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Remote sensing provides a broad view of landscapes and can be consistent through time, making it an
important tool for monitoring andmanaging protected areas. An impediment to broader use of remote sensing
science formonitoring has been the need for resourcemanagers to understand the specialized capabilities of an
ever-expanding array of image sources and analysis techniques. Here, we provide guidelines that will enable
land managers to more effectively collaborate with remote sensing scientists to develop and apply remote
sensing science to achieve monitoring objectives. We first describe fundamental characteristics of remotely
sensed data and change detection analysis that affect the types and range of phenomena that can be tracked.
Using that background, we describe four general steps in natural resource remote sensing projects: image and
reference data acquisition, pre-processing, analysis, and evaluation.We emphasize the practical considerations
that arise in each of these steps. We articulate a four-phase process that guides natural resource and remote
sensing specialists through a collaborative process to articulate goals, evaluate data and options for image
processing, refine or eliminate unrealistic paths, and assess the cost and utility of different options.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Remote sensing science has become a critical and universal tool for
natural resource managers and researchers in government agencies,
conservation organizations, and industry (Gross et al., 2006; Philipson
& Lindell, 2003; Stow et al., 2004). The range of applications addressed
in the papers of this special issue of Remote Sensing of Environment is
testament to the growing use of remote sensing in natural resource
management. For the resource manager, a particular attraction of
satellite remote sensing technology is the ability to provide consistent
measurements of landscape condition, allowing detection of both
abrupt changes and slow trends over time. Detection and character-
ization of change in key resource attributes allows resource managers
to monitor landscape dynamics over large areas, including those areas
where access is difficult or hazardous, and facilitates extrapolation of
expensive ground measurements or strategic deployment of more
expensive resources for monitoring or management (Li et al., 2003;
Schuck et al., 2003). In addition, long-term change detection results
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can provide insight into the stressors and drivers of change,
potentially allowing for management strategies targeted toward
cause rather than simply the symptoms of the cause.

Despite their increased exposure to and appreciation of remote
sensing, managers often must rely heavily on remote sensing
specialists to design and implement monitoring programs based on
change detection of remotely sensed data (Woodward et al., 2002).
The authors' collective experience in monitoring projects has shown
that success is the responsibility of both parties: the remote sensing
scientists must understand the needs and the scientific underpinnings
of the managers' goals, and the managers must have or develop an
understanding of the fundamental remote sensing issues that arise in
remote sensing change detection and monitoring projects. The
primary targets of this paper are natural resource managers or
researchers who are considering remote sensing for monitoring
resource attributes over time, and a fundamental goal is to provide
them with enough information about the full arc of a remote sensing
project to actively collaborate in designing successful monitoring
projects. By doing so, we also hope to aid this audience in evaluating
the case studies found in the other papers in this special issue. Despite
our focus on educating natural resource managers, we emphasize that
the dialog between managers and remote sensing specialists is bi-
directional and iterative.
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To discuss the full arc of a remote sensing study, we require the
reader to have a basic understanding of a few key concepts in remote
sensing change detection. The natural resource manager may consult
the many excellent review papers (Cihlar, 2000; Coppin et al., 2004;
Lu et al., 2004; Mas, 1999; Mouat et al., 1993; Yuan et al., 1998) and
texts (Campbell, 1996; Lillesand & Kiefer, 2000; Lunetta & Elvidge,
1998; Richards, 1993; Sabins, 1997; Schott, 1997; Schowengerdt, 1997;
Wulder & Franklin, 2007) written on remote sensing in general and on
change detection in particular. Despite the utility of these references,
we find that the existing literature leaves two gaps. First, the natural
resource manager will struggle to find references written for the non-
specialist that also distill the key technical concepts needed to
effectively make practical decisions about planned remote sensing
projects. While we do not intend to be a simple review paper on basic
remote sensing, our experience suggests that it is critical to highlight a
few central concepts in remote sensing to lay the groundwork for later
discussion. Second, most reviews focus on evaluating image types and
analytical methods for change detection, but few review these issues
in the context of long-term monitoring, particularly how decisions
and constraints at all stages of a project can influence the types of
monitoring goals that can be reached. To wisely distribute time and
funds, a natural resource manager must be able to evaluate trade-offs
among all of the components of the study before final plans are made.
This paper represents our attempt to fill these two gaps.

For simplicity of terminology, we refer in this paper to the “natural
resource manager,” but in practice we consider our audience to be the
broader group of scientists, managers, and agency officials who must
bring remote sensing data into the realm of natural resource
management. Because it is impossible in this paper to address each
unique situation faced by natural resource managers and scientists,
we have developed a set of broad resource attributes or indicators that
encompass many specific issues faced by managers, scientists, and
agency personnel (Table 1). All subsequent tables will be structured
around these attributes. Rather than being considered an exhaustive
list, however, the attributes should be considered for their heuristic
value in capturing the continuum of effects of different processes on
landscapes.
Table 1
Common natural resource attributes or indicators that are the focus of monitoring
programs, grouped into broad categories according to the process or threat influencing
that attribute.

Resource attributes/Indicators Process of interest/Threat

Change in size or shape of patches
of related cover types

Vegetative expansion, infilling, or encroachment,a

erosionb

Change in width or character of
narrow, linear features

Visitor use of paths or roads, flooding effects on
stream vegetationc; dynamics of terrestrial and
submerged near-shore aquatic vegetationd

Slow changes in cover type
or species composition

Succession,e competition, eutrophication, exotic
species invasionf

Abrupt changes in state of cover Disturbance, human-mediated development,g,h

land managementi

Slow changes in condition
of a single cover type

Climate-related changes in vegetative
productivity,j slowly-spreading forest mortality
caused by insect or diseases,k changes in
moisture regime

Changes in timing or extent
of seasonal processes

Snow cover dynamics, vegetation phenologyl

a Hudak and Wessman, 1998, Harris et al., 2003.
b Allard, 2003.
c Nagler et al., 2009-this issue.
d Wang et al., 2007.
e Hostert et al., 2003.
f Asner and Vitousek, 2005.
g Goetz et al., 2009-this issue.
h Townsend et al., 2009-this issue.
i Huang et al., 2009-this issue.
j Skakun et al., 2003, Wulder et al., 2005.
k Nemani et al., 2009-this issue.
l Reed et al., 2009-this issue.
The paper has three sections. The first describes underlying
concepts in remote sensing and change detection that must be
understood to effectively communicate with remote sensing specia-
lists. The second section describes the steps involved in a typical
remote sensing study designed for monitoring of natural resources,
showing how the key concepts described in the first section are
applied in practice. The third section provides a general framework of
evaluation phases that should be considered before a remote sensing
monitoring program begins. Throughout this paper, we use studies
described in companion papers of this special issue to illustrate key
concepts.

2. Key concepts

To appreciate the decisions that must be made in a remote sensing
monitoring project, the natural resource manager must understand
how sensors make measurements, how information is ascribed to
those measurements, and how change is inferred from them.

The fundamental process in remote sensing is the measurement
of electromagnetic energy to obtain useful information (Schott,
1997). That energy can originate from the sun or from a source
associated with the sensor, such as a laser or radio emitter, or can be
emitted directly from the material because of its temperature. Like
human eyes, electronic sensors are designed to measure reflected
energy in discrete regions of the electromagnetic spectrum called
“spectral bands.” Because the physical and chemical properties of
a given material cause it to absorb, reflect, and emit electromag-
netic energy differentially in different parts of the electromagnetic
spectrum, the relative amounts of energy measured in different
spectral bands can be used to infer something about the character
of the object being observed (Schott, 1997; Verbyla, 1995). For
optical imagery, measurements made in each spectral band are
arranged in regular grids of picture elements (pixels), and grids
combined from different spectral bands create familiar color digital
images. LIDAR data are provided as postings, at either regular or
irregular intervals, but can be, and usually are aggregated to regular
grid cells for interpretation, analysis and change detection. Depend-
ing on the type of lidar (discrete return or waveform), data may be
provided as elevations of one or several returns from each posting
or as a continuous record or return intensity with height. Likewise,
synthetic aperture radar (SAR) images are generally processed
to regular grids, but originate as side-looking images recording the
differences in travel times and return intensity of transmitted micro-
wave signals.

