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Forest succession is an important ecological process that has profound

biophysical, biological and biogeochemical implications in terrestrial ecosystems.

Therefore, information on forest successional stages over an extensive forested

landscape is crucial for us to understand ecosystem processes, such as carbon

assimilation and energy interception. This study explored the potential of using

Forest Inventory and Analysis (FIA) plot data to extract forest successional stage

information from remotely sensed imagery with three widely used predictive

models, linear regression (LR), decision trees (DTs) and neural networks (NNs).

The predictive results in this study agree with previous findings that multi-

temporal Landsat Thematic Mapper (TM) imagery can improve the accuracy of

forest successional stage prediction compared to models using a single image.

Because of the overlap of spectral signatures of forests in different successional

stages, it is difficult to accurately separate forest successional stages into more

than three broad age classes (young, mature and old) with reasonable accuracy

based on the age information of FIA plots and the spectral data of the plots from

Landsat TM imagery. Given the mixed spectral response of forest age classes,

new approaches need to be explored to improve the prediction of forest

successional stages using FIA data.

1. Introduction

Forest succession is an important ecological process that has profound biophysical,

biological and biogeochemical implications in terrestrial ecosystems. Changes in

canopy structure associated with forest succession can regulate the amount of

available sunlight reaching the forest floor, which has been used as a primary

factor in simulating species composition with forest succession models (Botkin et al.

1972, Shugart and West 1977). Both the amount of solar radiation (Song and Band
2004) and the amount of carbon assimilated by a forest stand depend on its current

successional stage (Law et al 2001, Chen et al. 2002). Although the biophysical

mechanisms causing net primary production (NPP) to decrease with successional

stage are not well agreed upon (Yoder et al. 1994, Mencuccini and Grace 1996,
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Ryan and Yoder 1997, Hunt et al. 1999), the occurrence of decreasing NPP with

age has been observed consistently from stand to biome scales (Brown and Lugo

1990, Murty et al. 1996, Pregitzer and Euskirchen 2004). As 80% of above- and

40% of below-ground carbon is located in forest ecosystems (Dixon et al. 1994),

improving our ability to accurately predict spatial distributions of forest

successional stages at the landscape scale is important for enhancing our

understanding of the role that forest ecosystems play in the global carbon cycle

(Birdsey et al. 1993, Turner et al. 1995, Goodale et al. 2002, Song and Woodcock

2003a).

A traditional approach to determining a forest’s successional stage is through

field-based mensuration. One of the drawbacks of the fieldwork-based approach is

that it can only provide successional stage information for a limited number of

stands. Combining field plots with remotely sensed data, however, provides an

opportunity to extrapolate forest successional stage information across a continuous

landscape. In fact, predicting forest successional stage distributions from remote

sensing, particularly with Landsat Thematic Mapper (TM) imagery, is a very active

research topic (Peterson and Nilson 1993, Cohen et al. 1995, Jakubauskus 1996,

Kimes et al. 1996, Song et al. 2002). Earlier studies have shown that reasonable

accuracy can be obtained using a single satellite image to separate forests into a few

broad successional stages with regression analysis (Cohen et al. 1995), traditional

image classifications (Hall et al. 1991, Jakubauskus 1996) and neural network (NN)

models (Kimes et al. 1996). Although multitemporal satellite images have been used

to predict forest successional stages (Foody et al. 1996, Lucas et al. 2002), the images

in these studies were used independently. Song et al. (2002) provided a theoretical

basis that multitemporal Landsat imagery enhances the accuracy in mapping forest

successional stages compared to a single imagery. More recently, Song et al. (2007)

demonstrated that multiple Landsat TM images can be used simultaneously with

multiple regression analysis to improve the accuracy of predicting forest

successional stages in western Oregon. As the benefit of using multiple images with

other predictive approaches is unclear, we aimed to address this issue in our current

study.

An additional difficulty in extracting forest successional stages from remotely

sensed data is the limited availability of ground-collected forest inventory data.

One of the most comprehensive sources of forest inventory data is collected by the

US Forest Services’ Forest Inventory and Analysis (FIA) programme. Collecting

tree and plot attributes over a systematic grid of field plots, FIA data are available

for nearly all forest lands found in the conterminous USA. Tree- and plot-level

data from the FIA are available in a database form that contains detailed forest

successional stage information. The potential of combining FIA plot data with

multitemporal Landsat imagery to map forest successional stages is not well

understood. Thus, extrapolating forest successional stage information from FIA

plots to large areas with remote sensing would be of great value. Recently, Song

et al. (2007) showed that multiple regression analysis using up to four Landsat

images as explanatory variables can be used to predict FIA successional stage

classes in western Oregon. Although significant predictive models were created,

the overall R2 values, an indicator of how well a regression model fits the data,

were relatively low. During the past decade, NNs and decision trees (DTs) have

been widely used for predicting complex, nonlinear relationships between forest

attributes and remotely sensed images (Fang and Liang 2003). Compared to
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conventional image classification approaches, NNs and DTs do not require data

to be normally distributed and can reduce the impact of unwanted noise to

maximize the generalization ability of the predictive model (Quinlan 1993, Haykin

1998). Researchers have successfully used NN and DT models for remote sensing

image classification, as well as land-use/land-cover change detection

(Benediktsson et al. 1990, Heemann and Khazenie 1992, Carpenter et al. 1997,

Friedl and Brodley 1997, Huang and Jensen 1997, Friedl et al. 1999, Gopal et al.

