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Abstract Patterns in the isotopic signal (stable C isotope

composition; d13C) of respiration (d13CR) have led to

important gains in understanding the C metabolism of many

systems. Contained within d13CR is a record of the C source

mineralized, the metabolic pathway of C and the environ-

mental conditions during which respiration occurred.

Because gas samples used for analysis of d13CR contain a

mixture of CO2 from respiration and from the atmosphere,

two-component mixing models are used to identify d13CR.

Measurement of ecosystem d13CR, using canopy airspace

gas samples, was one of the first applications of mixing

models in ecosystem ecology, and thus recommendations

and guidelines are based primarily on findings from these

studies. However, as mixing models are applied to other

experimental conditions these approaches may not be

appropriate. For example, the range in [CO2] obtained in

gas samples from canopy air is generally less than

100 lmol mol-1, whereas in studies of respiration from

soil, foliage or tree stems, the range can span as much as

10,000 lmol mol-1 and greater. Does this larger range in

[CO2] influence the precision and accuracy of d13CR esti-

mates derived from mixing models? Does the outcome from

using different regression approaches and mixing models

vary depending on the range of [CO2]? Our research

addressed these questions using a simulation approach. We

found that it is important to distinguish between large

([1,000 lmol mol-1) and small (\100 lmol mol-1) ran-

ges of CO2 when applying a mixing model (Keeling plot or

Miller–Tans) and regression approach (ordinary least

squares or geometric mean regression) combination to

isotopic data. The combination of geometric mean regres-

sion and the Miller–Tans mixing model provided the most

accurate and precise estimate of d13CR when the range of

CO2 is C1,000 lmol mol-1.

Keywords Carbon � Respiration � Soil � Regression �
Isotope

Introduction

Determination of the stable C isotope composition of

respired CO2 (d13CO2) is becoming a powerful tool in

ecological studies. In most cases it is difficult if not
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impossible to acquire samples of pure, respired d13CO2;

instead, respired CO2 almost always occurs as a mixture

with atmospheric CO2 in gas samples used for analysis of

the d13C of respiration (d13CR). Therefore, two-end-mem-

ber mixing models are generally used to estimate d13CR.

Much attention has been given recently to the statistical

approaches that are used to quantify d13CR. However, these

analyses have focused almost entirely on the single

experimental situation that involves samples of air from the

airspace within canopies to determine d13CR of whole

ecosystems. However, the results of these analyses may not

be valid for other experimental situations—especially those

in which the proportion of respired CO2 relative to atmo-

spheric air is much greater, and therefore both the absolute

concentrations as well as the range of [CO2] in the air

samples are much greater. Does a larger range in [CO2]

influence the precision and accuracy of estimates of d13CR

derived from mixing models? Does the outcome from

using different regression approaches [ordinary least

squares (OLS) vs. geometric mean regression (GMR)] and

mixing models (Keeling plot or Miller–Tans) vary

depending on the range of [CO2] in the sample dataset? We

addressed these questions using a simulation approach.

Two mixing models are commonly used to estimate

d13CR, the Keeling plot (Pataki et al. 2003) and the Miller–

Tans model [Miller and Tans (2003); these models are

further described in ‘‘Materials and methods’’]. Likewise,

two regression approaches are commonly used in con-

junction with these models, the OLS and GMR to deter-

mine the parameters of the mixing equation. The statistical

implications of the choices in mixing models and regres-

sion approaches have been analyzed in detail for the most

common applications involving d13CR determination of

whole ecosystems using gas samples from the canopy

airspace (Pataki et al. 2003; Zobitz et al. 2006).