Extracting information from a digital image begins with “spectral
space” (which for our purposes includes SAR intensity or compar-
able LIDAR measurements). Spectral space is the data space that can
be visualized by plotting measured intensity of reflected radiance in
different spectral bands against each other (Lillesand & Kiefer, 2000;
Richards, 1993). Fig. 1 illustrates this concept for a picture of a
flower and green leaves. All objects that appear to be the same color
in the digital image have pixels whose reflectance values group
together in the same region of spectral space. Thus, green leaves
and reddish flower bases occupy different regions of the spectral
space defined by plotting the reflectance values in the red versus the
green bands. Once regions of spectral space are labeled “flower” or
“leaf,” all pixels that fall in that region of spectral space can be
ascribed those labels. Note, however, that the observed spectral
space depends not only on the object itself, but on the illumination
source, and that consistency in illumination is needed to apply
labels in spectral space. Similarly, the spectral space of an image of a
landscape can be labeledwith regions corresponding to labels such as
forest, water, etc.

Labeling the regions of spectral space requires external informa-
tion. In the case of the flower in Fig. 1, the external information is the
observer's prior knowledge of the spatial and spectral properties of a



Fig. 1. An illustration of spectral space. a) A standard digital photo of a flower and green leaves takenwith a handheld digital camera. b) The reflectance of green energy for that photo
(e.g. the “green band” of the image). c) The red band of the image. d) A plot of the intensity of red versus green band reflected energy for the images in b and c. The nearly-white parts
of the flower petals are high in both red and green reflectance, placing them in a different part of spectral space from the reddish pixels from the base of the flower. Those pixels are
fairly low in red reflectance (i.e. not near the top of the red axis), but even lower in green reflectance, making them appear dark red.
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flower in a picture. In the case of an image of a landscape acquired by
a satellite, external information is most commonly obtained from the
observer's prior knowledge of the landscape, from actual descriptive
measurements made at sample locations on the landscape, or from
other imagery more detailed than that for which the spectral space
labels are needed. Examples of such data would include airphoto-
interpreted land cover type, field-measured species composition
within 1-ha plots, or field-measured estimates of forest basal area or
cover-type areal proportions. More advanced approaches to obtain
external data include the use of (sometimes complex) models of
systems and/or system components (Peddle et al., 2007). Some
model-based approaches can provide structural information that
cannot be derived solely from spectral characteristics. Regardless of
the source, without such reference data the measurements from a
satellite image may be of limited utility to a natural resource
manager. Thus, the acquisition of appropriate reference data is
critical in any remote sensing study.

With appropriate reference data, several methods of labeling
regions in spectral space are possible (Fassnacht et al., 2006; Fraser
et al., 2009-this issue). A common approach is discrete classification,
where hard boundaries are drawn between discrete regions, resulting
in a categorical map with discrete labels of land cover (Lillesand &
Kiefer, 2000). Another approach is to allowoverlap between regions in
spectral space, resulting in “fuzzy” labels that retain some of the
information about mixtures of components within a pixel (Foody,
1996; Wang, 1990). Alternatively, gradients within spectral space can
be related to variables that vary continuously, such as the percent
vegetative cover within a pixel or to proportions of spectrally pure
cover types (Cohen et al., 2003).

The heart of change detection and monitoring is comparing the
position of a pixel in spectral space at different points in time. Images
are acquired of a landscape in different years or different seasons, and
the spectral space of those images compared. If a pixel's spectral
values place it in a spectral region associated with one land cover type
in one date and in another land cover type in another date, we could
infer that a change has occurred on the ground for the area measured
by that pixel. However, a variety of other effects could cause change in
spectral values for pixels over time, and separating informative
changes from non-informative types remains a central challenge in
remote sensing change detection. Much like the case of a single
spectral space, changes in spectral space can be described using
categorical, fuzzy, and gradient-based techniques, with properties
discussed in Section 3.3 below.

In summary, the foundational process in most remote sensing
change detection is quantifying and labeling changes in the spectral
space represented by a given sensor. The types of change that can be
detected, the ability to meaningfully label them, and the confidence in
those labels all depend on the specific choices made during several
sequential steps in a change detection project.

3. Steps in a remote sensing change detection study

Remote sensing change detection studies involve a series of
sequential steps that are detailed extensively elsewhere (e.g. Cihlar,
2000; Coops et al., 2007; Lunetta, 1998; Schott, 1997). For the natural
resource manager, our goal here is to simplify these steps into four
broad stages: data acquisition, preprocessing and/or enhancement,
analysis, and evaluation. The better a manager understands how
decisions in each stage affect the outcome of the study or project, the
better he or she can guide those decisions.

3.1. Data acquisition

The data acquired in this step are both image data and the
reference data that will ultimately be used to label information in the
image and to evaluate the efficacy of products.



Table 2
Resource attributes and specific image characteristics that need to be considered when acquiring imagery to monitor the attributes.

Resource attribute(s) Image type Opportunities and challenges in tracking over time

Spatial Spectral Temporal Image quality

Change in size or
shape of patches of
related cover types

Fine grain (IKONOS,
Quickbird, Airphoto)

Fine grain allows delineation of
shape; but detection of change
in shape requires strong
geometric integrity over time.a,b

Change information is mostly
tied to spatial, not spectral,
properties.a

Tasked-acquisition may allow
better control over image
timing, but historical archive
unpredictable.

The orbit orientation and narrow
swathwidthoffinegrain imaging
satellites may require multiple
days to acquire image data for an
entire study area, which may
affect the effectiveness of
investigating time-sensitive
subjects on the ground.c

Change in width or
character of narrow,
linear features

Slow changes in cover
type or species
composition

Fine grain (IKONOS,
Quickbird, Airphoto)

Useful when spatial texture
distinguishes cover types or
species, but limited spatial
extent may increase costs.

Broad physiognomic distinctions
between cover types possible,
but finer distinction of species
and cover types compromised by
poor spectral depth.d

See above. Differences in view-angle and
shadowing introducedistortions
that affect interpretation of
cover and changes in cover over
time.e

Moderate grain,
multispectral
(Landsat, SPOT,
ASTER)

For many ecosystem types, slow
changes in cover occurover areas
larger than the grain of these
sensors, making them useful for
delineating bounds of affected
areas

Additional spectral depth of
short-wave infrared and
thermal bands can improve
separation among types, but
change in species composition
often impossible to track.

Historical archive of this type of
imagery among the longest
available and can be leveraged to
extract slowchange information.f

Repeat interval is often
appropriate for changes that
occur over months or across
years, but relatively infrequent
overpasses can make matching
with seasonal or climatic
phenomena challenging.g

Consistent view angles aid in
change detection, but
unaccounted-for atmospheric
variations can introduce error;
cloudiness often a key
constraint.

Moderate grain,
hyperspectral
(AVIRIS)

Oftenused for trackingchanges in
proportions of sub-pixel sized
componentsh; spatial extent
often smaller than multispectral
sensors.

The best chance for distinction
of species-composition,
although atmospheric
correction critical for detection
of subtle changes over time.

Tasked-acquisition may allow
better control over image
timing, but in practice can be
difficult to control.

Image quality typically high,
but geometric correction of
airborne platforms can be
challenging, and may introduce
more error than from
analogous satellite platforms.

