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Abstract: Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global and
regional terrestrial carbon fluxes. In this study we investigated the utility of the Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS
is the first spaceborne lidar sensor that will provide global estimates of forest height. We compared accuracy and
regional variability of GLAS height estimates with data from the US Forest Service Inventory and Analysis
(FIA) program and found that current GLAS algorithms provided generally accurate estimates of height. GLAS
heights were on average 2-3 m lower than FIA estimates. To translate GLAS-estimated heights into forest
biomass will require general allometric equations. Analysis of the regional variability of forest height-biomass
relationships using FIA field data indicates that general nonspecies specific equations are applicable without a
significant loss of prediction accuracy. We developed biomass models from FIA data and applied them to the
GLAS-estimated heights. Regional estimates of forest biomass from GLAS differed between 39.7 and 58.2 Mg
ha™! compared with FIA. FOR. SCI. 54(6):647—657.
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CCURATE ESTIMATES of forest biomass, its spatial

distribution, and rate of change are required to

quantify global and regional terrestrial carbon
fluxes and to formulate mitigation strategies for current and
future greenhouse gas emissions. The global land-atmo-
sphere C flux is currently most reliably estimated indirectly
by deducting the residual between fossil fuel and cement
emissions and the total uptake by the ocean and atmosphere
(Denman et al. 2007). Direct observations of the carbon flux
via flux measurements by the eddy covariance technique
(Law et al. 2001) or biomass inventories (Goodale et al.
2002) are too sparse, given the heterogeneity of terrestrial
ecosystems, to provide inferences with sufficient accuracy
(Denman et al. 2007). National inventories provide the most
extensive field observations and thus have been a key in-
formation source in many carbon studies (Goodale et al.
2002). However, their utility for global-scale studies is
limited, because of methodological differences and the lack
of observations in remote regions. There remain large areas
in the tropics and the boreal zone for which inventory data
are out of date or not available (Houghton 2005). In addi-
tion, most inventories are designed to provide inferences on
the basis of administrative units or large regions. This is an
important limitation, as information on carbon flux is
needed on a spatial scale small enough to be linked to
individual landscape units as they undergo natural distur-
bances, succession, or land-use changes (Houghton 2005).
Consequently, the potential value of space-based observa-
tions is high.

Whereas spatially explicit and consistent earth observa-
tions are a primary strength of satellite remote sensing,
remotely sensed estimation of forest biomass remains a
challenging task (Lu 2006). Aboveground biomass is a
three-dimensional variable. Hence, the capability of satellite
sensors to provide accurate estimates depends on their abil-
ity to discriminate vertical forest structure. Many studies
have demonstrated that canopy reflectance measured by
passive optical sensors (Dong et al. 2003, Labrecque et al.
2006) and radar backscatter (Ranson et al. 1997) are corre-
lated with aboveground biomass. However, both are two-
dimensional measures and become asymptotic with canopy
closure, limiting their ability to predict biomass in high
biomass forests (Imhoff et al. 1998, Turner et al. 1999).
Lidar and inferometric synthetic aperture radar (InSAR) are
both promising technologies in that they provide a measure
of the vertical structure. Nevertheless, InNSAR has not yet
achieved accuracies comparable to those with lidar (Treu-
haft et al. 2004).

The success of airborne lidar systems in forest environ-
ments and the need for global observations has ultimately
led to efforts first in the United States (Vegetation Canopy
Lidar [VCL] mission) (Blair et al. 1999) and later in Ger-
many (Carbon-3D mission) (Hese et al. 2005) to implement
a space-based lidar mission for vegetation studies. Airborne
simulations with the Laser Vegetation Imaging Sensor
(LVIS), designed for the VCL space mission, achieved
promising accuracies for estimating aboveground biomass
at test sites in Costa Rica (root mean squared error [RMSE]
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= 60.02-63.17 Mg ha™!) Drake et al. 2002) and the United
States (RMSE = 54.8-73.5 Mg ha™ (Hyde et al. 2005).
Unfortunately, the two proposed missions did not receive
funding from their space agencies.

In January 2003, the Ice, Cloud and land Elevation
Satellite (ICESat) was launched as part of NASA’s Earth
Observing System of satellites to make global laser obser-
vations over the polar ice sheet, the land, the ocean, and the
atmospheres (Zwally et al. 2002). ICESat carries a single
sensor: the Geoscience Laser Altimeter System (GLAS).
GLAS consists of three lasers operating in the near-infrared
wavelength (1,064 nm) for measuring the elevation of sur-
faces and dense clouds and in the green wavelength (532
nm) for measuring the vertical distribution of clouds and
aerosols.

An objective of the ICESat mission is to provide global
measurements of canopy heights (Zwally et al. 2002). How-
ever, the size of the laser footprint is not optimal for
vegetation studies (64-m diameter compared with 25-m
diameter proposed for the VCL and Carbon-3D mission)
because ICESat’s primary mission is to monitor changes in
elevation of the Greenland and Antarctic ice sheets. Never-
theless, a pilot study from Lefsky et al. (2005) demonstrated
that GLAS is able to predict forest height (RMSE =
4.85-12.1 m) and biomass (RMSE = 58.3 Mg ha ') even
in steep terrain. Recently, Rosette et al. (2008) estimated
canopy heights with GLAS in a mixed temperate forest in
the UK with an RMSE of 2.99 m.

