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Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has
never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing
System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for
the United States and Canada for the period 1990–2000 using the Landsat satellite archive. Landsat TM and
ETM+ data were first converted to surface reflectance using the MODIS/6S atmospheric correction approach.
Disturbance and early recovery were mapped using the temporal change in a Tasseled-Cap “Disturbance
Index” calculated from the early (~1990) and later (~2000) images. Validation of the continental mapping has
been carried out using a sample of biennial Landsat time series from 23 locations across the United States.
Although a significant amount of disturbance (30–60%) cannot be mapped due to the long interval between
image acquisition dates, the biennial analyses allowafirst-order correction of the decadalmapping. Our results
indicate disturbance rates of up to 2–3% per year are common across the US and Canada due primarily to
harvest and forest fire. Rates are highest in the southeastern US, the Pacific Northwest, Maine, and Quebec. The
mean disturbance rate for the conterminous United States (the “lower 48” states and District of Columbia) is
calculated as 0.9 +/−0.2% per year, corresponding to a turnover period of 110 years.
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1. Introduction

Forest disturbance and recovery have been regarded as critical, but
poorly quantified,mechanisms for transferring carbonbetween the land
surface and the atmosphere. (Houghton, 1999; Pacala et al., 2001).
Disturbance events (fires, harvest) emit carbon to the atmosphere
through oxidation and decomposition of wood. Conversely, recovery
from past disturbance tends to sequester carbon from the atmosphere
since young forests can be highly productive and have lower levels of
heterotrophic respiration (Barford et al., 2001; Odum, 1969; Thornton
et al., 2002). The balance of these processes across the landscape is one
control on overall (net) ecosystem productivity.

The uncertainties associated with the North American carbon cycle
have led the United States Global Change Research Program (USGCRP)
to organize the North American Carbon Program (NACP–Wofsy &
Harriss, 2002), an integrated program of satellite, aircraft and ground
measurements and modeling to estimate the magnitude of North
American carbon fluxes and understand the underlying processes.
Although the US Forest Service (USFS) Forest Inventory and Analysis
(FIA) program tracks forest extent and condition through a network of
plots (Reams et al., 2005), these measurements are neither sufficiently
k).
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dense nor consistent enough through time to map local changes in
forest structure. Given the uncertainties in the land-cover carbon
fluxes, the science plan for the NACP has specified the need for
satellite-based estimates of U.S. disturbance and recovery, and land-
use and land-cover change, which could improve the accuracy of and
periodically update the USFS ground-based estimates (Wofsy &
Harriss, 2002). The Canadian Forest Service provides annual estimates
of Canada's net forest carbon flux through the Carbon Budget Model
for the Canadian Forest Sector (CBM-CFS2) model (Kurz & Apps, 1999),
including the effects of disturbance and harvest on carbon balances.
While the need for satellite-based disturbance estimates is thus
less pressing for Canada, establishing a consistent, continent-wide
synthesis of disturbance rates is of interest to the NACP.

The Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) project has been funded by NASA to develop a robust system
for processing large quantities of remote sensing data for forest
change analysis. A major goal of this project is to produce wall-to-wall
maps of stand-clearing forest disturbance and regrowth for the North
American continent using a decadal (1990–2000) revisit period. The
North American disturbance and regrowth data products developed
through the LEDAPS project are primarily intended for the carbon
modeling community. However, it is expected that ecologists,
foresters, and remote sensing scientists will also find them of interest.

In this paper we describe the disturbance mapping algorithm,
presentvalidation results at a rangeof spatial scales, and showresults for
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Table 1
Distribution of North American LEDAPS images by year (including GeoCover and
supplementary images)

"1990" Epoch "2000" Epoch

1984 2 1999 225
1985 28 2000 428
1986 67 2001 379
1987 130 2002 182
1988 158
1989 188
1990 224
1991 183
1992 117
1993 57
1994 11
1995 13
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the United States and Canada. The data products discussed in this study
are available for download from theNASAGoddard Space Flight Center.1

2. Disturbance mapping goals

The overall goal of the LEDAPS disturbance mapping has been to
provide useful information on disturbance rates for carbon accounting
andbiogeochemicalmodeling. Ideally,wewould be able to usehistorical
remote sensing to determine both disturbance rates and their variability
at high-resolution across North America, over the last 30–40 years (e.g.
Cohen et al., 2002; Masek & Collatz, 2006). Assuming biennial coverage
with Landsatdata, and~1100 scenecenters across the continent, suchan
undertaking would require processing approximately 16,000 Landsat
images. While processing this data volume is tractable with data
processing systems such as EOSDIS, Landsat data costs precluded such
an analysis for this study.2 Insteadwehave relied on the decadal Landsat
GeoCover data set with images from a 1990 and 2000-era epochs,
described more fully in Section 3. Change detection (discussed below)
was then used to isolate “disturbance” and “regrowth” classes fromeach
1990–2000 image pair.

The mapping effort was targeted toward detecting stand-clearing
disturbance events (biomass loss, primarily from clearcuts and fires)
and recovery (biomass gain). Disturbance events that leave intact
substantial portions of the forest canopy, such as partial harvest, insect
outbreaks, thinning, and storm damage, cannot be generally be
mapped using the 10-year observation interval (e.g. Jin & Sader, 2005;
Lunetta et al., 2004; Wulder et al., 2005). However, it is not always
possible to distinguish older stand-clearing events from more recent
non-clearing disturbance. For example, thinning that occurred
immediately before the 2000 image acquisition could be readily
confused with a recovering clearcut from the early 1990s.

We also note that mapping “regrowth” as a class is inherently
problematic due to the gradual nature of biomass accumulation
following disturbance. Biologically, most stands are regrowing from a
past disturbance in the sense that they continue to add biomass. Froma
remote sensing perspective, the “regrowth” class only includes stands
forwhich biomass accumulation is sufficiently rapid over 10 years to be
detected in optical imagery. For example, while it might be possible to
map a forest stand last cleared in the mid-1980's as “regrowth” using
data from the 1990–2000 period, it is highly unlikely a stand cleared in
the 1930'swould be somapped. Given this uncertainty, it is critical that
any study identifying a “regrowth” class calibrate that class to a
particular range of stand ages using other data sources.