In the canopy airspace, the proportion of respired CO2

relative to the atmospheric background is small; thus the

range of [CO2] ([CO2]range) in gas samples collected in any

given period is usually \100 lmol mol-1. Rigorous com-

parisons have been conducted to determine whether one or

the other mixing model is preferable when applied to these

conditions of [CO2]range; in most cases the uncertainty and

precision of the two models are similar (Zobitz et al. 2006),

and by convention Keeling plots are primarily used (Tu and

Dawson 2005). However, Keeling plots are also applied to

regimes where the [CO2]range can extend from around 500

to 30,000 lmol mol-1 depending on the experimental

conditions: foliar respiration (Xu et al. 2004), soil respi-

ration (Ohlsson et al. 2005; Mortazavi et al. 2004; Kayler

et al. 2008), or studies concerning human respiration and

car exhaust (Affek and Eiler 2006). Because both the

[CO2]range as well as the sample values of [CO2] vary

dramatically in these different applications, and because

the [CO2]range may affect the uncertainty and precision of

regression analyses, we distinguish between ‘‘small’’

[CO2]range, for [CO2]range \ 100 lmol mol-1, and ‘‘large’’

[CO2]range regimes, for [CO2]range [ 1,000 lmol mol-1.

Rigorous comparisons of the models have not been con-

ducted for cases when the range of CO2 values is broad.

The best combination of mixing model and regression

approach will produce the most accurate and precise esti-

mate of d13CR, where accuracy is defined as the nearness of

a measurement to the true value, and precision is defined as

the degree to which repeated measurements yield the same

value (Zar 1999). The accuracy and precision of mixing

models applied to large [CO2]range regimes may not be

similar to those for small [CO2]range regimes. Previous

studies have shown that a larger concentration gradient

(i.e., greater range of x values), should reduce the uncer-

tainty of estimates of d13CR (Ohlsson et al. 2005), but

estimates of d13CR in a large [CO2] range have not been

discussed in the context of measurement or sampling error.

Furthermore, researchers typically use a much smaller

number of samples for each regression analysis in studies

of foliar or soil respiration (large [CO2]range regimes) than

in studies of ecosystem respiration (Tu and Dawson 2005),

allowing them to estimate d13CR both spatially and tem-

porally. However, this tradeoff between the [CO2]range and

the sample size has not been investigated.

Complicating this tradeoff further is the degree of mea-

surement error in both [CO2] ([CO2] error) and the d13C

values (d13C error). The precision of isotopic measurements

is largely determined by the method of analysis (i.e., isotope

ratio mass spectrometer, tunable diode laser, etc.); and while

the precision of each machine varies from laboratory to

laboratory, a reasonable upper level estimate of the uncer-

tainty of these instruments is on the order of 0.2% or less.

The precision of the [CO2] measurements by infrared gas

analyzers is on the order of 0.1–1 lmol mol-1 (Miller and

Tans 2003; Hauck 2006). However, the potential for greater

error is likely in high [CO2]regimes for several reasons. First,

the gas standards available from suppliers used to calibrate

gas analyzers are typically accurate within C2% of the target

value. At best, this error would represent a constant bias, but

concentrations in gas tanks are susceptible to fluctuations in

temperature, pressure and water vapor. Thus, there exists a

random element to the uncertainty in these standards as well.

Second, measurement error occurs with sampling in the

field, storage in the laboratory, and with instrument analysis.

Finally, additional errors can be introduced by small-scale

heterogeneity if the [CO2] measurements and isotopic

measurements are not made on the same air sample. Taken

together, these errors could be on the order of 1–2% which

could represent several hundred lmol mol-1 in large

[CO2]range regimes and should therefore be included in the

analysis of mixing-model performance.
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The goal of this study was to evaluate how factorial

combinations of two mixing models and two regression

approaches (Keeling-OLS, Miller–Tans-OLS, Keeling-

GMR, Miller–Tans-GMR) compare in small [CO2]range

versus large [CO2]range regimes, with different combina-

tions of pertinent variables ([CO2]range, [CO2] error, d13C

error and n) that are realistic for experimental applications

in each of the two regimes (Fig. 1). Our approach was to

conduct a series of simulations using artificial datasets.