In previous studies algorithms to transform GLAS wave-
form data into estimates of forest height were developed
successfully, the applicability of such algorithms for re-
gional inventories has not yet been explored. To produce a
global canopy height data set, Lefsky et al. (2007) estab-
lished a set of algorithm training sites currently located in
North and South America. These sites were selected to
represent a range of biomes and topographic conditions.
Nevertheless, they cover only small areas with a limited
number of waveforms. To determine the utility of GLAS for
regional inventories, it is necessary to assess the accuracy of
the canopy height algorithms outside the training sites and
over a larger geographic extent.

GLAS estimates of forest canopy height will enable
estimation of other forest attributes such as aboveground
biomass. Several studies have shown that aboveground bio-
mass is related to stand height (Drake et al. 2002, Lefsky et
al. 1999, 2005). More extensive data sets, however, are
needed to test the generality of such relationships in a
regional and global context. The feasibility of estimating
forest biomass with GLAS will ultimately depend on the
availability and region of applicability of forest height-bio-
mass equations. Because coarse-scale studies do not have
the detailed information available as local studies, such
equations need to be robust across a range of forest types
and conditions. The objective of this study was to test the
utility of GLAS data for regional forest biomass inventories
by comparing GLAS estimates of forest height and biomass
with existing forest inventory data and by exploring the
region of applicability of GLAS height algorithms and
forest height-biomass relationships.
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Methods

Ideally, to evaluate the accuracy of height and biomass
estimates, we would use reference data that have co-located
GLAS waveforms and field-based height and biomass mea-
surements. However, this approach is costly and therefore
only feasible for a small sample of waveforms (i.e., for
algorithm training sites). To validate the accuracy of GLAS
estimates over a large geographic region therefore requires
a different approach. Alternatively, national forest invento-
ries provide extensive field measurements of forest height
and biomass that can be used to validate GLAS estimates on
a regional level.

In this study we used an approach that compared regional
GLAS estimates of forest height and biomass with data
from the US Forest Service Forest Inventory and Analysis
(FIA) program at two large ecoregions in the Eastern and
Western United States. We used the FIA data to develop
plot-level height-biomass models, which we applied to the
height estimates from GLAS, resulting in estimates of
aboveground biomass for each GLAS sample. The region of
applicability of height and biomass models within the study
regions was evaluated by grouping FIA and GLAS samples
into ecologically meaningful strata.

Study Regions

Our research was focused on the Cascade Mountains in
the Pacific Northwest region and the Appalachian Moun-
tains in the Southeast region of the United States (Figure 1).
These two regions play an important role in the terrestrial
carbon cycle and span a wide range of topographic and
floristic conditions. The forests in the Cascade study region
comprise mainly needleleaf trees, with Douglas-fir
(Pseudotsuga menziesii [Mirb.] Franco) being the dominant
species, followed by Sitka spruce (Picea sitchensis [Bong.]
Carr.), mountain hemlock (Tsuga mertensiana [Bong.]
Carr.), and lodgepole pine (Pinus contorta Dougl. ex.
Loud.). In the Appalachian study region, broadleaf decidu-
ous species dominate, e.g., oak (Quercus spp.) and hickory
(Carya spp.).

The precise study region boundaries were determined on
the basis of inventory data availability and the geographic
extent of ecological sections and subsections (Table 1) as

Figure 1. Cascade (Western U.S.) and Appalachian study
region (Eastern U.S.).



Table 1. Ecological sections and subsections of the study regions

Study Region and Ecological Section

Ecological Subsections

Cascades
Western Cascades

West Cascade Slope Forest, Western Cascades Highland Forest, Cascade Crest Forest and

Volcanic Peaks, Southern Oregon Cascades, Southern Oregon Cascade Highlands

Appalachians
Southern Unglaciated Allegheny
Plateau
Northern Cumberland Plateau

Teays Plateau, Kinniconick and Licking Knobs

Rugged Eastern Hills, Kinniconick and Licking Knobs, Southwestern Escarpment,

Sequatchie Valley, Miami-Scioto Plain-Tipton Till Plain

Central Ridge and Valley
Southern Appalachian Piedmont
Southern Cumberland Plateau

Schist Hills

Rolling Limestone Hills

Shale Hills and Mountain, Sandstone Plateau, Table Plateau, Sandstone Mountain, Moulton

Valley, Southern Cumberland Valleys

Southern Ridge and Valley
Northern Ridge and Valley
Northern Cumberland Mountains

Chert Valley, Sandstone-Shale and Chert Ridge, Sandstone Ridge, Shaley Limestone Valley
Ridge and Valley, Great Valley of Virginia
Western Coal Fields, Eastern Coal Fields, Black Mountains, Southern Cumberland

Mountains, Pine and Cumberland Mountains

Blue Ridge Mountains

Northern Blue Ridge Mountains, Central Blue Ridge Mountains, Southern Blue Ridge

Mountains, Metasedimentary Mountains

defined by the US Forest Service (McNab and Avers 1994).
Because of the limited availability of recent statewide forest
inventory data at the time of this analysis, the Cascade study
region was confined to the state of Oregon. Similarly, the
northern boundary of the Appalachian study region is
bounded by the state borders of Kentucky and Virginia.

GLAS Data

GLAS includes a waveform digitizing lidar sensor. The
instrument emits a laser pulse with an approximate footprint
diameter of 64 m (Abshire et al. 2005). Within each foot-
print, laser energy is reflected back by all intercepting
surfaces, resulting in a waveform that represents a vertical
height profile of laser-illuminated surfaces.

