et al., 1990; Rogers, 2000; Har-

grove, 2004; Rogers and Robinson, 2004). Tsetse reproductive, development, and

mortality rates are all temperature-sensitive (Hargrove, 2004), so the population

growth rate will be influenced by temperature. Here we calculate the population

growth rate from these life-table parameters using the Euler-Lotka equation from
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Williams et al. (1990):

βe[(σa−r)τa+(σb−r)τb+(σc−r)τc] = 1− e(σc−r)τc . (3.11)

The population growth rate, r, depends on the daily survivorship of pupae (σa),

nulliparous adults (σb), and adult flies (σc), as well the number of days spent in

each of these age classes, τa, τb, and τc respectively. The population growth rate

also depends on the fecundity rate (β), which depends on the larval mortality

rate, the length of the inter-larval period, and female adult mortality rate. A

complete list of the parameters in equation (3.11), and the temperature-response

rate of G. morsitans for each of these parameters, is included in Table (3.2). We

assume that the equilibrium tsetse density is directly correlated to the average

population growth rate, with the maximal equilibrium density occurring when

the growth rate is maximized and a zero density if the population growth rate is

negative for a given mean annual temperature. The density at other temperatures

is calculated by scaling density proportional to the maximum density based on

the growth rate relative to the maximum growth rate (Figure 3.1d).

3.2.3 Model analysis

The relationships between R0 and temperature described in equations (3.5-3.11)

were entered into equation (3.4) to calculate the temperature range where R0 > 1

with either G. m. morsitans or G. pallidipes acting as the primary vector for T.
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b. rhodesiense. Here we only examine the current range of T. b. rhodesiense in

Eastern and Southern Africa (Hide et al., 1996; Hide, 1999; Welburn et al., 2001),

excluding the range of T. b. gambiense in Central and Western Africa. Hide

(1999) identified 14 specific areas (referred to as foci) in Southern and Eastern

Africa where sleeping sickness outbreaks have occurred since 1900. To validate the

results regarding the sensitivity of R0 to temperature we examined whether the

current mean annual temperatures at these known sleeping sickness foci fell within

the predicted suitable range for T. b. rhodesiense. The annual mean temperature

from 1950-2000 was taken for each historical foci from the appropriate 2.5 arc-

minute grid in a dataset compiled by Hijmans et al. (2005). The 2.5 arc-minute

spatial dataset of 1950-2000 mean annual temperatures was then used to create a

map of the suitable range for T. b. rhodesiense in Eastern and Southern Africa.

All spatial analyses were conducted using ArcGIS 9.3 (ESRI; San Diego, CA

USA). Because the parasite has a slightly wider temperature range when vectored

by G. pallidipes (see Results), all spatial predictions use the temperature range

calculated with G. pallidipes as the vector.

The map of the predicted suitable range for T. b. rhodesiense was compared

to a map of the predicted areas of suitability for the Morsitans group of tsetse

flies created by Wint and Rogers (2000). The Morsitans group consists of tsetse

species in the subgenus Glossina s.s.: G. morsitans, G. pallidipes, G. austeni,

G. longipalpis, and G. swynnertoni (Jordan, 1993). The Morsitans dataset pro-

vides a map of the probability of occurrence rather than presence/absence, so

for our analysis we used a probability of occurrence of 75% as a threshold for
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presence/absence. We calculated the percentage of the current Morsitans range

predicted to also be suitable for T. b. rhodesiense, as well as the proportion of

tsetse habitat either too cold or too hot for the parasite.

Future climate conditions were recreated using results from two general cir-

culation models (GCMs) included in Fourth Assessment Report of the IPCC

(2007). For the GCMs developed by the Hadley Centre (HadCM3) and the Na-

tional Center for Atmospheric Research (CCSM3) we examined two greenhouse

gas emissions scenarios: a moderate scenario with intermediate population and

economic growth estimates and modest emission controls leading to emissions

peaking at mid-century (B1) and a more extreme scenario with high global popu-

lation, slow economic growth, and slow technological changes (A2) (IPCC, 2007).

For each GCM and emissions scenario we used the 20-year mean annual tempera-

ture for two periods: 2046-2065 and 2080-2099. The future climate datasets have

a coarser spatial resolution (2.5 x 3.75 degrees for HadCM3 and 1.4 x 1.4 degrees

for CCSM3) than the current climate dataset; therefore, we overlaid the future

temperature anomalies over the current climate layer to create a future climate

data layer with a spatial resolution of 2.5 arc-minutes. We then determined the

predicted suitable geographic range for T. b. rhodesiense for the periods 2046-

2065 and 2080-2099 under the A2 and B1 emissions scenarios by averaging the

results from the HadCM3 and CCSM3 GCMs. We also examined the proportion

of the current Morsitans range that will become too hot for the parasite under

each of these scenarios. Because our model does not provide a prediction of how

tsetse distributions will shift we present results regarding the parasite’s range
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expansion without making any assumptions about whether the vector will also

shift its geographic distribution.

The number of people currently living within the suitable temperature range

for T. b. rhodesiense was calculated using population estimates provided in the

Gridded Population of the World (Balk et al., 2006). We have assumed here that

the human population size and distribution will remain constant because future

population estimates are not yet available at the spatial resolution of our model.

Population counts at a spatial resolution of 2.5 arc-minutes were overlaid with

current mean annual temperatures, and the future climate scenarios, in order to

estimate the number of people currently at risk, the number of additional people

who could be at risk under the projected warming scenarios, and the number

of people living in regions that will likely become too hot for sustained HAT

transmission under the various future climate projections.

3.3 Results

Based on the relationships between mean annual temperature and the four temperature-

sensitive parameters in equation (3.4), the temperature range where R0 > 1 for

T. b. rhodesiense is predicted to be 20.7 - 26.1 ◦C with G. pallidipes as the

primary vector species (Figure 3.2). The suitable temperature range for G. mor-

sitans is similar but narrower, with R0 > 1 when the mean annual temperature

is 20.9 - 25.6 ◦C. A maximum R0 of 1.51 occurs at 24.0 ◦C with G. pallidipes,

and a maximum R0 of 1.24 occurs at 23.6 ◦C with G. morsitans. Twelve of the
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14 historical foci fall within the predicted current suitable range for T. b. rhode-

siense (Figure 3.3). The two foci outside of the suitable range are in Gambela

and Gilo, Ethiopia where the last major epidemics occurred in 1967 and 1970

respectively (Hide, 1999). The mean annual temperature at both of these foci is

27.6 ◦C, 1.5 degrees warmer than the predicted maximum suitable mean annual

temperature of 26.1 ◦C. However, this region has already experienced an increase

of > 1◦C in mean annual temperatures since 1960, which may partially explain

their exclusion from the suitable range.

Our model predicts an expansion in the suitable geographic range of T. b.

rhodesiense for the 20-year period 2045-2064 of 10.4% (B1 emission scenario) or

11.5 % (A2 emissions scenario). Both of these predicted expansions are due to

moderate shifts in the suitable geographic range (Figure 3.4a). Under the B1

scenario, 20.2% of the current suitable range will become too hot by 2055, while

27.7% of the future range is in areas currently too cold for the parasite. The

range shift by 2055 is even larger under the A2 scenario, with a loss of 31.4%

of the current range and 38.4% new habitat in 2055. The predicted suitable

geographic range for T. b. rhodesiense shifts even further by 2080-2099. Under

the B1 scenario, the geographic range in 2090 is an additional 1.3% larger than

the 2055 range, an expansion of 11.8% from the current range. By 2090, 27.8% of

the current range will be too hot for T. b. rhodesiense under the B1 scenario, and

35.4% of the 2090 range represents new habitat. The more severe A2 emissions

scenario is predicted to lead to a decrease in the size of the suitable geographic

range by 2090 (Figure 3.4b). The extent of the predicted range in 2090 is only
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85.2% of the current suitable range size, a decrease of 23.6% from the predicted

2055 range. 68.5% of the current suitable range is predicted to be too hot by 2090

and 63.0% of the 2090 range under the A2 scenario is in areas that are currently

predicted to be too cold to support an R0 > 1 for T. b. rhodesiense.

84.2% of the predicted geographic distribution for the Morsitans group of

Glossina also has a suitable temperature for sustained T. b. rhodesiense trans-

mission. 10.4% of the Morsitans distribution is colder than the suitable temper-

ature range for T. b. rhodesiense, and 5.4% is currently too hot. The percentage

of the Morsitans distribution with annual mean temperatures suitable for T. b.

rhodesiense decreases under both the B1 and A2 emissions scenarios, with larger

declines occurring under the A2 scenario. Under the B1 scenario, the suitable

proportion of the Morsitans distribution falls to 71.1% in 2055 and 64.6% by

2090. Under the A2 scenario, the suitable portion is 58.6% in 2055 and 29.7%

in 2090, with over 70% of current Morsitans habitat becoming too hot for T. b.

rhodesiense by 2090. Under both scenarios the portion of unsuitable habitat is

almost entirely areas that will become too warm, only the B1 scenario in 2055

predicts that more than > 1% of the current Morsitans geographic range will still

be too cold (1.5%) for T. b. rhodesiense.

None of the historical foci (besides the two in Ethiopia) are predicted to

become too hot for T. b. rhodesiense by 2055 under the B1 emissions scenario,

and only the South Luangwa Valley focus in Zambia is predicted to be too hot

in 2055 under the A2 emissions scenario. The South Luangwa focus is also the

only one of the foci predicted to be outside the 2090 range under the B1 scenario.
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However, under the A2 emissions scenario as many as 10 of the 14 foci may

become too hot for T. b. rhodesiense by 2090.

Although there isn’t a large increase in the predicted geographic range of

T. b. rhodesiense under the forecasted warming scenarios, the predicted range

shift does correspond to a significant increase in the number of people potentially

exposed to the parasite. 75.7 million people live within the current potential

range of T. b. rhodesiense, but over 97.9 and 108.8 million people live within the

projected range for 2055 under the B1 and A2 emissions scenarios respectively. In

addition, over 105 million people live within the projected range for 2090 under

both emissions scenarios. For 2090, this includes 46.4 (B1) to 76.7 (A2) million

people within the expanded portion of the range who are not currently predicted

to be at risk of infection according to our model.

3.4 Discussion

Climate change, particularly global warming, is already altering habitat quality,

species distributions, biodiversity, and many essential ecosystem services (Parme-

san and Yohe, 2003; Root et al., 2003; Parmesan, 2006). In the Northern hemi-

sphere species distributions are shifting northward at a rate of 6.1km per decade

and upwards in elevation by 6.1m per decade (Parmesan and Yohe, 2003). Cli-

mate warming over the next century is also expected to have a large impact on

the interactions between pathogens and their animal and human hosts (Harvell

et al., 2002; Pascual and Bouma, 2009). Our model results indicate that projected
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increases in mean annual temperatures over the next 50-100 years are likely to

significantly shift the distribution of T. b. rhodesiense in Eastern and Southern

Africa. These shifts in distribution may lead to an increase in the number of

people at risk of infection.

The suitable geographic range for T. b. rhodesiense based on mean annual

temperatures is predicted to increase 10-11% by 2055. However, by the end

of the century the extent of the suitable range is predicted to be 85-111% its

current size depending on assumptions about future GHG emissions. The greatest

amount of warming is predicted under the A2 emissions scenario (an increase of

3.4 ◦C in the global mean temperature by 2090; IPCC, 2007), which our model

predicts will lead to a 15% decrease in the geographic extent of the suitable

range by 2090. This occurs because 68.5% of the current suitable range becomes

too hot for the parasite. Due to regional variation in the GCM predictions,

some areas in southern Africa are actually predicted to go from being too cold

at current temperatures (<20.7 ◦C), to being too hot by 2090 (>26.1 ◦C). The

more modest temperature increases projected for 2055, or under the B1 emissions

scenario through 2090, are predicted to result in small expansions in the size of

the parasite’s suitable geographic range. While our model does not predict a

major expansion or contraction in the suitable range for T. b. rhodesiense, our

results suggest that there may be a significant shift in the geographic areas at

risk of HAT outbreaks.

Although many recent studies have predicted that the geographic ranges of

vector-transmitted pathogens will expand due to global warming (e.g. Epstein,
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2000), Lafferty (2009) suggests that shifts in the suitable range for pathogen trans-

mission and persistence are more likely than large range expansions. The rela-

tionship between climate and habitat suitability for vector-transmitted pathogens

is likely to be convex because important epidemiological parameters exhibit non-

linear, or contrasting, responses to changes in temperature or other climatic vari-

ables. For example, our model predicts that tsetse population growth rates and

tsetse abundance show a unimodal response to temperature, with the highest

growth rates occurring at intermediate temperatures (Figure 3.1). Our results

in this study largely support Lafferty (2009)’s hypothesis as the model predicts

a large shift in the geographic range of T. b. rhodesiense due to a considerable

contraction of the existing range and a corresponding expansion into new areas.

These results suggest that the modeling framework presented here could be an

important tool used to predict whether the geographic distributions of other in-

fectious diseases are likely to expand, contract, or undergo range shifts under

different climate change scenarios.

Even if the size of the geographic range does not increase significantly, range

shifts can lead to changes in the number of people at risk of exposure and disease

incidence. For example, Pascual and Bouma (2009) point out that the highland

plains in East Africa are the most densely populated region on the continent;

therefore an upwards shift in the suitable elevation range for malaria would lead

to a large increase in the number of people exposed to the disease. This parallels

our finding that between 22-33 million additional people live in the projected

future suitable range for T. b. rhodesiense as compared to its current suitable
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range. This projected shift upwards in elevation for trypanosomiasis is of partic-

ular concern because the East African highlands have higher population densities

partly because of their lower risk of infectious diseases such as malaria and try-

panosomiasis that are more common in the lowlands. In addition, the expansion

of trypanosomiasis into areas containing immunologically-naive wildlife and do-

mestic animal populations could lead to increased transmission rates and a greater

risk of spillover from animal reservoirs to humans (Dobson, 2009).

The projected suitable geographic ranges for T. b. rhodesiense presented here

represent the broadest possible extent of the parasite’s distribution, and not the

predicted distribution, because the distribution of the parasite is dependent on

abiotic and biotic factors other than the mean annual temperature. In particular,

the parasite is obviously limited to regions where tsetse flies are present. Although

mean temperatures are an important determinant of tsetse distributions (Rogers

and Williams, 1993; Rogers and Robinson, 2004), tsetse abundance can also be

influenced by many other environmental factors such as relative humidity, min-

imum and maximum temperatures, and vegetation (Rogers and Williams, 1993;

Rogers et al., 1996; Robinson et al., 1997a; Wint and Rogers, 2000; Rogers and

Robinson, 2004). Only 32.2% of T. b. rhodesiense’s current suitable geographic

range—as predicted by our model—is considered likely Glossina habitat (Wint

and Rogers, 2000). However, we have presented the entire possible geographic

range of the parasite for comparison to it’s projected ranges in 2055 and 2090

because we do not have predictions of how tsetse distributions will shift in the

future, and we do not want to limit our analysis to current tsetse distributions.
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If tsetse distributions do not adjust to future climate conditions, then reductions

in the potential geographic range of T. b. rhodesiense are likely to be signifi-

cant. We predict that 27-41% of current tsetse habitat in Eastern and Southern

Africa will be too hot to sustain the parasite by 2055, and 35-70% will be too

hot by 2090. However, tsetse are unlikely to be limited by their dispersal ability

(Hargrove, 2004), so it is likely that they will be able to shift the elevational and

latitudinal extents of their range in regions with suitable climate and habitat

conditions. The projected geographic ranges of T. b. rhodesiense presented here

should be considered as preliminary risk maps, in areas of particular concern an

assessment of the current and forecasted habitat conditions should be conducted

to determine whether future environmental conditions are likely to support both

the parasite and its vector(s).

In addition to the presence of at least one Glossina species, T. b. rhode-

siense also requires the presence of animal reservoir hosts (Welburn et al., 2004).

Because T. b. rhodesiense cannot be sustained solely by human-fly-human trans-

mission, humans are only at risk if their is a sufficient abundance of potential

reservoir hosts (Welburn et al., 2006). Therefore, the predicted suitable temper-

ature range for the parasite will also be limited by reservoir host distributions.

Wildlife hosts were traditionally assumed to be the major reservoir because many

wildlife species were thought to be highly trypanotolerant (Murray et al., 1982;

but see Onyango et al., 1966; Ford, 1971 for early counterexamples), but domes-

tic livestock have also been implicated as reservoirs in several recent outbreaks

of Rhodesian sleeping sickness (Wellde et al., 1989a; Hide et al., 1996; Hide,
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1999; Waiswa et al., 2003; Picozzi et al., 2005). In rural areas where land use

changes have led to increased contact rates between wildlife and domestic live-

stock, local populations of wildlife and livestock may jointly serve as reservoirs

(Welburn et al., 2006). In addition to cattle, in some regions of East Africa

such as south-eastern Uganda, pigs, goats, and sheep may also play a role in

the epidemiology of Rhodesian sleeping sickness (Waiswa et al., 2003). The im-

proved use of trypanocidal drugs and insecticides in regions such as Uganda has

helped lead to an increase in the number of livestock, but caution needs to be

taken as the suitable geographic range for T. b. rhodesiense shifts into currently

trypanosomiasis-free regions. Rhodesian sleeping sickness outbreaks in Eastern

and Southern Africa have historically been limited to rural areas (Hide, 1999);

however, there have recently been several outbreaks of Gambian sleeping sick-

ness in Central and West Africa in more densely populated areas, particularly

in peri-urban areas surrounding Kinshasa, DRC (Simo et al., 2006). Although

T. b. rhodesiense is more reliant on reservoir hosts for sustained transmission,

the risk of transmission could increase in certain regions under future climate

conditions. Our model predicts a shift towards regions with higher population

densities in Southern Africa and the highlands of East Africa. If tsetse species

can shift their distributions as conditions become favorable these more densely

populated regions that also have large livestock populations may be at particular

risk of Rhodesian sleeping sickness outbreaks.

One particular concern is that a shift in the distribution of Rhodesian sleeping

sickness in East Africa could lead to an overlap in the ranges of T. b. rhodesiense
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and T. b. gambiense (Picozzi et al., 2005). Although the geographic distri-

bution of the two trypanosome subspecies are currently distinct, recent shifts

in the range of T. b. rhodesiense in Uganda—likely due to the movement of

infected livestock—have brought their ranges to within 150 km of each other

(Picozzi et al., 2005). Convergence of the two forms of sleeping sickness would

have important implications for the diagnosis and treatment of the disease, be-

cause the treatment of the diseases differs and current diagnostic methods may

be insufficient to appropriately distinguish between them before treatment com-

mences (Welburn et al., 2001; Picozzi et al., 2005). Our model indicates that

the mean annual temperatures in the region between the two parasite subspecies

is currently suitable for T. b. rhodesiense, indicating that current temperatures

are not a barrier to the continued expansion of the parasite’s geographic range.

