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Abstract—Analysis of spatial and temporal patterns of diversity 

and abundance in ecological data has been an important focus in 

ecology.  Nevertheless, ecological data such as multi-species data 

sets are often difficult to analyze because species are usually 

unevenly represented and multiple environmental covariates may 

describe their distributions. Although typical univariate, bivariate, 

and multivariate statistics provide rigorous tests of hypotheses, 

they have limited capacity to quickly identify relationships among 

multiple species and environmental covariates, or detect change 

over time.  We propose a novel visualization technique, the 

Diversity Map, which facilitates the visual inspection of the 

distribution, abundance, and covariates of large multi-species data 

sets using an interactive web-based visual interface. To develop 

this tool, we have taken a user-centered design approach, in which 

our team of ecologists, information managers, and computer 

scientists collaborate closely during the development process. 

Initial findings indicate that this tool is extremely valuable for 

ecologists in the early stages of data exploration, prior to further 

statistical analysis.  In this paper, we discuss our design approach, 

the design elements, and implementation of the Diversity Map tool 

and we demonstrate how the tool can help scientists gain insights 

into spatial and temporal patterns of ecological data. The use of 

this tool is illustrated with data on moth diversity and abundance 

from the HJ Andrews Experimental Forest.  

Keywords—interactive data visualization; web-based application; 

multivariate data; user-centered design; moth diversity and 

abundance; HJ Andrews Forest 

I. INTRODUCTION 

Understanding how spatial and temporal patterns of species 
diversity and abundance respond to environmental gradients 
and temperature are fundamental problems in ecology. For 
example, ecologists hypothesize that the emergence, 
abundance, and distributions of moths may be indicators of 
phenology and its effects in mountain landscapes as well as of 
broader biological diversity in plant types and physical 
environments [1, 2]. Therefore, the conservation of moths, 
especially rare moths, may depend on the conservation of 
associated vegetation habitat [3]. 

A common approach to verifying these hypotheses is to 

collect data and then utilize statistical tests to draw conclusions. 

In addition, recent developments in statistics and data mining 
have resulted in methods to describe patterns and make 
predictions automatically [4].  These approaches work well 
when the number of testing variables is small and/or 
hypotheses are preconceived.  Otherwise, a more 
comprehensive approach may be to enable ecologists to 
directly explore the data, form hypotheses, and discuss their 
findings with others, prior to specific hypothesis testing.  
Interactive visualizations of the data offer the potential to allow 
this kind of exploration, if the representation can reveal 
patterns and/or trends across variables. While typical static 
charts such as scatter plots and histograms have traditionally 
been utilized by ecologists to explore diversity and abundance 
patterns, little work has been done to develop interactive 
visualizations that support multivariate multi-species data. 

Before we introduce our visualization tool, consider our 
particular ecological problem of studying diversity and 
abundance of moths. Ecologists have sampled moths in the 64-
km

2
 H.J. Andrews Experimental Forest (HJA) and Long Term 

Ecological Research (LTER) site within the Willamette 
National Forest, Lane County, Oregon.  Moths were sampled at 
20 sites every two weeks from May-October from 2004 to 
2008. The data set has been difficult to analyze because the 
data set is large (>69,000 individual moths), many species 
(>500) are present, common species are widespread, and most 
species are rare (see Section II.A). Typical univariate and 
bivariate statistics utilized by ecologists have limited capacity 
to identify relationships among species and environmental 
covariates, or detect change over time in such complex 
multivariate datasets.  For example, a tremendous amount of 
information is concealed in diversity indices (e.g. Shannon 
Index [5, 6]); regressions limit researchers to species-by-
species tests; and some multivariate methods have limited tests 
of species-environment relationships.  Yet while exploration of 
single variables (attributes) via static histograms is useful (or 
rank/abundance curves [6], in particular as shown in Fig. 1), 
these approaches are visually overwhelming when a large 
number of variables and/or subsets of data are involved. 

Visualizations may assist in the process of data exploration 
and manipulation, and serve as a complement to statistical 
approaches.  From the computing perspective, the moth data set 
presents 1) a challenging large multivariate data set 
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Figure 1.  Log Abundance curve showing the distribution of moth species 

in the moth dataset.  ‘A’ shows the common moths, ‘B’ shows the rare 
moths, and ‘C’ shows the common through rare moths. 