In flat terrain and homogeneous forests, stand height is
closely related to waveform extent, which is defined as the
vertical distance between the first and last elevations at
which the waveform energy exceeds a threshold level (Har-
ding and Carabajal 2005). However, because of the rela-
tively large GLAS footprint, the separation of the ground
return from the vegetation surfaces is complicated in steep
terrain and heterogeneous forest cover (Lefsky et al. 2005).
The first algorithm that accounted for terrain effects incor-
porated a digital elevation model (Lefsky et al. 2005) and
was a proof of concept that vegetation heights and biomass
can be predicted from GLAS waveforms under complex
terrain conditions.

The study presented here uses a new generation of
height algorithms that do not require auxiliary topographic
information but are based solely on the properties of the
waveform (Lefsky et al. 2007). The height algorithms are
calibrated to estimate the mean height of the dominant/
codominant trees (dominant height) using field plots that
coincide with GLAS samples. The coincident field plots
that were used to train the height algorithms for the Cascade
and Appalachian study regions are located in the Willamette
National Forest and the Great Smoky Mountain National
Park, respectively. For a more detailed description of the
canopy height algorithms, see Lefsky et al. (2007).

Forest Inventory Data

Recent, annual field data from the US Forest Service FIA
program were used as the reference data set, because they
provide a nationally consistent and extensive data source
suitable for landscape level studies. Field data are collected
on permanent plots. Each plot consists of a set of four
circular subplots, over which most tree measurements are
taken. Trees with a dbh of 12.5 cm and larger are measured
within a 7.3-m fixed radius, saplings (2.5—12.5 cm dbh) are
measured on a 2-m microplot, and large trees (dbh > 102
cm) are measured on an 18-m fixed-radius macroplot. For
each plot, FIA field crews assign one or multiple condition
classes based on a series of predetermined discrete variables
such as land use, forest type, stand size, tree density, and
ownership (Bechtold and Scott 2005). To avoid boundary
plots (i.e., between forest/nonforest, forest types, or dis-
tinctly different successional stages), we selected only plots
in which all four subplots were located completely on
forestland and in the same condition class (Table 2).

Tree heights are measured in the field as the total length
of a tree from the ground to the tip of the apical meristem.
In some cases heights are visually estimated. Trees with
estimated heights represented only a small proportion in this
study (on average 3.6% per plot). For each plot, we calcu-
lated mean height of open grown, dominant, and codomi-
nant trees (dominant height), as this height metric was used
to calibrate GLAS waveforms at the training sites. Identi-
fication of dominant and codominant trees is based on the

Table 2. Source and number of selected FIA plots

State Report Year Cycle Subcycle No. Plots
Alabama 2004 8 5/5 456
Georgia 2004 8 11 320
Kentucky 2004 5 5/5 603
North Carolina 2005 8 3/5 236
Oregon 2005 5 5/10 362
South Carolina 2001 3 5/5 30
Tennessee 2004 7 5/5 653
Virginia 2001 7 5/5 756
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FIA crown class classification, which describes the position
of a tree within the upper canopy layer (US Forest Service
2006). In addition to dominant height, we computed maxi-
mum height, as the height of the tallest tree, and mean
height of all trees with dbh = 2.5 cm.

We estimated total aboveground (oven-dry weight) bio-
mass of all live trees (dbh = 2.5 cm) for each inventory plot
from a set of 10 allometric equations developed for coarse-
scale studies (Jenkins et al. 2003). The “Jenkins equations”
distinguish between four hardwood and six softwood spe-
cies groups and use a simple log-linear regression model
with dbh as the predictor variable. FIA also reports total
aboveground tree mass, but these estimates are based on
regional volume tables or models, and methodological dif-
ferences (e.g., model form, parameter attributes, and non-
linear regression method) between FIA districts have been
found to introduce regional biases (Hansen 2002). Con-
versely, the Jenkins equations are consistent in the way trees
of defined dimension and species are treated across the
United States. Although the uncertainty associated with
these generalized equations is likely to be higher, it was
more important in this study to use a consistent, regionally
unbiased method to allow for regional comparisons. On rare
occasions, trees have been measured at rootcollar (instead of
dbh); in these cases the FIA biomass estimate was used. To
obtain plot-level estimates of live aboveground biomass
(Mg ha™"), we multiplied the tree biomass values with a
trees-per-acre expansion factor reported by FIA and calcu-
lated the sum of the biomass of all live trees per plot.

Estimation of Regional Parameters

We derived regional estimates of mean forest height and
biomass using simple and stratified estimation. Both meth-
ods require a probability sampling design, e.g., random or
systematic sample selection. FIA and GLAS feature sys-
tematic sampling. FIA uses a systematic sample on a hex-
agonal grid with an approximate spacing of 5.3 km, which
is expected to produce a random, equal probability sample
(Scott et al. 2005). We calculated stratified estimates of
means and SEs using the standard formulas from Cochran
(1977), ignoring finite population correction factors. Stra-
tum weights were computed from digital maps showing
forest/nonforest, forest type groups, and ecological
subsections.

As for FIA, GLAS features systematic sampling. In
contrast to airborne lidar instruments, GLAS does not pro-
vide images of canopy height but takes samples along
transects (orbit tracks) every 172 m (center-to-center foot-
print spacing). The orbit tracks form a nonorthogonal grid
spaced 14.5 km at the equator and 7 km at 60° latitude
(Zwally et al. 2002). GLAS waveforms tend to saturate
under cloudy sky conditions. Hence, the actual sampling
density of cloud-free waveforms can vary.