However, under the A2 emission scenario our model predicts that parts of central

and western Uganda will be too hot by 2055, and almost the entire northern 2/3

of the country will be too hot by 2090. This may not prevent the persistence

of T. b. rhodesiense in Uganda however, because our predictions are based only

on transmission by tsetse flies in the Morsitans group. The northern shore of

Lake Victoria in Uganda is one of the few areas in East Africa where G. fuscipes

fuscipes of the Palpalis group is present, and this species may be able to adapt

better to warmer mean annual temperatures (Wint and Rogers, 2000).

The effects of climate change on human African trypanosomiasis and other

diseases are likely to occur on several fronts and vary in both degree and di-

rection, often in a non-additive fashion (Rogers and Randolph, 2006). Using
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parameters related to vector and parasite biology can help refine predictions of

disease prevalence and risk due to climate change. This approach has the po-

tential to not only identify regions of risk as we have done here, but also assess

the levels of risk based on R0 values. By formulating a model, one can provide

a framework to explore the effects of the complex processes involved in parasite

transmission and epidemiology in a systematic manner. Our results show that

combining the effects of climate change on different parameters involved in human

African trypanosomiasis epidemiology is essential to obtaining a more compre-

hensive understanding of the overall effect of climate change on disease risk. By

incorporating the effects of temperature on several key parameters (tsetse den-

sity, mortality, and feeding activity, and trypanosome development rate in tsetse

flies), we forecasted how trypanosomiasis epidemiology might respond to changes

in mean annual temperature in Eastern and Southern Africa.
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Table 3.1: SIR Model variables, parameters and default estimates used to calcu-
late R0. All rates are day−1. See text for parameter estimate sources.

Name Description Estimate
NH Total human population size 1000
NV Total animal population size 2000
NA Total tsetse population size 60000a

bH Natural human birth rate 1/(365 ∗ 40)
dH Natural human death rate 1/(365 ∗ 40)
κH Additional mortality rate of infected humans 1/108
γH Recovery rate of infected humans 0
bA Natural birth rate of animal host 1/(365 ∗ 2)
dA Natural death rate of animal host 1/(365 ∗ 2)
κA Additional mortality rate of infected animals 0.0008
γA Recovery rate of infected animals 1/120
dV Natural death rate of tsetse 0.041a,b, 0.030a,c
µV Parasite maturation rate in tsetse 1/18a
ρ Relative tsetse preference for animal hosts 25
a Tsetse biting rate 0.25a
αV→H Prob. of transmission upon contact from tsetse to human 0.0083
αV→A Prob. of transmission upon contact from tsetse to animal 0.0083
αH→V Prob. of transmission upon contact from human to tsetse 0.0355
αA→V Prob. of transmission upon contact from animal to tsetse 0.0355

aFor parameters that are temperature-dependent, value in table is for a mean
annual temperature of 25 ◦C. bG. m. morsitans. cG. pallidipes.
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Figure 3.1: Relationship between temperature and four different parameters that
influence R0. The (A) daily mortality rate of G. m. morsitans and G. pallidipes
(dV ), (B) tsetse daily feeding rate (a), (C) daily rate of parasite development
in tsetse (µ), and (D) G. m. morsitans and G. pallidipes abundance (NV ) as a
function of mean annual temperature.
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Figure 3.2: Relationship between temperature and R0 when T. b. rhodesiense
is vectored by G. m. morsitans or G. pallidipes. R0 = 1 represents a threshold
for the successful invasion or persistence of the parasite into a susceptible host
community.
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Figure 3.3: Suitable geographic range for T. b. rhodesiense transmission based on
range where R0 > 1 for G. pallidipes. The purple region represents the portion of
the range also predicted to be ideal habitat for Morsitans group tsetse flies. Blue
represents the portion of the suitable range currently believed to be unoccupied
by Morsitans group tsetse flies. Yellow circles represent locations of previous
HAT outbreaks in East Africa (see Hide (1999)).
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A B

Figure 3.4: Suitable geographic range for T. b. rhodesiense transmission in (a)
2055 and (b) 2090 under the A2 emissions scenario using the CCSM3 global cir-
culation model. The predicted range is colored blue, with light blue representing
the newly expanded portion of the predicted range and dark blue representing
the existing part of the range. Red areas on the map represent currently suitable
areas predicted to be too hot under future conditions. Yellow circles represent
locations of previous HAT outbreaks in East Africa (see Hide (1999)).
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Chapter 4 – Habitat fragmentation and host composition control the
spread of multi-host pathogens: synthesis of spatial heterogeneity

and disease dynamics

Abstract

Landscape structure can affect the spread and persistence of pathogens in a va-

riety of ways. Habitat fragmentation can lead to the aggregation of hosts into

discrete patches or alter dispersal of infectious hosts or vectors between popu-

lations, which can dramatically affect the dynamics of infectious diseases. Het-

erogeneity in community composition and movement patterns of different host

species among landscape fragments will also influence the spread and persistence

of generalist pathogens that infect multiple host species. Here we develop a multi-

host, multi-patch metapopulation disease model to identify the potential effects

of landscape connectivity, patch heterogeneity, and host community composition

on the initial spread, prevalence, and persistence of multi-host pathogens at the

patch and regional scales. We review recent empirical findings for multi-host

pathogens of animals and plants and use our model to examine ways in which

spatial heterogeneity may influence disease dynamics in real communities. For

example, habitat fragmentation generally changes host community composition,

as well as the heterogeneity of habitat patches and connectivity patterns; these, in

turn can influence the prevalence of zoonotic diseases such as Lyme disease, han-
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tavirus, and West Nile virus in wildlife communities and, therefore, their spillover

risk to human populations. We use our model to examine how the correlation of

host traits associated with resistance to fragmentation, host quality and dispersal

ability may affect the invasion and spread of multi-host pathogens in fragmented

landscapes.

4.1 Introduction

Spatial patterns of disease spread and incidence are a frequently observed phe-

nomenon in epidemiology and ecology (Grenfell et al., 2002; Ostfeld et al., 2005;

Plantegenest et al., 2007). The simplest disease transmission models assume spa-

tial homogeneity of the host population(s), with disease transmission determined

by the mean contact rate between individuals in a population (Anderson and

May, 1991). However, spatial heterogeneity in the distribution and movement

patterns of the host population can lead to heterogeneity in disease transmission

and prevalence. Host populations are often spatially structured, with frequent

contact among individuals within a local population or subpopulation, and less

frequent contact between individuals in different subpopulations (Grenfell and

Harwood, 1997; Hess et al., 2002; Keeling et al., 2004). For multi-host pathogens,

differential host species’ responses to environmental heterogeneity and landscape

structure, mediated by species interactions, will generate spatial heterogeneity in

the presence and abundance of multiple species across a landscape. Therefore,

the spread and persistence of pathogens that infect multiple host species also will
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be influenced by heterogeneities in the community composition and movement

patterns of different host species.

Pathogens capable of infecting multiple host species are quite common, includ-

ing ~60% of known human pathogens and over 80% of the pathogens of domestic

animals (Cleaveland et al., 2000; Taylor et al., 2001; Woolhouse and Gowtage-

Sequeria, 2005). The majority of emerging diseases, including Lyme disease, West

Nile Virus, Ebola, and Avian Influenza, are caused by zoonotic pathogens that

infect both humans and wildlife or domestic animals (Taylor et al., 2001). Many

pathogens of livestock also infect one or more wildlife species (Cleaveland et al.,

2000), and many pathogens responsible for wildlife diseases can also infect mul-

tiple host species (Dobson and Foufopoulos, 2000). Infectious diseases that have

been implicated in the decline or extinction of endangered species are typically

multi-host pathogens that are maintained in a reservoir host(s) when the target

population is too small (Gog et al., 2002; McCallum and Dobson, 2002; de Cas-

tro and Bolker, 2005; Smith et al., 2006). Recently a lot of attention has also

been focused on how biodiversity can influence disease dynamics, witha particu-

lar emphasis on zoonotic pathogens such as Lyme disease and West Nile virus.

Higher host diversity may cause a dilution effect, whereby increasing host species

richness lowers prevalence and reduces the risk of spillover to humans (Ostfeld

and Keesing, 2000; Keesing et al., 2006). Even in studies that have demonstrated

an effect of species diversity, community composition is often a more important

determinant of disease prevalence than species richness alone (Mitchell et al.,

2002; LoGiudice et al., 2003; Keesing et al., 2006; Kilpatrick et al., 2006b). The
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importance of community composition highlights the need to determine how dif-

ferent species traits influence the ecology and epidemiology of multi-host systems

(Dobson, 2004; LoGiudice et al., 2008).

Traditional epidemiological models ignore the spatial dimension of disease

transmission by assuming that every individual in a population is equally likely

to contact every other individual resulting in a mean-field approximation or “mass

effects” transmission term (homogeneous mixing; Anderson and May 1991; Mc-

Callum et al. 2001). However, the spread of infectious disease epidemics, as well

as spatial patterns of disease incidence, are influenced by the spatial structure

of host populations. Host distribution patterns are influenced by abiotic condi-

tions and patterns of landscape connectivity, and many host species are spatially

distributed in patches that influence disease spread and pathogen persistence

(Hess et al., 2002). Metapopulation theory provides a framework for linking the

dynamics of spatially separated populations of both pathogens and hosts at mul-

tiple spatial scales (Grenfell and Harwood, 1997; Hess et al., 2002; Keeling et al.,

2004). The host metapopulation is divided into a set of smaller local popula-

tions located within a network of discrete patches with differing within-patch

and between-patch disease transmission rates. This framework can be used to

investigate the effects of local and regional-scale dynamics on host and pathogen

populations, and the effects of patch isolation and coupling on disease epidemics

and pathogen persistence (Keeling et al., 2004). Fragmented habitat, and partic-

ularly anthropogenic fragmentation, is an important source of heterogeneity for



85

host distribution and movement patterns that can influence disease transmission

and persistence.

Epidemiological studies incorporating spatial dynamics and landscape het-

erogeneity have largely been limited to host-pathogen metapopulation models

representing pathogens that are specialists on a single host (Grenfell and Har-

wood 1997; but see Keeling and Gilligan 2000; Rushton et al. 2000; Tompkins

et al. 2003; Arino et al. 2005; Craft et al. 2008). The dynamics of generalist

pathogens that can infect multiple host species will also depend on the relative

spatial structure of the different host populations and cross-species transmission

dynamics. Host species can differ in their susceptibility to a disease and their

competency in transmitting the disease to other hosts. Host movement patterns

due to foraging, dispersal, or migration will also vary, and respond differently to

changes in the structure and composition of the landscape. Therefore the within-

patch host community composition—as well as the relative abundances of the

host populations and their spatial arrangement within a patch network—can in-

fluence the transmission and persistence of a pathogen. The presence of a highly

susceptible host species can lead to a local epidemic with spillover to other host

species, while the presence of a host with a low reservoir competency can lead to

reduced disease prevalence (Grenfell and Harwood, 1997; LoGiudice et al., 2003;

Keesing et al., 2006). If a generalist pathogen is vector-transmitted then host

species may differ in their contact with, and effect on, the vector population, as

well.
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Here we review the potential effects of landscape structure/connectivity, patch

heterogeneity, host community composition, and isolation on the spread and per-

sistence of multi-host pathogens. First we develop a deterministic, patch-based

spatial disease model to examine the factors related to spatial heterogeneity and

host community composition that influence the initial invasion of pathogen, as

well as its longer-term persistence. Using the model, we identify parameters and

variables related to patch-level and regional-level host community composition,

and between-patch connectivity, which determine pathogen prevalence and persis-

tence at the patch and regional scales. Connectivity between patches of suitable

habitat depends on the movement rates of different host and vector species, medi-

ated by the effects of landscape structure and fragmentation on species’ movement

rates. We review recent research on various multi-host pathogens, and provide

specific examples of how spatial heterogeneity influences dynamics in different

disease systems.

4.2 Methods

4.2.1 Multi-patch, multi-host model

To examine several of the ways in which spatial heterogeneity can affect the

persistence and prevalence of multi-host pathogens, we analyze a deterministic

multi-species metapopulation model based on a model formulated by Arino et al.

(2005).
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Within-patch dynamics are represented using a set of susceptible-infected-

recovered (SIR) equations for each patch, and patches are linked via host or

vector movement among patches. A given system with h host and vector species

and n patches can be represented by a set of h× n SIR equations:

dSip
dt

= bi(Nip)Nip − βip(Ni)SipIp − diSip +Mi(Si) (4.1)
dIip
dt

= βip(Nip)SipIp − (di + δi + γi)Iip +Mi(Ii)
dRip

dt
= γIip − diRip +Mi(Ri).

Here Sip represents the density of susceptible individuals of species i in patch

p. Likewise, Iip and Rip represent the density of infectious and recovered individ-

uals of species i in patch p respectively. Therefore, the total density of species i

in patch p is Nip = Sip + Iip + Rip, and the total density of species i across all n

patches is Ni = ∑n
p=1Nip. Although within-patch transmission dynamics appear

similar to the basic SIR model (Anderson and May, 1991; Hethcote, 2000), the

presence of multiple hosts and patches necessitates additional complexities. Dis-

ease transmission is represented by the function β(Ni), which encompasses both

within- and between-species transmission, and Mi(Ni) is a function representing

the movement of species i among patches (see Appendix E for full details of the

model).
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4.2.2 Patch and regional-level invasion and persistence

Successful invasion and spread of a pathogen requires that the disease-free equilib-

rium (DFE) be locally unstable when a pathogen is introduced into a susceptible

host population or community (Hethcote, 2000). This scenario is typically ex-

amined by determining the pathogen’s basic reproductive number, R0, defined as

the number of secondary infections produced from an initial infectious individ-

ual in an otherwise susceptible population. If R0 < 1, the number of secondary

infections produced per infectious individual will be insufficient to sustain the

continued propagation of the pathogen. In a multi-host, multi-patch system, R0

is a function of host demographic parameters, the epidemiological parameters

related to disease transmission and recovery, and host movement rates. Arino

et al. (2005) derived the R0 equation for a multi-host, multi-patch model simi-

lar to equation (4.1) using the next-generation matrix method (Diekmann et al.,

1990; van den Driessche and Watmough, 2002). The large number of equations

needed to describe even a moderate number of patches makes it difficult to display

the R0 equation in a succinct form. However, we know from the next-generation

method that R0 will be a function of the epidemiological and demographical pa-

rameters included in the disease transmission model described in equation (4.1).

We examine how R0 depends on host community composition, patch heterogene-

ity, and connectivity between patches.

Using the condition R0 < 1, Arino et al. (2005) proved that if one patch is at a

stable DFE, then all patches connected directly or indirectly will also be disease-
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free. Similarly, if one patch is at endemic equilibrium, then all patches will be at

a positive endemic equilibrium. Since the deterministic model requires that all

connected patches are either disease-free or at a non-zero endemic equilibrium, it

is appropriate for examining highly prevalent diseases (e.g. Lyme disease, West

Nile virus) that tend to persist in local patches. However, isolated patches may

remain disease free.

We focus on communities with two host types: reservoir hosts that can harbor

persistent infections and efficiently transmit to other species, and spillover hosts

in which infection does not persist without regular re-infection and transmission

is less efficient. Reservoir hosts have an individual R0 > 1, while spillover hosts

have an individual R0 < 1 and are incapable of sustaining a pathogen invasion

in the absence of additional host species (Haydon et al., 2002).

4.3 Results and Discussion

4.3.1 Spatial heterogeneity in host community composition

Heterogeneous host composition among patches leads to disease spillover from

high to low quality areas (quality is defined here in terms of the R0 for the

pathogen) via host movement from patches with higher proportions of compe-

tent reservoir hosts to patches with higher proportions of less competent spillover

hosts (Figure 4.1). Thus, the regional context is a critical component of local dis-

ease incidence and prevalence levels. This is seen in Lyme disease where preva-
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lence varies at the local, regional, and continental scales, with high variability

among patches occurring even in endemic regions in the northeastern United

States (Glavanakov et al., 2001; Chen et al., 2005; Killilea et al., 2008). This

local-scale variation in prevalence is at least partially due to the effects of fine

scale heterogeneity in habitat quality on host community composition, but host

movement among habitat types may also play a role (Buskirk and Ostfeld, 1998).

In addition to Lyme disease, the risk of exposure to humans for many other

zoonotic diseases—such as Chagas disease, leishmaniasis, African trypanosomia-

sis, hantavirus pulmonary syndrome, and West Nile virus—depends on the local

and/or regional abundance of reservoir hosts (Ostfeld et al., 2005). Spatial het-

erogeneity in WNV incidence can be explained, in part, by the diversity and

composition of the bird community (Ezenwa et al., 2006; Kilpatrick et al., 2006b;

Ezenwa et al., 2007; Bradley et al., 2008; Swaddle and Calos, 2008; Allan et al.,

2009), which is strongly associated with the composition of habitat types in the

landscape (Ezenwa et al., 2007; Bradley et al., 2008). While local vector and

host community composition appears to be an important determinant of WNV

incidence, the ability of many avian host species to travel long distances suggests

that larger scale factors are also likely to be important (Rappole et al., 2000;

Peterson et al., 2003; Owen et al., 2006; Mundt et al., 2009).

A fungal pathogen, Batrachochytrium dendrobatidis, has recently spread rapidly

to amphibian populations around the world causing the disease chytridiomycosis

and leading to the extinction of several species (Berger et al., 1998; Lips et al.,

2006; Skerratt et al., 2007; James et al., 2009). Amphibian species differ in their



91

susceptibility to infection (Blaustein et al., 2005), and the American bullfrog in

particular has been implicated as a potential facilitator for the geographic spread

of the fungus because of its wide distribution and apparent capacity to serve

as a reservoir for the pathogen (Daszak et al., 2003). The distribution of in-

fection within a region is not evenly distributed among ecological guilds, with

stream-breeding species, and to a lesser extent pond-breeders, having the highest

prevalence levels (Lips et al., 2003; Kriger and Hero, 2007). Our model high-

lights that local disease risk is likely to be a function of local host composition

and regional landscape connectivity, and applied to the chytrid system could help

determine whether prevalence patterns are driven by local host composition or

patterns of connectivity between local communities.

Although plants are sessile, natural and cultivated plant communities exist

in spatially heterogeneous landscapes and host species are often distributed in

patches that influence pathogen persistence and disease spread, particularly via

vector movement. Landscape composition—defined as the relative frequencies of

different types of habitat (including different types of agriculture) patches—affects

the global pathogen pressure experienced by hosts at the local scale (Plantegenest

et al., 2007). In addition, landscape structure and heterogeneity also can influ-

ence the spatiotemporal dynamics of disease spread (Plantegenest et al., 2007).