In addition to maps of “disturbance” and “regrowth” classes at
28.5-meter resolution, we have also prepared a set of gridded prod-
ucts to support biogeochemical modeling. These products include
500-meter and 0.05 degree resolution maps recording the rate of dis-
turbance or regrowth for each cell (% of cell area disturbed per year).

3. Data sources and preprocessing

TheGeoCover data set is a global collection of orthorectified,mostly
cloud-free Landsat imagery, centered on 1975, 1990, and 2000 epochs
(Tucker et al., 2004). Actual image acquisition dates vary depending on
data availability, but for North America most acquisitions date from
1986–1992 for the 1990-epoch coverage, and 1999–2001 for the 2000-
epoch coverage (Table 1). In addition, not all images were acquired
during peak-greenness conditions, and the 1990 and 2000 epoch data
were not necessarily acquired during the same month.

The GeoCover data were orthorectified by Earth Satellite Corpora-
tion (now MDA Federal) using limited ground control and digital
terrain from a variety of sources, including Digital Terrain Elevation
1 http://ledaps.nascom.nasa.gov/ledaps/ledaps_NorthAmerica.html.
2 In early 2008 USGS announced plans to make all Landsat TM and ETM+ data

available at no cost by the end of 2009.
Data (DTED) and GTOPO30 (Tucker et al., 2004). Within the United
States, the National Elevation Dataset (NED) was used as the topo-
graphic reference. The absolute geodetic accuracy of the data set was
specified at b50mRMSE formulti-scene blocks.While the product did
meet this specification, geodetic errors as high as ~200m can occur for
individual images in high-relief areas, or where geodetic control was
particularly sparse (Jon Dykstra, personal communication). However,
since the 2000 GeoCover data set was matched to the 1990, relative
misregistration between the two epochs is generally very small. No
cases of significant relative misregistrationwere found during LEDAPS
processing or validation.

For approximately 60 images, the GeoCover acquisition dates fell
well outside of the growing season. These images were replaced by
additional acquisitions from the USGS Landsat archive. These addi-
tional images were procured as UTM, Level 1G data, matched using the
GeoCover 2000 image as geodetic control, and orthorectified using
SRTM 90 m digital elevation data.

Data from the 1990 and 2000 epochs were calibrated and at-
mospherically corrected to surface reflectance using the MODIS 6S
radiative transfer approach (Masek et al., 2006; Vermote et al., 1997).
For Landsat-5, the original calibration derived from the on-board
calibrator lamps was removed, and the newest calibration history
applied (Chander et al., 2007; Masek et al., 2006). No bi-directional
reflectance distribution function (BRDF) or topographic illumination
correction was applied.

4. Disturbance Index algorithm

4.1. Algorithm description

To assess disturbance across ~1100 Landsat pairs, an automated
mapping approach was required. Numerous studies have presented
change detection approaches suitable for forest environments (see
reviews by Coppin et al., 2004; Lu et al., 2004). Several considerations
influenced the decision of which approach to take for the LEDAPS.
Given the variations in acquisition date between images, the change
detection methodology needed to be relatively insensitive to BRDF
variability and phenology. This requirement highlighted approaches
that use within-image statistics to normalize radiometric change. It
was also desired to have a continuous metric related to gain or loss of
biomass, rather than a “hard” classification. Finally, approaches that
relied on the physical aspects of reflectance variations were preferred
to approaches that relied exclusively on statistical generalization from
training samples. While the purely statistical approach can produce
excellent results in most cases, it is also susceptible to failure in cases
where training data are insufficient or of poor quality. A relatively
simple and flexible approach, the Disturbance Index (DI) of Healey
et al. (2005) satisfied these criteria and was used for this study.

The DI is a transformation of the Landsat Tasseled-Cap data space
(Crist & Cicone, 1984; Huang et al., 2002; Kauth & Thomas, 1976),

http://ledaps.nascom.nasa.gov/ledaps/ledaps_NorthAmerica.html
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specifically designed for sensitivity to forest change. The Tasseled-Cap
brightness, greenness, and wetness indices are a standard transforma-
tion of the original Landsat spectral bands, effectively capturing the
three major axes of spectral variation across the solar reflective
spectrum. Originally developed for use in agricultural systems, the
Tasseled-Cap indices received increasing attention after the launch of
the TM sensor in 1982, which included shortwave infrared (SWIR)
bands. Horler and Ahern (1986) were among the first to explore the
forestry information contentTMdata, discovering that SWIRbandswere
the most important for characterizing forest structure. As chronicled by
Cohen and Goward (2004), this led to a resurgence of interest in the
Tasseled-Cap, particularly the wetness index, which contrasts SWIR
against near-infrared reflectance. Brightness, greenness, and wetness
are now commonly used indices across a variety of forestry remote
sensing applications (Cohen andGoward (2004), and has been extended
to data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) for a broader set of uses (Lobser & Cohen, 2007).
Fig. 1. Example of the Disturbance Index applied to a series of Landsat imagery from Central
1988, and 1991. (d) RGB composite created by assigning DI values from 1985,1988, and 1999 t
one patch disturbed during 1985–88.
At a basic level the DI records the normalized spectral distance of
any given pixel from a nominal “mature forest” class to a “bare soil”
class. The DI is calculated using the Tasseled-Cap (brightness–
greenness–wetness) indices for Landsat TM/ETM+ (Crist & Cicone,
1984; Huang et al., 2002; Kauth & Thomas, 1976):

DI ¼ B V� G VþW Vð Þ ð1Þ

Where B', G', andW' represent the Tasseled-Cap brightness, greenness,
and wetness indices normalized by a dense forest class for each
Landsat scene, such that (for example):

B0 ¼ B� AB
rB

ð2Þ

where μB is the mean Tasseled-Cap brightness index of the dense forest
class for a particular scene, andσB is the standarddeviation of brightness
within the dense forest class for a particular scene. Thus, the DI records
Virginia. (a)–(c): RGB images (753 band combination) from the same region from 1985,
o red, green, and blue, respectively. (bottom): chart showing the evolution of DI value for
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the spectral distance of a givenpixel from the dense forest “centroid” for
that scene, in units of within-class standard deviation. DI values greater
than ~1 have a high probability of being disturbed or non-forest. Since
the DI values are based on the statistics of forest reflectance from
individual scenes, the DI metric is relatively insensitive to variability in
solar geometry or BRDF between scenes, and lessens the effect of
vegetation phenologic variability among image dates. The LEDAPS
process for automatically identifying sample “dense forest” targets for
the normalization is discussed below. As demonstrated by Healey et al.
(2005) the DI is a simple and effective means of tracking vegetation
disturbance across a variety of forest ecosystems. Unlike simple visible/
near-infrared indices (e.g. the Normalized Difference Vegetation Index
or NDVI) the DI incorporates tasseled-Cap wetness, and hence
information from the shortwave infrared, which is critical for assessing
changes in forest structure (Cohen and Goward, 2004).