From these simulations we report: (1) how the bias and

uncertainty of estimates of d13CR in large concentration

and small concentration regimes differ, (2) which simula-

tion input variables influence d13CR bias and uncertainty,

and (3) which mixing and regression model produces the

least bias and uncertainty when applied to samples from

large [CO2]range systems.

Materials and methods

Mixing models and regression approaches

The two mixing models we examined are based on the

conservation of mass given in Eq. 1.

dobs½CO2�obs ¼ dbg½CO2�bg þ ds½CO2�s ð1Þ

The equation describes a gas sample as a mixture of two

sources of CO2: the background atmosphere and the source

of respiration. Where the subscripts obs, s, and bg refer to

the observed, source and background values, respectively.

In Eq. 1, d refers to the isotopic value of the component

expressed in d notation: d = (Rsample/Rstandard-1)

9 1,000%, where R is the molar ratio of heavy to light

isotopes. The C isotope ratio (13C/12C) is expressed relative

to the standard Vienna Pee Dee belemnite. The Keeling

linear mixing model equation that relates the observed

d13C to the observed [CO2] is given in Eq. 2.

dobs ¼
½CO2�bg

½CO2�obs

ðdbg � dsÞ þ ds ð2Þ

The estimate of source d13CR is obtained as the intercept

of this linear model, regressing dobs versus 1/[CO2].

Using Eq. 1, Miller and Tans (2003) derived a different

linear mixing model equation where the source value of

d13C is unknown:

dobs½CO2�obs ¼ dbg½CO2�bg � ½CO2�sðdobs � dbgÞ ð3Þ

From which an equation of the form y = mx ? b is

derived:

dobs½CO2�obs ¼ ds½CO2�obs � ½CO2�bgðdbg � dsÞ ð4Þ

In this case, d13CR is estimated as the slope of the

regression line of dobs 9 [CO2]obs versus [CO2] rather than

the intercept of d versus 1/[CO2], as in Eq. 2. For our

analysis, dS and dobs in the above equations are equivalent

to the symbols d13CR and d13C, respectively, which we use

to explain our methods.

The presentation of equations and discussion of the OLS

and GMR approaches are discussed in online resource 1

(Electronic supplementary material; ESM). When OLS is

used to estimate regression parameters, the uncertainty of

the estimators relies on the assumption that the independent

variable in the regression ([CO2] for Miller–Tans and 1/

[CO2] for Keeling) is measured without error. In contrast,

GMR is used when there are errors associated with both the

independent and dependent variables (Legendre and

Lengendre 1998).

Simulation variables ([CO2]range, [CO2] error, d13C

error and sample size)

To examine the impacts of the two mixing models and the

two regression approaches, we generated artificial datasets

that were based on a known value of d13CR. This known

value is the ‘‘true’’ value to which we compare simulation

estimates. For each artificial dataset, paired values of [CO2]

and d13C were generated with varying ranges of [CO2],

error in [CO2] values, error in d13C values, and sample

size, in a factorial design (Fig. 1). A separate set of artifi-

cial datasets were generated to be representative of con-

ditions involving small [CO2]range (i.e., those typical of

applications involving ecosystem respiration) and large

Regression ModelRegression Model

Mixing Model

Keeling Plot Miller-Tans

Regression Model

OLS GMR OLS GMR

Regime type Small [CO2]range Large [CO2]range

Input Variable Name

CO2 concentration error (ppm) 0.1, 1, 2, 3, 5 0.1, 15, 45, 75, 100

δ13C error (‰) .01, 0.05, 0.2 .01, 0.05, 0.2
sample size 5, 13, 21 3, 5, 10
concentration range (ppm) 10, 40, 100 1000, 5000, 10000

truth model δ13CO2 (‰) -25 -26

Input Variable Values

Fig. 1 Diagram illustrating the different mixing and regression

model combinations tested for bias and uncertainty. The table lists

the different measurement errors, sample size and concentration

ranges we used in our simulation of small and large [CO2] regimes.