For example, Fabre et al. (2005) found that the proportion of infectious aphids

that transmit barley and cereal yellow dwarf viruses (B/CYDV) to cereal crops

increased with the ratio of crop land planted as small grains to maize within a 50

km radius surrounding a suction trap. In this study, regional host composition



92

was as important as local composition in determining local pathogen prevalence.

The prevalence of B/CYDV is increased by the presence of long-lived perennial

grasses that can serve as reservoir hosts for the pathogen (Henry and Dedryver,

1991; Borer et al., 2009). Host community composition is also important for

B/CYDV prevalence in natural grassland communities as there are large differ-

ences in host competency and vector preference among hosts with different life

history traits (Malmstrom et al., 2005; Borer et al., 2007). Another multi-host

plant pathogen that has been shown to be influenced by landscape composition

is bean dwarf mosaic virus (BMDV). BMDV is transmitted by whiteflies and can

infect soybeans, but does not cause any symptoms, but causes a severe disease

in common bean plants. An increase in soybean acreage in Argentina led to the

emergence of BMDV that threatened local common bean production (Morales

and Anderson, 2001). As predicted in Figure (4.1), the landscape-scale com-

position of the host community is an important determinant of both B/CYDV

and BMDV prevalence in local patches when pathogen dispersal between patches

occurs relatively frequently due to vector movement.

It is already appreciated that the spatial distributions of almost all infectious

diseases are heterogeneous due to environmental or other factors (Ostfeld et al.,

2005); however, these results suggest that it is important to consider hetero-

geneities at multiple scales when attempting to explain local prevalence patterns

or predict disease risk at a fine scale. In particular, host or vector movement

between habitats with different species compositions can substantially affect the
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spread of disease among habitats and may determine the locally realized infection

prevalence.

4.3.2 Connectivity patterns and host traits – Pathogen invasion (R0)

The effect of host movement (Mi(Ni) ) on pathogen invasion (R0) depends on

both the frequency of movement and the identity of the host with the highest

movement rate. In particular, when the density of the reservoir host varies among

patches, increasing its movement rate causes a decline in R0 (Figure 4.2a). When

emigration of infected individuals out of the largest (source) patch exceeds the

return of infected individuals into the patch, there is a net loss of infection at

the local scale, making it harder for the pathogen to succesfully initiate an epi-

demic. However, if the density of the less competent host is highly variable among

patches, then increasing the movement rate of the spillover host can cause a larger

reduction in R0 than increasing the movement of either the reservoir host only or

both hosts (Figure 2b). This will occur when the density of the less competent

host is high enough in at least one patch to make its individual contribution to

R0 larger than the contribution from the reservoir host. This model component

reflects important characteristics of a variety of pathogens.

One of the most important questions regarding Yersinia pestis—the plague

bacterium—is how it spreads and persists at the landscape scale in different

rodent communities around the globe (Gage and Kosoy, 2005). In the United

States, plague epizootics occur irregularly in prairie dog colonies, but the mech-
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anism(s) of spread among colonies and long-term persistence of the pathogen are

still uncertain (Cully Jr. and Williams, 2001). Within a metapopulation frame-

work, Stapp et al. (2004) found that the probability of an individual colony’s

extinction due to plague was related to the colony’s size (with intermediate-sized

colonies the most resistant to extinction) and the fate of adjacent colonies. The

landscape structure surrounding host communities is also important, with roads,

streams and lakes serving as barriers that slow the spread of plague among prairie

dog colonies (Collinge et al., 2005), and low-lying drainages serving as dispersal

corridors between colonies (Antolin et al., 2006). In a black-tailed prairie dog

metapopulation in Montana, Snall et al. (2008) also found that larger colonies

were more likely to be infected, but colony size did not influence its infectiousness

to other colonies.

Interestingly, prairie dog movement does not appear to drive the spread of

plague at the landscape scale (Snall et al., 2008), suggesting that alternative

hosts are responsible for the maintenance and spread of the pathogen in prairie

dog colonies. Recent evidence suggests that grasshopper mice may facilitate

the spread of Y. pestis during plague epizootics, and the mice or other hosts

may serve as vector and/or pathogen reservoirs between epizootics (Stapp, 2007;

Stapp et al., 2009), although a metapopulation model questions the need for an

additional reservoir species (George and Webb, In review). The dynamics of

plague in prairie dogs suggests the importance of interactions among potential

host species on its spread and persistence as a function of landscape connectivity,

patch heterogeneity, and host composition. Prairie dog population sizes vary
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among colonies, so according to Figure (4.2a), regional plague epidemics are more

likely to occur if pathogen dispersal occurs via the movement of host species that

are less competent than the highly susceptible prairie dogs.

The spread of the foot and mouth disease (FMD) within wildlife and between

domestic animals and wildlife is also influenced by the distribution and movement

patterns of the various potential host species (Thomson et al., 2003). African

buffalo in South Africa are believed to be a reservoir for FMD virus, and contact

patterns between buffalo and impala and the subsequent movements of impala

have influenced the spread of multiple FMD epidemics in impala populations

(Bastos et al., 2000). Contact patterns between domestic livestock and Saiga

antelope are also an important determinant of FMD dynamics in Central Asia

(Morgan et al., 2006). Although the antelope doesn’t appear to be a permanent

reservoir for FMD, its long-distance migration may spread the virus to poorly-

or un-vaccinated livestock populations in the region. Figure (4.2a) suggests that

pathogen invasion and persistence is actually more likely when movement between

patches is by a non-reservoir species, such as the Saiga antelope, rather than

by the more competent host species. Even though the spread of FMD among

farms in the UK is not dependent on host dispersal patterns of infection, the

geographic spread of FMD during the 2001 UK epidemic was dependent on the

spatial distribution, size and species composition of individual farms because

sheep and cattle differ in their susceptibility and ability to transmit the virus

(Keeling et al., 2001).
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4.3.3 Connectivity patterns and host traits – Local and regional
prevalence

While increasing host movement rates tends to decrease R0, the effect of host

movement on local and regional pathogen prevalence is more complex. Host

movement always increases prevalence in sink patches (where R0 < 1), while the

impact of host movement on prevalence in high quality (source) patches depends

on the identity of the host species responsible for the majority of movement

between patches. In a situation with a source and sink patch coupled by host

movement, increasing the movement rate of all hosts will lead to a decrease in

regional prevalence (Figure 4.3). Increasing the movement rate of the spillover

host will lead to an increase in regional prevalence, while increasing the reservoir

host’s movement rate first decreases, but then increases, prevalence. Figure (4.3)

shows that the decrease in regional prevalence when both hosts move is caused by

a small increase in prevalence in the sink patch but a large decrease in prevalence

in the source patch. Movement by the spillover host increases regional prevalence

because it increases prevalence in both patches. Movement by the reservoir host

increases prevalence in the sink patch while decreasing prevalence in the source

patch, with the effect of movement on regional prevalence determined by the

relative strengths of these two effects.

Observational and experimental studies of Lyme disease incidence in humans

and infection prevalence in the blacklegged tick, Ixodes scapularis, (the primary

vector in eastern North America) have highlighted the importance of habitat dis-

tribution and connectivity for Lyme disease (LD) dynamics. Buskirk and Ostfeld
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(1998) observed that habitats with high densities of adult ticks relative to earlier

nymphal densities had higher LD prevalence levels in adult ticks. According to

Figure (4.3), this could occur because hosts are dispersing out of high quality

(source) patches. Tick abundances are positively correlated with connectivity to

high quality habitat (Estrada-Peña, 2002), suggesting that host movement pat-

terns are important determinants of tick distribution, and potentially the trans-

mission of Lyme disease and other tick-borne pathogens. In New York State,

Lyme disease incidence rates are spatially autocorrelated at distances up to 120

km (Glavanakov et al., 2001). Coupled with studies showing variation in tick

densities and infection prevalence between local habitats (Buskirk and Ostfeld,

1998; Allan et al., 2003; LoGiudice et al., 2003; LoGiudice et al., 2008), this spa-

tial autocorrelation suggests an important role for host movement and habitat

connectivity in determining tick abundances and human disease risk. Habitat

fragmentation also plays an important role in the Lyme disease system (see Sec-

tion 4.3.5 on Habitat fragmentation).

Host movement patterns are also an important determinant of regional-scale

patterns of prevalence for many ungulate diseases because host species often have

large home ranges or migrate seasonally. The risk of cross-species transmission of

brucellosis in Montana and Wyoming between wildlife and livestock appears to

depend on the movement patterns of both bison and elk (e.g. seasonal movement

of bison out of park, elk migratory behaviors). Local heterogeneity in the risk of

spillover from bison, the reservoirs in this case, to livestock, the spillover hosts,

in the Greater Yellowstone area depends on environmental factors and bison
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densities (Dobson and Meagher, 1996; Kilpatrick et al., 2009). Near Yellowstone

NP, in the National Elk Refuge in Wyoming, patterns of elk aggregation due to

seasonal movements and supplemental feeding are the predominant determinants

of seroprevalence in elk (Cross et al., 2007a, 2010). This increase in prevalence

in areas of high elk density (source patches) could lead to increasing levels of

prevalence in areas of low elk density (sink patches) as occurs in Figure (4.3).

Patterns of bovine tuberculosis infection in southern Africa are influenced by

the distribution and movement patterns of buffalo, antelope, and other ungulate

species (Renwick et al., 2007). In regions with stronger control efforts in domestic

cattle, such as Europe and New Zealand, there has been considerable controversy

over whether certain wildlife species serve as reservoir hosts for Mycobacterium

bovis. In the UK, badgers are believed to be a reservoir forM. bovis (Krebs, 1997);

however, badger culling operations have not successfully controlled the spread of

bovine TB (Donnelly et al., 2003; Woodroffe et al., 2005). Although badger

culling has had some success in reducing bovine TB cases in cattle at the local

level, it also increases the home range sizes of badgers, thus increasing contact

rates between badgers and cattle, and contributing to the continued spread of the

pathogen (Tuyttens et al., 2000; Donnelly et al., 2006; Woodroffe et al., 2006).

This is similar to the increase in prevalence that occurs in sink patches with

high densities of spillover hosts when the movement rate of reservoir hosts out

of source patches is increased. The social structure and movements of badgers

also are important for the prevalence and spread of bovine TB within badger

populations in a region not subject to culling (Vicente et al., 2007).
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Patterns of host distribution and movement are also likely to be important de-

terminants of the prevalence of transmissible spongiform encephalopathies (prion

diseases), such as chronic wasting disease (in deer, elk, and moose), bovine spongi-

form encephalopathy (cattle), and scrapie (sheep and goats). Because CWD

prions shed from an infected animal’s saliva can persist in the environment for

extended periods (Miller et al., 2004; Johnson et al., 2006), cross-species trans-

mission may occur where host species distributions overlap. In addition, the long

incubation and infectious periods of CWD may also facilitate spread via host

movement. Several studies have examined the spatiotemporal dynamics of CWD

in mule deer (Conner and Miller, 2004; Farnsworth et al., 2005; Miller and Con-

ner, 2005; Farnsworth et al., 2006) and white-tailed deer (Joly et al., 2006; Osnas

et al., 2009). Miller and Conner (2005) established that CWD prevalence was in-

creasing at multiple spatial scales in Northern Colorado. In addition, Farnsworth

et al. (2006) found evidence that the spatial distribution of prevalence was best

explained by fine scale mixing of individual mule deer rather than larger-scale

seasonal movement patterns. Although prevalence in this area appears to be pri-

marily influenced by local-scale interactions, Conner and Miller (2004) did find

that mule deer movement patterns appeared to explain prevalence differences be-

tween population units. Identifying which host species is more likely to spread the

pathogen via dispersal or migration could help explain infection patterns because

our model indicates that the identity of the host species primarily responsible

for spreading a pathogen has important implications for regional- and local-scale

prevalence.
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4.3.4 Connectivity patterns and host traits – Rates of spread

Higher movement rates by host species will also tend to increase the rate of

disease spread in a patchy system. If highly competent hosts have the highest

movement rates, then the disease will spread faster than if low competency hosts

have higher movement rates (Figure 4.4). Knowing the absolute and relative

movement rates of different host species can be important for forecasting the

spread of a pathogen when it is introduced into a new area or an area with a

large number of susceptible hosts.

The spread and prevalence of rabies in different carnivore species is a well-

documented example of the effect of spatial heterogeneity and landscape connec-

tivity on disease transmission (Childs et al., 2000; Real and Biek, 2007). Local

heterogeneities in landscape structure and connectivity (e.g. rivers, mountains,

highways, forest) affect the movement patterns of rabies hosts, and can help in-

form control strategies (Murray et al., 1986; Lucey et al., 2002; Smith et al., 2002,

2005; Russell et al., 2005, 2006). Although spillover to other host species occurs

during epidemics, it does not appear that these spillover hosts play a large role

in determining the patterns of spread and prevalence of raccoon or fox rabies

in the US or Europe. Our model indicates that spillover host movement rates

would have to be considerably faster than reservoir movement rates to influence

the spread of rabies (Figure 4.4), and this does not appear to be the case in the

US. However in Africa, the spillover of rabies from domestic dogs into various

wildlife hosts can cause outbreaks, with potential implications for conservation

and ecosystem health (Cleaveland et al., 2007; Lembo et al., 2008). These re-
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sults suggest that the movement patterns of alternative hosts, as well as spatial

heterogeneity in host community composition, are important for the spread and

spillover dynamics of rabies in this region. Spillover dynamics may also influence

the long-term maintenance of the disease, which is particularly significant for the

development of control strategies in the reservoir or threatened populations. In

Ethiopia, Haydon et al. (2006) used knowledge of the movement patterns among

Ethiopian wolf subpopulations to design a rabies vaccination strategy to protect

this endangered species against rabies epidemics following a spillover event.

Canine distemper virus (CDV) is another multi-host pathogen that is believed

to have spilled over from domestic animals into wildlife populations in Africa and

elsewhere, leading to several epidemics (Deem et al., 2000). The spread of CDV

through African lion prides in Serengeti National Park in the 1990s likely occurred

due to the movement patterns of hyenas and jackals that also carry the disease

(Craft et al., 2008, 2009). In addition, like rabies, the epidemic is believed to have

originated from domestic dog populations outside the park, making it critical to

understand connectivity patterns between wildlife populations and the human

settlements surrounding the park. The spread and persistence of CDV in the

Greater Yellowstone Ecosystem also depends on interspecific transmission and

the spatial connectivity among host populations (Almberg et al., 2010). Craft

et al. (2008) found that introducing high interspecific transmission rates always

increased the velocity of the CDV spread rate, but when interspecific coupling

was weak, the pathogen could actually spread slower than it would with a single

host. Similar to the predictions from our model, spread rates were highest when
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hyenas and jackals were included because they have higher between-population

transmission rates (equivalent to between-patch transmission) than lions. pres-

ence of jackals or lions

The spatial distribution of host populations, and movement patterns among

these populations, also played an important role in several recent outbreaks of

phocine distemper virus (PDV) and canine distemper virus (CDV) in marine

mammals (Swinton et al., 2002). Swinton et al. (1998) showed that the rapid

spread of PDV during a 1988 epidemic in harbor seals, and its subsequent fadeout,

was partially a function of the spatial structure and strength of coupling between

subpopulations of harbor seals at haul-out sites. PDV outbreaks in harbor seals

may also depend on the rate of cross-species transmission with harp or grey seals,

which is a function of the movement and contact patterns of each seal species

(Duignan et al., 1995; Harkonen et al., 2006). In addition, recent declines in

Arctic sea ice coverage may have increased the movement of seals in the Arctic,

leading to the transmission of PDV to Alaskan sea otters, which threaten to

introduce the pathogen into immunologically naive seal and sea lion populations

in the Pacific (Goldstein et al., 2009). Our model suggests that the pattern of

spread for future PDV epidemics will depend on which host species has the highest

movement rate between populations or haul-out sites; therefore it is important

to determine whether potential reservoir hosts could also act as rapid spreaders

in a spatial context.

The geographic spread of Ebola virus outbreaks in human populations has

been influenced by landscape structure, with rivers altering the direction of spread
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(Walsh et al., 2005). Connectivity patterns between separate social groups of

different ape species are important for transmission (Bermejo et al., 2006). Geo-

graphic spread among primates appears to be based on seasonal feeding patterns

that lead to close contact between con-specific individuals from different social

groups, and potentially other species as well (Caillaud et al., 2006; Walsh et al.,

2007). Ebola virus does not persist in human or ape populations following out-

breaks, and several species of fruit bats are believed to serve as reservoirs for

the virus (Leroy et al., 2005). Little is currently known about contact patterns

between these bat species and other susceptible species, and whether the recent

geographic spread of Ebola is due to the movement of bats or other wildlife

species is also unknown. Multi-host models incorporating host-specific move-

ment patterns could provide additional insights into the potential mechanisms of

cross-species transmission within the reservoir host community and between the

reservoir hosts and species of concern such as gorillas, chimpanzees, and humans.

Our model suggests that the presence of a reservoir species, such as fruit bats,

with high movement rates can increase the rate at which the disease spreads

geographically.

The spread of multi-host pathogens can also influence the interactions among

host species, potentially altering their geographic distributions. A parapox virus

is believed to have facilitated the invasion of the North American grey squirrels

and replacement of native red squirrels in the UK (Rushton et al., 2000; Tompkins

et al., 2003). The virus is highly pathogenic in red squirrels, but the presence

of antibodies and a lack of symptoms in grey squirrels suggest they may serve
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as a reservoir host for the virus (Sainsbury et al., 2000; Tompkins et al., 2002b).

Simulations by Rushton et al. (2000) showed that the probability of extinction

for red squirrel populations in Norfolk, UK was significantly related to the rate

of grey squirrel expansion via dispersal. The effect of host identity on the spread

rate of a multi-host pathogen in Figure (4.4) suggests that it is also important

to examine which host species is more likely to spread the pathogen via dispersal

or migration.

At a global scale, the spread of avian influenza has been influenced by both

the poultry trade and migratory birds (Kilpatrick et al., 2006a). Kilpatrick et al.

(2006a) determined that migratory birds were responsible for spreading H5N1

to most European countries, but imported poultry was likely responsible for

introducing the pathogen from Southeast Asia to the Western hemisphere, with

subsequent spread within North America occurring via a mixture of the poultry

trade and the migration of wild birds. They suggest that in areas with high risk for

spillover of H5N1 from migratory birds, control efforts should be directed towards

preventing contact between local poultry and migratory birds (in affect altering

local host composition and contact rates). Host identity is also important for the

spread of H5N1; mallards in particular have been identified as a potential long-

distance vector of the pathogen due to a combination of their dispersal ability

and role as carriers of the virus (Keawcharoen et al., 2008).