 

Figure 3.  Map showing the location of the Andrews Forest in the 

central western Cascades, Oregon with 20 moth trap sites (red dots).  
The red line is the boundary of the forest. 

visualization problem, 2) a unique visual exploration process 
that involves inspecting distributions and relationships of 
distributions as opposed to specific data samples, and 3) 
valuable supporting materials for sharing of scientific findings, 
if the representation of the data is readily available.  

In our research, we have developed a novel visualization 
technique, the Diversity Map (DM) [9], that facilitates the 
visual inspection of the diversity, abundance, and relationships 
among multiple variables using an interactive web-based visual 
interface. To develop the tool, we have taken the user-centered 
design approach in which ecologists work closely with 
computer scientists during all stages of the design process [10], 
[11].  Initial findings from the application of the tool to the 
HJA moth data set indicate that it is highly valuable for 
ecologists in the early stages of data exploration and 
collaboration.  In particular, ecologists can use this tool to 
quickly form an overview of their entire data, drill down to 
subsets of data, detect relationships among variables, identify 
and share hypotheses for further exploration, and download 
subsets of data for standard statistical analysis. Moreover, since 
the tool is web-based and readily available, it may potentially 
target a broader user pool, including educators and students. 

II. METHODS 

We have developed the DM tool based on the information 
visualization reference model [7, 8], a widely-used software 
architecture pattern that models the visualization process as 
discrete steps from collecting the source data and transforming 
them to appropriate formats to mapping data to visual 
representations and ultimately supporting view transformation 
via user interactions (Fig. 2).  The outcome of the process is an 
interactive visualization that helps users complete their tasks 
and/or gain additional insights into their data.  In addition to 
utilizing this model, we have integrated the users (ecologists) 
into the design process with the user-centered design approach 
[10, 11].  This section describes data sets and the steps 

involved in development of the tool.  

A. Source Data – Moth Trapping  

Moths were collected at 20 locations in the Andrews Forest 
(Fig. 3) 10 times per year during the summers of 2004 to 2008 
(2-week sampling periods), using UV light traps.  Moth 
abundance refers to the number of individuals caught in a 
single trap in a single night, or the total number of individuals 
in any aggregated assemblage of trapping events.  Host plants 
for moths, if known, were based on Miller and Hammond [12]. 
Additionally, the following environmental variables were used 
to explain the distributional patterns of moths: calendar day 
(sampling period), temperature (accumulated heat-units), 
vegetation type, watershed, and elevation. Values of vegetation 
type, watershed, and elevation are determined based on trap 
sites and values of temperature are based on sampling periods. 

In summary, a total of 69,168 individual moths from 514 
species were captured (Fig. 1).  Species richness was high, but 
most species were rare, producing highly varied patterns of 
diversity (Fig. 1).  Fifty-four (10%) of the 514 moth species 
were represented by only 1 individual, and 46 (9%) were 
represented by 2 individuals. 

We used two subsets of the entire moth dataset in the 
analyses: 26 common moth species and 66 rare moth species.  
We define common moth species (n=26) as those for which 
500 or more individuals were captured over the entire five-year 
sampling period.  We define rare moth species (n=66) as those 
for which a total of 5-10 individuals were captured over the 
five year sampling period.  Note that we do not include moths 
with 1-4 individuals as part of the rare moths because we 
assume that an average abundance of at least one per year will 
provide enough information to identify the moth's spatial and 
temporal associations.  Moth species with 1-4 individuals will 
not provide the level of detail needed to sufficiently identify the 
environmental associations of the moth species.  For example, 
singletons and doubletons are very difficult to understand 
because they do not occur often enough to analyze statistically.   

The 26 most common moth species (‘A’ in Fig. 1) 
accounted for 41,889 individuals (60.6% of the total 
abundance).  The 66 moth species considered as rare (‘B’ in 
Fig. 1) accounted for 467 individuals (0.7% of the total 
abundance). 

 

Figure 2.  Information Visualization Reference Model [7, 8] illustrating 

the steps involved in building an interactive visualization. 