We applied the GLAS height algorithms from Lefsky et
al. (2007) to 18,346 cloud-free waveforms in the Cascade
region and to 24,050 waveforms in the Appalachian study
region acquired between October 2003 and November
2006. However, GLAS samples are very dense along
transects such that neighboring observations could be spa-
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tially autocorrelated. The occurrence of spatial autocorrela-
tion would violate the assumption of independence among
samples. As a result, the sample mean computed for GLAS-
derived forest height and biomass would not be an unbiased
estimator, and the variance would be underestimated. To
avoid spatial autocorrelation we randomly selected wave-
forms with the requirement that they be at least 2 km apart.
We determined the minimum spacing on the basis of the
range of a semivariogram from GLAS height estimates for
each study region. We repeated sampling of the GLAS data
1,000 times for simple and stratified random estimation and
calculated the mean of each sample using the same formulas
as those we used for FIA. Thus, repeated sampling allowed
us to construct a sampling distribution of the mean param-
eter. Mean and SD of that sampling distribution were used
as estimates of the population mean and its SE.

Regional Applicability of GLAS Height
Algorithms

We evaluated the regional performance of GLAS height
algorithms by comparing the frequency distributions of
GLAS-estimated heights and FIA-estimated dominant
heights for each study region. GLAS heights less then 2 m
and over nonforest land (National Land Cover Data
[NLCD], 2001) were omitted from the analysis. The NLCD
is a Landsat-based land cover map for the conterminous
United States that distinguishes these forest classes: decid-
uous, evergreen, and mixed forests as well as woody wet-
lands. We further compared mean FIA and GLAS estimates
by forest type group and ecological subsection. The two
variables are reported in the FIA database and are also
available as geospatial data layers. We used the latter to
determine the respective membership for the GLAS
samples.

Forest type groups are aggregations of forest types into
ecological groupings (Eyre 1980). The US Forest Service
distinguishes 28 national forest type groups. Forest types
are specified by FIA for each plot condition. Because we
analyzed only plots with unique condition classes, each plot
was associated with a single forest type group. The corre-
sponding spatial layer is a thematic map produced with data
from the Moderate Resolution Imaging Spectroradiometer
acquired in 2001 at a spatial resolution of 250 m (US Forest
Service 2007, Ruefenacht et al. 2008). We used this map to
determine forest type groups for the GLAS samples.

Whereas the comparison by forest type groups explores
the effect of tree species and species groups on the perform-
ance of the GLAS algorithm, the meaning of ecological
subsections is more complex. Ecological subsections are
geographic regions of similar surficial geology, lithology,
geomorphic process, soil groups, subregional climate, and
potential natural communities ( US Forest Service 2006). A
vector layer is available for download (US Forest Service,
2005).

Assuming that the FIA provided an unbiased estimate of
the mean height for each stratum, we calculated the bias of
the GLAS estimate as the difference between the GLAS and
FIA mean. To obtain reliable stratified estimates, a mini-
mum of five plots per stratum is recommended by the FIA



(McRoberts 2006). Therefore, forest type groups with fewer
than five plots were omitted from this analysis (see Table 3
for sample sizes). No ecological subsections contained less
than five plots.

For each ecological subsection, we determined mean
slope and elevation from a 30-m digital elevation model to
explore potential biases introduced by differences in terrain
conditions. Also, given the size of the study regions, there
may be biases that are indirectly related to the distance of
the GLAS samples from the source of the height calibration
data set. To test for this effect, the proximity of each
ecological subsection to the training site for the height
calibration data set was calculated (as the Euclidean dis-
tance between the geographic center of each subsection and
the geographic center of the subsection containing the train-
ing data). Proximity was only calculated for the Appala-
chian study region. Because of the spatial arrangement and
low number of ecological subsections in the Cascade region,
a proximity measure was not meaningful.

Regional Applicability of Height-Biomass
Models

The regional applicability of height-based allometric
equations to predict forest biomass largely depends on the
site-specific variability in the relationship between plot-
level height and biomass. For each study region, we devel-
oped height-based biomass regression models using FIA
plot data and then tested the region of model applicability

(as for the height algorithms) using information on forest
type groups and ecological subsections.

To develop a basic height-biomass model, we log-trans-
formed the predictor and response variables and fitted a
linear regression model. We then included the factors forest
type group and ecological subsection using indicator vari-
ables and multiple linear regression models with and with-
out interaction terms. Addition of these variables permitted
the mean response (biomass) in the models to vary with
different levels of the factors. We evaluated all models on
the basis of several statistics: the model’s coefficient of
determination, and the RMSE and bias of the predicted
versus observed values. Bias was calculated as the mean of
the predicted values minus the mean of the observed values.

When factors are included in regression models, the
sample is partitioned into groups according to the number of
factor levels. As a result some of the groups may contain
only a few observations. To assure an adequate sample size
for each factor level, we excluded forest type groups and
ecological subsections with fewer than 10 observations. As
aresult, 4 of 10 and 7 of 10 forest type groups remained for
analysis in the Cascade and Appalachian study region, re-
spectively (see Table 3 for sample sizes). In addition, one of
the 33 ecological subsections located in the Appalachian
region had less than 10 plots and was removed.