The original application byHealey et al. (2005) relied on the absolute
value of the DI from individual scenes to assess disturbance extent. In
contrast, the LEDAPS algorithm used the decadal change in DI value
(ΔDI) as a more robust metric to identify disturbance and recovery. The
use of ΔDI directly incorporates the magnitude of radiometric change
between two images, screening out features far from the “dense forest”
spectral feature, but which do not change through time. An example
fromadense time series of Landsat imageryof centralVirginia illustrates
how the DI records planted pine harvest and recovery (Fig. 1).

This overall processing flow is illustrated in Fig. 2, beginning with
the atmospheric correction of each scene to surface reflectance. Each
subsequent step is described more fully below.

Step 1. Tasseled-Cap calculation. Tasseled-Cap (brightness, green-
ness, and wetness) images were calculated from the 1990 and 2000
surface reflectance images using the reflectance factor transform given
in Crist (1985).

Step 2. Tasseled-Cap normalization To normalize the Tasseled-Cap
images, a “dense forest” class was identified in the 2000 GeoCover TM/
ETM+ images using the MODIS Vegetation Continuous Fields (VCF)
product (Hansen et al., 2002), which includes estimates for the fraction
Fig. 2. Flow chart illustrating the LEDAPS di
of treecover (projection of tree crown area) at a resolution of 500m. TM/
ETM+ pixels with normalized difference vegetation index (NDVI)N
NDVI_thresh and VCF treecoverNVCF_thresh were identified as likely
forest pixels. The corresponding 1990 mature forest class was that
subset of the TM/ETM+ mature forest class that did not experience
significant radiometric change (defined as a change in Tasseled-Cap
brightness) between 1990 and 2000. Note that the normalization step
occurred independently for each scene and tended to suppress the
effects of scene-to-scene variability in overall reflectance due to small
changes in BRDF or phenology.

Step 3. DI and ΔDI calculation. Given the population of mature
forest pixels from step 2, the mean and standard deviation of each
Tasseled-Cap component for the class were calculated. Each Tasseled-
Cap image plane was then normalized as in Eqs. (1) and (2). The ΔDI
was calculated as the temporal change DI2000–DI1990. Large positive
values of ΔDI corresponded to likely disturbance events; large
negative values corresponded to likely regrowth. Thresholds were
applied to the ΔDI values to identify potential disturbance (ΔDIN
ΔDI_dist_thresh) and regrowth (ΔDIbΔDI_regr_thresh). A condi-
tional second pass used a 5×5 pixel contextual window and less
restrictive thresholds. If more than 20% of the pixels within the
window were classified as potential disturbance/regrowth from Pass
1, the central pixel ΔDI value was tested against the less restrictive
set of thresholds. The purpose of Pass 2 was to fill out patches of
forest change that were incompletely mapped during the first pass.

An example of the disturbance mapping algorithm is shown for a
small area of Washington State in Fig. 3. Recent clearcuts and logging
roads are successfully identified, as are regions of recovery from past
clearing. Table 2 gives sample parameter values used in classifying
disturbance in the Mid-Atlantic ecoregion.

Step 4. Filtering non-forest change. Other land-cover transforma-
tions may be inadvertently identified by these ΔDI trends, particularly
agricultural cropping patterns. We removed these artifacts by screen-
ing themapwith a forest/non-forest mask. Initial attempts weremade
to use the 1992MRLCNational Land Cover Dataset (NLCD) (Vogelmann
sturbance/recovery mapping approach.



Fig. 3. Disturbance map from the Olympic Peninsula, Washington. (a) 1988 RGB Landsat image subset; (b) 2000 RGB Landsat image subset; (c) change in the Disturbance Index
parameter; dark values correspond to decreasing DI values through time (regrowth), light values correspond to increasing DI values through time (disturbance); (d) disturbance (red)
and regrowth (green) derived from (c) after thresholds were applied. Sieve filtering was not included in this example.
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et al., 2001; Wickham et al., 2004) as the forest/non-forest mask, but
disturbances occurring early in the 1990's often resulted in the NLCD
identifying the patch as “non-forest”. As a result, a forest/non-forest
mask was produced independently for each image (1990 and 2000)
using a “fuzzy classifier”. The classifier blended three metrics
indicative of forest cover: (1) the MODIS VCF treecover product; (2)
the DI value itself; and (3) the ratio of red reflectance (ρ3) to NDVI
(redNDVI). These metrics were transformed to independent estimates
of probability of membership in the forest class (P) according to:

PVCF ¼ 0 for VCFb20k
VCF=VCFmax for VCFN20k

� �
ð3Þ

PDI ¼ e
� aDIð Þ2

2 ð4Þ

PredNDVI
1

1þ ev
q3

NDVIþgð Þ ð5Þ

where VCFmax represents the local upperbound on treecover as
recorded by the MODIS VCF product, and α , γ, and η are empirical
scaling parameters used to scale the raw metrics (DI, redNDVI) for the
Gaussian probability function (4) or sigmoid probability function (5).
The overall probability of forest class membership (Pf) was calculated
as a weighted sum of the three independent metrics:

Pf ¼ wVCFPVCF þwDIPDI þwredNDVIPredNDVI ð6Þ
where the sum of the weighting factors (w) are constrained to unity. A
high value of Pf (N~0.6) indicates that the pixel is likely to be forested.
Table 2
Sample parameters for the ΔDI disturbance classification, for the Mid-Atlantic
Ecoregion

Parameter Purpose Value

NDVI_thresh Minimum NDVI for obtaining forest population
during Tasseled-Cap normalization

0.8

VCF_thresh Minimum treecover percentage for obtaining forest
population during Tasseled-Cap normalization

70%

ΔDI_dist_thresh Threshold Disturbance Index change for assigning
“disturbance” class

N0.8

ΔDI_regr_thresh Threshold Disturbance Index change for assigning
“regrowth” class

b −0.6

See Section 4.1 for discussion.
The classifier was not particularly sensitive to the exact threshold in Pf,
since the vast majority of pixels tended to cluster at either very low or
very high values of Pf. If either or both the circa-1990 and/or circa-2000
pixelwas labeled as ‘forest’, then the pixel is retained in the disturbance/
regrowthmap.Table 3gives sampleparameter values for the forest/non-
forest classification for the Mid-Atlantic ecoregion.