Peterson et al. (2003) used information on the known winter and summer

distributions of over 100 migratory bird species to look at the potential spread

of West Nile virus over large geographic areas. Although studies conducted over
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large spatial scales have found evidence of a dilution effect arising from host

species diversity (Ezenwa et al., 2006; Allan et al., 2009), a finer scale study con-

ducted in Chicago, Illinois found no effect of species richness on WNV prevalence

(Loss et al., 2009). Figure (4.4) suggests that an examination of the correspon-

dence between smaller-scale movement patterns of mosquitoes or particular host

species with annual spread of WNV at local or regional levels could be a fruitful

future direction.

Determining how the distribution and movement of host species influence the

transmission of multi-host pathogens is also a critical concern in marine systems

(Harvell et al., 2004). Identifying mechanisms of pathogen dispersal and connec-

tivity patterns between populations is especially important because the spatial

spread of disease in aquatic systems can be very rapid (McCallum et al., 2003).

For example, the salmonid sea louse, Lepeophtheirus salmonis, is currently threat-

ening many wild salmon populations due to the spillover of high parasite levels

from farmed salmon populations (Krkosek, 2010). Host movement patterns are

critical to transmission dynamics of these parasites, as the vulnerable juveniles

of wild anadromous populations usually do not encounter large numbers of par-

asites until parasitized adults return to spawn (Krkosek et al., 2007b). However

in areas with salmon farms, juveniles may encounter farmed species with high

parasite burdens earlier in development; early parasitism may decrease juvenile

survival leading to population declines (Krkosek et al., 2007a).

Two other marine systems that are likely to be patchy are coral reefs and

marine reserve systems. McCallum et al. (2005) showed that the effect of a marine
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reserve on host and pathogen populations depends on host movement between

the reserve and the rest of the population. The role of host movement is likely to

be even more important when multiple marine protected areas are combined into

a reserve network. While the movement of infected hosts is typically not relevant

for coral diseases, the spatial structure of reef systems and composition of the

susceptible coral community are important for pathogen spread and persistence.

For example, an outbreak of white plague, which infects a range of hard coral

species, exhibited metapopulation dynamics in the Florida Keys, with pathogen

colonizations and fadeouts occurring regularly at a number of sites within the

region (Sokolow et al., 2009).

4.3.5 Habitat fragmentation

If fragmentation increases the number of available patches without decreasing

the average host population size in each patch, then fragmentation will not affect

R0 when there is no host movement between patches (Figure 4.5a). However,

increasing the host movement rates will lead to a decline in R0, with a minimum

value set by the R0 in a single patch with a host population size equal to the mean

size. If the total regional population size of each host is fixed, then increasing

the number of patches via fragmentation will lead to progressively smaller local

patch host population sizes. Under this scenario, R0 will remain constant as frag-

mentation increases if within-patch disease transmission is frequency-dependent,

but decline if it is density-dependent (Figure 4.5b).
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As fragmentation of a habitat occurs, the species richness in that habitat

is often reduced (Fahrig, 2003). For a host community where species richness

declines from five to one as the habitat is fragmented from one continuous patch

into 10 separate patches, the effect on the pathogen’s R0 depends on whether

the species loss is random with respect to both host quality (as measured by the

individual R0 for that host) and dispersal ability (Figure 4.6). The reduction in

R0 due to fragmentation is much greater when species are lost randomly with

respect to their quality as hosts as compared to when higher quality species are

the most resistant to fragmentation. In addition, R0 declines the fastest when

the species resistant to fragmentation also have the highest movement rates. R0

declines the least when hosts that are resistant to fragmentation have the lowest

movement rates. Note that R0 always declines with species loss because we have

assumed that there is no effect of different host species on the density or encounter

rates of other host species. If we assume that removing one host species leads to

an increase in the encounter rates or density of the remaining species (Keesing

et al., 2006), then R0 may increase with increasing fragmentation, particularly for

the scenarios where the most competent hosts are also resistant to fragmentation

(cf. Ostfeld and LoGiudice, 2003).

Habitat fragmentation, in conjunction with habitat loss, is believed to be

the leading cause of species declines and extinction (Stein et al., 2000). Habitat

fragmentation is likely to have a particularly strong effect on multi-host pathogens

because of changes in the regional and local host community composition in

addition to changes in connectivity. As species are extirpated from the local
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community due to fragmentation, multi-host pathogens are likely to experience

a shift in the composition of available hosts (McCallum and Dobson, 2006). The

loss of less competent host species from a community may lead to a reversal

of the dilution effect. Because the loss of species due to fragmentation is often

nonrandom, species’ traits related to their dispersal ability or quality as hosts

may correlate with their resistance to fragmentation.

One of the clearest and best studied examples of the effect of habitat frag-

mentation on disease risk is for Lyme disease in the Northeast United States

(Buskirk and Ostfeld, 1998; Allan et al., 2003; Brownstein et al., 2005; LoGiudice

et al., 2008; Killilea et al., 2008; Ostfeld, 2009a). Allan et al. (2003) found that

the size of forest fragments was inversely correlated with both nymphal tick den-

sity and nymphal infection prevalence (NIP). These results occurred due to host

community composition shifts that occur in highly fragmented forests. Small

forest fragments have increased densities of the most competent reservoir, the

white-footed mouse, and fewer less-competent host species to dilute prevalence

in the vector (LoGiudice et al., 2008). Because NIP is a key indicator of human

infection risk, these studies suggest that highly fragmented landscapes will have

higher prevalence in the wildlife reservoir community and an increased spillover

risk to humans. In a study in suburban Connecticut, Brownstein et al. (2005)

also found a positive correlation between fragmentation and both tick density

and infection prevalence in ticks. However, they also found a significant negative

relationship between the human incidence of Lyme disease and mean patch iso-

lation distance, and a positive relationship between human incidence and mean
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patch size. Although more fragmented landscapes had higher entomological risk

(as measured by NIP), this doesn’t necessarily translate to increased incidence

in humans.

Extinction risk due to fragmentation in the potential host community for

Lyme disease is non-random Ostfeld and LoGiudice (2003); LoGiudice et al.

(2008). The most highly-competent hosts—white-footed mice, eastern chip-

munks, and short-tailed shrews—are all widespread species in the region and

abundant in fragmented habitat, while less-competent hosts tend to be the first

species lost from the community when fragmentation or another disturbance oc-

curs LoGiudice et al. (2003); LoGiudice et al. (2008). Models that calculate NIP

based on the composition of the local host community and the LD competency of

each host in the community have been able to predict observed NIP values with

a reasonable accuracy LoGiudice et al. (2008). However, there is still more vari-

ability in the observed data than would be predicted based on local community

composition suggesting that landscape configuration and host movement between

sites may influence prevalence. For example, Buskirk and Ostfeld (1998) showed

that dispersal via host movement could influence the spatial heterogeneity of tick

density and NIP. In addition to differing in their competency and resistance to

fragmentation, LD host species will also have different movement rates in a frag-

mented landscape. It is possible that species that are less competent hosts for

LD than the white-footed mouse, such as chipmunks, squirrels or birds, might

enhance the spread of LD between forest fragments due to their movement pat-
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terns. Figure (4.6) suggests that the movement of these less competent hosts

could actually enhance LD risk in a fragmented landscape.

Habitat fragmentation may also alter hantavirus dynamics in both North and

South America. Both the percentage of suitable habitat and the amount of habi-

tat fragmentation were shown to influence the prevalence of Sin Nombre virus

in deer mice populations in Canada (Langlois et al., 2001). In Panama and

South America, Suzán et al. (2008) found that habitat fragmentation affected

rodent species diversity, and that the two rodent species that are highly com-

petent reservoirs for the hantavirus were more abundant in fragmented habitat.

Habitat fragmentation was implicated as a potential cause of an outbreak of han-

tavirus pulmonary syndrome in Panama (Ruedas et al., 2004). Ruedas et al.

(2004) found that species diversity was lower in these fragmented areas, and ob-

servational studies in other regions have also found that higher rodent diversity

is associated with lower prevalence of hantaviruses in the reservoir host popula-

tion or community (Suzán et al., 2008; Tersago et al., 2008; Dizney and Ruedas,

2009). In addition, Suzán et al. (2009) experimentally reduced rodent diversity

in Panama and found that less diverse communities containing reservoir hosts

were associated with higher hantavirus prevalence. Although Suzán et al. (2009)

collected data on various landscape characteristics to compare control and manip-

ulated sites, they do not mention whether any of these characteristics influenced

hantavirus prevalence. In addition, to our knowledge studies have not looked at

whether differential host movement rates between patches in fragmented habitat

influence prevalence patterns.
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Habitat fragmentation and deforestation has led to increased incidence of

Chagas disease (causative agent, Trypanosoma cruzi) in humans in some regions

of South America (Patz et al., 2000). Recent research has found that small mam-

mal diversity is lower in fragmented habitats, while the abundance of marsupials

that serve as reservoirs is higher (Vaz et al., 2007). Because many of the small

mammals are inferior hosts for T. cruzi compared to opossums, fragmentation

may reduce the dilution potential provided by host diversity (Roque et al., 2008).

Indeed, Vaz et al. (2007) found higher seroprevalence in the wildlife host commu-

nity of the Atlantic rainforest of Brazil within fragmented habitat as compared

to continuous forest. Spatial heterogeneity and fragmentation are also important

determinants of the distribution and abundance of Triatoma infestans, which

serves as the primary vector for T. cruzi in peridomestic areas. Spraying efforts

to control T. infestans populations at the local scale have failed because the vec-

tor can rapidly recolonize from unsprayed areas (Cecere et al., 2006; Kitron et al.,

2006). Our model suggests that it would be useful to relate the spread of the

pathogen following control efforts in villages based on their connectivity, patch

heterogeneity, and host community composition in the surrounding area. Such

efforts might also be important in determining the risk associated with African

trypanosomiasis, another multi-host pathogen where local vector control efforts

have failed due to vector reinvasion following control efforts in several countries

in Africa (Hargrove, 2000).

Habitat fragmentation does not always lead to smaller local population sizes

or a reduction in movement between habitat patches. Urbanization of flying fox
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habitat in Australia has led to changes in their dispersal and roosting habits,

with species that are reservoirs for Hendra virus tending to roost in fewer, larger

colonies (Markus and Hall, 2004) and more frequent co-roosting occurring among

multiple species (Plowright, 2007). Instead of fragmentation leading to a de-

crease in the local richness of host species, it has instead led to an increase in

roosting densities and potentially more frequent contact between different species

(Plowright, 2007). This shift from many small roosting colonies into fewer, larger

colonies appears to have altered host community composition within colonies at

the local scale and increased the connectivity between different populations (Mc-

Callum and Dobson, 2006). It is still not clear whether the increased spillover of

Hendra virus from bats to humans and horses is the result of increased contact

rates or changes in prevalence in the reservoir community due to changes in their

network structure and movement patterns.

Landscape fragmentation can also influence the spread, prevalence, and sever-

ity of plant diseases (Kelly and Meentemeyer, 2002; Holdenrieder et al., 2004).

The probability of Phytophtora ramorum, a water mold that is the causative agent

of sudden oak death (SOD) in several oak species, spreading into new habitat

patches was determined to be a function of environmental factors (temperature

and precipitation in the wet season), community composition (abundance of bay

laurel, an amplifying host), and distance to surrounding inoculum sources (Meen-

temeyer et al., 2008a). In addition, at the regional scale disease presence was

associated with human densities and access to forest habitat (public vs. private

lands), suggesting that humans are acting as important dispersal agents for the
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pathogen (Cushman and Meentemeyer, 2008). Kelly and Meentemeyer (2002)

found that proximity to forest edge increased the risk of mortality due to sud-

den oak death (SOD). However, a spatial analysis by Condeso and Meentemeyer

(2007) revealed that disease severity was highest in continuous forest understory

and that both the landscape configuration and composition played a role in dis-

ease severity. In addition, the highest pathogen loads were found in areas of oak

forest that have expanded in the past 50 years, suggesting that changes in host

community composition may be as important as current composition in determin-

ing pathogen dynamics (Meentemeyer et al., 2008b). In an observational study

of the spread of the fusiform rust (Cronarrtium quercuum) among plantations of

three pine species (all potential hosts of C. quercuum of varying susceptibility)

and naturally seeded stands of mixed oak (the alternate host for C. quercuum)

forest, Perkins and Matlack (2002) found that the degree of fragmentation was

the main explanatory variable for rate of spread of the pathogen. Stands in pine

plantations were closer together, increasing connectivity via wind dispersal of the

fungal spores.

In addition to fragmentation’s effect on pathogen dynamics within the re-

maining suitable habitat patches, it may also provide increased opportunities for

pathogen spillover to novel hosts. Of particular interest are zoonotic diseases, be-

cause fragmentation may increase the number of contacts between wildlife reser-

voirs and humans or domestic livestock (Daszak et al., 2000; Patz et al., 2004).

For example, spillover of Hendra virus from bats to humans may be occurring

due to increased contact rates and the outbreaks of Ebola and other emerging
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pathogens are often attributed to humans moving into previously undisturbed

habitat. In addition, the risk of spillover of brucellosis from bison to domestic

cattle is related to interspecific contact where their ranges overlap (Kilpatrick

et al., 2009), as is the spillover of rabies and CDV from domestic dogs to wildlife

in Africa. The risk of spillover is likely to be the result of an interplay between

the effect of fragmentation on within-patch prevalence, the movement rates of

hosts between patches, and relative contact rates in habitat patches versus the

surrounding matrix. Although we have shown that R0 will be reduced when the

higher quality hosts also have the highest movement rates, a higher movement

rate of infected individuals between patches could increase the opportunity for

spillover to humans or other hosts outside of the patch.

4.4 Conclusions

Host species respond differently to the various environmental and biological fac-

tors, shaping their spatial distributions, which in turn determines the local and

regional host community composition. In addition, the movement patterns of dif-

ferent host and vector populations are influenced by landscape structure, which

determines the connectivity between suitable habitats. Heterogeneity in the ge-

ographical distribution and movement patterns of host species will lead to vari-

ation in the local community composition across a landscape. The model results

presented here demonstrate that this variability in composition can lead to very

different patterns of pathogen spread and incidence then would be predicted based
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solely on the local host composition, as regional factors alter the influence of the

local community.

Many of the examples presented here highlight the importance of identifying

the role of interspecific contact and movement patterns in the spillover and spread

of multi-host pathogens in wildlife populations. Our model shows how the inva-

sion, spread, and prevalence of multi-host pathogens can be affected by spatial

heterogeneity in host community composition. However, because the model is de-

terministic it doesn’t address questions related to the persistence of a pathogen in

a patchy system where local patches are below the pathogen’s critical community

size for persistence. The deterministic nature of the model prevents pathogen

extinction at the local level as long as R0 > 1 at the regional level, so either all

patches eventually reach an endemic equilibrium or are disease-free in the absence

of external forcing. This is unrepresentative for systems where local populations

are small and local fadeouts are likely due to the depletion of susceptibles or

demographic stochasticity (Cross et al., 2005). In these cases a stochastic model

which permits local fadeouts is more appropriate (e.g. Craft et al., 2008). In-

tegrating the mathematical theory behind the deterministic multi-host approach

of Arino et al. (2005, 2007) into a stochastic metapopulation framework would

permit the extension of existing theory of stochastic metapopulation dynamics to

a system with multiple hosts. Research has already shown how spatial coupling

between populations can lead to asynchronous dynamics at the metapopulation

scale promoting regional persistence of a pathogen in the host metapopulation

(Bolker and Grenfell, 1995; Keeling, 2000; Keeling and Rohani, 2002; Park et al.,
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2002; Hagenaars et al., 2004). In addition, the relative timescales of the infec-

tious period and host movement are critical for pathogen spread and persistence

in structured populations (Cross et al., 2005, 2007b). Extending this research to a

system containing multiple host species with differing movement rates and infec-

tious periods would be challenging, but potentially rewarding given the ubiquity

of multi-host pathogens.

A stochastic framework may also be appropriate if the question of interest

relates to whether there is threat of pathogen-mediated extinction of one or more

of the host species (Hess, 1996; Gog et al., 2002; McCallum and Dobson, 2002;

de Castro and Bolker, 2005). While earlier theoretical work suggested that cor-

ridors between separate populations could promote the spread of disease and

increase the risk of extinction risk for threatened populations (Hess, 1996), sub-

sequent analyses including a reservoir species concluded that the effect of connec-

tivity on host extinction was less straight-forward (Gog et al., 2002; McCallum

and Dobson, 2002). The fate of the endangered host species depends on the rel-

ative colonization and extinction rates of the two species, as well as cross-species

transmission rates and the probability of pathogen fadeout in local populations

(McCallum and Dobson, 2002). While we examined the effect of increasing frag-

mentation on the ability of a pathogen to invade a multi-host community, it may

also be appropriate to examine how the combination of increasing fragmentation

and infectious disease is likely to affect particular populations of concern.

The effects of fragmentation on multi-host pathogens under different modeling

scenarios of community disassembly point to the need to investigate whether host
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traits related to migration or dispersal are associated with resistance to fragmen-

tation. Hosts with high dispersal rates may be more resistant to fragmentation

because they can move into the remaining suitable habitat areas as fragmentation

occurs. On the other hand, anthropogenic fragmentation may create barriers to

dispersal that lead to the extirpation of species when dispersal or migration is a

necessary part of their life cycle. Home range size may also influence a species

resistance to fragmentation, with species with large home ranges unable to per-

sist in small patches when their habitat becomes fragmented. It is possible that

species with smaller range sizes that can persist in smaller habitat fragments will

have lower movement rates between patches, which will influence the ability of

their pathogen’s to spread and persist at the landscape scale. Relating these traits

to epidemiological traits related to host competence is also critical, because the

order in which species are lost from a community due to fragmentation can have

a large impact on pathogen prevalence and persistence (Ostfeld and LoGiudice,

2003). Fragmentation may also alter the structure of the community beyond the

host species, leading to changes in food web dynamics that could have important

implications for host-pathogen interactions. For example, fragmentation can lead

to the loss of large predators from the system, which will potentially impact the

abundance of one or more host species (Ostfeld and Holt, 2004).

Landscape structure will affect habitat connectivity and therefore influence

the ability of host movement to connect patchy populations and spread pathogens

(Ostfeld et al., 2005; Real and Biek, 2007). Understanding the spatial patterns of

spread for multi-host pathogen therefore requires consideration of the ecology of
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each host species. For example, while rivers slow the geographic spread of rabies

by raccoons (Smith et al., 2002), they can serve as corridors for the migration and

dispersal of some species and therefore facilitate the spread of other pathogens

(Russell et al., 2004; Real and Biek, 2007). Multi-host, multi-patch models like

the one presented here can be used to examine the importance of movement

by different host species for pathogen invasion and persistence in heterogeneous

landscapes.