Abrupt changes in
state of cover

Fine grain (IKONOS,
Quickbird, Airphoto)

Inference of land-use and land-
use change often possible
through direct image
interpretation, but automation
algorithms still in research phase;
small spatial extent may require
multiple images for large study
areas. Thus, costs may be high.

Poor spectral depth rarely a
hindrance because fine spatial
resolution often allows
detection of disturbance or
development events.

Temporal depth of airphoto
archive (often many decades)
allows for detection of long-
term trends, but typically at a
fairly coarse temporal grain.

Image quality of historical
photos can sometimes reduce
confidence in some land cover
labeling projects.

Moderate grain,
multispectral and
hyperspectral
(Landsat, SPOT,
Aster, AVIRIS)

Grain size a good compromise
that allows detection of many
disturbance type events across
large landscapes, although
unusable for some subtle types
of development or very small
disturbance events.i

Spectral depth allows detection
of many disturbance events
from spectral properties alone.j

Repeat interval generally
appropriate for most disturbance
types, although tracking of subtle
effects can be hampered by time-
of-season and cloud issues. Long
archive provides a useful baseline
for long-term monitoring.f,k,l

For most common disturbance
types, image quality sufficient.
Clouds can obscure some
ephemeral disturbance events.m

Coarse grain
(MODIS, SPOT
VEGETATION)

Grain size appropriate for large
disturbances; subpixel
disturbances may be detectable
as proportional change.n,o

Spectral depth, particularly
thermal bands, can allow rapid
detection of fires.

Dense temporal recorduseful for
detecting lasting changes in land
cover at the sub-pixel scale.n

Cloud-screening and geometric
qualities of mosaicked images
can sometimes require temporal
smoothing to detect trends.n,q

Slow changes in
condition of a single
cover type

Fine grain (IKONOS,
Quickbird, Airphoto)

Can be useful if process causes
noticeable changes in condition
(loss of vegetation, mortality)
in individual plants.d

Poor spectral resolution can
sometimes make detection of
subtle changes difficultd; spectral
distinction from background
likely difficult to automate,
forcing manual interpretation or
development of new methods
for automation.r

High cost of acquisitions may
make repeat imagery
untenable for capture of trends.

For long-term trends (many
decades), airphotos are the
only option, but shadowing and
view angle effects can make
even manual interpretation of
subtle change difficult.e

Moderate grain,
multispectral and
hyperspectral
(Landsat, SPOT,
ASTER, AVIRIS)

Many processes of interest
operate at spatial grain larger
than grain size of pixels,
making these sensors
especially useful.

Relative to fine-grain sensors,
spectral depth of these sensors
improves spectrally-based
detection of changes in
condition, but subtle effectsmay
be difficult to discern spectrally
without hyperspectral imagery.s

Background noise can be
especially problematic because
signal of change is weak relative
to noise.

Long archive of some data
(Landsat) allows detection of
subtle effects over time.f If
effects are only manifested in a
narrow time of year (e.g. peak
biomass), however, lack of
control over timing of image
acquisition may introduce
noise.

Cloud effects are an issue, but
may be reduced if images over
many years are used to track
slow changes.j

Coarse grain
(MODIS, SPOT
VEGETATION)

Large grain and extent make
these sensors especially useful for
detection of change in vegetation
condition over very large areas.t

Coarse grainmaymake it difficult
toascribe cause tochangeswithin
pixels.

Spectral depth of coarse
grained sensors generally more
than sufficient to capture slow
changes in vegetative cover.x

Temporal archive of AVHRR
data long enough to capture
trends,u but MODIS and SPOT
vegetation have records that
are currently too short to
capture long-term changes.

Ability to develop composite
cloud-free images allows for
capture of conditions at a
consistent point in the season
across years.

(continued on next page)(continued on next page)
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Table 2 (continued)

Resource attribute(s) Image type Opportunities and challenges in tracking over time

Spatial Spectral Temporal Image quality

Changes in timing or
extent of seasonal
processes

Coarse grain
(MODIS, SPOT
VEGETATION)

Broad extent allows detection
of regional trends in cyclic
processes; coarse grain size and
mosaicking make pixel-level
tracking of phenology difficult.v

Spectral depth sufficient for
tracking phenology and snow
cover.w

Most products are composited
to near-weekly or bi-weekly
temporal grain,x which can
diminish precision of
estimates.

Most natural resource
managers will likely be
interested in using
automatically-produced maps
whose quality depends on
specific algorithmsy. However,
case-specific maps can be
created from high-quality raw
data by remote sensing
specialists.z

a Zhang and Fraser, 2007.
b Wang and Ellis, 2005a,b.
c Wang et al., 2007.
d Leckie et al., 2004.
e Fensham et al., 2007, Fensham and Fairfax, 2007.
f Kennedy et al., 2007b.
g Olthof et al., 2004.
h Asner et al., 2005.
i Cohen and Goward, 2004.
j Huang et al., 2009-this issue.
k Kennedy et al., 2007a.
l Wang et al., 2009-this issue.
m Olthof et al., 2004.
n Potter et al., 2005.
o Zhan et al., 2002.
q Reed et al., 2009-this issue.
r Pacifici et al., 2007.
s Asner and Heidebrecht, 2002.
t Wessels et al., 2004.
u Myneni et al., 1998, Potter et al., 2005.
v White et al., 2005.
w Reed et al., 2009-this issue, Hall et al., 2002.
x Nemani et al., 2009-this issue.
y Cohen et al., 2006.
z Vikhamar and Solberg, 2003.
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3.1.1. Image data acquisition
Rather than recreate lists found elsewhere of image sources or the

broad categories of sensors (Kramer, 1996; Lefsky & Cohen, 2003;
Sabins, 1997), our goal is to describe the underlying considerations in
image acquisition as they will specifically relate to the phases of
decision-making in designing a remote sensing project (Section 4 of
this paper). The four primary considerations are type, timing, quality,
and cost of imagery. Table 2 lists the issues and challenges associated
with using different image sources for each of the broad monitoring
goals listed in Table 1.

Radar and LIDAR imagery are not included in Table 2, as they have
not been used as widely for landscape change studies as have optical
data, largely due to the comparable lack of availability of suitable data
for land cover change detection until recently. However, SAR images
have been used for a wide array of studies that are highly applicable to
tracking changes in flooding (Smith,1997; Townsend, 2001), wetlands
monitoring (Hess et al., 2003; Lang & Kasischke, 2008; Wdowinski
et al., 2008), for interferometric studies of geologic phenomena (Gens
& VanGenderen,1996; Massonnet & Feigl, 1998; Kaab et al., 2005), and
to a lesser extent for landscape change studies (but see Quegan et al.,
2000; Rignot & Vanzyl, 1993). SAR imagery has been found to be
especially useful for detection of change in urban areas (Dierking &
Skriver, 2002; Gamba et al., 2006; Henderson & Xia, 1997; Ridd & Liu,
1998; Seto & Liu, 2003). With increasing availability of airborne LIDAR
data, more studieswill likely use LIDAR to detect changes, especially in
vegetation structure (Wulder et al., 2007a,b; Yu et al., 2006, 2008) and
topographic change (Woolard & Colby, 2002; White & Wang, 2003;
Rosso et al., 2006).