 

 

 
Figure 4.  The DM representation of common moths. The data set contains 41,889 individual moths and 11 attributes (columns from left to right: LEP_FAMILY, 

TRAP_ID, LEP_GENUS, LEP_NAME, FOOD_PLANT, ELEVATION, HABITAT, WATERSHED, COLLECT_PERIOD, COLLECT_YEAR, 

TEMPERATURE) 

B. Data Transformation  

We compiled the common and rare moth data sets into a 
table format, with each column corresponding to an attribute 
(variable) and each row corresponding to a sampled moth 
species.  Specifically, each row represents a moth species with 
non-zero individual abundance collected at a trap site on a 
sampling date.  We augment each sampled species with the 
aforementioned environmental variables.  The structure of the 
data set is described in Table I.  Note that the DM 
representation, which we describe in the next section, is 
currently designed to visualize only categorical data.  We 
transform quantitative attributes into categorical attributes by 
discretizing or binning values into ranges. 

C. Visual Mappings – The Diversity Map Representation  

The DM representation is based loosely on the parallel 
coordinates [13] and small multiple histograms techniques for 
visualizing multivariate data.   In this representation (Fig. 4 and 
5), each attribute is represented as one of a set of parallel 
(vertical) axes, similar to the layout of a parallel coordinates 
visualization. Unlike traditional parallel coordinates, however, 
each data object (or each sampled moth individual in the case 
of the moth data sets) is represented with a semi-transparent 
rectangle placed on each attribute axis at the discretized range 
corresponding to the individual’s value for that particular 
attribute.  The representation is designed primarily for 
categorical data, so continuous numerical attributes are 
discretized into bins called “buckets.”  The sizes and numbers 
of buckets for discretized continuous attributes were based on 
convenient divisions of the data (e.g., 100-m intervals for 
elevation, two-week intervals for calendar date, and 100-degree 
intervals for accumulated heat units). 

TABLE I.  STRUCTURE OF THE MOTH DATA SET 

Attribute Name Type Description 

LEP_NAME categorical 
Lepidoptera (moth) scientific name;  

includes genus and species 

LEP_FAMILY categorical Lepidoptera taxonomic family 

LEP_GENUS categorical Lepidoptera taxonomic genus 

FOOD_PLANT categorical Host functional feeding group 

TRAP_ID categorical Identifier for a trap site 

ELEVATION numerical Elevation. Discretized by 100m  band.   

HABITAT categorical Habitat 

WATERSHED categorical Watershed 

COLLECT_PERIOD categorical 
2-week collect period. E.g., ‘7.2’ 

represents the second half of July 

COLLECT_YEAR categorical Collect year  

TEMPERATURE numerical 
Temperature (Heat unit).  Discretized 

by 100 unit band. 

NO_INDIV numerical  Number of individuals 

 

We treat all individual moths equally; each semi-
transparent rectangle representing one moth individual 
contributes an equal, fractional amount of opacity to the bucket 
in which it is placed.  Because the range of opacity levels is 
limited, we scale the number of individuals in each bucket 
according to the total abundance of all individuals in the 
visualization.  Thus, the opacity of each bucket x is calculated 
as f(x) = |x|/|total|, where |x| denotes the number of individuals 
in bucket x and |total| is the total number of individuals from 
the visualized data set. Although we use linear scaling in our 
implementation, the method can accommodate other forms of 
scaling, such as logarithmic, for species whose abundances 
span multiple orders of magnitude [14].  We choose white as 
the background color and blue as the foreground color, because 
the human eye is known to be more sensitive to changes in blue 
than in other colors [15].  We map opacity values to values in 



 

 

 
Figure 5.  The DM representation of rare moths. The data set contains 467 individual moths and 11 attributes ordered as in Fig. 4 

the CIELAB color space [16], which is perceptually uniform, 
meaning that a visual difference in color opacity is equally 
perceptible across the range of that color.   We then convert 
CIELAB values to RGB values for representation on a 
computer screen. 

Alternatively, the DM representation can be understood by 
imagining each attribute axis as a histogram over the values of 
that attribute, constructed in 3D space by stacking semi-
transparent tiles on top of each other.  When viewed from 
above, the taller stacks of tiles appear darker, while the shorter 
stacks appear lighter, according to the total combined 
contribution of the tiles in each stack to that stack’s opacity. In 
addition to the DM representation (opacity encoding), the 
visualization tool also allows users to switch to a small multiple 
histograms representation (bar length encoding) (Fig. 6). 