Geographical and statistical tools are often used to analyze the distribution

of vectors or hosts in order to create explanatory maps of incidence or predictive

risk maps (Ostfeld et al., 2005). However these approaches typically do not in-

corporate the potential influences of landscape composition and structure on the

distribution of host species or the connectivity between different populations in a

heterogeneous landscape. Multi-host models that incorporate knowledge of host

movement patterns could be integrated with research on the correlation between

environmental factors and host distributions to examine the relative importance

of local community composition and landscape heterogeneity for determining pat-

terns of pathogen distribution and prevalence. We still need to understand more

about how host distributions are influenced by heterogeneity, and how differences

in species’ responses to environmental factors will alter community composition.

Multi-host pathogens are also likely to have effects on community structure via

apparent competition between hosts or more complex multispecies interactions

(Hatcher et al., 2006). Recognizing that pathogens can influence host distribu-

tions is important when considering how overlapping host species distributions
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influence cross-species transmission. Community composition and overlapping

distributions are especially important for pathogens that require alternate hosts

(e.g. plant fungal pathogens, parasites with complex life stages that require in-

termediate hosts such as flukes). In addition, the movement abilities of alternate

hosts are likely to influence contact rates and therefore the probability of cross-

species transmission.

Climate change is expected to alter the global distribution and prevalence of

infectious diseases, particularly those involving ectothermic hosts or arthropod

vectors (Harvell et al., 2002). In a recent analysis of the existing evidence for

climate impacts on disease dynamics, Lafferty (2009) concluded that range shifts

in disease distributions are more likely than large increases in the geographic

range. However even if their range only shifts rather than expands, the com-

munity composition experienced by multi-host pathogens is likely to be different

in their new range. Because species richness is lower in temperate regions than

in the tropics, if pathogen and/or vector distributions shift towards the poles

the host community in their new geographic ranges may contain fewer species

reducing the potential for a dilution effect (Dobson, 2009). Shifting host or vec-

tor distributions may also lead to disease transmission to previously unexposed

host species, which can have important implications for host-pathogen dynamics

if the pathogen is highly virulent in naïve populations (Harvell et al., 2009). The

spatiotemporal dynamics of multi-host pathogens might also be altered due to

changes in the movement patterns of hosts as species shift their geographic ranges

or alter their migratory patterns due to changes in seasonal climate patterns.
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Figure 4.1: Equilibrium infection prevalence in a reservoir host and a spillover
host at the (a) regional and (b) local scales across a connectivity (as determined by
the host movement rates). The regional prevalence does not change significantly
with changes in the host movement rate, but the difference between local preva-
lence in source (high reservoir density) and sink (low reservoir density) patches
is reduced as host movement rates increase.
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Figure 4.2: R0 as a function of host movement rate when the density of (a) good
hosts, or (b) poor hosts varies between patches. In (a) the solid line represents
movement by both hosts and the dashed line represents movement of the poor
(spillover) host. The dotted line representing movement of the good (reservoir)
host only is not visible because it is identical to the solid line representing both
hosts. In (b) the solid line represents movement by both hosts while the dotted
and dashed lines represent movement by the good and poor hosts respectively.
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Chapter 5 – The influence of host diversity and composition on
epidemiological patterns at multiple spatial scales: Barley and cereal

yellow dwarf viruses in a Cascades meadow system

Abstract

Spatial patterns of pathogen prevalence are determined by ecological processes

acting across multiple spatial scales. Host-pathogen interactions are influenced

by environmental factors, landscape structure and the local community com-

position. Here we investigate the role of local community interactions and the

effects of landscape structure and regional processes on the dynamics of barley

and cereal yellow dwarf viruses (B/CYDV) in the open meadows of the Cascade

Mountains of Oregon. We used variance components analysis and model selec-

tion techniques to partition the sources of variation in B/CYDV prevalence and

determine which abiotic and biotic factors influence host-pathogen interactions

in a Cascades meadow system. B/CYDV prevalence in Cascades meadows varied

by host species identity, with a significantly higher proportion of infected Festuca

idahoensis individuals than Elymus glaucus or Bromus carinatus. While there

was significant variation in prevalence among host species and among meadows

in the same meadow complex, there was no evidence of any significant variation in

prevalence among different meadow complexes at a larger spatial scale. Variation

in prevalence among meadows was primarily associated with the local community
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context—host identity, the relative abundance of different host species, and host

species richness—and the physical landscape attributes of the meadow. These re-

sults highlight the importance of local host community composition, mediated by

landscape characteristics such as meadow aspect, as a determinant of the spatial

pattern of infection of a multi-host pathogen.

5.1 Introduction

Like other species interactions in ecological systems, host-pathogen interactions

are influenced by environmental factors, landscape characteristics and the broader

community context (Guernier et al., 2004; Collinge and Ray, 2006; Keesing et al.,

2006; Ostfeld et al., 2006b; Borer et al., 2010). Spatiotemporal patterns of infec-

tion in host communities may be driven by climate variables such as temperature

and precipitation (Pascual et al., 2000; Harvell et al., 2002; Zhou et al., 2004;

Garrett et al., 2006; Snall et al., 2008; Seabloom et al., 2010), which can vary

in a spatially consistent manner based on the topography of a landscape. For

vector-transmitted, multi-host pathogens, differential vector and host species’ re-

sponses to environmental heterogeneity and landscape structure—mediated by

species interactions—will generate spatial heterogeneity in the composition and

abundance of the vector and host communities across the landscape. Because

these processes that drive host-pathogen interactions can act at a broad range

of spatial scales (Smith et al., 2003; Fabre et al., 2005; Borer et al., 2010; Duffy

et al., 2010; Seabloom et al., 2010), it is necessary to examine the relative im-
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portance of these different processes to both local- and larger-scale patterns of

infection.

At a local scale, the diversity and composition of the ecological community

can affect the prevalence of infectious diseases (Keesing et al., 2006). Increas-

ing host species richness can lead to a reduction in prevalence by reducing the

abundance of highly competent hosts or decreasing the rate of transmission be-

tween hosts (Ostfeld and Keesing, 2000; Ezenwa et al., 2006; Keesing et al., 2006;

Dizney and Ruedas, 2009). The composition of multi-host communities can also

affect prevalence, because interspecific variation in host competency (a function

of host susceptibility, recovery, and infectiousness) can lead to the dilution or

amplification of prevalence at the community level (Power and Mitchell, 2004;

LoGiudice et al., 2008). In the case of vector-borne diseases, the composition of

the local community (including both host and non-host species) may also influ-

ence the abundance and composition of the vector community, vector preference

for different host species, or transmission rates between vector and host species

(Power and Mitchell, 2004; Malmstrom et al., 2005; Borer et al., 2009). However,

the composition and configuration of the host community at larger spatial scales

may mediate the effect of local-scale influences (Plantegenest et al., 2007). For

vector or wind-dispersed pathogens, local-scale disease incidence or prevalence

can be influenced by the regional abundance of highly competent hosts (Fabre

et al., 2005) or the proximity to neighboring host populations (Ericson et al.,

1999; Smith et al., 2003).
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The local context for infection also includes the role of local abiotic conditions

that can influence host-pathogen or vector-host interactions. Local nutrient sup-

plies can affect vector abundance (Pope et al., 2005; Borer et al., 2009) and in-

crease pathogen prevalence and disease incidence (Strengbom et al., 2002; Borer

et al., 2010). Other abiotic factors that affect community productivity and com-

position, such as temperature and soil moisture availability, may also influence

infection patterns. Environmental conditions also affect patterns of infection at

larger spatial scales because they are important determinants of transmission dy-

namics and the distribution of host and vector communities (Gubler et al., 2001;

Ostfeld et al., 2005; Stenseth et al., 2006; Seabloom et al., 2010).

In complex disease systems with multiple host, vector, and pathogen or par-

asite species, each of these species may be influenced by different abiotic factors

or processes at different spatial scales, making it difficult to predict patterns

of infection (Ostfeld et al., 2005). Landscape structure can influence ecological

interactions and processes, leading to spatial heterogeneity in the presence or

abundance of organisms, including host-pathogen communities (Turner, 1989).

The physical attributes of a landscape are particularly important determinants

of pathogen dispersal, which affects the spread, prevalence, and persistence of in-

fectious diseases (Hess et al., 2002; Holdenrieder et al., 2004; Plantegenest et al.,

2007; Real and Biek, 2007). The degree of connectivity between host popula-

tions has influenced the patterns of infection and spread of rabies (Smith et al.,

2002; Russell et al., 2005; Smith et al., 2005), hantaviruses (Langlois et al., 2001),

and plague (Collinge et al., 2005) in wildlife populations. The size and degree
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of connectivity between local host populations are also important determinants

of persistence and prevalence for plant pathogens (Park et al., 2001; Ericson

et al., 1999; Smith et al., 2003; Laine and Hanski, 2006). For vector-dispersed

pathogens, topographic features and landscape structure can influence vector

dispersal and landing patterns (Plantegenest et al., 2007).

The goal of our observational study was to assess the effect of landscape

structure and local and regional processes on the distribution and prevalence of

a vector-transmitted, multi-host pathogen. We examined the role of local plant

community interactions and the effects of environmental conditions, landscape

structure, and regional processes on the prevalence of barley and cereal yellow

dwarf viruses (B/CYDV) in the open meadows of the Cascades mountain range

in Oregon. We collected B/CYDV infection data for several host grass species,

along with a set of abiotic and biotic factors that have the potential to influence

infection prevalence at multiple spatial scales. The first objective of our study

was determine whether variation in B/CYDV prevalence occurs primarily among

host species at a local within-meadow scale, among adjacent meadows, or among

groups of meadows at a larger spatial scale. Second, we used model selection

techniques that have recently been advocated for ecological data (Johnson and

Omland, 2004; Whittingham et al., 2006; Bolker et al., 2009) to determine which

abiotic and biotic factors were important predictors of local prevalence. Poten-

tial explanatory factors were grouped into categories of factors or processes that

could potentially influence host-pathogen interactions in this system. These cat-

egories were then used to construct a set of candidate models from which we



132

quantified the relative importance of the different factors for explaining variation

in B/CYDV prevalence.

5.2 Methods

5.2.1 Study system

The barley and cereal yellow dwarf viruses are a group of generalist, aphid-

vectored plant viruses that infect over 100 grass species in both agricultural and

natural systems (D’Arcy and Burnett, 1995). B/CYDV is one of the most eco-

nomically important diseases of grain crops worldwide (Irwin and Thresh, 1990),

and has been widely studied for over 50 years (D’Arcy and Burnett, 1995). The

virus has a short latency period in both its host plants and the aphid vector;

however, once infected a vector is potentially infective for life and individual

hosts typically do not recover from a B/CYDV infection. Host susceptibility

to B/CYDV varies, with some species suffering increased mortality and reduced

fecundity when infected and other species experiencing little change in their over-

all fitness (Irwin and Thresh, 1990). Studies have also shown that the presence

of highly competent reservoir species can increase the prevalence of B/CYDV

in local host communities (Power and Mitchell, 2004). Host-aphid interactions

also vary by host, with aphids showing preference for and experiencing higher

fitness on certain host species (Borer et al., 2009). While the effect of these host

community differences have been investigated at the local level, their importance
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for regional patterns of B/CYDV spread and persistence has only recently been

explored (Borer et al., 2010; Seabloom et al., 2010). Both local, within-field

movements and long-distance dispersal by aphids are important for B/CYDV

transmission (Irwin et al., 1988; McElhany et al., 1995), and host-vector interac-

tions at multiple spatial scales may influence local and regional disease dynamics

(Borer et al., 2010). This complexity of B/CYDV epidemiology makes it an ideal

study system for the exploration of spatial community dynamics and disease

ecology.

5.2.2 Sampling design

Field observations were conducted in the summer of 2008 in the montane meadow

system within the H.J. Andrews Experimental Forest and adjacent areas of the

McKenzie River drainage in Oregon’s central-western Cascade Mountains. Mead-

ows in this region are typically found at elevations ranging from 1000-1620 m and

are most common on drier, steeper slopes with southern aspects and near ridge

lines (Takaoka and Swanson, 2008). These open meadows are patchily distributed

within a forested landscape among the higher-elevation forest where environmen-

tal conditions are more stressful for trees and rock outcrops are more common

(Franklin and Halpern, 2000). Sampling occurred in 20 meadows from four sepa-

rate, small, meadow systems—here referred to as meadow complexes—that con-

tain at least five meadows of varying size (ranging from ~600 m2 to 9 ha in size).

Meadows within a complex are typically located within a kilometer or two of the
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other meadows in the complex, while each of the separate meadow complexes is

located at least several kilometers and one mountain ridge away from the other

meadow complexes. The four different meadow complexes were selected to cover

the range of different abiotic conditions (soil moisture, elevation, slope, aspect,

etc.) typical of Cascade meadows, and to examine the effect of complex (regional)

scale measurements, such as average meadow size and meadow isolation, on the

spatial patterns of plant community composition and B/CYDV prevalence.

In each of the 20 meadows, cover data of each plant species was measured

in eight 1 m2 quadrats. Quadrats were established at 10 m intervals along a

transect across the center of a meadow, expect for in the largest four meadows

where quadrats were established at 25 m intervals along a similar transect. The

mean percent cover across the eight quadrats was then calculated to represent the

abundance for each species found in a meadow. Biomass data was also collected

from a 0.1m2 strip in each quadrat, and sorted by plant functional group (except

grasses, which were sorted to the species level). Soil moisture in each quadrat

was measured using a portable TDR probe, and the percent cover of moss, rocks,

leaf litter, woody debris (ranging from fallen branches to decaying logs), gopher

mounds and bare ground were also recorded. Because dispersing aphids may

select their feeding habitat partly based on the ratio of plant cover to exposed

ground in a meadow (Irwin et al., 2007), the amount of each plot covered by

gopher mounds, bare ground, and exposed rock was recorded as a composite

variable.
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In addition to plant species composition data, the mean elevation, slope, as-

pect, size, and isolation were calculated for each meadow. Slope and aspect data

for each meadow were derived from a 30 m digital elevation map of the area in

ArcGIS 9.3 (ESRI, San Diego, CA USA). Aspect data was sine and cosine trans-

formed from the 360 ◦ orientation to create two aspect variables representing the

east-west and north-south orientations of each meadow. These transformed vari-

ables both vary from -1 to +1. Meadow isolation was calculated as either the

distance to the nearest meadow or as the average distance between a meadow

and all of the other meadows within the same meadow complex. Both isolation

metrics yielded comparable results, so analyses using nearest neighbor distance

are presented here.

Three of the most common grass species in the study area are the native

perennials Elymus glaucus, Bromus carinatus and Festuca idahoensis. Twenty

samples of E. glaucus were collected from each meadow in order to estimate site-

level viral prevalence. In addition, 20 samples of B. carinatus and F. idahoensis

were collected from each meadow that contained at least 20 individuals of each

species respectively. In total, E. glaucus was collected from each of the 20 mead-

ows, B. carinatus from 18 of 20, and F. idahoensis from 12 of 20, for a total of

1000 samples. Grass tissue samples were air dried and then assayed for infec-

tion with three species in the B/CYDV complex (BYDV-PAV, BYDV-MAV, and

CYDV-RPV) via enzyme-linked immunosorbent assay (ELISA; antibodies from

Agdia, Elkhart, IN USA).
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5.2.3 Statistical analysis

Host-species specific pathogen prevalence was modeled as the proportion of in-

fected host individuals within a meadow. B/CYDV prevalence data were initially

analyzed using a generalized linear mixed-effects regression model (GLMM) with

binomial errors and a logit link (using the lme4 package in R v. 2.9.2). Meadow

complex, meadow, and host species within a meadow were treated as nested ran-

dom effects in order to provide an estimate of the variance associated with each

factor after accounting for variance at the other hierarchical levels (variance com-

ponents analysis; Crawley, 2007). Partitioning the variance among host species,

meadow, and meadow complex provides an estimate of the relative importance of

the different processes influencing infection patterns in this system (Borer et al.,

2010; Duffy et al., 2010). Because the meadow-complex spatial scale was not a

significant source of variance after accounting for the variation among meadows

within each complex (see Results), subsequent analyses were conducted using

general linear models (GLMs) with fixed effects only. There was significant vari-

ance among species within a site, therefore species identity was treated as a fixed

effect in subsequent analyses. All statistical analyses were conducted using R

version 2.9.1 (R Development Core Team 2009).

5.2.3.1 Statistical Modeling

The relationship between B/CYDV prevalence data and potential explanatory

factors was analyzed by developing a set of candidate models with different groups
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of explanatory variables. Each model of prevalence was examined using a GLM

assuming a binomial error distribution and logit link (logistic regression). A

goodness-of-fit test of the full model including all possible explanatory variables

indicated that data dispersion did not match the assumptions of the binomial

distribution (Venables and Ripley, 2002). However, a full model using mean

meadow-level prevalence averaged across all host species as the response variable

provided an adequate fit to the data without overdispersion (χ4=1.96; p=0.74).

Therefore, we used meadow-level prevalence averaged across all host species as

the response variable for regression model selection purposes.

The set of candidate models were compared using an information theoretic

approach in order to generate a confidence set of models for further analysis

and multi-model inference (Burnham and Anderson, 2002). The candidate set

of models was generated by grouping the explanatory variables into categories of

factors or processes that could potentially influence host-pathogen interactions in

this system. The groups chosen were: physical landscape attributes, landscape

structure attributes, meadow productivity, meadow community composition, host

abundance, host richness, and host community composition. The host commu-

nity composition category was divided into four different factors representing

the relative abundances of F. idahoensis, E. glaucus, B. carinatus, and all other

grasses. This resulted in 10 single factor models. We then explored all possible

subsets of these 10 single factors as candidate models for a total candidate set of

1024 models.
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5.2.3.2 Physical landscape attributes

The variables included in this category were elevation, slope, and aspect. Aspect

was divided into two variables according to a meadow’s orientation along an east-

west axis and a north-south axis. Each of these physical landscape attributes may

influence infection through their influence on the phenology of the host grasses,

the phenology and population dynamics of aphids, or meadow productivity and

richness. In particular, elevation affects the length of the growing season and may

also affect the timing of aphid dispersal. Meadow aspect may also influence local

aphid abundance and the timing of aphid population dynamics, because regional

aphid migration in the spring and early summer typically occurs from west to east

and upwards in elevation (S. Moore, personal observation). Physical landscape

attributes are also likely to influence the arrival of aphids because they are weak

fliers and therefore their dispersal ability is often limited by the direction of the

prevailing winds (Irwin et al., 2007).