Type of imagery refers to its spatial, temporal and spectral
qualities, and reflects the tradeoffs among these qualities in the
design of sensors (Verbyla, 1995). The spatial grain of a sensor is the
area on the ground captured by a single sensor element, effectively the
pixel size (although see Schott (1997) for a more detailed discussion),
while the extent is the geographic scope of an image. The temporal
grain is the frequency atwhich images of a given point on the Earth are
acquired, and the temporal extent is the historical depth of that
imagery. The spectral grain of a sensor relates to the width of the
spectral bands in which it makes measurements, and the spectral
extent to the breadth of the electromagnetic spectrum captured by all
of the sensors. Generally, grain and extent in each domain are related:
Finer-grain elements result in smaller extents. Tradeoffs across
domains arise from engineering constraints. Spatial and spectral
grain are opposed because the energy coming from a surface is finite,
and as that energy is divided into increasingly smaller pixels or
narrower spectral bands, the signal strength falls (Schowengerdt,
1997). To maintain a signal above a critical threshold, one domain
must be sacrificed to facilitate finer division of the other. In orbiting
satellite systems, tradeoffs between spatial grain and temporal grain
come about because larger pixels capture more of the Earth's surface
at a time, allowing for more frequent overlap between images
acquired on successive orbits and shorter repeat cycles for sensors
with large pixels (Sabins, 1987). The practical implication of these
tradeoffs is that the natural resource manager may need to prioritize
which domain is most relevant for a given monitoring goal of interest.
A key consideration driving many analytical and practical considera-
tions in remote sensing studies is the relationship between the grain
of the entities being mapped and the grain of the sensor (Woodcock &
Strahler, 1987).

Image timing and image quality must be chosen to minimize the
influence of unwanted effects on spectral space, since such effects can
obscure real change or produce the false appearance of change. Key
issues to consider are phenological state of the landscape, sun angle,
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atmospheric condition, and geometric and radiometric quality of the
imagery. These issues are described in greater depth in these key
references (Coops et al., 2007; Yuan et al., 1998). Cost of imagery is an
important consideration for most natural resource agencies, and is
amply discussed in other references (Gross et al., 2006; Turner et al.,
2003). Note that the greatest cost in many remote sensing studies is
not the acquisition of imagery, but in the labor needed to process the
imagery, derive information, and evaluate the results (Lunetta, 1998).

3.1.2. Reference data acquisition
Reference data are independent sources of information that allow a

remote sensing specialist to relate patterns in spectral space to real
quantities or phenomena on the earth surface, or to validate or
evaluate the products that come from such a process (Campbell,
1996). For example, field crews maymake areal measurements on the
ground of percent cover of different land cover types, and these land
cover type proportions can be linked to the spectral space to build
generalized rules that relate regions in spectral space to those land
Table 3
Resource attributes and the issues involved in collecting reference data to monitor these at

Resource attribute(s) Reference data source

Change in size or shape of patches
of related cover types

Airphotos

Change in width or character of
narrow, linear features Ground measurements

Slow changes in cover type or
species composition

Airphotos

Ground measurements

Abrupt changes in state of cover Indirect measurements (census data,
development data)
Airphotos

Ground measurements

Repeat fixed-wing or helicopter overflights

Moderate grain sensors

Slow changes in condition of a
single cover type

Airphotos

Ground measurements

Changes in timing or extent of
seasonal processes

Repeat fixed-wing or helicopter overflights
Indirect measurements (stream flow data, etc.)

Airphotos

Ground measurements

a Wang et al., 2007.
b Goetz et al., 2003.
c Johansen et al., 2007.
d Kennedy et al., 2007a.
e Wulder et al., 2007a,b.
f Sánchez-Azofeifa et al., 2003.
g Congalton and Biging, 1992.
h Cohen et al., 1998
i Jantz et al., 2005.
j Boutet and Weishampel, 2003.
k http://fhm.fs.fed.us/.
l DeFries et al., 2000.
m Leckie et al., 2004.
cover labels. If some data are withheld from the rule-making process,
their measured land cover type proportions may also be used to
evaluate how well the rules apply outside of the plots used to make
them, providing a measure of the utility of the rules. Because the
reference data affect the rules used to makemaps as well as the ability
to quantify their robustness, the quality and availability of reference
data may drive the questions that can actually be addressed with
remote sensing. This, in turn, makes assessment of reference data a
critical step in the planning process. Table 3 lists the challenges and
opportunities associated with using various reference data in support
of the monitoring resource attributes listed in Table 1.

Although not universal, reference data collected in a probabilistic
statistical framework are commonly used to both train the classifier and
to assess classification accuracy. The statistical frameworkprovides rigor
and credibility, andmay be used tominimize bias and estimate variance,
key to assessing data quality (Stehman, 2000, 2001). The statistically-
based accuracy assessment consists of three primary components, a) a
response design that describes how the “true” value for the ground
tributes.

Opportunities and challenges in tracking over time

Direct observation of patches or features often possible, but subtle changes
in shape or size may be difficult when comparing images from two different
acquisitions because of differences in sun or view angle,a or in phenological state.b

Low ambiguity about species or feature type, but relatively low precision of
measurement of patch or linear feature metrics may diminish sensitivity to subtle
change over time.c Historical reference data may be difficult to co-locate.d

Subtle distinction of species type may be difficult. Quantification of composition
may not be sufficient for subtle change.e

Direct observation of land cover type or species usually reliable on the ground, but
co-location of plots and imagery often difficult,f and semantics of land cover or
species groupings may vary among observers or projects over time. Subtle
distinctions in cover or species type require many samples to resolve statistically,
which is often challenging with ground-based measurements.g

Useful for validation of remotely-sensed measurements of development at
broad spatial extents (county, state level).
Often the best approach for quick and effective interpretation of abrupt
disturbance eventsh,i; historical data allow for statistically valid observation
of low-frequency disturbance events.
Field validation often must occur shortly after the event for field observers
to discern disturbance type; before- and after-field observations
of disturbance events often sparse.j

Reliable and sometimes used for resource inventories (such as the USDA
Forest Service's Forest Health Monitoring programk), but expensive to implement.
Attention need be paid to geographic precision.f

Landsat-type sensors can provide a measure of state or of changes in
broadly-defined land cover types for validation of coarse-grained sensors.l

May be possible for changes that result in mortality, but often challenging for
more subtle measurements of vigor or health.n

Single date-direct measurements may allow discrimination of subtle changes in
condition,m but repeat measurements of plots are ideally needed to validate changes.
See comments on same type above.
May allow comparison of aggregated effects at watershed or basin scale, but
connection with remotely-sensed data may require mechanistic modeling.
Capture of processes difficult, but may be useful to model or to test estimates
of cover or phenological state at one point in time
Often the only means of capturing seasonal processes, but small spatial grain
of ground measurements and low number of samples make direct comparison
with remotely-sensed data challenging. Also timing of field data collection is
critical because of speed of change in processes, making field costs high.

http://fhm.fs.fed.us/
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condition will be assigned and interpreted (what is “true on the
ground”), b) a sampling design that describes how we will pick our
specific field sampling locations, and c) analysis protocols that specify
formulas and methods applied to the sampled reference data in
estimating the value and accuracy of change (Strahler et al., 2006).

Ideal reference data are those that match imagery spatially and
temporally, that measure a property that is thought to be detectable
with the imagery, and that are designed to allow construction of the
models required to label spectral space and to evaluate the robustness
of final maps (Congalton & Green, 1999). For the most part, such data
rarely exist unless they were collected specifically for the purposes of
remote sensing. Typical ecological measurements often do not
capture the average conditions of an entire pixel, are not collected
at the correct time, and are difficult to geographically link with the
imagery (Kennedy et al., 2007a). The heterogeneity of the conditions
within each reference plot is also critical for building and evaluating
models with reference data (Fassnacht et al., 2006), as high
classification accuracies are harder to achieve in more heterogeneous
environments (Smith et al., 2002), and the appropriate sampling for
reference data is also affected by spatial autocorrelation and
heterogeneity (Congalton & Green, 1999; Friedl et al., 2000; Strahler
et al., 2006). In addition to these challenges encountered with any
remote sensing mapping project, challenges arise that are specific to
the mapping of change. First, reference data ideally should be
available for conditions before and after a change, which in practice
can lead to validation using different data sources at different times
(e.g. Huang et al., 2007). Second, even with similar data sources
before and after a change, it is often difficult to completely replicate a
given reference datum on the ground because of geolocational
imprecision, and in high-resolution airphotos or imagery because of
shadowing and view angle variations across years (Paine, 1981;Wang
et al., 2007).