For some locations we used the 1992 MRLC National Land Cover
Dataset (NLCD) as an additional screening. Wetlands may be confused
with forest, and are susceptible to seasonal variations in water level
that can be confusedwith disturbance. Pixels for which the 1992 NLCD
classification is either “Forested wetland” or “Permanent Wetland”
were screened from the disturbance map. Finally, in the southern
Rocky Mountains, the fuzzy forest classifier did not prove reliable due
to sparse canopy cover, topographic shadowing, and confusion with
closed shrublands. For this region we used the NLCD directly to
separate forest and non-forest land-cover. For the western United
States the NLCD forest land users's accuracy ranges from 66–83%
(depending on Federal Region), while the producer's accuracy ranges
from 78–93%. (Wickham et al., 2004; see also revised figures given on
http://landcover.usgs.gov/accuracy/index.php).

Step 5: Post-processing. Three final steps were implemented to
finalize the disturbance map. First, a 5×5 pixel sieve filter is used to
remove small patches of disturbance or recovery, including “speckle”
associated with slight misregistration in the imagery. Given the
GeoCover pixel resolution of 28.5 m, this filter also imposed a ~0.50 ha
minimum-mapping area on the products. Second, a water mask
(based on near-infrared reflectance) was calculated for each scene,
and any water pixels were removed from the disturbancemap. Finally,
Table 3
Sample parameters for the “fuzzy” forest classification for the Mid-Atlantic Ecoregion

Parameter Purpose Value

VCFmax Normalization for PVCF component 100%
α Scaling for PDI component 0.10
v Scaling for PredNDVI component 250.0
η Scaling for PredNDVI component −0.04
wVCF Weight for PVCF component 0.25
wDI Weight for PDI component 1.0
wredNDVI Weight for PredNDVI component 1.0

See Eqs. (3)–(6) for context.
Note that these parameters assume the LEDAPS convention for surface reflectance
inputs (16-bit values scaled 0 to 10000 representing 0 to 100% reflectance).

http://landcover.usgs.gov/accuracy/index.php
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theMODIS VCF treecover product was used to find areas with less than
10% treecover that are far (N5 km) from any areawith greater than 10%
treecover. These areas were screened from the final map. The intent of
this final filter is to remove any disturbance signal from purely
agricultural, rangeland, or desert landscapes. Even a very small
commission error over a broad agricultural area could result in a
significant overestimation of disturbed area. This “landscape scale”
filter eliminated this risk.

4.2. Algorithm calibration

The DI algorithm requires multiple parameters that can be “tuned”
for a particular geographic area. Within LEDAPS, we allowed separate
processing parameters for each North American Commission for
Environmental Cooperation (CEC) Level-2 Ecoregion (Commission for
Environmental Cooperation, 1997). Although the tasseled-cap normal-
ization (Step 2 above) occurred on a per-scene basis, the other pro-
cessing parameters were adjusted only on a per-ecoregion basis. One
exception was CEC Ecoregion 6.2 (“Western Cordillera”) which extends
from northern British Columbia to central New Mexico. The vast
differences in tree type, size, and canopy cover between these extremes
necessitated splitting the ecoregion near the southern border of Idaho.
Several Landsat scenes from each ecoregion were processed, and then
parameters were adjusted to give an improved visual match with
observed disturbance patterns. Once an approximate parameter set was
established, the formal validation process described below was
implemented. Images used for calibration were not used for validation.

It is recognized that this approach is somewhat subjective. An
alternative would be to use the validation data as “training” to
constrain and optimize the parameter selection for each ecoregion.
Initially this approach was not use due to time constraints (the
disturbancemapping needed to proceed in parallel with the validation
data set creation) and because we wanted to maintain the indepen-
dence of the validation data set to avoid circularity. However, in the
Fig. 4. Schematic illustration of validation data set preparation. The location of Landsat scen
derived from MODIS land-cover product. For each image time series, three 15×15 km subset
future the training approach may be implemented in order to improve
the disturbance data set.

5. Image-based validation and accuracy assessment

5.1. Reference data

The accuracy of the decadal LEDAPS disturbance maps has first
been assessed through comparison with disturbance maps generated
from dense (annual–biennial) time series of Landsat imagery. Through
a related project (Goward et al., 2008), a stratified random selection of
23 Landsat scene centers has been generated across the United States
(Fig. 4). The sampling methodology seeks to obtain a national random
sample proportionally representative of forest types, with additional
constraints to ensure geographic dispersion and preferential sampling
for scenes with high proportions of forest cover (Kennedy et al., in
preparation). A Landsat image time series has been assembled for each
of these locations for the period 1985–2005 with either annual or
biennial revisit frequency.

To generate the reference data set, three 15×15 km sub-windows
were extracted from each image time series stack, and stand-clearing
disturbance was assessed using semi-automated techniques (Fig. 4).
For those image stacks west of the Great Plains, a team at Oregon State
University performed an unsupervised classification of temporal
spectral trajectories to identify disturbances. This involved the
following steps:

1. Each multi-spectral image subset (atmospherically corrected
through the LEDAPS/6S process) was converted to reflectance
factor Tasseled-Cap wetness. The wetness images were then
assembled into a multi-temporal (10-year) stack for each subset.

2. The 1992/2001 NLCD and digital orthoquads were used to assess
the range (mean and standard deviation across time) of wetness
values for stable (undisturbed) forests.
es used for validation in this study are shown superposed on map of IGBP forest cover
s were randomly selected, and the per-pixel disturbance history was assessed for each.