We developed and tested regression models based on
dominant, maximum, and mean height, respectively. Be-
cause GLAS provides estimates of dominant height,

Table 3. Means and SEs of FIA (dominant height) and GLAS heights by forest type group in the Cascade and the Appalachian

study region

FIA height (m)

GLAS height

Forest type group Area Mean SE No. plots Mean SE No. shots Bias
(10°ha) (M) ...
Cascades
Douglas-fir 2,021.08 32.11 1.07 181 26.62 0.27 725.3 =55
Ponderosa pine 17.53 22.60 3.90 7 13.60 1.54 3.5 -9.0
Western white pine 0.10 30.08 1
Fir/spruce/mountain hemlock 657.86 23.48 0.78 122 21.80 0.41 238.9 —-1.7
Lodgepole pine 62.93 17.07 1.12 16 11.62 0.88 235 —54
Hemlock/sitka spruce 25.01 30.02 2.76 26 24.66 1.43 26.3 —54
Other western softwoods 0.54 16.60 1
California mixed conifer 1.69 7.34 0.86 1.0
Elm/ash/cottonwood 0.04
Aspen/birch 0.08
Alder/maple 0.69 17.81 5.24 3 20.89 0.48 4.0 3.1
Western oak 0.76 22.36 0.50 1.0
Tanoak/laurel 0.04 12.05 4.26 2
Other western hardwoods 0.07 10.12 4.51 3
Appalachians

White/red/jack pine 95.93 21.59 0.83 74 18.21 0.56 304 —-34
Spruce/fir 0.01 19.18 1.97 7
Longleaf/slash pine 9.96 15.65 3.71 4 9.99 1.16 2.0 =57
Loblolly/shortleaf pine 758.29 14.13 0.40 229 14.20 0.22 272.5 0.1
Pinyon/juniper 2.23 12.03 1.00 9
Oak/pine 427.99 17.86 0.34 277 16.22 0.22 211.9 -1.6
Oak/hickory 12,128.11 21.49 0.11 2,348 17.52 0.10 1,863.9 —4.0
Oak/gum/cypress group 34.64 21.02 1.85 13 14.61 0.73 19.0 —6.4
Elm/ash/cottonwood 21.24 21.02 1.06 13 15.75 0.87 9.0 —53
Maple/beech/birch 100.28 22.96 0.49 80 16.68 0.54 16.7 —6.3

GLAS statistics are based on 1000 random samples with a mean sample size = No. shots. Bias is the difference between the mean GLAS and mean FIA

estimate.
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empirical relationships between biomass and this height
metric were of primary interest. However, we also devel-
oped models using maximum and mean height as predictor
variables and compared their performance.

Regional Estimates of Forest Biomass

To estimate forest biomass for each GLAS sample, we
calibrated plot-level height-biomass models using FIA data
and applied the “best” regional model to the GLAS esti-
mates of height. Then we calculated and compared mean
estimates of forest biomass from GLAS and FIA data using
simple and stratified estimation by forest type groups and
ecological subsections. Forest area for the ecological sub-
sections was determined from the NLCD 2001.

Because a minimum of five plots per stratum is consid-
ered necessary for reliable stratified estimates (McRoberts
2006), we combined strata with fewer than five plots with
ecologically similar strata. For FIA estimates in the Cascade
region, we combined the western white pine and the other
western softwoods group with the ponderosa pine group and
the alder/maple and tanoak/laurel group with the other west-
ern hardwoods group. In the Appalachian region, it was
necessary to pool together the longleaf/slash pine group
with the loblolly/shortleaf pine group. For stratified GLAS
estimates we combined the California mixed conifer group
and the ponderosa pine group with the lodgepole pine
group, the western oak group with the alder/maple group,
and the longleaf/slash pine group with the loblolly/shortleaf
pine group.

Results

Regional Applicability of GLAS Height
Algorithms

Repeated random sampling from the GLAS data resulted
for each study region in 1,000 subsamples with average
sample sizes of 863 and 1,948 shots for the Cascade and
Appalachian region, respectively. The FIA sample consisted
of 362 forest plots in the Cascade and 3,054 forest plots in
the Appalachian study region. Comparison of the frequency
distributions of GLAS heights, which show the mean fre-
quency of 1,000 sample distributions, with frequency dis-
tributions from FIA suggested that the GLAS algorithms

mean=25.3 15 b)
H median = 24.8

mean = 27.7
median = 25.6
max = 65.7
sd= 131

n= 362

max =64.7
sd=10.1
n=862.5

o

Frequency (%)
Frequency (%)

o

0 20 40 60 80 0 20 40 60 80
Height (m) Height (m)

Frequency (%)

generally were accurate predictors of dominant height (Fig-
ure 2). In the Cascade region, the GLAS estimate of mean
forest height was 25.3 m (£0.5 m 95% CI), which is 2.4 m
lower than the FIA estimate of the mean (27.7 = 1.4 m).
The agreement is higher between the medians of the two
distributions (difference of 0.8 m) and also very good be-
tween the maximum heights (FIA: 65.7 m, GLAS mean of
all subsample maxima: 64.7 m, and GLAS maximum of all
waveforms: 69.7 m). However, the frequency of FIA
heights was higher in the height range between 30 and 55 m
compared with GLAS.

In the Appalachian region the GLAS estimate of mean
forest height was 3.3 m lower than the FIA estimate (GLAS:
17.3 m = 0.2 m and FIA: 20.6 m = 0.2 m). Both frequency
distributions are symmetric and exhibit similar standard
deviations (FIA: 5.8 m and GLAS: 6.5 m). The maximum
observed height of the 1,000 GLAS subsamples was 51.6 m
(or 58.5 m when all GLAS waveforms are considered).
Compared with FIA (39.8 m), this is a difference of 11.8 m.
However, the majority of height estimates were within a
similar range: 98% of the height estimates were between 3.4
and 34.0 m (GLAS) and between 4.6 and 33.4 m (FIA),
respectively.