In remote sensing, it is often preferable to collectmany field plots of
slightly lower quality or richness rather than collecting few plots that
are rich in information. Strategies for sampling are well-covered
elsewhere for both the general case (Cochran, 1977; Congalton &
Green, 1999; Thompson, 2002) and the special case of remote sensing
change detection (Biging et al.,1998; Stehman,1999). Regardless of the
particular method chosen, the geographic location of reference data
should be determined before setting foot in thefield or obtaining aerial
photos, etc., using a process that eliminates human bias in choosing
plots. A common strategy is to use a higher-resolution remote sensing
product to validate a coarser product (Cohen et al., 2001; Congalton &
Green,1999; Lambin & Ehrlick,1997;White et al.,1996). Several papers
in this special issue illustrate a range of approaches for reference data
collection, from intensive field measurements of habitat condition at a
relatively small number of plots, to simpler measurements of cover
type at a larger number of plots (Nagler et al., 2009-this issue), to
relatively quick GPS-linked field photos at an extremely large number
of plots (Wang et al., 2009-this issue).

3.2. Image pre-processing

The goal of pre-processing is to ensure that each pixel faithfully
records the same type of measurement at the same geographic
location over time (Lunetta, 1998). Preprocessing is especially critical
in change studies because the detection of change assumes that the
spectral properties of non-changed areas are stable, and inadequate
pre-processing can increase error by causing false change in spectral
space. (Coops et al., 2007; Lu et al., 2004; Lunetta, 1998; Peddle et al.,
2003; Schowengerdt, 1997) Increasingly, pre-processing steps are
becoming automated and resulting in free datasets of relatively high
quality (Fraser et al., 2009-this issue; Masek et al., 2006). Note, how-
ever, that each step in pre-processing alters the position or spectral
properties of pixels in the imagery, and thus each step has the poten-
tial to introduce error.
A final step often labeled pre-processing is image enhancement,
which is the mathematical rotation, compression, or distortion of
spectral space to accentuate desired features and suppress noise
(Lillesand & Kiefer, 2000). Many natural resource managers may
be familiar with one type of enhancement known as vegetation
indices, such as the normalized difference vegetation index (NDVI;
Tucker, 1979), but a wide range of enhancements are possible.
Several papers in this special issue utilize derived indices as a key
step in their process (Crabtree et al., 2009-this issue; Nagler et al.,
2009-this issue; Nemani et al., 2009-this issue; Townsend et al.,
2009-this issue). Note that image enhancement techniques do
not create new information, but rather they highlight information
present in the original spectral data.

In theory, if pre-processing has been perfectly successful, all
changes in spectral value in a given pixel between two images can be
ascribed to actual changes in the conditions of the surface represented
by that pixel. In practice, no pre-processing steps account for all effects
perfectly. Thus, some portion of the spectral change observed in a
pixel over time is uninformative, and the analytical techniques in the
next phase of the project must take this into account.

3.3. Extracting information

Once two or more images have been pre-processed and/or
enhanced, many mathematical approaches are available to detect
and label pixels that have or have not changed (Yuan et al., 1998).
Despite the variety of methods, most change detection approaches
contain a modeling (or functional algorithm) phase and a subtraction
phase. The modeling phase refers to the development or implementa-
tion of algorithms to infer meaning from spectral data, while
subtraction refers to the process of comparing dates via image algebra
or other methods. Key considerations are how the functional step
treats spectral information, and whether the subtraction phase
precedes or follows the modeling phase (Gong & Xu, 2003; Yuan
et al., 1998). Table 4 lists how various analytical techniques relate to
the broad monitoring goals listed in Table 1.

The algorithm phase can involve discrete, fuzzy or continuous
methods. Discrete methods are attractive because changes are
typically defined in terms of land cover classes that are familiar to
natural resource managers (Wang et al., 2009-this issue) and that
can be used directly in subsequent habitat fragmentation or similar
analyses (Townsend et al., 2009-this issue). The primary drawbacks
are that subtle changes of condition within a land cover class are
missed, and that pixels near the spectral boundaries of classes are
more likely to be incorrectly labeled as having changed, simply due
to imperfect pre-processing, unless the change analysis is con-
strained by available high resolution vector GIS data. Fuzzy methods
acknowledge the potential confusion among classes in spectral
space, and can be designed to capture subtle change within classes
(Foody & Boyd, 1999; Kennedy et al., 2007a). The fuzzy nature of
these classes may be non-intuitive, however, and labeling change
among a matrix of many overlapping classes may be untenable or
non-informative in practice. Continuous-variable approaches allow
for capture of subtle distinctions between two dates, but effort must
be made to develop robust methods to define what level of change is
actually meaningful (Yuan et al., 1998). In addition, continuous-
variable methods that simultaneously track several variables often
must be collapsed into categorical variables to simply make sense of
the change (Chen et al., 2003), potentially diminishing the advantage
over strictly discrete methods.

If the models are first applied separately to the spectral space of
each image to create twomaps, then change is detected and labeled by
comparing (differencing) those maps (Fig. 2a; also Haertel et al.,
2004). From the practical perspective of the land manager, taking
this approach places a high premium on appropriate reference data
tied temporally to each image, and less on costs associated with



Table 4
Resource attributes and the considerations involved in analytical change detection techniques to detect meaningful changes in them.

Resource attribute(s) Analytical techniques Opportunities and challenges in applying to change detection

Change in size or shape of patches of
related cover types

Segmentation or classification and patch analysis
applied to two images, followed by subtraction

Direct measurement of changes in patch shape closely meets monitoring goal,a,b

but patch edge delineation may be difficult to reproduce over time. Also, patch
by patch observation over time is not a common technique, and summary
metrics of patch shapes, sizes,c etc. may obscure local-level issues.

Change in width or character of narrow,
linear features

Subtraction of images, identification
of changes, followed by segmentation or
classification and patch analysis

Focus on change may diminish false negatives relative to prior approach, but
requires that the change event be spectrally separable in the image data.
Labeling of the change may be difficult to automate if the shape characteristic
patches of change are ambiguous.

Abrupt changes in state of cover Time-series analysis of many years of
continuous-variable image data

See comments in above cell. Loss of baseline conditions caused by differencing
can make labeling the land cover change difficult.d

Discrete classification of two images, followed
by comparison of classified maps

Allows detection of phenomena more subtle than classified approaches, and
use of time-series can reduce problems of variable image backgrounds and
phenology.e,f,g Preprocessing steps are highly important, however, and
reference data to match each image are often impossible to find.f

Labeling of change is straightforward and radiometric pre-processing is of minor
importance,h,i but errors in two single-date images are compounded.
Subtle effects are often difficult to detect. Reference data needed for both images,
often forcing use of image-based reference.j

Slow changes in cover type or species
composition

Slow changes in land cover type can only be detected using discrete classification
if the interval between images is large.h Generally, continuous-variable methods
are more appropriate.k

Slow changes in condition of a single
cover type

Two or more images subtracted, followed by
continuous-variable modeling of change
(regression, change vector analysis)

Focus on change may limit geographic scope needed to understand processes,l

but reference data that match beginning and end points are critical. Labeling
of change can be difficult because of loss of baseline.d

Continuous-variable models of sub-pixel
proportions (regression, spectral unmixing,
fuzzy-classification) applied to two or more
images, followed by subtraction.

Proportional representation allows for detection of subtle effects,m but is also
more sensitive to variation in background reflectance caused by year-to-year
variation in conditions during image acquisition. A high premium is placed on
accurate pre-processing,n and reference data must be robust and widespread
to allow building of statistical models.