Because elevation and slope were highly correlated (r=0.79), and elevation,

slope, and E-W aspect were all moderately correlated, we conducted principal

components analysis (PCA) to reduce the dimensionality of the data. The first

two principal components explained 86% of the variance (59% by PC1 and 27%

by PC2) and were used for further statistical analyses. The loadings of the first

principal component suggest that PC1 represents a positive influence of elevation

(0.62) and slope (0.56) and a negative influence of N-S aspect (-0.44). The second
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principal component (PC2) represents a positive influence of E-W aspect (0.80)

and a negative influence of N-S aspect (-0.49).

5.2.3.3 Landscape structure attributes

The two landscape structure attributes were log-transformed meadow area and

meadow isolation. Both the size and isolation of a meadow may influence the

richness and composition of the local host community. In addition, the size

and isolation of a meadow may affect the likelihood of aphids dispersing to the

meadow (Traore et al., 2005; Irwin et al., 2007).

5.2.3.4 Site productivity attributes

The site productivity category includes plant species richness, total plant biomass,

litter biomass, soil moisture percentage, and the ground variable which represents

the amount of meadow area covered by gopher mounds, rocks, woody debris, or

bare ground. Local-level plant community productivity and richness have been

shown to be correlated with the prevalence and severity of some plant pathogens

(Mitchell et al., 2002). In addition, site productivity may correlate with nutrient

availability, which can influence B/CYDV prevalence (Borer et al., 2010). The

amount of standing biomass and the relative amount of bare ground in a meadow

can also influence the landing behavior of aphids during dispersal (Irwin et al.,

2007).
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As with the physical landscape attributes, we used PCA to reduce the dimen-

sionality of the site productivity category. The first 3 of 5 principal components

contained 43%, 23%, and 18% of the variation (84% combined) and were used to

represent site productivity for model selection purposes. The first productivity

principal component is positively associated with the ground variable (0.53), and

negatively associated with soil moisture (-0.50), plant species richness (-0.47),

and litter abundance (-0.41). The second principal component is negatively asso-

ciated with litter abundance (-0.65) and positively associated with plant species

richness (0.49) and soil moisture (0.45). The third principal component is nega-

tively associated with total plant biomass (-0.95).

5.2.3.5 Meadow community composition

Meadow community composition was represented by the relative abundance of

forbs, legumes, and sedges. While the composition of the plant community may

not directly impact B/CYDV, plant community composition varied significantly

among meadows in our study (S. Moore, unpublished), and may co-vary with

B/CYDV prevalence.

5.2.3.6 Host abundance

Host abundance was represented by either total grass biomass or the amount

of grass biomass relative to total plant biomass. If B/CYDV transmission is
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density-dependent, then prevalence would be expected to increase as a function

of host density—as represented by total grass biomass—in a meadow. However,

the relative amount of grass biomass in a meadow may be more important for

transmission and prevalence if dispersing aphids respond to the relative abun-

dance of potential host species when selecting where to feed. Candidate sets

of models were constructed with either total or relative grass biomass to deter-

mine which measurement is more important for B/CYDV prevalence. Total grass

biomass was included as a significant explanatory variable more frequently than

relative grass biomass, so results from the candidate set of models including total

grass biomass are presented here. However, results regarding the significance of

the other explanatory variables did not differ between the two candidate model

sets.

5.2.3.7 Host richness

Host species richness was included as a potential explanatory variable because

host diversity is often an important determinant of infection prevalence in multi-

host communities (Ostfeld and Keesing, 2000). Several studies have shown that

species diversity causes a dilution effect, with prevalence decreasing as diversity

increases (Ostfeld and Keesing, 2000; LoGiudice et al., 2003; Ezenwa et al., 2006;

Keesing et al., 2006; Allan et al., 2009; Dizney and Ruedas, 2009). There are

several plausible mechanisms that could lead to the dilution of prevalence in our

system with an increase in host species richness including: (a) encounter reduction
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between vector species and highly competent hosts, (b) vector regulation by poor

hosts, (c) a reduction in the probability of transmission, or (d) susceptible host

regulation (Keesing et al., 2006).

5.2.3.8 Host community composition

For multi-host pathogens such as B/CYDV, the composition of the host commu-

nity may be a more important determinant of prevalence than either host richness

or total host abundance (Mitchell et al., 2002; Power and Mitchell, 2004; Keesing

et al., 2006; Kilpatrick et al., 2006b; LoGiudice et al., 2008). Therefore, in ad-

dition to examining the importance of total host abundance and host species

richness, we also examined the importance of the abundance of different host

species for B/CYDV prevalence. Analyses were conducted using either the total

or relative abundances of each grass species as explanatory variables. Relative

abundance consistently explained more of the variance than total abundance, so

relative abundance was used to construct the set of candidate models presented

here. Because infection data was collected from F. idahoensis, E. glaucus, and B.

carinatus we treated the meadow-level abundance of each of these three species

as potential explanatory variables in separate single factor models, and in con-

junction with other variables in the multiple factor models within the candidate

model set. In addition to these three species, we also considered the combined

abundance of the remaining grass species in a meadow as a potential explanatory

variable. In addition to the three focal host species, 19 other grass species were
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found in at least one meadow. Although none of these species were as common or

abundant as the three focal species, the most common of these additional grasses

were Agropyron repens, Danthonia intermedius, Stipa occidentalis, Calamagrostis

canadensis, and several Agrostis spp.

5.2.3.9 Model selection criteria

Models were selected from the candidate set of models using bias-adjusted Akaike’s

information criterion (AICc) (see Appendix F for details). AICc adjusts for bias

when the ratio of the number of observations (N ) to the number of parameters

(K ) is below 40 (Burnham and Anderson, 2002). The best model is the one with

the smallest AICc (AICcmin), and all other models are then compared to the

best model by calculating their AICc difference ∆i = AICci − AICcmin, which

represents the loss of information for model gi compared to the gmin. Models

with ∆i values of less than 2 are considered to have substantial support, while

models with ∆i > 10 are considered to have almost no support (Burnham and

Anderson, 2002). The AICc differences can also be used for model comparison

and multi-model inference by using them to calculate Akaike weights, wi, for each

model (Burnham and Anderson, 2002). The Akaike weights, wi, sum to 1 for all

R candidate models and represent the probability that model gi is the best model

(from an information theoretic standpoint) among the candidate set of models.

A 95% confidence set of models is then chosen from the candidate set of models

by selecting the smallest subset of models that have a sum of wi ≥ 0.95.
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An assessment of the relative importance of the various explanatory variables

was conducted using the confidence set of models. Rather than infer the signifi-

cance of a variable from a single “best” model, the importance of each potential

explanatory variable, x, can be calculated based on how frequently the variable

was included as a parameter in the confidence set of models (Johnson and Om-

land, 2004; Whittingham et al., 2006). The Akaike weights are summed for all

models from the confidence set containing the variable in order to calculate a

term (predictor) weight, ςx, for each variable. The 95% confidence set of models

was also used to calculate model-averaged parameter estimates and their 95%

confidence intervals (see Appendix F for details).

5.3 Results

B/CYDV prevalence was largely determined by factors at the local, meadow-scale

rather than at the scale of the regional meadow complex. 29% of the variation in

infection occurred among meadows within a meadow complex, and < 1% of the

remaining variation in prevalence was explained by differences among meadow

complexes. Host species identity within a meadow explained an additional 6% of

the variation in prevalence. The remaining 65% of variance in infection occurred

at the within-species level. Total BYDV prevalence was significantly higher in

F. idahoensis (12.9%) than B. carinatus (7.2%) or E. glaucus (8.2%) (p=0.016;

Figure 5.1). In addition, F. idahoensis had a higher prevalence of BYDV-MAV

and CYDV-RPV than E. glaucus, and a higher prevalence of BYDV-PAV than
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B. carinatus. CYDV-RPV prevalence in E. glaucus was significantly lower than

in either of the other two species.

54 models out of the 1024 candidate models were identified as plausible mod-

els of site-level BYDV prevalence based on their AICc values, making up a 95%

confidence set of models (Table 5.1). None of the single factor models were in-

cluded in the 95% confidence set of models, suggesting that infection is driven by

multiple factors. The best fit model included host species richness, the relative

abundance of grass species other than F. idahoensis, B. carinatus, or E. glaucus,

and the two physical landscape principal components as explanatory variables.

The second best model was the only model with ∆i < 2, and included only host

species richness and the relative abundance of other grass species as explanatory

variables. These top two models had Akaike weights of 0.22 and 0.17, while the

third best model had an Akaike weight of 0.07. Because inferences should be

based on a single best model only if wi ≥ 0.90 (Burnham and Anderson, 2002),

we determined the relative importance of the different explanatory variables and

their parameter estimates using the model-averaged estimates from the 95% con-

fidence set of models.

The relative abundance of other grass species appeared as an explanatory

variable in 53 of the 54 models in the confidence set, and had the highest predictor

weight of ςx = 0.93 (Table 5.2). Host species richness had the next highest

predictor weight (0.84), followed by physical landscape attributes (0.38) and total

grass (host) abundance (0.22). Host species richness and total host abundance

were highly correlated (r=0.88). This may explain why total host abundance was
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the best fitting single factor model (∆i = 10.6, Table 5.1), but was not included in

most of the models in the 95% confidence set (Figure 5.3a). The set of variables

representing plant community composition (relative abundance of forbs, legumes,

and sedges) did not appear as explanatory variables in any of the models within

the 95% confidence set.

Host species richness and the relative abundance of other grass species were

the only two explanatory variables with 95% confidence intervals not encompass-

ing zero (Table 5.2). Based on ˆ̄β = −0.33 for host species richness, the odds

of infection increase by a factor of 1.39 for each decrease by one in host species

richness (95% CI: 1.06-1.85; Figure 5.2). Likewise, each 10% increase in the

relative abundance of other grass species besides F. idahoensis, B. carinatus or

E. glaucus increases the odds of infection by 1.25 (95% CI: 1.08-1.48; Figure

5.3b). The relative abundance of other grass species is not significantly corre-

lated with prevalence (Figure 5.3b); however, it is correlated with host species

richness (r=0.67) and after accounting for variation in host species richness the

partial correlation of prevalence and the relative abundance of grass species is

rpartial = 0.45.

The third most important explanatory factor was physical landscape attributes,

with a predictor weight of ςx = 0.38. The parameter estimates for the physical

landscape variables PC1 and PC2 were ˆ̄β = 0.007 and ˆ̄β = −0.135 respectively.

The parameter estimate near zero for PC1 suggests that only the PC2 variable

was responsible for the inclusion of these two physical landscape variables in the

95% confidence set of models. To determine whether PC2 might be a significant
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explanatory variable, we re-conducted the model selection process with only PC2,

instead of both PC1 and PC2, serving as a potential explanatory variable. The

updated model selection exercise produced very similar results to those presented

in Tables (5.1) and (5.2), except that the predictor weight for physical landscape

attributes increased from 0.38 to 0.80. The relative abundance of other grass

species and host species richness sill had the highest predictor weights of 0.94

and 0.91 respectively. The best fit model had a model weight of wi = 0.39 and

included three significant variables: host species richness, the relative abundance

of other grasses, and PC2. Although the predictor weight for the physical land-

scape attributes increased, the 95% confidence interval for the model-averaged

parameter estimate of the PC2 variable still included zero ( ˆ̄β = −0.281; 95% CI:

-0.607 – 0.045).

5.4 Discussion

Spatial patterns of pathogen prevalence are determined by ecological processes

acting across multiple spatial scales. Here we used variance components analysis

and model selection techniques to partition the sources of variation in B/CYDV

prevalence and determine which abiotic and biotic factors influence host-pathogen

interactions in a Cascades meadow system. B/CYDV prevalence in Cascades

meadows varied by host species identity, with a significantly higher proportion of

infected F. idahoensis individuals than E. glaucus or B. carinatus. While there

was significant variation in prevalence among host species and among meadows
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in the same meadow complex, there was no evidence of any significant varia-

tion in prevalence among different meadow complexes. Variation in prevalence

among meadows was primarily associated with the local community context—

host identity, the relative abundance of different host species, and host species

richness—and the physical landscape attributes of the meadow.

B/CYDV prevalence was negatively correlated with the number of host species

in a meadow, suggesting that increasing species richness may cause a dilution ef-

fect in this system. The co-variation of host richness and B/CYDV prevalence

was not due to prevalence patterns in a single host species. Species diversity is

negatively correlated with the incidence and prevalence of a number of different

infectious diseases including Lyme disease (Ostfeld and Keesing, 2000; LoGiudice

et al., 2003), West Nile virus (Ezenwa et al., 2006; Allan et al., 2009), hantaviruses

(Dizney and Ruedas, 2009), rust fungi (Mitchell et al., 2002), and bartonellosis

(Telfer et al., 2006). In some cases the biodiversity of the entire ecological com-

munity can lead to a reduction in pathogen prevalence by regulating susceptible

host populations or reducing the contact rate between the pathogen and its hosts

(Ostfeld and Holt, 2004; Dobson et al., 2006). However, we found no association

between the diversity of the entire plant community and prevalence in a meadow.

Because this was an observational study we cannot assign a causal role for the

effect of host species richness on B/CYDV infection patterns. Determining a

possible mechanism for the relationship between host richness and prevalence is

difficult for two additional reasons: (1) the high degree of correlation between host
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species richness and total host abundance, and (2) the significant co-variation of

host community composition, host species richness, and prevalence.

The correlation between the abundance of grasses (hosts) and the number of

grass species in a meadow makes it difficult to distinguish between the effects of

host diversity and host abundance on pathogen prevalence. Although total host

abundance is significantly correlated with B/CYDV prevalence when analyzed

with a univariate regression model and the host abundance model had the low-

est AICc value of any single factor model, it was not a significant explanatory

factor when the entire candidate set of models was considered. Although not

significant, there was a negative correlation between total host abundance and

B/CYDV prevalence. A negative correlation between prevalence and host abun-

dance is a pattern typically seen for vector-transmitted pathogens with frequency-

dependent transmission, where an increase in host abundance reduces the contact

rate between the vector and infected hosts, leading to a lower prevalence at equi-

librium (Anderson and May, 1991; Antonovics et al., 1995; McCallum et al.,

2001). While vector-borne diseases may exhibit frequency-dependent transmis-

sion when the density of the vector population is independent of host abundance,

aphid abundance is at least partially coupled to host abundance (Malmstrom

et al., 2005; Borer et al., 2009). Therefore, increasing the the total abundance

of grasses will increase the abundance of aphids, and total host abundance and

transmission will not necessarily be negatively correlated as would be expected

with frequency-dependent transmission (Hosseini et al., In prep).
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The most important explanatory variable for B/CYDV prevalence was the

relative abundance of grass species other than E. glaucus, B. carinatus, or F.

idahoensis. An increase in the relative abundance of ’other’ grasses was posi-

tively related to prevalence after accounting for the effect of host species richness.

Even in studies that have demonstrated an effect of species diversity on infection,

community composition is often a more important determinant of disease preva-

lence than species richness alone (Mitchell et al., 2002; LoGiudice et al., 2003;

Keesing et al., 2006; Kilpatrick et al., 2006b; LoGiudice et al., 2008). The pres-

ence of a host species that is a highly competent reservoir can amplify infection

(e.g. Avena fatua and B/CYDV, Power and Mitchell, 2004; or the white-footed

mouse, Peromyscus leucopus, and Lyme disease, LoGiudice et al., 2003), while

increasing the relative abundance of less competent hosts can lead to the dilution

effect (e.g. non-passerine bird species and West Nile virus, Ezenwa et al., 2006).

In our study it is not possible to identify one particular species that could be am-

plifying prevalence because the composition of ’other’ grass species varies among

meadows. Interestingly, a univariate regression model indicated that there is a

significant negative relationship between the relative abundance of F. idahoensis

(the host species with the highest proportion of infected individuals) and the

mean B/CYDV prevalence in a meadow. However, F. idahoensis abundance was

not identified as an important explanatory variable via model selection.

The composition of the host community also co-varied with host species rich-

ness. One reason host composition and diversity can co-vary is that species rich-

ness in a community may be nested, with species that are highly competent reser-
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voir hosts occurring in both species-depauperate and species-rich communities,

but less competent hosts occurring only in more diverse communities (LoGiudice

et al., 2003; Ostfeld and LoGiudice, 2003; LoGiudice et al., 2008). Although host

species richness wasn’t strictly nested in the Cascade meadows included in our

study, host community composition did vary based on host richness. The relative

abundances of the two most common host species, E. glaucus and B. carinatus,

were negatively correlated with host species richness, and both the relative and

total abundance of ’other’ grass species increased with increasing host species

richness. However, there is no evidence that E. glaucus or B. carinatus is acting

as a reservoir host in this system. Both species had lower levels of infection than

F. idahoensis, and mean prevalence was not correlated with the abundance of ei-

ther species. While several studies have identified a particular focal host species

responsible for the amplification and spillover of infection to other species (see

examples above from Power and Mitchell, 2004 and LoGiudice et al., 2003), our

results suggest that the different grass species present in these meadows vary in

their transmission properties, without a single species driving infection patterns.

The third most important explanatory factor based on term weights was the

physical landscape attributes. Although their model-averaged parameter esti-

mates were not significant, the two principal component variables were included

in the “best-fit” model with the lowest AICc value. The first principal component

(PC1) had a parameter estimate of 0.007 (95% CI: -0.07 – 0.08), and the second

principal component (PC2) had a parameter estimate of -0.135 (95% CI: -0.47

– 0.21) when both variables were considered simultaneously and an estimate of
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-0.281 (95% CI: -0.61 – 0.04) when only PC2 was considered. The parameter esti-

mate for PC1 is very close to zero, suggesting that this variable is not associated

with prevalence. PC2 is positively correlated with both east- and south-facing

aspects and negatively correlated with west- and north-facing aspects. Therefore,

a (non-statistically significant) negative relationship between PC2 and prevalence

indicates that prevalence is lower in meadows with S, E, or SE aspects and higher

in meadows with N, W, and NW aspects. In a study of two species of planthop-

pers that transmit rice viruses in Japan, Noda and Kiritani (1989) found that

the insects landed favorably in windward-facing valleys or on the side of hills

facing away from the wind. The long-distance dispersal of cereal aphid species

that vector B/CYDV is primarily guided by prevailing air currents above the at-

mospheric boundary layer, so topographic features that influence meteorological

conditions or are situated favorably may experience higher landing rates by dis-

persing aphids (Irwin et al., 2007). One potential explanation for the association

of north- and west-facing slopes with higher prevalence is that these sites experi-

ence higher rates of aphid immigration, although meadow aspect could also affect

prevalence indirectly via its affect on the composition of the plant community.

B/CYDV infection patterns can vary latitudinally, possibly in conjunction with

precipitation and host community composition (Seabloom et al., 2010), but we

did not see any relationship between infection and elevation across an elevation

range from 1201-1558 m. It is possible that the dispersal ability of the aphid

species that transmit B/CYDV supersedes the amount of variation in elevation
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and landscape connectivity observed in the fragmented habitat of the Oregon

Cascades included in this study.