Examination of GLAS height distributions sampled by
forest type groups revealed no substantive bias associated
with tree species composition (Table 3). In the Cascade
region, differences between GLAS and FIA heights varied
from —5.4 to —1.7 m for forest types with more than five
plots. The bias of the Douglas-fir group, which was asso-
ciated with the GLAS training plots, is nearly equivalent to
the average bias across forest types (—4.5 m). The largest
differences were observed in forest type groups with small
sample sizes from FIA and GLAS (hemlock/Sitka spruce
and lodgepole pine groups). The results are similar in the
Appalachian region with biases varying between —6.4 and
0.1 m. In comparison, biases of the forest type groups
associated with the training plots were —1.6 and —4.0 m
(oak/pine group and oak/hickory forest groups, respec-
tively). Again, the largest differences occurred in groups
with small sample sizes (oak/gum/cypress and elm/ash/
cottonwood groups).

An analysis of the mean differences between FIA- and
GLAS-estimated heights by ecological subsection revealed
no association between biases and median topographic

20 I 20
c) mean=17.3 d) mean = 20.6
I median=17.5 median = 20.9
max=51.6 max = 39.7
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Figure 2. Frequency distributions for forest height in the Cascade (a, b) and Appalachian study region (c, d). Panels a and ¢
show the mean frequency and the standard error for 1,000 repeated, random GLAS samples. Estimates of the mean, median,
maximum (max), and SD (sd) depict the mean of these estimates across the 1,000 samples, which have a mean sample size of size =
n. Panels b and c show the frequency distributions of FIA samples based on dominant height.
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slope, median elevation, or proximity to training data set
(Figure 3a—c). In the ecological subsection containing the
training plots of the Appalachian region, for example,
GLAS-estimated heights were on average —3.4 m lower
than FIA heights. In comparison, we determined a differ-
ence of —4.0 m for the most distant subsection. Again, the
largest biases occurred in subsections with limited FIA plot
representation (as in the forest type groups). These subsec-
tions also exhibited the largest standard errors in the GLAS
and FIA estimates (Figure 3d—f).

Regional Applicability of Height-Biomass
Models

Empirical analysis of the height-biomass relationships
revealed that the general region-specific allometic equations
predicted biomass with accuracies comparable to those with
forest type-specific and ecological subsection-specific equa-
tions. All regression models performed similarly across the
study regions, in that there were only slight differences in
model fit and prediction accuracy by factor and factor level
(Table 4). The coefficient of determination of models using
dominant height, for example, varied between 0.74 and 0.77
in the Cascade study region and between 0.60 and 0.64 in
the Appalachian study region. Model fit and prediction
accuracy improved in both regions when variations in forest
type and ecological subsection were taken into account;
however, these improvements were minimal. For example,
RMSEs decreased between 6.6 and 12.2 Mgha ' in the
Cascade region and between 2.9 and 3.8 Mgha ' in the
Appalachian region, depending on the height metric used.

observed aboveground biomass in each study area (334 and
148 Mgha ! in the Cascade and Appalachian regions,
respectively).

The performance of models using dominant height was
similar to that of models based on mean or maximum
height. However, differences were greater in the Cascade
region with higher biomass forests than in the Appalachian
region. In the Cascade region, prediction accuracies of
maximum height models were between 0.8 and 6.0
Mgha~! better than the accuracies of dominant height
models. Conversely, maximum height produced biases 2—-3
times as high as the biases observed with dominant height.
Finally, models using mean height were least accurate with
RMSE values between 32.5 and 41.4 Mg ha™' greater than
the RMSE values for dominant height models. In the Ap-
palachian region, differences between all height metrics
were minimal and did not exceed 1.7 Mg ha™'.

Because accounting for variations in ecological subsec-
tions and forest type groups did not improve the prediction
accuracy of the models significantly, we proceeded with the
simplest model that used dominant height as a single pre-
dictor variable. We recalculated the model parameters in-
cluding all plots from all forest type groups and ecological
subsections. The resulting models explained 74 and 60% of
the variation in the FIA biomass data in the Cascade and
Appalachian region, respectively. The equations are as fol-
lows (SEs are shown in square brackets):

AGBM_ = exp(0.155[0.168] + 1.665[0.052] - In (height)),

These amounts correspond to less than 4% of the mean (1)
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Figure 3. Scatterplots showing the bias (difference) between mean GLAS and mean FIA height at the
ecosubsection level versus (a) median slope and (b) elevation of forested area, (c) distance to the geographic
center of the ecological subsection with the training data, (d) standard error of mean GLAS height, (e)
standard error of FIA dominant height, and (f) number of FIA plots.
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Table 4. Comparison of biomass models that account for forest type group or ecological subsection or both with and without