OLS Ordinary least squares GMR geometric mean regression
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[CO2]range measurement regimes (i.e., those typical of

applications involving tree stem and soil respiration). More

details on the simulation procedure are given in online

resource 2 (ESM).

We generated 10,000 x–y data pairs of size n. For each

simulated dataset, we fit each of the four models and

estimated the isotopic composition of respiration. We thus

obtained four distributions with 10,000 estimates of d13CR

for each set of experimental conditions; for each distribu-

tion we calculated the mean value and the SD. We repeated

this process for each of the 81 different combinations of

experimental conditions. We refer to the difference

between the mean value of the simulated distribution and

the ‘‘true’’ value as the ‘‘mixing model bias’’. We refer to

the SDs of the simulated distributions as ‘‘mixing model

uncertainty’’.

Results and discussion

Small [CO2]range regime

When used with the OLS regression approach, the Keeling

and Miller–Tans models produced similarly biased esti-

mates of d13CR (Table 1) which is consistent with previous

studies (Ohlsson et al. 2005; Zobitz et al. 2006). However,

when used with the GMR regression approach, there is a

distinct difference in the pattern of bias between the mixing

models, a relationship that has not previously been dis-

cussed in the literature (Fig. 2). The largest difference in

d13CR estimates between the Keeling and Miller–Tans

models was 3.4% and the Keeling model consistently

produced more negatively biased estimates of d13CR with

respect to the Miller–Tans model. As Fig. 2 exemplifies, if

we assume that the d13C error is small then the Keeling-

GMR estimate will provide a more accurate estimate of

d13CR and conversely, if the error in d13C is large, on the

order of 0.2%, then the Miller–Tans model is more accu-

rate at low levels of CO2 error.

The bias of small [CO2]range regimes is highly influ-

enced by the relative levels of d13C error and [CO2] error,

levels of error that are addressed differently by each

regression approach due to their underlying assumptions.

GMR assumes that error is present in both the x and y

variables of the regression. If the variance of the error

distribution is similar for both x and y, which is usually

assumed in the use of GMR (Legendre and Lengendre

1998; McArdle 2003), then the GMR estimate has a small

bias. This relationship is seen in online resource.3a (ESM),

Table 1 Bias of estimates of the stable C isotopic composition of respiration (d13CR; %) for difference ranges of small [CO2] ([CO2]range) and

large [CO2] (lmol mol-1) regimes

Mixing model K.GMR K.OLS MT.GMR MT.OLS

Regime Range Min. Average Max. Min. Average Max. Min. Average Max. Min. Average Max.

Small [CO2]range 10 -11.73 -0.80 8.81 0.00 4.40 13.97 -9.61 0.48 10.85 0.00 4.40 13.97

40 -1.04 -0.07 1.16 -0.03 0.49 2.44 -0.76 0.08 1.51 -0.03 0.49 2.43

100 -0.21 -0.03 0.19 -0.02 0.08 0.42 -0.14 0.01 0.26 -0.02 0.07 0.41

Large [CO2]range 1,000 -0.56 0.02 0.90 -0.39 0.17 1.75 -0.22 0.05 0.57 -0.11 0.12 0.92

5,000 -0.03 0.00 0.04 -0.02 0.00 0.09 -0.01 0.00 0.01 -0.01 0.00 0.02

10,000 -0.01 0.00 0.01 -0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01

Estimates were made by using simulated data with different combinations of mixing models [Keeling (K) and Miller–Tans (MT)] and regression

approaches [ordinary least squares (OLS) and geometric mean regression (GMR)], Min. Minimum, Max. maximum

Fig. 2 Patterns of stable C isotope composition of respiration (d13CR)

estimate bias simulated from Miller–Tans (circle) and Keeling

(triangle) models used with geometric mean regression (GMR). Bias

as a function of [CO2] measurement error (x-axis) and varying levels

of 13C error (0.01 and 0.2%), sample size [n = 5 (solid line) and 21

(dashed line)], with a [CO2]range of 10 lmol mol-1. Bias is calculated

as the difference between d13CR defined by the truth model and the

average of the mixing-model simulation distributions
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where the [CO2] error and d13C error change at an optimal

rate, resulting in a bias close to zero. When we simulated

estimates using the largest level of [CO2] error and smallest

level of d13C error, the bias was consistently positive and

conversely, the bias was negative when the isotopic error

was large and the CO2 error was small.