Unlike in several recent studies of plant pathogens, landscape structure did

not affect the prevalence of B/CYDV in Cascade meadows. The incidence or

prevalence of several wind-dispersed fungal plant pathogens has been related

to the size of local populations and their degree of connectivity in fragmented

landscapes (Ericson et al., 1999; Smith et al., 2003; Laine and Hanski, 2006).

Landscape structure also affects the spread and persistence of several animal

pathogens; for example, habitat fragmentation and Lyme disease prevalence are

positively correlated in the eastern US (Allan et al., 2003; Brownstein et al., 2005),

and increasing landscape connectivity increases the likelihood of plague outbreaks

in prairie dog colonies in the western US (Collinge et al., 2005; Snall et al., 2008).

However, here meadow size and isolation did not explain a significant portion

of the variation in prevalence. B/CYDV is vector- not wind-dispersed, so this

suggests that aphid dispersal is not limited by the range of distances examined in

this study. The minimum distance to the nearest meadow ranged from 120-752 m

and the average distance to other meadows within a complex ranged from 310-914

m. Because several of the aphid species that transmit B/CYDV are capable of

dispersing several hundred kilometers in short periods of time (Irwin et al., 1988),

the distances among meadows in this study were probably not large enough for

the viruses to be dispersal-limited. In addition, almost all of the grasses in this

system are perennial, which means that B/CYDV does not have to recolonize

each meadow annually.
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The covariation among host species richness, total host abundance, and com-

munity composition makes it difficult to determine which factors are the main

drivers of prevalence. However, our results clearly suggest that biotic factors are

an important determinant of B/CYDV prevalence, because the two most impor-

tant explanatory variables were host species richness and the relative abundance

of ’other’ grass species. Host species richness and the total abundance of hosts

in a meadow community were likely correlated because environmental conditions

favorable to grasses positively affect both the abundance and richness of grasses.

Although observational studies cannot determine the mechanistic causes of the

relationship between infection and various abiotic and biotic factors, our study

does allow us to examine whether theoretical predictions about the role of host

diversity and composition (Keesing et al., 2006) are still applicable in a natural

system where other environmental factors have the potential to overshadow their

importance. Even though meadows varied in their size, isolation, elevation, and

primary productivity, local host composition was still an important determinant

of prevalence.

A growing number of studies have demonstrated the importance of host diver-

sity and composition on disease risk and prevalence (Keesing et al., 2006; LoGiu-

dice et al., 2008; Allan et al., 2009; Dizney and Ruedas, 2009). Here we demon-

strated that local context—host composition, richness, and meadow aspect—was

a more important predictor of prevalence patterns than landscape structure or

regional-scale environmental conditions. The use of multi-model inference and

model averaging techniques permitted a comparison of the various potential ex-
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planatory factors in a complex natural system. These methods largely avoid the

problems, such as model over-fitting or unsupported reliance on a single “best fit”

model, associated with traditional statistical techniques, particularly when there

are significant correlations between the different potential explanatory variables.

Determining whether host diversity or the presence of a particular set of host

species is responsible for the correlation between host composition and preva-

lence will require experimental manipulation of the host community. Further

research is also required in order to identify the causal mechanism behind the

relationship between physical landscape attributes (particularly meadow aspect)

and B/CYDV prevalence. The local and regional-scale population dynamics and

dispersal behavior of aphid vector species are likely important determinants of

spatial patterns of B/CYDV prevalence. Therefore, manipulating the vector and

host communities in a complex landscape could provide insight into the general

roles of vector behavior and population dynamics for the transmission dynamics

of vector-transmitted pathogens.
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Table 5.1: The single factor candidate models and first the 10 models from the
95% confidence set of models for meadow-level prevalence. Model factors are the
explanatory variables included in each model. The table indicates the number of
parameters (k), AICc, ∆ivalues (difference between the AICc for a given model
and the best fitting model), and the model Akaike weights (wi). Number of model
parameters includes intercept parameter.
Model Factors k AICc ∆i wi

(b) Single factor models
Total grass abundance 2 111.4 10.6 0.0011
Host richness 2 114.0 13.2 <0.001
F. idahoensis relative abundance 2 116.0 15.2 <0.001
B. carinatus relative abundance 2 118.8 18.0 <0.001
Meadow composition attributes 4 119.0 18.2 <0.001
Relative abundance of other grasses 2 121.7 20.9 <0.001
Landscape structure attributes 3 122.3 21.5 <0.001
E. glaucus relative abundance 2 122.7 21.9 <0.001
Physical landscape attributes 3 123.8 23.0 <0.001
Meadow productivity attributes 4 127.0 26.2 <0.001
(a) Ten best models of the 54 total models in the 95% confidence set
Host rich, other grass abund, phys land attr 5 100.8 0 0.220
Host rich, other grass abund 3 101.3 0.5 0.168
Host rich, other grass abund, B. c. abund 4 103.2 2.4 0.066
Host rich, other grass abund, total grass abund 4 104.1 3.3 0.042
Host rich, other grass abund, F. i. abund 4 104.1 3.3 0.041
Host rich, other grass abund, E. g. abund 4 104.2 3.4 0.040
Host rich, other grass ab, E. g. abund, phys land attr 6 104.5 3.7 0.034
Total grass abund., other grass abund 3 104.7 3.9 0.031
Host rich, other grass ab, B. c. abund, phys land attr 6 104.8 4.0 0.030
Host rich, other grass ab, tot grass ab, phys land attr 6 104.8 4.0 0.029
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Table 5.2: Potential explanatory variables for site-level infection prevalence.
Term weights (ς) are calculated by summing the Akaike weights (wi) for all mod-
els in the 95% confidence set containing the explanatory variable. Parameter
estimates are the model-averaged estimates ( ˆ̄β) (see Methods section for details).
95% Confidence Intervals are calculated using the unconditional SE( ˆ̄β) which in-
corporates a variance component arising from model selection uncertainty. Bold
values are significantly different from 0 at the 95% confidence level.

Variable Term wt (ς) Param est ( ˆ̄β) 95% CI
Host richness 0.844 -0.330 -0.61 – -0.06
Total host abundance 0.225 -0.0041 -0.02 – 0.01
F. idahoensis relative abundance 0.150 -0.067 -0.38 – 0.24
B. carinatus relative abundance 0.196 0.029 -0.29 – 0.35
E. glaucus relative abundance 0.160 -0.090 -0.46 – 0.28
Rel abundance of other grasses 0.929 2.220 0.73 – 3.70
Physical landscape attributes PC1 0.384 0.007 -0.07 – 0.08
Physical landscape attributes PC2 0.384 -0.135 -0.47 – 0.21
Meadow area 0.054 0.004 -0.03 – 0.04
Meadow isolation 0.054 5.63e-5 -1e-4 – 3e-4
Meadow productivity PC1 0.011 0.003 -0.01 – 0.01
Meadow productivity PC2 0.011 -0.004 -0.02 – 0.01
Meadow productivity PC3 0.011 -0.002 -0.01 – 0.01
Relative forb abundance 0 0 –
Relative legume abundance 0 0 –
Relative sedge abundance 0 0 –
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Figure 5.1: Proportion of infected individuals of three grass species: Bromus
carinatus, Elymus glaucus, and Festuca idahoensis. PAV, MAV, RPV, and total
prevalence of all strains combined. (*) Overall prevalence of F. idahoensis is sig-
nificantly higher than overall prevalence in B. carinatus or E. glaucus (p=0.016).
Error bars represent +1 SE.
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Figure 5.2: Association of the proportion of infected hosts in a meadow with
host species richness. Left side of figure is mean prevalence averaged across all
host species. Right side of figure is proportion of infected individuals of each
of the three host species (F. idahoensis, B. carinatus, and E. glaucus). Dashed
line represents the logistic regression logit(y) = ˆ̄β0 + ˆ̄β1rich where ˆ̄β0 = −1.51
and ˆ̄β1 = −0.33 are the model-averaged parameter estimates for the y-intercept
and the host species richness variable.
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Figure 5.3: BYDV prevalence as a function of (a) total host abundance and (b)
the relative abundance of grass species other than F. idahoensis, B. carinatus,
and E. glaucus



162

Chapter 6 – Conclusion

Pathogens are an important component in ecological communities, often regu-

lating host populations and influencing community structure (Collinge and Ray,

2006; Hatcher et al., 2006). Like other species interactions in ecological systems,

host-pathogen interactions are influenced by environmental factors, landscape

characteristics and the broader community context (Guernier et al., 2004; Keesing

et al., 2006; Ostfeld et al., 2006b; Borer et al., 2010). In recent years there has

been an increasing appreciation of the importance of studying diseases within the

context of the larger ecological community, but research has largely been focused

on a limited set of interactions. My thesis explores the potential influences of

food-web interactions (Chapter 2), climate change (Chapter 3), landscape struc-

ture and host movement patterns (Chapter 4), and the combined influences of

local community context and regional processes (Chapter 5) on host-pathogen

interactions.

Host-pathogen interactions of infectious diseases transmitted by vectors de-

pend on the population dynamics of the vector species as well as its interactions

with other species within the community. In Chapter 2, I presented a theoreti-

cal model integrating predator-prey and host-pathogen theory that examines the

effect of predator-vector interactions on vector-transmitted infectious diseases.

The model predicts that predation on a vector may drastically slow the initial
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spread of a pathogen and decrease the proportion of hosts infected at equilib-

rium. The presence of the predator can also increase host abundance indirectly

by reducing or eliminating infection in the host population. In the absence of pre-

dation, pathogen prevalence and vector fecundity are positively correlated, but

the introduction of a predator leads to a negative relationship between prevalence

and vector fecundity, with the pathogen being driven out of the system at high

rates of predation or vector fecundity. These results highlight the importance of

studying interactions that—within the broader community—may alter our pre-

dictions when studying disease dynamics. It also suggests that the introduction

of biological control agents to control vector populations can reduce prevalence

or even eradicate a pathogen, particularly in productive environments where the

vector population experiences a high turnover rate.

In Chapter 3 I examined how temperature influences the biology of a parasite,

Trypanosoma brucei rhodesiense, and its tsetse fly vector in order to examine the

potential effects of global warming on sleeping sickness in Eastern and Southern

Africa. Model results indicate that projected warming over the next 50-100 years

is likely to significantly shift the distribution of sleeping sickness in this region

and these shifts in distribution may lead to an increase in the number of people

at risk of infection. The modeling approach presented in Chapter 3 provides a

framework for using the climate-sensitive aspects of vector and pathogen biology

to predict disease prevalence and risk due to climate change. Chapter 3 focuses

on looking at large scale changes in the geographic distribution of the disease, but

this approach could also be used to explore likely changes in the risk of exposure
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at the local level as well. Because the model examines the sensitivity of the

pathogen reproductive number (R0) to temperature, the potential intensity of an

epidemic or equilibrium prevalence could also be examined.

The spread of infectious disease epidemics and spatial patterns of disease

prevalence are influenced by landscape structure and the spatial structure of host

populations (Hess et al., 2002; Plantegenest et al., 2007; Real and Biek, 2007). In

Chapter 4, I developed a multi-host, multi-patch metapopulation disease model

to identify the potential effects of landscape connectivity, patch heterogeneity,

and host community composition on the initial spread, prevalence, and persis-

tence of multi-host pathogens at the patch and regional scales. In addition, I also

examined how the correlation of host traits associated with resistance to frag-

mentation, host quality and dispersal ability can affect the invasion and spread

of multi-host pathogens in a fragmented landscape.

Spatial patterns of pathogen prevalence are determined by ecological pro-

cesses acting across multiple spatial scales (Borer et al., 2010; Duffy et al., 2010).

Host-pathogen interactions are influenced by the composition of the local commu-

nity, mediated by larger-scale environmental conditions and landscape structure

(Guernier et al., 2004; Collinge and Ray, 2006; Keesing et al., 2006; Ostfeld et al.,

2006b; Borer et al., 2010). In Chapter 5 I investigated the role of local commu-

nity interactions and the effects of landscape structure and regional processes on

the dynamics of barley and cereal yellow dwarf viruses (B/CYDV) in the open

meadows of the Cascade Mountains of Oregon by using variance components

analysis to partition the sources of variation in B/CYDV prevalence. In addition
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I used nd model selection techniques to determine which abiotic and biotic factors

influence host-pathogen interactions in a Cascades meadow system. Prevalence

varied by host species identity, with a significantly higher proportion of infected

Festuca idahoensis individuals than Elymus glaucus or Bromus carinatus. While

there was significant variation in prevalence between host species and between

meadows in the same meadow complex, there was no evidence of any significant

variation in prevalence between different meadow complexes at a larger spatial

scale. Variation in prevalence between meadows was primarily associated with

the local community context—host identity, the relative abundance of different

host species, and host species richness—and the physical landscape attributes of

the meadow. These results highlight the importance of local host community

composition, mediated by landscape characteristics such as meadow aspect, as a

determinant of the spatial patterns of infection of a multi-host pathogen.

Until recently only the outcome of direct interactions between a single host

and pathogen had received much attention in ecology, despite the extensive role

pathogens can play in natural communities (Collinge and Ray, 2006). Results

from my dissertation highlight the importance of considering host-pathogen inter-

actions within a broader community context and at multiple spatial scales. The

local prevalence of B/CYDV in Cascade meadows is influenced by the diversity

and composition of the host community, a phenomenon that occurs in many other

disease systems (LoGiudice et al., 2003; Power and Mitchell, 2004; Keesing et al.,

2006; LoGiudice et al., 2008; Allan et al., 2009; Dizney and Ruedas, 2009). Local

B/CYDV prevalence also depended on the orientation of the meadow within a
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larger landscape, and in Chapter 4 I also demonstrated how landscape connec-

tivity can influence the spread and prevalence of a broad range of multi-host

pathogens. In the case of vector-borne pathogens, vector population dynamics

will influence host-pathogen interactions. Using mathematical models I demon-

strated that predator-vector interactions can influence both pathogen persistence

and host abundance, and that geographic patterns of disease risk are influenced

by the responses of both vector and parasite biology to changing environmental

conditions.
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APPENDICES



Appendix A – Dynamic host population model equilibria

The model incorporating host population demographics represented by equation

(2.4) has eight biologically relevant equilibria. Equilibria (i-vi) are all disease-free

equilibria with different combinations of the host, vector, and predator popula-

tions present at equilibrium. Because the vector population does not depend on

the host as a resource, the vector and predator populations can persist in the

absence of the host. Equilibrium (vii) represents an endemic disease equilibrium

in the host and vector populations in the absence of the predator; while the host,

vector, predator, and pathogen populations are all present in equilibrium (viii).

The equilibrium equations for the total host density (H∗) when the pathogen is

present are too complex to display succinctly. However, the equilibrium values for

the other populations can be solved as a function of H∗. Note thatKH = (bH−mH)
bHφ

represents the carrying capacity of the host population in the absence of infection.

Equilbrium (i):

I∗ = 0, H∗ = 0, U∗ = 0, V ∗ = 0, P ∗ = 0.

Equilibrium (ii):

I∗ = 0, H∗ = KH , U∗ = 0, V ∗ = 0, P ∗ = 0.

Equilibrium (iii):

I∗ = 0, H∗ = 0, U∗ = (bN −mN)/dN , V ∗ = 0, P ∗ = 0.
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Equilibrium (iv):

I∗ = 0, H∗ = KH , U∗ = (bN −mN)/dN , V ∗ = 0, P ∗ = 0.

Equilibrium (v):

I∗ = 0, H∗ = 0, U∗ = mP/εα, V ∗ = 0, P ∗ = (bN−mN )
α

(1− mP

εαKV
).

Equilibrium (vi):

I∗ = 0, H∗ = KH , U∗ = mP/εα, V ∗ = 0, P ∗ = (bN−mN )
α

(1− mP

εαKV
).

Equilibrium (vii):

I∗ = βV HβHV H
∗(bN−mN )−bNdNγ

βHV (βV H(bN−mN )+γdN ) ,

H∗ = H∗,

U∗ = bN (βV H(bN−mN )−dNγ)
βV HdN (βHV H∗+bN ) ,

V ∗ = βV HβHV H
∗(bN−mN )−bNdNγ

βV HdN (βHV H∗+bN ) ,

P ∗ = 0.

Equilibrium (viii):

I∗ = βV HβHV H
∗mP−αεbNγ

βHV (βV HmP +εαγ) ,

H∗ = H∗,

U∗ = bN (βV HmP−εαγ)
εαβV H(βHV H∗+bN ) ,

V ∗ = βV HβHV H
∗mP−αεbNγ

εαβV H(βHV H∗+bN ) ,

P ∗ = (bN−mN )
α

(1− mP

εαKV
).
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Appendix B – Frequency-dependent model formulation

The constant host population model with frequency-dependent transmission is:

dI

dt
= βV HV (H − I)/H − γI,

dU

dt
= bN(U + V )− βHVUI/H − (mN + dN(U + V ))U − αUP,

dV

dt
= βHVUI/H − (mN + dN(U + V ))V − αV P,

dP

dt
= εα(U + V )P −mPP.

(B.1)

The vector and predator population dynamics are identical to the density-dependent

model described in equation (2.1). The only alteration to the system equations

is the alteration of the disease transmission terms from βV HSV and βHV IU , to

βV HSV/H and βHV IU/H. Because disease transmission depends on the fre-

quency of infection in the host population as opposed to the density of the host

population, the pathogen reproduction rate, R0, differs between the two models.

The equation for R0 with frequency-dependent disease transmission is:

R0 =
√
N/H

√
βV HβHV√

γ(mN + dNN + αP )
. (B.2)

The equilibrium values for the total vector population (N) and the predator

population (P ) are the same whether disease transmission is density or frequency

dependent. The equilibrium densities of infected hosts (I) and infectious vectors
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(V ) differ from the equilbrium densities in the density-dependent model as follows:

Equilbrium (i):

I∗ = 0, U∗ = 0, V ∗ = 0, P ∗ = 0.

Equilibrium (ii):

I∗ = 0, U∗ = (bN −mN)/dN , V ∗ = 0, P ∗ = 0.

Equilibrium (iii):

I∗ = 0, U∗ = mP/εα, V ∗ = 0, P ∗ = (bN−mN )
α

(1− mP

εαKV
).

Equilibrium (iv):

I∗ = H(βV HβHV H(bN−mN )−bNdNγH)
βHV (βV H(bN−mN )+γdNH) ,

U∗ = bN (βV H(bN−mN )−dNγH)
βV HdN (βHV +bN ) ,

V ∗ = βV HβHV (bN−mN )−bNdNγH)
βV HdN (βHV +bN ) ,

P ∗ = 0.