interaction
Cascades Appalachians
Model terms RMSE BIAS R? RMSE BIAS R?
log(d-ht) 173.13 —3.43 0.74 60.58 —7.53 0.60
log(d-ht)*ecosubcd 168.71 —6.06 0.76 57.31 —7.09 0.64
log(d-ht)*fortypgrp 165.52 —6.04 0.76 60.84 —17.54 0.60
log(d-ht)*fortypgrp + log(d-ht)*ecosubcd 164.60 =7.16 0.77 58.02 —6.79 0.64
log(d-ht)+ecosubcd 166.37 —5.52 0.75 58.61 —6.53 0.62
log(d-ht)+fortypgrp 164.96 —6.08 0.76 61.13 —17.38 0.60
log(d-ht)+fortypgrp + ecosubcd 162.69 —6.34 0.76 59.49 —6.30 0.63
log(max-ht) 167.13 —15.57 0.73 61.49 —8.94 0.59
log(max-ht)*ecosubcd 164.71 —16.58 0.74 58.69 —8.47 0.63
log(max-ht)*fortypgrp 164.75 —18.01 0.74 61.95 —8.72 0.59
log(max-ht)*fortypgrp + log(max-ht)*ecosubcd 162.72 —17.52 0.74 59.69 —7.86 0.64
log(max-ht)+ecosubcd 161.50 —17.47 0.74 60.02 —7.84 0.61
log(max-ht)+fortypgrp 164.15 —17.49 0.74 62.11 —8.77 0.59
log(max-ht)+fortypgrp + ecosubcd 160.52 —17.76 0.74 61.10 —7.53 0.62
log(mean-ht) 205.59 —5.71 0.67 61.54 —8.02 0.57
log(mean-ht)*ecosubcd 210.09 —5.91 0.71 58.61 —7.65 0.61
log(mean-ht)*fortypgrp 200.67 —6.04 0.71 61.05 —8.27 0.57
log(mean-ht)*fortypgrp + log(mean-ht)*ecosubcd 200.41 —17.45 0.73 58.94 —17.60 0.61
log(mean-ht)+ecosubcd 204.16 —5.55 0.70 59.57 =7.12 0.59
log(mean-ht)+fortypgrp 201.07 —6.17 0.71 61.53 —7.96 0.57
log(mean-ht)+fortypgrp + ecosubcd 197.87 —6.21 0.71 59.98 —17.02 0.59

Plot heights are defined as height of the tallest tree (max-ht), mean height (mean-ht), and dominant height (d-ht). Model evaluation is based on the RMSE
and BIAS of the predicted (fitted) versus observed biomass values, and the R” of the regression model. fortypgrp, forest type group; ecosubed, ecological

subsection; *, with interaction; +, without interaction.

AGBM, = exp(—0.484[0.079] + 1.777[0.026] - In (height)),
(2)

AGBM, and AGBM, are total aboveground (oven-dry
weight) biomasses (Mg ha~ ') for the Cascade and Appala-
chian region, respectively, height is the dominant height
(m), exp is an exponential function, and In is the logarithm
base e (2.71842).

The Cascade model had a bias of —2.66 Mg ha™' and
yielded an RMSE of 174.7 Mg ha™ ', which corresponds to
12.0% of the maximum and 52.3% of the mean observed
biomass value. In comparison, the bias of the Appalachian
model was —7.52 Mgha ' with an RMSE of 60.6
Mg ha™!, which corresponds to 11.2% of the maximum and
40.9% of the mean biomass of this region (Figure 4).

1500 | 4 1500 {1
© ©

< e

X x

o ° 5 o

= * g/']000 |

o @

[} (%]

© «©

£ . £

2 °© =)

3 a8 gy

o = o

5] s 5]

k] k]

] k]

o o

a : a 07 ' ‘

0 500 1000 1500 0 500 1000 1500

Observed biomass (Mg x ha“) Observed biomass (Mg x ha“)
Figure 4. Observed versus predicted aboveground biomass
(Mg ha™") for the Cascade (left, RMSE = 174.7 Mgha™', n =
362) and Appalachian study region (right, RMSE = 60.6
Mgha™', n = 3,054)
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Regional Biomass Estimates

To obtain regional estimates of mean aboveground bio-
mass, we applied the regional biomass models (equations 1
and 2) based on FIA data to the GLAS heights. Table 5
shows the regional estimates of biomass from GLAS and
FIA data based on simple and stratified estimation. Simple
estimates of biomass from GLAS were 40.9 and 58.2
Mg ha™' lower than estimated by FIA in the Appalachian
and Cascade region, respectively (27.6 and 17.4% of the
FIA mean, respectively). Stratification by forest type or
ecological subsection did not decrease standard errors of the
estimates or the discrepancy between FIA and GLAS sig-
nificantly. The results are in agreement with our previous

Table 5. Means and SEs of the regional biomass estimates
from GLAS and FIA based on simple and stratified estimation

Biomass
Biomass FIA GLAS
Region and Estimation
method Mean SE Mean SE
......... Mgha ' ........
Appalachians
Simple, no strata 148.06  1.33 107.20 1.06
Stratified by 14892 129 109.19 1.14
ecosubsection
Stratified by forest type  150.98  1.35 106.80 1.02
group
Cascades
Simple, no strata 334.03 11.75 275.87 4.61
Stratified by 336.50 12.06 27091 4.07
ecosubsection
Stratified by forest type  352.85 13.85 27290 4.11
group




findings (section Regional Applicability of Height-Biomass
Models), that differences between FIA- and GLAS-
estimated heights are not explained by this type of
stratification.