A positive bias also occurred with the OLS estimator. In

general the OLS regression (with either the Keeling or

Miller–Tans mixing models) produced a systematic posi-

tive bias that increased with increasing [CO2] error. A bias

in excess of 1% is possible at [CO2] accuracies on the

order of 1 lmol mol-1 and a small concentration range.

For example, when [CO2]range is small we show the bias

can be as great as 14%; however, the bias is improved to

within 2.5% with a moderate increase in the concentration

range (40 lmol mol-1 in this study). This positive bias in

the OLS regression estimates can be partly understood by

the assumptions behind the regression approach. For OLS

we assume that measurements of x are made without error.

This assumption works well when [CO2] measurement

error is low; however, when random error is introduced,

variation in x causes the estimated covariance between x

and y to be less than the expected covariance value, causing

the estimated slope to be too small and ultimately resulting

in a regression slope closer to zero (McArdle 2003). In the

case of small [CO2]range regimes, a mixing model with a

regression slope closer to zero translates to a positively

biased estimate of its isotopic signal.

Similar to the model bias results, the OLS approach used

with either the Keeling or Miller–Tans mixing model

produced the most precise estimates of d13CR (Table 2).

For all models, the SD of the model estimates improved

with an increase in the concentration range and sample size

(online resource.3c–d, ESM). We found a dynamic inter-

action between [CO2] error and d13C error toward

explaining model precision. Precision decreased linearly

with an increase in d13C error when the level of CO2 error

was low. Conversely, when d13C error was low the SDs

increased logarithmically with CO2 error and appeared to

reach a maximum within the range of CO2 error levels we

used. Intermediate values of d13C and CO2 error led to

greater SDs that were primarily driven by the level of d13C

error. The precision of OLS d13CR estimates will therefore

improve with large [CO2]range and accurate measures of d
13C.

Large [CO2]range regimes

Overall, the bias of the estimates for the simulated large

[CO2] range regimes was small with a range of -0.004 to

0.173% on average (Table 1). When the results are clas-

sified by concentration regime, sample size, CO2 error,

d13C error and mixing model combination then patterns in

bias are more apparent (online resource.3b, ESM). The

greatest absolute bias occurred with the Keeling mixing-

model used with either regression approach while the

minimum absolute bias occurred with the Miller–Tans

mixing model implemented with the GMR regression

approach. Importantly, for large [CO2]range regimes the

mixing model-regression combination does not behave

similarly to that for small [CO2]range regimes.

In contrast to the small [CO2]range regimes, the Keeling

and Miller–Tans models used with the OLS regression did

not yield equivalent results and the Keeling estimate, in

general, had the greatest bias. In Fig. 3, the increase in

Keeling bias used with both regression models is shown in

relation to the different levels of CO2 and d13C error. The

GMR approach was consistently the least biased when the

sample size was greater than three. When we compare the

Miller–Tans and the Keeling model applied with the GMR

approach (Fig. 4) we can see that the Keeling model is both

the most positively and negatively biased estimator when

sample size is equal to three or ten. The level of [CO2] error

was the primary driver of bias and precision in the simu-

lations in contrast to the small [CO2]range regime where the

interaction of both CO2 and 13C error influenced model bias.

The precision of the model estimate was greatly influ-

enced by the [CO]range (Table 2). For a [CO2]range

Table 2 SD of d13CR (%) for different concentration ranges of small [CO2]range and large [CO2]range (lmol mol-1) regimes

Mixing model K.GMR K.OLS MT.GMR MT.OLS

Regime Range Min. Average Max. Min. Average Max. Min. Average Max. Min. Average Max.