Fig. 5. The distribution of pixel-level errors of omission and commission for 40
15×15 km validation subsets from the random sample of US Worldwide Reference
System (WRS-2) Landsat scenes (Fig. 4). Black bars correspond to subsets with
N1000 pixels (0.4%) actual disturbance; grey bars correspond to subsets with
b1000 pixels actual disturbance. An additional 16 subsets that had no observable
disturbance are not shown here.
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3. An unsupervised technique (ISOCLUS) was used to identify 250
classes of temporal trajectories for each wetness stack.

4. These trajectories were evaluated manually to identify those
matching major disturbance events in the imagery, and then
used to map all disturbances within each stack.

5. Final results were sieve filtered (5-pixel kernel) to match the
LEDAPS minimum-mapping area.

For image stacks from the eastern U.S. a team from University of
Maryland used an approach based on spectral index thresholding.
First, for each image in the stack, mature forest pixels were
automatically identified using histogram thresholds (Huang et al.,
2008). Then the mean (b̄) and standard deviation (SD) of the spectral
values of the identified forest pixels were used to calculate a
forestness index (FI) value for each pixel in the concerned image:

FI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NB

XNB

i¼1

bi �
P
bi

SDi

 !2
vuut ð7Þ

where NB is the total number of spectral bands. Finally, for each pixel a
temporal trajectory of the FI value was constructed using all images in
a cube and forest disturbance was detected based on the shape FI
trajectory. The final disturbance maps were then assessed visually
against the original imagery to check the quality of the mapping.

The final reference data set includes disturbance maps for 69
15×15 km subsets extracted from 23 Landsat scene centers. Although
two different approaches were used to develop the reference data set,
both approaches (i) relied on dense time series of Landsat imagery; (ii)
relied on hand editing and visual inspections of the results of an
automated algorithm (hence they are “semi-automated”), and (iii)
made use of higher resolution digital orthoquads and/or Quickbird
imagery to resolve uncertainties in post-disturbance land-cover type.
We acknowledge that the analysis performed here is not a full
validation since we used Landsat imagery to assess the accuracy of a
Landsat-based product. However, there is little doubt that large
(stand-clearing) disturbance events are easily identified on annual to
biennial Landsat time series (Cohen et al., 1998). While it would be
ideal to be able to assemble time series of high-resolution air photos,
which would allow counting of individual tree crowns through time,
such data sets are not readily available through USGS or the National
Archives. Instead we have opted to take advantage of the national
sampling provided by the Landsat image stacks to provide a
geographically comprehensive validation.

5.2. Multi-scale analyses

Several analyses were performed to cross-compare the LEDAPS
results with the reference data sets. Pixel-level error matrices were
prepared for each of the 69 subsets for the classes “disturbed” and “not
disturbed” (null or cloudy pixels were excluded from the error
matrix). Errors of omission and commission relative to the reference
data sets were calculated from these matrices. Since the LEDAPS
products are primarily targeted for regional carbon modeling studies,
we have also quantified errors at coarser resolutions more appropriate
for biogeochemical modeling. First, each 15×15 km reference subset
was divided into 225 1-km resolution cells, and the total disturbed
area within each cell was calculated and compared to the disturbed
area within the corresponding LEDAPS product. Finally, an overall
national analysis was performed by comparing the total disturbed
area within each 15×15 km subset.

5.3. Statistical results

Fig. 5 shows the distribution of pixel-level errors (omission and
commission) between the reference disturbance maps and the
LEDAPS results for the class “disturbed 1990–2000”. Twenty-nine
subsets with little or no observed disturbance in the reference data set
(b100 pixels) have not been included since omission and commission
errors are not meaningful for these sites. Errors of commission in the
LEDAPS products (i.e. pixels mistakenly mapped as disturbance) are
generally low, typically 10–30%, but errors of omission (i.e. actual
disturbance not mapped) are much higher, typically 30–60%. A
reasonable null hypothesis is that the DI algorithm has no spatial
predictive power, in which case we would expect random agreement
in proportion to the total amount of actual 1990–2000 disturbance
mapped within the reference subsets. Since the average area
disturbed in the reference data is 15% per decade, the null hypothesis
would predict equal omission and commission errors centered on 85%.

Treating each 15×15 km subset as an independent sample from a
normallydistributed setof errors,wecalculate amean (national) omission
error of 44.6 +/−5.8% and amean commission error of 27.0 +/−4.5%where
the uncertainties are calculated for 90% confidence interval using a
two-sided test against the critical value of the t-distribution. This
implies that LEDAPS is biased toward underestimating national dis-
turbance by 17.6 +/−7.4%.

The higher errors of omission mostly reflect the limitations of
using a decadal data set for mapping forest disturbance. As noted by
other studies, the rate of forest regrowth can be sufficiently rapid to
eliminate the spectral signal of disturbance within 10 years (Jin &
Sader, 2005; Lunetta et al., 2004; Pussa et al., 2005; Steininger, 1996;
Wulder et al., 2005). As a result, these stands are spectrally
indistinguishable from older, mature stands, and are not detected as
disturbance. The annual/biennial reference time series allows omis-
sion error to be calculated as a function of the time since disturbance.
Most subsets show a systematic decrease in detection accuracy with
time, indicating the difficulty in detecting disturbed stands after
~5 years of regrowth (Fig. 6). Considering just the most recent 2-year



Fig. 6. Example of LEDAPS detection accuracy (1-omission error) as function of actual disturbance date for two 15×15 km subsets in Virgina (left) and Oregon (right). Disturbance date
was determined with a precision of b2 years for reference data sets using the approaches described in the text. Detection accuracy of LEDAPS products drops for older disturbances,
since regeneration masks the spectral signal by the end of the 10-year observation interval.
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epoch (nominally 1998–2000) from six reference images from the
Eastern U.S., the LEDAPS detection accuracy rises to an average of 74%.