The DM created in this analysis expresses diversity and 
abundance patterns of an attribute by the number of buckets 
with non-zero opacity and by the color distribution across the 
opaque buckets of that attribute, respectively. 

D. View Transformations – Interactivity  

A primary characteristic that differentiates the DM tool 
from static charts typically employed by ecologists is that the 
tool supports a wide range of interactive features. These 
features allow the transformation of the view to alternative 
views so that users can interact with and explore their data. In 
particular, these features can be used to query the data (e.g., 
filtering), to change the representation of the data (e.g., switch 
between the Diversity Map and small multiple histograms 
representations, re-order the attribute axes, or sort the buckets 
within an attribute), or to show additional relevant information 
(e.g., tooltips, rich data pop-ups). 

Data filtering extends the static DM to facilitate subsetting 
of data. For example, a user can constrain, or “filter,” a single 
attribute or multiple attributes to one or more particular values 
(buckets) (e.g. show all moths that were sampled at TRAP_ID 
X and in COLLECT_YEAR Y) (Fig. 7).  The remaining 
attributes then display the distribution of only those individuals 
that fall within the specified range of the filtered attribute 
values. Filtering facilitates direct comparison of the attributes 
of a subset of specific samples as well as comparisons of 
subsets of data. 

Filtering is accomplished through direct manipulation of 
buckets. Users can simply click on a bucket to add/remove the 
corresponding attribute value to/from the filter. A filter ‘status’ 
bar at the bottom will show the current filter query. To 
construct a complex filtering query consisting of multiple 
buckets (or attribute values), we follow a simple and 
commonly used rule articulated by ecologists: buckets within 
an attribute are connected by the “OR” condition, whereas 
groups of filtered buckets across attributes are connected by the 
“AND” condition. Additionally, we plan to add an ‘export’ 
feature to the tool to allow users to export and download 
subsets of data for standard statistical analysis. To some extent, 
the tool can be used as a visual query builder to construct the 
query quickly and intuitively.  

To further support comparison of attributes of interest, 
users are also given the ability to reorder the axes horizontally 
and to sort the buckets of a single attribute by abundance or by 
alphabetical order of value name if desired. Users can also hold 
the mouse pointer over a particular bucket to display the 
number of individuals falling into that bucket, and they can 
rotate the representation to accommodate their orientation 
preference (portrait or landscape) or their screen dimensions. 



 

 

 
Figure 8.  The collaboration between ecologists and computer scientists 

taking an iterative user-centered, participatory design  approach 

Figure 6.  The small multiple histograms representation of common 

moths. Users can select their preferred representation in the drop-down 

list located on the control bar at the top. 

Figure 7.  The DM representation of common moths sampled at TRAP_ID 

‘26H’ and in COLLECT_YEAR of ‘2008’.  Rich data pop-up showing an 

aerial photo of the trap location.  

Furthermore, the tool allows interactive identification of 
additional relevant information. The DM tool supports rich data 
pop-ups, which may display researcher-provided information 
on any of the buckets. For example, double-clicking on a trap 
ID pops up the aerial photo of that trap site in the Andrews 
forest (Fig. 7). Each bucket can potentially be linked to other 
data sources such as a GIS map, a Wikipedia page, or even 
another visualization. 

E. Implementation 

The DM tool was developed using Flex 3 and the Degrafa 
graphics framework. Flex 3 (available at 
<http://opensource.adobe.com/wiki/display/flexsdk/Download
+Flex+3>) is an open-source framework by Adobe for creating 
Flash rich internet applications. Degrafa (available at 
<http://www.degrafa.org/>) is an open-source graphics 
framework that facilitates the process of creating pre-composed 
graphics in Flex 3. In particular, Degrafa helps create 
lightweight geometry building blocks such as rectangular 
buckets and attribute axes in the DM tool. Since Flash is web-
based, no installation of the tool is required and it can be 
accessible on any browser or device that supports Flash.  