Small [CO2]range 10 0.31 4.15 13.37 0.31 4.01 11.43 0.31 4.13 13.35 0.31 4.01 11.43

40 0.08 1.35 4.01 0.08 1.32 3.84 0.08 1.35 3.98 0.08 1.32 3.84

100 0.03 0.56 1.57 0.03 0.56 1.56 0.03 0.56 1.55 0.03 0.56 1.54

Large [CO2]range 1,000 0.01 1.50 4.17 0.01 1.44 3.95 0.01 1.01 3.15 0.01 0.99 3.08

5,000 0.00 0.43 1.14 0.00 0.42 1.11 0.01 0.22 0.61 0.01 0.22 0.61

10,000 0.00 0.24 0.69 0.00 0.24 0.67 0.01 0.13 0.35 0.01 0.13 0.35

Estimates were made by using simulated data with different combinations of mixing models (K and MT) and regression approaches (OLS and

GMR), For abbreviations, see Table 1
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C 5,000 lmol mol-1, the maximum SD was 1.13% or less

and for a [CO2]range of 1,000 lmol mol-1 the maximum

SD was 4.17%. Similar to the patterns in bias, precision

was primarily driven by [CO2] error (online resource.3d,

ESM). Overall, the Miller–Tans mixing model imple-

mented with the GMR regression approach consistently

produced the most precise estimate of d13CR.

Sample size effect

Pataki et al. (2003) reported that simply increasing sample

size does not improve the estimate of d13CR. We found for

all simulations the d13CR bias actually increased with the

number of samples used in the mixing model. We

hypothesized this phenomenon was an artifact from gen-

erating datasets of size n equidistantly across the deter-

mined [CO2]range in CO2 space rather than 1/[CO2] space;

the dimension used for Keeling plots. We present results

from a simulation addressing this point in online resource.4

(ESM).

The increase in bias with sample size is not explained by

transformations in x (i.e., [CO2]) but is rather a function of

variance in the x variable in the regression as described in

the statistical literature. This phenomenon is known to

occur in OLS regression (Mandansky 1959; Stefanski

1985) and we suspect a similar phenomenon for GMR. The

explanation for the case of OLS is as follows. In the

presence of measurement error in the covariate, the OLS

slope estimator is biased for the true slope b, but it is a

consistent estimator for:

bþ ¼ b�
r2

x

r2
x þ r2

e

� �
ð5Þ

where r2
x is the marginal variance of x and r2

e is the mea-

surement error variance of the covariate (Mandansky 1959;

Stefanski 1985). By ‘‘marginal variance’’ we refer to the

variance that is present in the values of x ignoring the

values of y. A negatively biased estimate of the slope

parameter leads to a positively biased estimate of the

intercept parameter or, in the case of the Keeling model,

the estimate of d13CR.

In our simulation we chose to select either evenly

spaced values of [CO2] along the [CO2]range or evenly

spaced values of 1/[CO2] along 1/[CO2]range and we used

one observation of d13C per value of [CO2] (i.e., we did not

have replicate values). Therefore, the marginal variance of

1/[CO2] is as large as it can be when the sample size is 2

and this marginal variance decreases as the sample size

increases. As the sample size increases, the marginal var-

iance decreases resulting in an estimate of b? less than b
and an intercept greater than a; ultimately, leading to an

increase in bias. The results of a simulation where

Fig. 3 Large [CO2]range regime patterns of bias in simulated

estimates of d13CR from the Keeling mixing model used with the

OLS and GMR regression approach. CO2 error levels are listed along

the x-axis, bias along the y-axis and varying levels of d13C error [0.01

(solid line and symbols) and 0.2% (dashed line and open symbols)]