The forest/non-forest masking is a secondary contributor to
omission errors within LEDAPS. The fuzzy forest/non-forest classifica-
tion has tended to underestimate forest cover slightly, causing some
disturbances not to be mapped. Commission errors within LEDAPS are
primarily due to misclassification of dense (deeply shadowed)
agriculture as forest and occasional sensitivity of the algorithm to
recent thinning. In addition, images that were acquired at widely
separated parts of the seasonal growing cycle tend to exhibit high
error rates. The ΔDI approach is self-normalizing, in that the Tasseled-
Cap norming population (Eq. 2) comes from each image indepen-
dently, and thus tends to resist small changes in BRDF and image
phenology. However, when these changes become extreme (e.g. leaf-
on vs. leaf-off seasonality), the ΔDI method breaks down.

To evaluate the performance of LEDAPS products at the 1-km scale,
each 15×15 km reference subset was divided into 225 1 km cells, and
the total area disturbed within each cell was compared to the LEDAPS
product. We then calculated the linear (Pearson) correlation coeffi-
cient (R) between the reference and LEDAPS disturbance values
(n=225 points) as:

R ¼
P

xi �Pxð Þ yi �Pyð Þ
n� 1ð Þrxry ð8Þ

where xi is a single LEDAPS 1 km disturbance estimate, x is the mean
LEDAPS disturbance estimate across all n=225 1-km cells, yi and y are
Fig. 7. Distribution of correlation coefficients (R) derived from calculating the area of
disturbance within each 1 km cell in the LEDAPS and reference subsets. Black bars
correspond to subsets with N1000 pixels (0.4%) actual disturbance; grey bars
correspond to subsets with b1000 pixels actual disturbance. An additional 16 subsets
that had no observable disturbance are not shown here. See text for discussion.
the comparable values for the reference data set, and σx and σy are the
standard deviation of the LEDAPS and reference data sets, respectively.
The distribution of R values among the 66 reference subsets is shown
in Fig. 7, and most R values exceed 0.60.

At the coarsest scale of evaluation, Fig. 8 compares the LEDAPS
estimates of disturbed area within each 15×15 km subset with the
comparable value from the reference data set. The root mean squared
error (RMSE) across the national sample is 566 ha out of a sample
population of 22500 ha (i.e. the 15×15 km area). As is expected from the
relatively higher omission errors in Fig. 5, most LEDAPS subsets show
lower total disturbed area compared to the reference data set. It should
also be noted that for many subsets “above” the 1:1 line (i.e. showing
high rates of commission error), the additional disturbance mapped in
LEDAPS were, in fact, “low magnitude” disturbances (such as thinning,
partial harvests, or insect damage) flagged in the validationmaps.While
Fig. 8. Scatterplot of reference versus LEDAPS area disturbed within each 15×15 km
subset (n=40), shown as (a) log–log and (b) linear plots.



Fig. 9. Fraction of reference disturbances occurring in 1984–1990 that were mapped as
“regrowth” by LEDAPS, as function of disturbance year, for five sites in the eastern
United States.
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these technically are commission errors, they are related to actual
disturbance events and not simply spurious detections.

5.4. Regrowth detection capability

As noted in Section 2, the “regrowth” class must be calibrated to
understand the sensitivity of the algorithm for detecting past dis-
turbances that continued to accumulate biomass during the 1990–2000
observational period. In the future, we plan to assemble a longer time
series of annual/biennial data for assessing disturbance events back to
the 1970's using LandsatMSS. For now, however, we can use the existing
reference data sets to examine the fraction of actual disturbances
mapped for the 1984–1990 epoch that were detected by the LEDAPS
Fig. 10. Visual comparison of results from two 15×15 km subsets. Top row: p47r28 (Oregon);
disturbed; black = regrowth); Middle: LEDAPS maps; Right: LEDAPS ΔDI arrays before thresh
biomass loss (disturbance). Note that the Oregon reference and LEDAPS maps do not includ
regrowth class (Fig. 9). LEDAPS detects 50–100% of recently disturbed
pixels as “regrowth”. As expected the detection rate declines with the
age of the disturbance. In general, the detection rate for disturbances of
5–6 years old is only half that of the most recent cohort. Given the
limited ability todetect regrowthof olderdisturbancesusing thedecadal
data set, usersmust be cautious not to simply add the “disturbance” and
“regrowth”figures for a particular location to obtain a net rate of change.

5.5. Visual comparisons

To illustrate the cumulative effect of omission and commission
errors, it is useful to visually compare the LEDAPS and reference maps.
Fig. 10 shows the reference disturbancemap, the LEDAPSmap, and the
LEDAPS intermediate ΔDI product for two sites. The first, p47r28 in
Oregon is an example with very low errors in omission and
commission (12.9% and 13.7%, respectively), and aswould be expected,
there is excellent visual agreement between the reference and LEDAPS
maps. The second case, p26r36 in Eastern Oklahoma yielded relatively
poorer results, with higher errors of omission and commission (45.3%
and 66.9%, respectively). Although much less spatially coherent, the
patterns of disturbance and recovery alsomatch the reference data set.
The ΔDI map for Oklahoma is “noisier” compared to the Oregon site.
This may reflect the wide seasonal gap between the 1990 and 2000
image for Oklahoma. The Landsat-5 imagewas acquired on July 8,1990
while the Landsat-7 image was acquired on October 1, 2000.

6. Extension to continental scales

An initial set of processing parameters was generated for each CEC
ecoregion, and the disturbance mapping algorithmwas run on groups
of contiguous scenes. Fig. 11 shows stand-clearing disturbance for
1990–2000 for the United States and Canada mapped using the
LEDAPS approach. For this example, the 28.5-meter resolution change
maps have been aggregated to 500–meter resolution representations
of disturbance intensity by averaging the total disturbed area with
each 500×500 m cell (excluding null areas such as clouds and
shadow) and dividing by the non-null cell area.
Bottom row: p26r36 (Eastern Oklahoma). Left: Reference disturbance data set (white =
olding. Higher values (bright areas) correspond to greater temporal change of the DI and
e the regrowth class in this example.