Equilibrium (v):

I∗ = H(βV HβHV mP−αεbNγH)
βHV (βV HmP +εαγH) ,

U∗ = bN (βV HmP−εαγH)
εαβV H(βHV +bN ) ,

V ∗ = βV HβHV mP−αεbNγH
εαβV H(βHV +bN ) ,

P ∗ = (bN−mN )
α

(1− mP

εαKV
).
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Appendix C – Additional model extensions

C.1 Acquired host immunity

The addition of a recovered class (R) with acquired immunity in the host popula-

tion does not change the qualitative effects of predation on pathogen prevalence

or persistence. The constant host population model with host immunity is:

dS

dt
= mH(S + I +R)− βV HSV −mHS

dI

dt
= βV HSV − γI −mHI,

dR

dt
= γI −mHR,

dU

dt
= bN(U + V )− βHV IU − (mN + dN(U + V ))U − αUP,

dV

dt
= βHV IU − (mN + dN(U + V ))V − αV P,

dP

dt
= εα(U + V )P −mPP.

(C.1)

The equations representing the predator (P ) and vector (U and V ) populations

are indentical to the basic model (Equation 2.1). Infected host individuals recover

at a rate γ, and then remain immune to reinfection for life. The modified pathogen

reproduction number with host immunity is:

R0 =
√
NH

√
βV HβHV√

(γ +mH)(mN + dNN + αP )
. (C.2)
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The rate at which infected hosts recover and become immune (γ) appears in the

denominator of R0, indicating that acquired host immunity lowers the pathogen

reproduction number, and lowers the threshold at which predation can eliminate

the pathogen from the system (Figure C.1). Figure (C.1) shows that predation

decreases pathogen prevalence in the host population whether or not hosts are

immune to infection, and an increase in the recovery rate decreases pathogen

prevalence.

C.2 Vector latency period

For many diseases, vectors experience a latent period between their initial expo-

sure to a pathogen and when they become infectious (Anderson and May, 1991).

For some diseases, such as malaria, the length of this latent period relative to

the lifespan of the vector is an important factor in determining pathogen per-

sistence (Macdonald, 1957). In the malaria model originally developed by Ross

(1910), extending the latent period decreases the basic pathogen reproduction

number, R0, and reduces equilibrium prevalence. Similarly, our basic model can

be extended by adding an exposed vector class, E, to equation (2.1):

dE

dt
= βHV IU − ηE − (mN + dN(U + V ))E − αEP. (C.3)

When the pathogen is transmitted to an uninfected vector, the vector now enters

the exposed class and then becomes infectious at a rate, η. Because vectors in
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the exposed class may be killed by the predator before they become infectious,

adding a vector latency period raises the minimum vector threshold density, NT ,

for pathogen persistence, and further lowers pathogen prevalence at equilibrium.

The adjusted pathogen reproduction number with vector latency is

R0 =
√
NH

√
βV HβHV η√

(mH)(η +mN + dNN + αP )(mN + dNN + αP )
. (C.4)

Increasing the length of this latent period (reducing η) decreases R0 and in-

creases NT , increasing the chance that predation will be sufficient to eradicate

the pathogen by driving R0 < 1.

C.3 Predator functional response

We initially assumed that the predator has a Holling type I linear functional

response to vector abundance—as vector density increases, per capita predation

scales linearly at the rate αN . However, this assumption becomes biologically

unrealistic at high vector densities as the individual predator attack rate becomes

limited by the time required to handle and digest each prey item. This saturating

predator functional response can be represented by a Holling type II functional

response (Holling, 1959):
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dI

dt
= βV H(H − I)V − γI,

dU

dt
= bNN − βHV IU − (mN + dNN)U − α

′
U

f +N
P,

dV

dt
= βHV IU − (mN + dNN)V − α

′
V

f +N
P,

dP

dt
= ε

α
′
N

f +N
P −mPP.

(C.5)

The adjusted pathogen reproduction number is:

R0 =
√
NH

√
βV HβHV√

γ(mN + dNN + α′

f+NP )
. (C.6)

Introducing a type II functional response does not change the qualitative ef-

fect of predation on pathogen prevalence and persistence. The presence of a

predator still lowers pathogen prevalence, and increasing the strength of preda-

tion leads to a decline in pathogen prevalence. With a type I functional response

the proportion of infected hosts always reachs a stable equilibrium. In contrast,

increasing predation strength with a type II functional response leads to cycles in

pathogen prevalence in the host (Figure C.2). These cycles occur because preda-

tor and vector densities oscillate, leading to oscillation in the force of infection

experienced by the host population. Despite these oscillations, predation can still

eliminate the pathogen from the system while vector densities are > 0.

When the predator has a type I functional response, increasing the vector

birth rate leads to a decline in pathogen prevalence. With a type II functional
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response, increasing the vector birth rate initially leads to a decline in prevalence.

However, at higher vector birth rates the predator’s per capita consumption rate

becomes saturated and further increases in the birth rate do not reduce the

mean pathogen prevalence (Figure C.3a). The relationship between the vector’s

non-predation mortality rate (mN) and pathogen prevalence also depends on

the predator’s functional response. With a type I response, increasing mN does

not affect pathogen prevalence in the host population as long as the predator is

present (Figure 2.4b). If the predator has a type II response, increasing mN leads

to a decrease in pathogen prevalence when mN is low enough that the predator’s

per capita consumption rate is saturated (Figure C.3b). Once mN is high enough

that the predator’s per capita consumption rate is no longer saturated, further

increases in mN do not affect pathogen prevalence.

C.4 Predator selectivity

The capacity of predators to selectively prey on infectious or non-infectious vec-

tors could also alter the quantitative effect of predation on pathogen prevalence.

For example, East African jumping spiders (Evarcha culicivora) preferentially

prey on female Anopheles mosquitoes carrying blood meals, and therefore are

more likely to be carrying the malarial parasite (Nelson and Jackson, 2006). Our

model predicts that if the predator preferentially preys on susceptible vectors,

the negative effect of predation on pathogen prevalence is weakened, but preda-

tion never increases prevalence. Preferential predation on exposed or infectious
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vectors enhances the negative effects of predation on prevalence, and lowers the

threshold for disease eradication. Predation consistently reduces pathogen preva-

lence in the host and vector populations under different assumptions about host

demographics or immunity, latency, and predator selectivity.
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Figure C.1: Disease prevalence in the host population as a function of predator
attack rate (α) for three different host recovery rates (γ) with lifelong immunity
for recovered individuals. The other model parameters values are H = 1, βV H =
0.2, βHV = 0.2, γ = 0.05, bN = 0.35, mN = 0.1, dN = 0.05, ε = 0.25, mP = 0.1.
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Figure C.2: Model of an epidemic outbreak for different values of α′ for a predator
with a type II functional response. At t = 0, the host population is entirely
susceptible and 1% of the vector population is infectious. Parameters values are
H = 1, βV H = 0.15, βHV = 0.15, γ = 0.05, bN = 0.35, dN = 0.05, mN = 0.1,
ε = 0.25, mP = 0.1, f = 1.
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Figure C.3: (a) Pathogen prevalence, represented as the proportion of the host
population that is infected, as a function of the vector birth rate (bN) when the
predator has a type II functional response. (b) Pathogen prevalence in the host
population as a function of the non-predation vector mortality rate (mN). Solid
lines represent mean prevalence and dashed lines represent the minimum and
maximum prevalence values when prevalence is cyclical. Parameters values are
H = 1, βV H = 0.15, βHV = 0.15, γ = 0.05, bN = 0.7 (b only), dN = 0.05,
mN = 0.1 (a only), α′ = 0.5, ε = 0.25, mP = 0.1, f = 1.
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Appendix D – Trypanosomiasis parameter values

Trypanosoma brucei rhodesiense infections in humans typically reach the central

nervous system within 2 months of infection and most (> 80%) untreated indi-

viduals die within 6 months of infection (Odiit et al., 1997). The average duration

from onset of symptoms to death during one epidemic in Uganda was 108 days

in the absence of treatment (Odiit et al., 1997, 2005), so we assume that the

daily instantaneous mortality rate due to infection is κH = 0.0093d−1. This rate

is only an approximation because it ignores the incubation period prior to the

onset of symptoms, as well as additional mortality in treated individuals that can

be as high as 10%. Determining a recovery rate in humans is difficult because

recovery is only possible through medical treatment of an infection, but the num-

ber of undetected cases per detected case may be fairly high (Odiit et al., 2005).

Odiit et al. (2005) found that during the 1988-1990 sleeping sickness outbreak in

Tororo, Uganda an estimated 39% of the cases went undetected and untreated

(presumably leading to death), 20% were reported during the early stages of ill-

ness, and 42% did not present until the later stages. Based on these percentages,

and average times from the onset of symptoms to treatment of 45 days and 94

days for early and late cases respectively (Odiit et al., 2005), we have calculated

a recovery rate of γH = 0.009d−1 for humans.
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Many domestic livestock and wildlife species can be infected by T. b. rhode-

siense (Hide et al., 1996; Waiswa et al., 2003; Welburn et al., 2004), and these

species show a wide range in their resistance or tolerance to infection (Murray

et al., 1982). The relative importance of wildlife species versus domestic livestock

as a reservoir for T. b. rhodesiense depends on their local densities and proximity

to humans and tsetse habitat, but in many regions of East Africa cattle are in-

creasingly becoming an important reservoir species due to land use changes that

reduce the abundance of potential wildlife hosts in areas of moderate or heavy

human habitation (Welburn et al., 2006). Following an outbreak of Rhodesian

sleeping sickness in the Lambwe Valley of Kenya in the early 1980s, Wellde et al.

(1989a) found that the local breeds of Zebu cattle had high levels of T. b. rhode-

siense infection and several showed signs of illness. A subsequent study with

several local cattle breeds found that close to 50% of experimentally infected cat-

tle eventually died from the illness, with the time to death ranging from 85-1613

days (Wellde et al., 1989b). Based on the results of this study we have calculated

a disease-induced mortality rate for animal hosts of κA = 0.0008d−1. All of the

cattle in the study by Wellde et al. (1989b) became infected and parasitemia

levels in the blood typically remained high enough to infect tsetse flies for 3-5

months. Therefore we assume that the recovery rate of infected reservoir hosts

is γA = 0.0083d−1.

Dale et al. (1995) found that the average development period for T. b. rhode-

siense in G. m. morsitans was 18 days under laboratory conditions at 25 ◦C, re-

sulting a parasite development rate of µ = 0.056d−1. The mortality rate of adult
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tsetse is species-, sex-, and temperature-dependent (Hargrove, 2004); therefore,

the estimate of tsetse mortality is discussed in more detail in subsection (3.2.2.1)

describing the relationship between tsetse mortality and temperature. A prefer-

ence of tsetse for non-human over humans hosts of ρ = 25 was estimated from

tsetse blood meal data collected in 3 districts of south-eastern Uganda (Waiswa

et al., 2006), and human and livestock population estimates for each of these 3

districts from the 2002 national census and the 2006 livestock census. This strong

preference of Glossina for non-human hosts has been observed in other studies of

tsetse feeding preferences (Weitz, 1963; Clausen et al., 1998).

Field-derived estimates of the probability of infectious tsetse flies transmitting

T. brucei are extremely limited. Although previous studies have assumed that

the efficiency of transmission from tsetse to competent host species is relatively

high, Baylis (1997) found that the probabilities of transmission from G. pallidipes

and G. longipennis to cattle for T. vivax and T. congolense were only 0.84% and

2.36% respectively. Because the development of T. brucei in tsetse flies is more

similar to that of T. congolense than T. vivax (Leak, 1999), we have assumed

that the probability of transmission of T. b. rhodesiense from tsetse to animals

or humans is comparable to the T. congolense transmission efficiency of 0.0236.

We could not find any accurate estimates of the average probability of tsetse flies

acquiring T.b. rhodesiense from an infected host during a blood meal. However,

Baylis (1997) found that the susceptibility of G. palpalis to infection with T.

b. gambiense was 3.55%, so we assume a transmission probability from either

human or animal hosts to tsetse of 0.0355.
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Initial human, animal, and tsetse abundances are 1000, 2000, and 60,000

respectively. These values represent abundances for a small village near prime

tsetse habitat.
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Appendix E – Further details for multi-host, multi-patch model

E.1 Transmission terms

The introduction of new susceptibles of species i occurs at a rate determined by

the function bi(Ni) = bi(1 − Nip/Kip). New individuals of each species are born

into the susceptible class at a species-specific birth rate, bi, that is also dependent

on Kip, the carrying capacity for species i in patch p. Density-independent mor-

tality occurs from all classes at a species-specific mortality rate, di. In addition,

infected individuals may suffer additional mortality at a species-specific rate, δi.

Infectious individuals of each species recover and enter the recovered class at a

species-specific rate, γi.

Susceptible individuals of species i in each patch can become infected as a

result of either intra- or interspecific transmission within the patch. Disease

transmission to species i in patch p is determined by the function,

β(Nip) =
s∑
j=1

βij(Nj)SipIjp. (E.1)

Within-species (intraspecific) transmission occurs when i = j, and between-

species (interspecific) transmission from species j to species i occurs when i 6= j.

The transmission term is βij(Nj) = βij/Nj for frequency-dependent transmission,

and βij(Nj) = βij for density-dependent transmission. The transmission function,
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β(Nip), for each patch can also be represented via a “who acquires infection

from whom” (WAIFW) matrix (Dobson, 2004). Here we have assumed that the

within- and between-species transmission rates are species-specific, but do not

vary among patches; therefore, β(Nip)= β(Ni) in each patch.

E.2 Migration terms

The movement of species i in and out of patch p is determined by the function,

Mi(Ni) =
n∑
q=1

mipqNiq −
n∑
q=1

miqpNip (E.2)

Equation (E.2) represents the movement of all individuals of species i, replacing

N with S, I, or R represents movement of individuals of the susceptible, infected,

and recovered classes respectively. The movement (i.e. migration or dispersal)

rate for species i to patch p from patch q is mipq. Therefore, in equation (E.2) the

first summation term, represents the combined movement of individuals of species

i into patch p from all other patches q = 1, ..., n; and the second summation

term, represents the movement of species i out of patch p to patches q = 1, ..., n.

We assume that migration does not depend on infection status, although this

assumption can be relaxed for diseases such as rabies that can increase movement

rates, or other diseases that result in morbidity and thus decrease the movement

of infectious or recovered individuals.



224

E.3 Full Model

By incorporating the detailed descriptions of the birth, transmission, and migra-

tion terms into our model we obtain the full version of equation (4.1):

dSip
dt

= bi(1−Nip/Kip)Nip − diSip −
s∑
j=1

βij(Nj)SipIjp +
n∑
q=1

mipqSiq −
n∑
q=1

miqpSip

dIip
dt

=
s∑
j=1

βij(Nj)SipIjp − (di + δi)Iip − γiIip +
n∑
q=1

mipqIiq −
n∑
q=1

miqpIip (E.3)

dRip

dt
= γiIip − diRip +

n∑
q=1

mipqRiq −
n∑
q=1

miqpRip
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Appendix F – Model selection criteria for B/CYDV prevalence data

Models were selected from the candidate set of models using bias-adjusted Akaike’s

information criterion (AICc). AICc adjusts for bias when the ratio of the number

of observations (N ) to the number of parameters (K ) is below 40 (Burnham and

Anderson, 2002). In our case, N/K = 20/16 = 1.25, which is well below 40.

AICc is defined as

AICc = −2L(θ̂i|data) + 2K + 2K ∗ (K + 1)/(N −K − 1), (F.1)

where L is the log likelihood of the model parameters, θ̂i, given the data. The

first half of the equation represents the traditional AIC formula and the second

half is the bias adjustment for small sample size. Therefore, AICc represents

the likelihood of the data given the model and a penalty for the number of

parameters in the model, with an extra penalty for additional parameters that

becomes steeper as the ratio of N/K decreases. The individual AICc values for

each model are not meaningful, rather they are used for comparison purposes

with the other candidate models. The best model is the one with the smallest

AICc (AICcmin). All other models are then compared to the best model by

calculating their AICc difference (∆i):

∆i = AICci − AICcmin, (F.2)
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which represents the loss of information for model gi compared to the gmin. Mod-

els with ∆i values of less than 2 are considered to have substantial support, while

models with ∆i > 10 are considered to have almost no support (Burnham and

Anderson, 2002). The AICc differences can also be used for model comparison

and multi-model inference by using them to calculate Akaike weights for each

model (Burnham and Anderson, 2002):

wi =
exp(−1

2∆i)∑R
r=1 exp(−1

2∆r)
. (F.3)

The Akaike weights, wi, sum to 1 for all R candidate models and represent

the probability that model gi is the best model (from an information theoretic

standpoint) among the candidate set of models. A confidence set of models is

then chosen from the candidate set of models by selecting the smallest subset

of models that have a sum of wi ≥ 0.95. The confidence set represents a set

of models for which we have a 95% confidence that the set contains the best

approximation of the true model from among the candidate models.

An assessment of the relative importance of the various explanatory variables

was conducted using the confidence set of models. Rather than infer the signifi-

cance of a variable from a single “best” model, the importance of each potential

explanatory variable, x, can be calculated based on how frequently the variable

was included as a parameter in the confidence set of models (Johnson and Om-

land, 2004; Whittingham et al., 2006). The Akaike weights are summed for all

models from the confidence set containing the variable in order to calculate a
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term (predictor) weight, ςx, for each variable. The term weight is the probability

that variable x is in the best approximating model, and provides a measure of the

explanatory importance of each variable (Burnham and Anderson, 2002). The

confidence set of models (C ) was also used to calculate model-averaged param-

eter estimates. The weighted average for parameter βk across all models in the

confidence set is:
ˆ̄βk =

C∑
i=1

wiβ̂
+
k,i. (F.4)

β̂+
k,iis the estimate of βkwhen the variable xk is included in model i; otherwise

β̂+
k,i = 0. Because model-averaged parameter estimates are not conditional on a

single model, there is an additional variance component due to model selection

uncertainty that needs to be incorporated into the precision (standard error) of

parameter estimates (Burnham and Anderson, 2002). The unconditional stan-

dard error of ˆ̄β is

SE( ˆ̄β) =
R∑
i=1

wi

√
ˆvar(β̂i|gi) + (β̂i − ˆ̄β)2, (F.5)

where ˆvar(β̂i|gi) represents the variance of the estimateβ̂i conditional on model

gi, and (β̂i − ˆ̄β)2 is an additional variance component representing model un-

certainty. As with the term weights and parameter estimates, the variance is

summed across all models weighted by wi. The unconditional standard errors

were used to calculate 95% confidence intervals for each model-averaged parame-

ter estimate. Model averaging can reduce bias and increase precision compared to

analysis based on a single best model. Burnham and Anderson (2002) used Monte
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Carlo simulations to show that confidence interval coverages for model-averaged

estimates approached the nominal level and were less biased than estimates from

single models selected from large candidate sets.