and sample size (n = 3 and 10), for a [CO2]range of 1,000 lmol -

mol-1. Bias is calculated as the difference between d13CR defined by

the truth model and the average of the mixing-model simulation

distributions. For abbreviations, see Fig. 1

Fig. 4 Large [CO2]range regime patterns of bias in simulated

estimates of d13CR from the Keeling (K) and Miller–Tans (MT)

mixing models used with the GMR regression approach. [CO2]

measurement error levels are listed along the x-axis, bias along the y-

axis and varying levels of d13C [0.01 (solid line and symbols) and

0.2% (dashed line and open symbols)], and sample size (n = 3 and

10), for a [CO2]range of 1,000 lmol mol-1. Bias is calculated as the

difference between d13CR defined by the truth model and the average

of the mixing-model simulation distributions
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[CO2]range is 40 lmol mol-1, and the uncertainty in [CO2]

is 5 lmol mol-1 are summarized in Table 3.

Recommendations

For relatively small [CO2]range regimes, OLS is consis-

tently the least biased estimator when [CO2] error is low,

conditions for which GMR will generally have a negative

bias. Zobitz et al. (2006) reported that measurement with

a small d13C error is essential to achieve estimates of

d13CR with acceptable bias and uncertainty. Their analy-

ses were restricted to conditions similar to those we used

for simulations of small [CO2]range regimes. In contrast to

their results we found that estimates of d13CR for large

[CO2]range regimes were improved by minimizing [CO2]

error rather than minimizing d13C error. We consider the

error levels used in our simulations to be conservative.

The [CO2] error was on the order of 1–2% for the large

[CO2]range regimes. Our study illustrates that uncertainty

in calibration gas could potentially have a significant

impact on d13CR estimates. Thus, researchers conducting

studies involving large [CO2]range regimes should strive to

use standard gases with small [CO2] uncertainty. For

instance, gases from the National Oceanic and Atmo-

spheric Administration (NOAA) are accurate to within

0.07 lmol mol-1 for gas concentrations representative of

atmospheric ambient conditions (Zhao and Tans 2006)

while gas concentrations above 500 lmol mol-1 are

expected to decrease in uncertainty at a rate of 0.01%

[CO2] (Duane Kitzis, personal communication). Not all

standards are equal, for instance gases available through

industrial distributors are commonly accurate to ±2% of

the target value and even secondary or field standards

have been shown to drift up to 5 lmol mol-1 over time

(Griffis et al. 2004). In large and small [CO2]range appli-

cations, the actual error encountered in measuring the

[CO2] may be larger than the reported precision of the

instrument due to the uncertainty in the standard gasses or

additional measurement error incurred during sampling.

Therefore, it is prudent to expect a relatively high [CO2]

error in large [CO2]range regimes, in which case the

Miller–Tans-GMR mixing model had the smallest range

in bias for the range of simulated conditions.

Bias and uncertainty were relatively insensitive to d13C

error in large [CO2]range regimes, most likely due to the

overwhelming influence of [CO2] error on d13CR. How-

ever, the estimates of d13CR did vary with n. With low n

(n = 3) d13CR is negatively biased, although the absolute

range of the bias is small. For n [ 3, the range of the bias

increased with increasing n, indicating that priority should

be placed on increasing [CO2]range and reducing [CO2]

error rather than increasing n to improve the bias and

uncertainty of d13CR.

Conclusion

There are inherent differences between small and large

[CO2]range regimes regarding measurement assumptions,

the interaction between CO2 and 13C error, and mixing

model performance, differences that warrant separate rec-

ommendations for making estimates of d13CR. Our simu-

lation results are consistent with those of Zobitz et al.

(2006), which recommend the use of the Keeling-OLS

combination for ecosystem respiration. For systems with

large [CO2]range (e.g., soil, tree stem, foliar respiration),

many of the model combinations are functionally unbiased;

however, the Miller–Tans-GMR mixing model is the least

biased and most precise at moderate concentration ranges

for situations when error is present in either d13C or [CO2]

values.
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