Fig. 11. Stand-clearing disturbance rates for conterminous United States and Canada, 1990–2000. Values are expressed in percent of 500×500 m cell area disturbed during the
nominal 1990–2000 period.
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The disturbance map illustrates broad patterns of forest dynamics
across the continent. The boreal forests of Canada are dominated by
large, discrete burn scars. Evaluating the mean disturbance rate across
fire dominated portions of the central and eastern boreal region
(Boreal Plains, Boreal Shield East, and Boreal Shield West ecozones)
yields a total disturbed area of 8.47 million ha during the 1990s, or a
rate of 0.41% of forest area per year. For comparison, Stocks et al.
(2002) documented the area burned from 1959–1997 for the same
regions and calculated a mean disturbance rate of 0.40% forest area
burned per year. Given differences inmethodology between this study
and that of Stocks et al. (2002) the close agreement between the two
rates may be regarded as partly coincidental. First, our estimate
includes some contribution from logging and other disturbances as
well as fire. Second, the Stocks et al. (2002) study only included large
(N200 ha) fires, although large fires (N100 ha) are responsible for at
least 99% of the area burned in the central Boreal forest (Larsen &
MacDonald, 1998). It should also be noted that fire frequency appears
to have increased since the 1970's. Using the most recent decade of
data (1987–1997) from Stocks et al. (2002), the fire disturbance rate
rises to 0.56% of forest area burned per year, somewhat higher than
that calculated from the LEDAPS results.

The rate of 0.41% forest area per year corresponds to a fire frequency
(mean return interval) of 244 years for the Boreal region of central
Canada. Recent ecological studies have examined fire return interval in
the Canadian Boreal forest using analysis stand age distribution, den-
drochronology, and sediment cores (Bergeron et al., 2001; Carcaillet
et al., 2001; Larsen &MacDonald, 1998; Larsen,1997). Calculated return
intervals vary considerably, from as low as 39 years for jack pine and
aspen in Alberta (Larsen, 1997) to over 500 years for Holocene fires in
Quebec (Carcaillet et al., 2001). In part, this reflects temporal variations
in fire frequency throughout the Holocene. Bergeron et al. (2001)
presented evidence for increasing fire return interval (decreasing
frequency) in the Ontario and Quebec since the mid-19th century,
which they attributed to long-term shifts in climate. Return intervals for
the most recent epoch (1920–1999) fall into the general range of 191–
521 years, similar to the results presented here and in Stocks et al.
(2002), while those before 1850 tend to bemuch shorter (69–132 years).

Disturbance activity detected by LEDAPS in southern Canada and the
conterminous United States is dominated by harvest activity rather
than fire. Due to the limited sensitivity of LEDAPS to thinning and
partia harvest, the LEDAPS maps primarily reflect the distribution of
clearcuts. Mapped disturbance rates are highest in the southeastern
United States, reflecting the prevalence of rapid rotation softwood
forestry. The highest rates observed occur in northwestern Louisiana
and eastern Texas where about 2.2% of the land area is cleared each
year. From the validation study we may assume that the LEDAPS
algorithm is underestimating disturbance by about 18% in this region.
Applying this correction factorwould suggest a rate of 2.6% per year, or a
mean turnover period of 38 years. FIA data from the region indicate
that about half the forestland area in northwestern Louisiana and
eastern Texas is occupied by loblolly pine stands, and rotation periods of
20–25 years are typical for planted pine stands. Mean turnover periods
for other forest types must be considerably higher (about 50–60 years)
to produce the mean turnover period observed in the LEDAPS data.

Harvest rates are nearly as high in the Pacific Northwest, Maine,
southern Quebec and parts of British Columbia. Like the southeastern
United States these regions were sites of clearcut logging during the
1990's. Disturbance rates in the Mid-Atlantic, southern New England,
and upper Midwest are significantly lower. In part this reflects differing
management strategies in the northeastern United States. Forestry in
this region is dominated by hardwood extraction, and relies on selective
harvest of individual trees and techniques (e.g. strip cutting) that leave
tree canopy intact (Smith & Darr, 2004). As a result we are probably
underestimating the overall rate of harvest activity in the region.

Disturbance in the North American Cordillera follows a gradient of
generally decreasing disturbance rates from north to south. The
Canadian Rockies in Alberta and British Columbia are characterized by
high rates of clearcutting and some fire activity. This pattern persists
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into Montana and Idaho, but harvest activity becomes more limited in
Colorado, Utah, and the southwestern United States. As discussed
below, however, the ability of the LEDAPS algorithm to map dis-
turbance in the sparse forests of the southern Rockies is limited.

Overall we estimate 21.7million hectares of forest was disturbed in
the conterminous United States (not including Alaska and Hawaii)
during the 1990's. However, this figure can be adjusted for bias using
the results from the validation study (Czaplewski, 1992). Knowing that
the LEDAPS analysis fails to capture 18% of net disturbance (i.e. mean
omission error−mean commission error), this figure should be
increased to 25.6 million hectares. Estimates of the total forest cover
of the continental United States vary. The US Forest Service FIA
program estimated 251.1 million hectares of forestland based on a 10%
stocking density threshold. In contrast, the MODIS VCF treecover
product indicates 267 million hectares of land with greater than 20%
tree canopy cover, and 335 million hectares of land with tree canopy
cover greater than 10%. Taking the US Forest Service figure, we would
conclude that 10.2% of US forest land was disturbed during the
measurement interval. The mean measurement interval for this
period is approximately 11 years (Table 1), corresponding to a mean
forest turnover period of 110 years. For comparison, Smith and Darr
(2004) estimate that clearcut harvest activities affected 1.50 million
hectares of US forest each year, which would correspond to a mean
rate of 5.9% of US forest cover on a decadal basis. It should be noted,
however, that this estimate does not include effects of fire, which is
included in the LEDAPS analysis.

The uncertainty associated with the national disturbance estimate
depends on the uncertainty of the bias adjustment factor (18%): if
there were no uncertainty about the omission and commission errors,
the adjusted wall-to-wall disturbance estimate would be exact, In
reality, the uncertainty in the bias adjustment comes from two factors:
(i) the uncertainty about the calculated omission and commission
errors, and (ii) the sampling error associated with selecting the
validation sites themselves. The former error was estimated in Section
5.3 as +/−7.3%. The latter error is calculated as +/−17% (90% CI)
knowing the mean disturbance rate from the validation sites and the
fraction of US forest land sampled (Kennedy et al., in prep). Combining
these factors, we estimate the overall uncertainty on the national
disturbance estimate to be +/−24% at the 90% confidence level.