Time-series analysis of many years of
continuous-variable image data or derived
(vegetation index) data

Detection of subtle trends more feasible than with any two-date approach, but
image pre-processing steps critical, including cloud and cloud-shadow screening,
and subtle change in sun angle or phenology may cause false positives.f

Changes in timing or extent of seasonal
processes

Allows detection of broad geographic and temporal patterns generally undetectable with
two-date approaches.e Preprocessing steps (including cloud screening, image mosaicking,
and trend smoothing) are critical to success of method and often challenging.

a Weisberg et al., 2007.
b Ellis et al., 2006.
c Li et al., 2003.
d Cohen and Fiorella, 1998.
e Potter et al., 2005.
f Kennedy et al., 2007b.
g Huang et al., 2009-this issue.
h Wang et al., 2009-this issue.
i ViÒa et al., 2007.
j Cohen et al., 1998, Kennedy et al., 2007a.
k Dougherty et al., 2004.
l Lambin and Strahler, 1994.
m Roberts et al., 1998.
n Yuan et al., 1998.
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normalizing the spectral space of the two images (Yuan et al., 1998). A
key challenge, however, is that errors in the maps from each image are
compounded in the change detection map, limiting the maximum
accuracy that can be achieved (Cohen & Fiorella, 1998). If spectral
space is first differenced (often through simple subtraction) and then
an algorithm is applied to the spectral difference image, change is
inferred from the spectral character of the spectral difference space
(Fig. 2b; also Lambin & Strahler, 1994). The expected spectral
difference for no-change is zero in all spectral bands, and change is
detected as deviation from zero (although usually with a non-zero
threshold to compensate for imperfect pre-processing). This approach
is attractive in its explicit focus on the change, and avoids
compounding errors in maps. It also allows for detection of change
in any spectral direction (Lambin & Strahler, 1994; Malila, 1980), for
detection of subtle effects like insect defoliation (Muchoney & Haack,
1994; Townsend et al., 2004), and for development of general models
that can be applied across images from many years (Cohen et al.,
2006). The challenge in using this approach is that radiometric
normalization (e.g., for atmospheric, phenological or BRDF differences
[bidirectional reflectance distribution function, Schaepman-Strub
et al., 2006]) must be very robust, and that reference data that
specifically measure change (rather than just state) must be available.
Moreover, the results can be confusing because the differencing step
removes information about the origin or terminus of the pixel in
spectral space (Cohen & Fiorella, 1998).

Some important approaches combine or omit the differencing
phase. One strategy begins with an existing land cover classification
map, and then uses image algebra to detect locations of change on
the map. New classification models are then applied only to label the
changes, while the classification labels from non-changed areas are
simply carried forward (Fig. 3; also Fraser et al., this issue; Parmenter
et al., 2003). For natural resource monitoring, this is attractive in
allowing use of existing or familiar land cover maps while focusing
on the change component of the spectral signal. However, it cannot
be extended indefinitely: cover classes in the original map are
constantly degraded by change, reducing their spectral fidelity over
time and requiring eventual creation of a new land cover map.
Another approach that does not include the differencing stage
involves application of a model to the combined (stacked) spectral
space from all of the component images (different years or dates) to
infer information about change. Such an approach diminishes the
need for robust normalization among images, but results can be



Fig. 2. Two means of conducting remote sensing based change detection. a) From two
separate spectral images, a mapping or classification function is applied, resulting in
two separate maps. These maps are then compared through differencing or analogous
process to derive change. b) The spectral values of the two images are differenced
directly, and a mapping or classification algorithm is applied to that different space.
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difficult to interpret and are generally applicable solely to the
combined data space under study (Coppin et al., 2004; Fung & Siu,
2000). A second family of approaches using more than two dates of
imagery seeks to identify temporal patterns or trajectories in the
sequence of imagery (Garcia-Haro et al., 2001; Hostert et al., 2003;
Huang et al., 2009-this issue; Kennedy et al., 2007b; Lawrence &
Ripple, 1999; Lu et al., 2003; Potter et al., 2005). These approaches
are attractive because they capture overall temporal trends, but
generally require robust radiometric normalization and may involve
complex statistical analysis to infer change. As image processing and
data storage capabilities improve, however, these approaches hold
great promise in removing year-to-year variation from classifications
of single date images, in detecting longer term processes than those
typically captured, and in detecting more subtle processes than can
be achieved through two-date change detection alone.

3.4. Evaluation and reporting

Monitoring may stimulate costly management responses. Erro-
neous information may lead to inappropriate action, for example,
remediation when it is unnecessary, or lack of action when interven-
tion is needed (Ronnback et al., 2003). Therefore, information quality
must be evaluated. In addition, the procedures used to create this
information must be reported such that external parties can assess
their results.
Fig. 3. An amalgam approach to change detection, where differencing is used to identify
only pixels that have changed, and single date mapping rules are applied only to those
changed pixels.
3.4.1. Evaluation
Scientists have developed standard techniques for assessing map

accuracy (Congalton & Green,1999; Gopal &Woodcock,1994). Error is
typically quantified statistically by comparing themap to independent
reference data at a sample of locations in a landscape. When the map
is categorical, the errors are reported as proportions accurately
described within each class, often summarized across all classes in a
table known as a contingency matrix and sometimes summarized on
a per class basis (Wang et al., 2009-this issue; Fig. 4). When the map
is a continuous variable, the errors are reported as real numbers such
as mean error, root mean square error, or other summary statistic.
The actual agreement between the reference data and the map is a
function of both the spatial accuracy of the two data sources, and the
agreement in the labels assigned, but in practice the contribution of
spatial error to the final agreement is difficult to disentangle. In all
cases, large sample sizes improve estimation, but sometimes
statistical approaches can be used to leverage small sample sizes
(such as bootstrap or jackknifing procedures), allowing evaluation of
accuracy when expensive field samples are sparse (Cohen et al.,
2003).

To conduct a proper accuracy assessment, the independent data
must be considered “truth,” in that they were collected without error
(Congalton & Green, 1999). In practice, reference data have errors in
both location and in label, just as the map data do, and measurements
not designed for remote sensing typically do not capture the average
conditions of an entire pixel (Wulder et al., 2007a,b). Acknowledging
that some error exists in reference data, values are often deemed true
when they are known at substantially higher accuracy than the
mapped values. When reference data are known to an accuracy level
only moderately better than the map itself, the analysis is more
appropriately considered an evaluation of agreement rather than a
true accuracy assessment.
Fig. 4. Sample locations are often selected based on a randomized cluster method.
Cluster samples are selected across the landscape using some random process. A
number of points are then sampled in some distance-constrained manner near the
cluster center, either in random process (shown), or some systematic process (not
shown). Clustering reduces travel time among samples, thereby increasing the sample
size on a fixed budget. Cluster sampling is often an optimum tradeoff between the need
to seek independent samples, and increase the statistical power through higher sample
numbers.



Fig. 5. A heuristic tool to illustrate the connections among image type, analytical
techniques, analysis form, and the various monitoring goals outlined in Table 1. To use
the figure, begin at the edge with one of the monitoring goals. The area defined by that
goal or the dashed/dotted lines indicates the domain of that goal in most common
change detection studies. By following that domain in towards the center of the circle
along the perpendicular, the other components most commonly associated with that
goal are encountered. The shaded pie shape illustrates this for just one goal.
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The balance between quality of reference data and number of
samples must be considered carefully. Because larger sample sizes
improve the precision of the estimate, it may be advisable to sacrifice
some precision of measurement at any single reference plot in the
interest of acquiring many more plots. This is particularly true in
change detection studies, because areas that have changed typically
occupy only a small portion of the landscape, and because there may
be many different categories of possible change. Stratified, cluster, and
double-sampling methods may be particularly attractive approaches
to distributing samples (Fig. 5, also see Czaplewski & Patterson, 2003;
Kalkhan et al., 1998). These sampling strategies can increase the
number of sample plots that can be collected for a given time or
budget constraint, which is particularly important for monitoring
projects where repeat visits across many years are planned.
Stratification and focus on those areas that have changed has been
advocated to increase precision in the change estimate (Biging et al.,
1998), as this often gives a more precise estimate, but requires useful
strata be available. Changed areas are often 25% of the landscape or
less, and without stratification, these small regions may be under-
sampled. While stratification and clustering may substantially
improve accuracy estimates and/or save time and money (Lohr,
1999), many of these sampling strategies cannot be implemented
without some knowledge of the spatial autocorrelation in the sampled
variable, as most statistical accuracy estimates depend on an
assumption of sample independence, and the estimates must be
adjusted if samples are autocorrelated (Congalton, 1998).