Discussion

In this study, we validated the regional applicability of
height algorithms for the GLAS sensor. The height algo-
rithms used here correspond to two training sites located in
the Cascade and Appalachian regions in the United States.
According to Lefsky et al. (2007), GLAS algorithms ex-
plained 90% (Cascades) and 40% (Appalachians) of the
variance in the training data with RMSEs of 5.91 m (Cas-
cades) and 4.86 m (Appalachians), respectively. The results
of our study show good agreement between GLAS and FIA
dominant heights, despite the relatively few plots available
for direct calibration of GLAS height algorithms. GLAS
heights are on average 2-3 m lower than FIA heights. We
were not able to detect any patterns of disagreement asso-
ciated with forest type, mean slope, elevation, or proximity
of training data. Further research will need to focus more
specifically on the GLAS waveforms and their response to
varying forest structure and topographic conditions. This
will require additional training sites (potentially with high-
resolution lidar data) and simulation exercises (Yong, P.,
and M. Lefsky, in preparation).

To explore the regional accuracy of GLAS-estimated
forest heights, we built on an approach that compared re-
gional distributions of forest heights with data from the US
Forest Service FIA program. We choose this approach be-
cause it had a large geographic scope, and it provided
inferences on an application-oriented level. However, the
results of this study were not only influenced by the accu-
racy of the height algorithms but also by potential other
factors that could be inherent to the GLAS data (e.g., a
temporal or spatial inconsistency) or the sampling scheme
(e.g., sampling bias). An additional weakness of this region-
level analysis was its limited flexibility in linking the un-
certainties of the height estimates to potentially important
environmental factors (e.g., stand structure and terrain con-
ditions). To obtain site-specific inferences will require ref-
erence measurements coincident with GLAS samples. How-
ever, because neither field nor high-resolution lidar data are
currently available for extensive areas, such a study would
be confined to small geographic regions.

We explored the regional applicability of height-biomass
allometic equations and found that regional models based
on height as a single predictor variable performed as well as
models that accounted for variations in forest types and
ecological subsections. This finding suggests that general-
ized, nonsite- and nonspecies-specific allometric equations
can be useful for coarse-scale estimation of forest biomass.
The hypothesis of a universal equation that relates canopy
height and biomass has been formulated by Lefsky et al.
(2002). They found that their lidar height-biomass relation-
ships were robust across the forest types investigated and
even major biomes. However, their findings were based on
only a limited number of samples and should be considered
preliminary. This study represents a more rigorous test with

a more extensive data set. Similarly, Mette et al. (2003)
compared height-based equations for two hardwood and
two coniferous tree species using German forest yield tables
and found that the overall variability in the equations be-
tween species and stand ages was negligible (<15%). In this
study we developed separate equations for study regions
dominated by coniferous and broadleaf forests. Thus, we
did not attempt to draw inferences across these two types of
forests. Nevertheless, the results are promising as it is
unlikely that accurate and global fine-scale maps for tree
species composition will be available in the near future. We
do anticipate that stand density, canopy cover, and perhaps
a classification by leaf type might reduce the residual vari-
ance observed in our biomass models. However, more re-
search is required to quantify these effects. Conventional
remote sensing has been successful in retrieving such two-
dimensional variables. Future research should focus on pos-
sible synergies of GLAS with other sensor technologies.

Accuracies for estimating canopy heights and forest bio-
mass with GLAS were lower than those typically achieved
with airborne, small footprint lidar sensors (e.g., RMSE =
8.1 Mg ha™') (Lim and Treitz, 2004), which makes GLAS
less suitable for local studies. Regional biomass estimates
obtained from GLAS were between 17.4 and 27.6% lower
than FIA estimates. However, GLAS estimates would be a
valuable and unique data source for inventorying canopy
height and biomass stocks on a global scale and in areas that
have previously been difficult to monitor. These areas in-
clude remote forests of Canada and Russia and large areas
in the tropics (Houghton 2005). It is difficult to define what
level of accuracy is required to reduce the current uncer-
tainty in the global carbon flux (Houghton 2005). Accord-
ing to Houghton (2005), estimating aboveground biomass to
within 10-25% might reduce the current uncertainty in the
carbon flux to a similar range, which is currently >100%.

There are sources of error related to the measurements
and allometric equations at the tree-level that may propagate
to the plot and landscape level, but they are not specific to
GLAS and thus were beyond the scope of this study. Be-
cause the study regions in this research were selected to
include complex terrain and high biomass forests, the results
obtained here might represent the lower limit of accuracy
that can be expected with GLAS.

This study focused on regional estimates, obtained by
averaging individual GLAS estimates over a larger geo-
graphic region. Given the relatively high prediction error
in the plot-level relationships between canopy height and
forest biomass, which was approximately 50% of the mean
observed biomass value in both regions (RMSE = 60.6 and
174.7 Mgha™!), some aggregation of individual GLAS
observations is necessary to increase the confidence in the
biomass estimates from GLAS. At the regional scale, the
uncertainty in the biomass models had only a little effect
on the estimate of the mean (biases: —2.66 and —7.52
Mg ha'). It remains to be tested how large an area (or grain
size) is necessary to obtain a robust biomass estimate while
still being fine enough to capture processes of land use
change and natural disturbances.

There are great uncertainties in the current and future
ability of forest ecosystems to offset anthropogenic carbon
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emissions. New approaches are required to improve our
knowledge on the distribution of plant biomass across the
globe. With the GLAS onboard NASA’s ICESat satellite,
now global lidar observations have become available that
could potentially be used in global and coarse-scale vege-
tation studies. Furthermore, GLAS provides a means to
study the data and mission requirements for future space-
borne lidar instruments. The Committee on Earth Science
and Applications from Space: A Community Assessment
and Strategy for the Future and the National Research
Council (2007) have included in their recommendation for
the next decade of space missions two operations that could
support lidar observations of forests. Existing inventory
programs such as the FIA will be an important tool to
provide the field observations necessary for validation.
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