It might be argued that a more conservative error assessment
would treat the individual validation scenes (rather than the 15 km
subsets from within each scene) as independent samples, effectively
reducing the number of samples. This assumption increases the error
about the omission and commission errors to 9.6% and 8.8%,
respectively, and increases the overall uncertainty for the national
estimate to +/30%. In addition, this analysis assumes that the omission
and commission errors follow a normal distribution. While this is
approximately true (Fig. 5) it is also true that the mapping algorithm
may fail entirely for a small number of individual scenes, leading to a
relatively large number of “outliers” in the error distribution.
Although we cannot provide an estimate for this effect, it does
suggest that the calculated uncertainties could be somewhat higher.

7. Known issues and lessons learned

Not surprisingly, the DI algorithm has not performed equally well
for all scenes in the North American GeoCover archive. In general the
algorithm performs best for dark closed-canopy forests. A problematic
region has been the southernmost Rockies and Intermountain West,
dominated by pinyon pine, scrub oak, and juniper. The sparse tree-
cover and low height of these forests results in background materials
(grass, soil) contributing more to the overall spectral signal, and for
the overall signal be easily confused with surrounding shrublands. In
addition, the internal forest/non-forest masking has not yielded
consistent scene-to-scene results in the northern boreal forest
where, again, treecover is sparse and grades into shrub-, grass-, and
moss-dominated landscapes. Although we anticipate improving the
mapping for these regions, users of the initial LEDAPS products for
these regions are encouraged to use the ΔDI fields directly in con-
junction with locally-derived forest/non-forest masks.

About 20% of the GeoCover archive for North America is not
directly usable for change detection because one or more images were
acquired during senescent conditions. The only alternative in these
cases has been to replace the GeoCover imagery with alternative
scenes. The problem is particularly acute for eastern Canada, the Gulf
Coast of the United States, and Mexico. In the latter case, almost none
of the strongly dry-deciduous forests could be successfully mapped by
LEDAPS because of the image acquisition dates and no products for
Mexico are planned. A key recommendation from this project is that
future assemblages of imagery for global change applications put a
greater emphasis on inter-date compatibility and seasonality rather
than achieving perfectly cloud-free coverage.

Our main focus in LEDAPS has been to map stand-clearing dis-
turbance. However we also recognize that in so doing, we are missing
a significant part of the timber extraction (and possibly carbon flux)
from the continent.Wemay also introduce some regional bias into the
continental maps. For example, during the 1980s and 1990s clearcut-
ting accounted for ~26% of harvest area in the north-central and
northeastern regions of the United States, but 44% of the area in the
southern region (USFS FIA). Our maps will thus tend to underestimate
the prevalence of disturbance in the former region.

Finally, it is clear from our results (e.g. Fig. 6) as well as previous
studies that a 10-year repeat interval is not ideal for accurately
mapping forest disturbance. The LEDAPS results tend to be biased
towards the later part of the 1990s given the relatively poor detection
capacity for older disturbance events. Previous studies have noted that
an image refresh period of finer than 3–5 years is needed to map
stand-clearing disturbance (e.g. Jin & Sader, 2005). It is reasonable to
assume that some finer time interval (b2 years) is required for
mapping more subtle disturbances that recover more rapidly, such as
thinning or insect defoliation.

8. Conclusions

The LEDAPS project has mapped stand-clearing forest disturbance
across North America during the 1990–2000 interval in support of the
North American Carbon Program. Some 2200 Landsat GeoCover
images have beenprocessed using theDisturbance Indexmethodology
of Healey et al. (2005). This paper has detailed the algorithmic basis for
the LEDAPS mapping, and presented an image-based validation study
of the results for the United States. Although the decadal revisit
interval of the GeoCover data set is not optimal, the continental
mapping captures the major patterns of stand-clearing disturbance in
the United States and Canada. Calculated omission and commission
errors generally range from 30–60% and 20–30%, respectively.

Disturbance rates vary widely across the continent. Fire dominates
the disturbance regime of the Canadian boreal forest. The central
boreal area burned during the 1990's mapping epoch corresponds to a
mean turnover period of 240 years, in rough agreement with
estimates from the ecological literature. Within the United States,
the highest rates of disturbance are found in areas experiencing
clearcut harvest practices, particularly the southeast, Maine, and the
Pacific Northwest. Clearing rates in these areas reach 2–3% per year.
The mean stand-clearing disturbance rate during the conterminous
United States as a whole is calculated as 0.9 +/−0.2% per year, cor-
responding to a turnover period of 110 years. Although the uncertainty
of this estimate is relatively large, and can be expected to be reduced
in the future, this estimate represents the first wall-to-wall assess-
ment of forest disturbance for the nation.

A related project (North American Forest Dynamics or NAFD;
Goward et al., 2008) is currently mapping forest disturbance using a
geographic sample of annual and biennial Landsat image time series.
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The results from the NAFD project will complement those presented
here by providing a more accurate estimate of disturbance rates and
their variability through time, including non-clearing phenomena
such as insect damage and thinning. In turn, the LEDAPS maps will
support the extrapolation of NAFD results across the North American
continent.

One of our goals has been to demonstrate automated approaches
tomapping land-cover change that can be applied to continental-scale
projects. Similar initiatives have been undertaken in Australia by the
Australian Greenhouse Office and in Canada through the EOSD project
(Wulder et al., 2003). International initiatives such as Global
Observations of Forest Cover and Land Cover Dynamics (GOFC-
GOLD) and national initiatives such as the Climate Change Science
Program (CCSP) have specified the need for regular updates on land-
cover and vegetation dynamics (including disturbance) at frequent
(b5 year) intervals.

Critical to future monitoring of forest cover and disturbance is the
ready availability of Landsat-like data. Landsat continuity has been
difficult to ensure (Wulder et al., 2005), but multiple, international
sources of data are now available from sensors such CBERS (China–
Brazil Earth Resources Satellite) and the Indian Remote Sensing (IRS)
Resourcesat-1. These resources also offer the prospect of improved
temporal coverage for cloudy regions. In addition, the current
schedule for the Landsat Data Continuity Mission (LDCM) promises
a new source of Landsat data starting in 2011. Of equal importance, the
USGS has announced plans to allow free distribution orthorectified
data from the Landsat 1–7 archive beginning in 2009. These
developments represent major advances for the land-cover research
community, and should, for the first time, enable routine monitoring
of forest dynamics around the globe.
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