3.4.2. Reporting
Long-term monitoring will eventually rely on different sensors,

training datasets, and analytical techniques. Accurate reporting of all
phases of a project is thus critical to ensuring the long-term value of
the data and the ability to evaluate prior results and infer change.
Data acquisition reporting should follow reporting requirements
for non-imagery spatial and non-spatial data (Michener et al., 1997,
FGDC: http://www.fgdc.gov/standards/standards.html). Sources and
disposition of data, including agreements on access and distribution,
should be included in documentation. It may be important to include a
discussion of the criteria used to choose imagery so that parallel
criteria can be applied in the future. Part of this process is to document
whether the spatial, spectral, or temporal characteristics of the
imagery imposed constraints for the particular monitoring goals of
the study. When ancillary spatial data are included as part of the
project, they should be described from the perspective of how their
spatial and temporal properties could affect the final products.
Documentation of reference data should be sufficient to allow future
users to either recreate the data or re-visit a site.

Reporting on image pre-processing steps is critical because of the
many image analysis steps involved in a typical remote sensing study.
Documentationmust be comprehensive enough to permit duplication
of all steps, including the use of the same algorithms or models and
parameters as well as discussions of why the methods were chosen.
Errors associated with each model should be reported, noting that
errors were caused by algorithm assumptions, by inaccurate reference
data, and/or by spatial and temporal variation in imagery and datasets.

Analytical techniques for mapping and change detection also
require detailed reporting. For projects that involve land cover class
maps, particularly those specific to a given site, documentation of
steps used to build the classification must be provided to allow
crosswalking between current and future land cover schemes. Legend
design and cross walk procedures should follow an established
approach (e.g., Strahler et al., 2006). Error assessments conducted in
the evaluation phase should include all raw data as well as the
summary data used to evaluate overall performance. For all such data,
the spatial and temporal grain of the analysis should be documented,
especially if the analysis is conducted on the multi-pixel basis (for
example, as average conditions across larger polygons). Also, it is
important to evaluate whether the errors are equally distributed
across the spatial extent of the study area, or whether different areas
have different error properties (Fassnacht et al., 2006).

A part of reporting is archiving enough data to allow future
investigators to re-evaluate or re-process the data. All raw imagery
must be archived, using formats that are as transparent and generic as
possible, as well as all models and reference data. Archiving of all
intermediate products is not necessary, provided all information and
algorithms needed to recreate those data are archived. If interpreta-
tion of imagery (including photos) was conducted, then libraries of
voucher specimens (type photos) should be included.

4. Summary

The four phases of a remote sensing project described here are
generally carried out in sequential order, but planning for such a study
must consider all phases simultaneously. Each phase depends on prior
phases, and decisions made early on can constrain options or
inference later. Thus the entire arc of the study needs to be considered
when managers are evaluating whether and how to include remote
sensing in the monitoring of natural areas (Lunetta, 1998). This is the
subject of the next section.

5. Phases in the design of remote-sensing basedmonitoring projects

This paper focuses on the remote sensing aspects of monitoring
projects. Before initiating a project, the project manager must first
ensure two conditions exist. First, there must be an explicit process,
with sufficient time, for collaborative development between natural
resource and remote sensing specialists. Second, there must be a
sufficiently clear and precise articulation of the monitoring (change
detection) objectives. Fancy et al. (2008) emphasize the importance of
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clear monitoring objectives. Themonitoring objectives may be slightly
revised during the collaborative development process, but inadequate
specification of objectives commonly leads to failure.

Ultimately, the appropriate strategy for extracting information on
change will depend on the type of change being sought, the
availability of appropriate imagery to detect that change, as well as
the availability of reference observations to interpret and label the
changes that are detected. Although in theory any combination of
imagery, analytical technique, and reference data could be used in a
natural resource monitoring study, in practice some combinations
work more effectively and are found together more often in the
literature. Fig. 5 shows how this reality can simplify the decisions that
must be made during planning tomonitor resource attributes listed in
Table 1 and replicated in the outside ring of Fig. 5. By traversing the
concentric rings inward from any monitoring goal, the typical data
types, reference data sources (e.g. “Airphoto data for reference”), and
analytical techniques used to meet that type of goal are encountered.
As an example, the pie-shaped shaded area in Fig. 5 shows that
monitoring slow change in cover type typically requires airphoto data
to develop reference information, could be analyzed at either the
patch or the pixel level, could use either proportional or discrete
descriptors of cover type, and likely would need moderate to high
resolution imagery to carry out. Note that this figure is intended to be
suggestive rather than exhaustive; Turner et al. (2003), Kerr and
Ostrovsky (2003) note ecological applications of similar sensors not
identified in Fig. 5.

5.1. Phase 1: Identify imagery appropriate to detect changes in resource
attributes

5.1.1. Step 1. Identify management or conservation attribute or indicator
In the initial phase of planning, the natural resource manager must

identify the focal resource (sensu Fancy et al., 2008), key processes
that act on the resource, and the resource attributes that are the focus
of the monitoring. These are analogous to the Values/Threats/
Indicators paradigm of resource management (Hockings et al.,
2006), but applied more broadly. The focal resource may range from
a specific organism to an entire landscape or region, andmay be biotic
or abiotic. The processes that act on the focal resource may be external
(e.g. hurricanes, fire, climate change, land cover conversion) or
internal (e.g. succession of vegetation communities, eutrophication
of water bodies). Such processes correspond to column 2 in Table 1.

Key questions to address: What is the focal resource? What is (are)
the process(es) of interest that act on that resource? What are the
manifestations of that process on the resource attributes of primary
interest? Is it critical that changes in the focal resource be detected
everywhere they occur, or is a summary of an average effect useful?
What are the management/conservation decisions influenced by
detecting changes in the resource attributes? How quickly must
changes be detected to implement appropriate management
responses?

5.1.2. Step 2. Identify potential imagery of appropriate grain and extent
In consultation with remote sensing specialists, use spatial,

temporal, and spectral properties of the resource attributes to identify
potential image sources. In all aspects of this phase, consider both the
cover type (i.e. focal resource) of interest and the process that acts on
it. Phinn et al. (2003) provided one framework for determining
appropriate imagery.

Key spatial questions: What is the spatial grain needed to resolve
the focal resource?What is the spatial grain of key process that acts on
that resource? Is it necessary to capture the fate of individual
organisms to capture changes in resource attributes, or can the
behavior of many neighboring organisms at a larger grain size capture
the necessary information? Over how large an area must change be
tracked? Can a sample of images be used?
Key temporal questions:How fast do detectable changes in the focal
resource occur? Do changes occur quickly in one place and then not
recur for a long time (e.g. fire, flood, etc.) or are changes a ‘trend’ that
occurs slowly in the same place over time (e.g. successional changes,
slow melting of glaciers, etc.)? Does the focal resource return to its
prior state (in spectral terms) rapidly following the change, or do the
spectral effects of the change persist? To capture resource changes
with snapshots, what frequency of observations is required (con-
sidering the pace of the process and the management activities that
need to respond to it)? Are there certain windows of time when
observations should or should not be obtained? Over what period
must measurements occur to detect or track relevant changes in
resource attributes?