In addition to the input data table as described in Section 
II.B, each application requires an additional metadata table that 
describes the valid domain for each of the visualized attributes. 
This metadata table enumerates all possible values for each 
attribute (e.g., lists each Lepidoptera family name present in the 
data for attribute LEP_FAMILY) and determines the default 
ordering for each axis.  Additionally, any enumerated value in 
the metadata table can be augmented with other relevant data 
such as a URL link to an image of the actual trap indicated by 
TRAP_ID, or to a GIS map for any listed WATERSHED). 
Currently, both tables (input data and metadata) are stored in 
comma-separated values (CSV) format.  In future work, we 
plan to extend the tool to load the input data and metadata 
directly from a database management system (DBMS), and 
take advantage of the highly structured metadata  employed by 
the HJA LTER website [17] to make this tool more generic and 
easily applicable to other population data, such as HJA plant 
and birds data sets.  

F. User-Centered Design with Ecologists 

 A close collaborative effort between ecologists and 
computer scientists was required to understand the analysis 
process for integration of the DM into active research.  We 
employed a user-centered, participatory design approach (Fig. 
8) [10, 11] where the ecologists were included as part of the 
design team from the beginning of the collaborative effort.  The 
initial prototype of the DM served as the starting point for this 
particular collaboration. 

The initial prototype was initially developed for a small 
subset of the data, and it proved invaluable as a means for 
stimulating discussion and identifying design alternatives. In 
early meetings, the prototype served as a way to introduce the 
ecologists to the visual representation in the particular context 
of their data set.  Subsequent meetings followed a very 
informative and dynamic process.  In particular, each session 
generally started with the computer science team running the 
visualization, projecting the view onto a large screen for the 
entire team to view.  The ecologists would then begin to 
explore the data set in an iterative fashion, asking questions and 
modifying views to answer those questions, and repeating.  The 
process was typically very fast-paced and very collaborative 
with team members posing questions to each other and 
devising views together to answer those questions.  When a 
question could not be answered using the provided 



 

 

        
Figure 9.  The DM representation of common moths sampled in COLLECT_YEAR of ‘2004’ (left) and ‘2008’ (right) 

representation and interactions, the entire team would break 
from the exploration cycle to discuss how the system could be 
modified to further enhance the application.   In the weeks 
following each meeting, the computer science team would 
integrate the design modifications into the system in 
preparation for the next design meeting.  As the design 
matured, the work centered more on dedicated exploration and 
analysis of the data set. 

III. RESULTS AND DISCUSSION 

In this section, we illustrate the value of the DM tool by 
several example scenarios of ecologists exploring the moth data 
sets and we discuss what we have learned from our 
interdisciplinary collaboration. 

A. Exploration of the moth data sets – Example scenarios 

Visualizations of common moths and rare moths can be 
accessed at <http://purl.oclc.org/diversitymap/commonmoth> 
and <http://purl.oclc.org/diversitymap/raremoth>, respectively. 
The ecological findings presented in this section are primarily 
for demonstrating the utility of the tool. Ecology readers are 
encouraged to refer to [18] for more detailed analysis of these 
findings. 

First, without requiring any interactions from users, the 
overview of moths (Fig. 4 and 5) quickly suggests that 
common moths are associated with common habitats (conifer 
forests in the HJA) and rare moths are associated with rare 
habitats (meadows in the HJA). In addition, the visualization 
shows that common moths are mostly conifer-feeders and rare 
moths are mostly hardwood, herb, and grass-feeders.  That is, 
the view of common moths (Fig. 4) shows ‘gymno’ is the most 
opaque bucket within FOOD_PLANT axis and the view of rare 
moths (Fig. 5) shows ‘herb’ and ‘hardwood’ are the most 
opaque buckets within the same axis.  