Key spectral questions: Does the focal resource have a spectral
quality that distinguishes it from its background? If not, is it related to
some other resource or surface characteristic that is distinguishable?
When the process acts on that resource, what changes in spectral
quality are expected? Do those changes differ from ambient changes
in spectral qualities of other areas unaffected by the process? Is there a
sensor whose spectral measurements (grain and extent of spectral
measurements) facilitate measurement of those spectral differences?
If not, are there other related focal resources or associated resource
attributes that have spectral properties that better match those of a
given sensor?

5.1.3. Step 3: Evaluate availability of potential imagery
Note cost and availability of both historic and future imagery,

relative to spatial and temporal extent. If the imagery must be
purchased, consider the costs needed to match its properties to the
properties of existing data to which it will be compared. Resolve
potential tradeoffs in spatial and temporal properties and availability,
and explore whether modifications to monitoring objectives or a re-
framing of questions could add alternative imagery types to the list.

5.2. Phase 2: Estimate costs of pre-processing and analysis

With the assistance of remote sensing specialists, evaluate the pre-
processing steps and analytical techniques that are required to detect
meaningful changes in the resource attributes from conditions of no-
change and of uninteresting change.

Key questions: What level of geometric processing is needed to
align images to capture the spatial grain of the process or resource
attribute of interest? Do the spectral changes associated with the
resource attributes require normalization between images, and if so,
what level of root-mean-square error is acceptable? Given the
availability of imagery, are uninteresting changes (in the background,
in the ambient vegetation, etc.) likely to be confused with spectral
changes in resource attributes of interest? Do the changes of interest
result in changes in cover type, or are they more closely associated
with changes in the condition of the cover type? Should change
information be detected and labeled with categorical variables, or is it
necessary to capture change as a continuous variable? Do maps
resulting from the change detection require additional processing (e.g.
patch or pattern analysis, etc.) to provide useful information? How
much labor/processing time and cost is likely associated with all of
these steps? How much of the process can be automated? What level
of expertise would be needed to carry it out?

At the end of this phase, each candidate set of imagery should have
an associated set of potential processing and analytical steps
associated with it, and a set of estimated costs for each step.

5.3. Phase 3: Evaluate the availability and cost of appropriate
reference data

Consider the full range of possible independent sources of
information, including: field measurements, finer-grained image
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data, ancillary geospatial information (vector or raster data), and
expert knowledge.

Key questions: Do the reference data agree in spatial and temporal
scope with the image source? If not, what potential error may be
introduced when these data are used to train or evaluate change
detection results? Do these data record quantities that can be related to
the metrics resulting from the change detection techniques defined in
Phase 2? Can the precision and accuracy of the reference measure-
ments be quantified? What is the cost of acquiring these data?

At the end of this phase, the full suite of image, analysis, and
reference data should be available to address the monitoring
objective. This process may need to be repeated for other monitoring
objectives that are to be addressed in a coordinated, parallel effort.

5.4. Phase 4: Characterize performance of different options in terms of
cost, confidence in resulting maps, and the ultimate utility of those maps

Each combination of image, pre-processing steps, analytical
techniques, and reference data will likely produce a map or analytical
result with different information content and different expected
sources and magnitudes of error. The information content and errors
may also vary for different focal resources. The goal in this final phase
of planning is to evaluate the costs and benefits of the different
options and select the approach that provides the best all-around
benefit. Most monitoring programs will want to simultaneously track
as many resources and attributes as possible, and decisions on
imagery sources and processing methods will necessarily require
compromise that balances cost, imagery availability, and ability to
detect changes in resource attributes of most interest. Practically
speaking, a solution that meets 80% of monitoring goals at a small cost
will be selected over a very expensive solution that attempts to meet
all goals.

This final decision is a type of cost–benefit analysis, but it is
important to recognize that resultant change detectionmapswill have
essentially two levels of benefit. The first level relates to howmuch the
map itself can be trusted in the information it provides, which can be
quantified in a standard error analysis based on the reference data.
This provides an important sense of how “good” the map is, and is
often the criterion on which remote sensing specialists focus.
However, the ultimate utility to a natural resource manager also
depends on whether the information in the map is actually relevant
and useful for management. A map that is 90% accurate for a given
attribute is still useless if that attribute has no management relevance,
and conversely, amap that is 60% accurate for a different attributemay
be extremely useful for a manager, because the starting point on that
attribute may be essentially zero (Czaplewski & Patterson, 2003).

It is also important to recognize that remote sensing data may not
be appropriate for many monitoring goals. This is particularly true
when monitoring seeks to detect processes that result in little or no
spectral change, for changes that require frequent, high-spatial
resolution monitoring, or for subtle changes that occur within a
background matrix of extreme variability. It may be more cost-
effective to design a field-based sampling design, perhaps stratified in
accordance with information from remotely sensed data.

6. Conclusions

Natural resource managers will increase the likelihood of meeting
theirmonitoring goals with remote sensing by actively participating in
the design and planning of a project. Remote sensing science can aid
natural resource managers in understanding landscape dynamics over
time, and the ultimate utility of derived maps can be strongly
enhanced bymatching themanager's expectations and needswith the
available tools and techniques. In this paper, we developed a general
framework that we have successfully used to collaboratively develop
operational natural resource monitoring based on remotely sensed
data. An understanding of the concepts and process articulated in this
paper will help natural resource managers, and remote sensing
scientists, productively engage in developing monitoring protocols.

We rely heavily on the concept of extracting change information
from spectral space, but we emphasize that spectral space represents
the more generic multivariate spaces derived from new sensor
technologies and from other spatial data that describe landscapes.
Other technologies will have different specific benefits, but ultimately
the information source being tapped for information is variability in a
data space. Increasingly, these data spaces involve a larger suite of
environmental variables used to describe landscapes (Goetz et al.,
2009-this issue; Ohmann & Gregory, 2002). Because many of these
ancillary data (elevation, average climate, etc.) are historically static,
image data are often the most dynamic variables in the multivariate
space used to track changes over time. Nevertheless, remote sensing
change analyses are increasingly being incorporated into a data
assimilation framework, i.e. the merger of available weather/climate,
ocean, stream/lake, and ecosystems data with imagery and models to
facilitate coordinated and operational analyses of environmental
change (see http://www.jcsda.noaa.gov/).

Although the change detection framework described in this paper is
likely relevant to the remote sensing portion of many monitoring
projects, the resultant maps of change may be just the first step in a
larger modeling or pattern analysis effort (Crabtree et al., 2009-this
issue; Townsend et al., 2009-this issue; Goetz et al., 2009-this issue). A
detailed consideration of pattern analysis or ecosystem modeling is
beyond the scope of this paper, but the requirements for those (or
similar) efforts may need to be part of the evaluation of overall utility of
different remote sensing projects. Measurement information content
(discrete vs. continuous variables) and the spatial and temporal grain
will likely need to align with subsequent analyses.

In summary, remote sensing data are an increasingly important
component of natural resource monitoring programs (Coppin et al.,
2004; Gross et al., 2006; Wiens et al., 2009-this issue). The utility of
remotely senseddata formonitoring ismaximizedbyunderstanding the
constraints and capabilities of the imagery and change detection
techniques, relative to the monitoring objectives. This understanding
is best achieved through a collaborative process that leverages the
expertise of both natural resource specialists and remote sensing
specialists throughout the entire planning and implementation process.
A careful consideration of the spatial, temporal, and spectral properties
of focal resources and their alignment with imagery data will help
determine the suitability of using remotely sensed imagery to effectively
achieve monitoring objectives.
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