Second, consider this example, which demonstrates how 
interactions facilitate the investigation of temporal relationships 
in the moth data sets. Because moth development is 
temperature dependent, ecologists hypothesize that adult moths 
emerge earlier in warm years and later in colder years. 
According to the temperature records, while 2004 was a warm 
year, 2008 was a much colder year. Ecologists can filter the 
moth records by COLLECT_YEAR and/or 
COLLECT_PERIOD to observe temporal trends.  The views 

help verify that the peak in common moth abundance occurred 
earlier in 2004 (and 2006) than in 2008 (Fig. 9 left and right). 
Note that they show moth capture by 2-week sampling period 
(8th column) and by degree days (last column).  In 2004, most 
moths were captured in sampling periods 7.2 and 8.1 with very 
few/no moths captured after 8.1, whereas in 2008, moths were 
captured in sampling periods 7.1 to 8.1 and continued to be 
captured until 9.1.  Common moths were initially captured in a 
much more concentrated time span in 2004 than 2008, with 
many more moths initially captured later in the year in 2008 
than in 2004. In this example, while ecologists need to observe 
only three attributes (COLLECT_YEAR, 
COLLECT_PERIOD, and TEMPERATURE) to answer their 
question, they can potentially look at other attributes for 
additional insights. For example, they may initially pre-define 
the ordering of moth species in LEP_NAME attribute (e.g., by 
abundance) and then quickly verify whether the ordering 
pattern remains consistent over these two years.  

B. User-Centered Design  

The user-centered design process was important in reaching 
a design that truly met the needs of the target users (ecologists).  
An initial prototype was a key component in starting the 
‘discussion’ between ecologists and computer scientists and 
helping the design team to understand the exploration process.  
Although the prototype may not be the final design, some 
means for rapidly exploring the data allows the team members 
to begin to understand the typical process and types of 
questions they can and would like to ask of the data. 

Characteristics/Process. Given interactive tools, 
ecologists were able to quickly and iteratively explore data that 
was originally in a very inaccessible format.  The visualization 
provided an environment in which ecologists could rapidly 
answer questions and visually verify expected relationships.  
The process was typically iterative with several cycles of 
starting with a question, taking an exploration path, getting 
insight, and then starting over with a different path through the 
data.  In some cases, ecologists felt the need to explore two 
paths simultaneously to observe the differences in the outcome.  
This multiple path exploration capability is a fundamental 
requirement of creativity tools [19].  Data analysis through 
visualization must support the creative process of hypothesis 
generation (Fig. 10). 

Data Queries.  In this particular collaborative effort, the 



 

 

 

Figure 10.  The visualization driven data analysis process 

visualization served as a means for rapid high-level exploration 
of complex data that was then followed with detailed statistical 
analyses.  Data exploration tools, such as the DM, which 
overview the data, should provide mechanisms for exporting 
subsets of data associated with the current view so that 
scientists can conduct appropriate statistical analyses. 

Communication.  On several occasions an ecologist sought 
to explain a particular insight or finding by walking the team 
through the necessary interactions to produce a specific view.  
Exploration tools must provide mechanisms for storing and 
retrieving history in order to help users tell their stories. In 
addition, the tools need to permit users to mark and recreate 
paths of exploration in order to explain ideas to one another. 

Context of Collaboration.  Our meetings were typically 
held in a conference room in the computer science building.  
On several occasions, the team would have benefited from 
being located in the context of the ecologist so that the team 
could refer to or use artifacts that are typically at their disposal 
– such as topographic maps. A more contextual design process 
that included, for example, sessions in the office of an ecologist 
or visits to field sites, might have revealed additional useful 
views/tools that would provide powerful insight capabilities 
when combined with the visual representation. 

Educational Outreach.  Education and outreach are key 
components of the H.J. Andrews Experimental Forest and 
LTER.  We believe that visualization tools are promising in 
this setting, because they provide a mechanism for clearly 
communicating complex ideas and data through images, which 
are often more easily explained than data sets and scientific 
findings.   We are currently integrating the tool into the HJA 
LTER website (<http://andrewsforest.oregonstate.edu/ 
data/tools/software.cfm?topnav=149>) to make it accessible to 
a broader audience, including scientists, students (K-12 and 
undergraduate), and educators. The tool will allow users to 
explore existing HJA data sets or upload and explore their own 
data sets. 

IV. CONCLUSIONS 

We have presented the design and implementation of the 
Diversity Map, an interactive visualization tool and its 
application to the moth data set. Collaboration between 
ecologists, information managers, and computer scientists can 
potentially provide powerful tools for ecologists and managers 
for identifying important ecological patterns and trends as well 
as data sharing.  We anticipate that other LTER research 
projects and data sets will also benefit from this kind of 
interactive visualization tool and collaboration. 
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