1999, Liu et al. 2001, Seto and Liu 2003, Liu et al. 2004). This study explored the

utility of three types of widely used models, linear regression (LR), DTs and NNs,

for predicting FIA forest successional stage classes with multitemporal Landsat

TM imagery.

2. Study area and data

The study area was defined as Landsat WRS-2, path 46 row 29, which covers

portions of the western Cascades and Coastal Range mountains of western Oregon.

Spectral data from four near-anniversary Landsat 5 TM images, collected on

4 August 1984, 7 July 1991, 31 July 1994 and 23 July 1997, were used in the study.

Noise effects due to differences in sun angle and phenology were minimal as the

images were acquired close to the anniversary date (Song and Woodcock 2003b).

The atmospheric effects on images were removed with the modified dense dark

vegetation (MDDV) approach (Song et al. 2001), which is a modified version of the

DDV approach developed by Liang et al. (1997). It was found to be an effective

approach for removing the atmospheric effects in this area due to the abundance of

mature, dark vegetation (Song and Woodcock 2003b). As there are significant

information redundancies in the original six reflective bands, all TM images were

transformed to brightness, greenness and wetness using the tasseled cap

transformation coefficients of Crist (1985).

Forest stand age classes were derived from the Pacific Northwest (PNW)-FIA

Integrated Database version 1.4 (Hiserote and Waddell 2004). In western Oregon,

the FIA ground data were collected between 1995 and 1997. Stand age was coded

into 22 classes (table 1). Because FIA plot locations are not in the public domain, the

spectral data for each plot within our study area were extracted through special

arrangement with the PNW Research Station, USDA Forest Service. The digital

numbers (DNs) of Landsat images for each FIA plot in our study area were

extracted using the average of a 3 6 3 pixel window, with the centre of the window

corresponding to the reference coordinate. Because the enhancement of multi-

temporal Landsat imagery in mapping forest successional stages was initially

proposed based on conifer stands (Song et al. 2002), we limited our analysis here to

only conifer dominated plots. Although a total of 2441 FIA plots fell within our

Landsat path/row 46/29 study area, only 1317 of those plots were classified as

coniferous forest. We regrouped the 22 age classes from table 1 into broader groups

of three [young (age(49 years), mature (age 502149 years) and old (age>150

years)] and five [very young (age(19 years), young (age 20249 years), mature (age

512149 years), old (age 1502299 years) and very old (age>300 years)] successional

stage classes. As forest succession is a continuous process, the separation of the

continuous process into discrete stages is somewhat subjective. For this reason, we

based our successional stage classes on age groupings that have been successfully

classified in previous studies conducted in western Oregon (Cohen et al. 1995, Song

et al. 2002, 2007).
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3. Method

3.1 Predictive models

3.1.1 Linear regression (LR). A general multiple LR model was used to study the

relationship between the spectral response of FIA plots and their corresponding
successional stages as:

y~b0zb1x1z . . . zbnxnze ð1Þ

where b0, b1, …, bn are regression coefficients that describe the rate and direction of

change for a plot in spectral space. The independent variables, x1, …, xn, include the

tasseled cap brightness, greenness and wetness indices and the changes in these
indices between 1984 and 1997. The independent variables may be from a single

image or multitemporal images. The regression error is e. The dependent variable, y,

is stand age class. Theoretically, y has to be a continuous numerical variable.

Although stand age in the real world is a continuous variable, it is recorded in the

FIA dataset as an incremental age class. As the actual age is approximately the age

class times 10, the age class label is a numerically meaningful variable, thus it can be

treated as a continuous variable in equation (1).

3.1.2 Multilayer perceptron neural network (MLP NN). The MLP NN, one of the

most popular and successful NN architectures, is suited to a wide range of

applications such as classification, pattern recognition, interpolation, prediction,

forecasting, and process modelling (Haykin 1998). An MLP NN comprises a

number of identical units organized in layers, with those on one layer connected to
those on the next layer so that the outputs of one layer are fed-forward as inputs to

the next layer.

Table 1. Forest stand age classes as coded in the integrated database version 1.4 compiled by
the PNW FIA programme. Ground data were collected during 1995–7 for western Oregon.

Age class Stand ages (years)

1 0–9
2 10–19
3 20–29
4 30–39
5 40–49
6 50–59
7 60–69
8 70–79
9 80–89
10 90–99
11 100–109
12 110–119
13 120–129
14 130–139
15 140–149
16 150–159
17 160–169
18 170–179
19 180–189
20 190–199
21 200–300
22 300 +

3858 W. Liu et al.
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The usage of MLP NN includes two steps: training and prediction. MLP NNs are

typically trained using a supervised training algorithm known as ‘backpropagation’.

It is an error-based learning process. The learning process with the backpropagation

algorithm has three phases. In the first phase, an input vector is presented to the

network, which leads to the activation of the network as a whole. This generates a

difference (error) between the output of the network and the desired output. The

second phase computes the error between the output value and the desired value for

each output unit and propagates it successively back through the network (error

backward pass). The last phase computes the changes for the connection weights by

feeding the sum of squared errors from the output layer back through the hidden

layers to the input layer. This process continues until the connection weights in the

network have been adjusted so that the error between output value and target value

converges to an acceptable level. The second stage is to apply the trained network to

new data to make a prediction.

For an MLP NN, many parameters need to be set up to obtain an appropriate

performance. To simplify this process, we designed a three-layer-perceptron

network for all neural models in this study (figure 1), each of which has a different

number of hidden neurons. We adapt the MLP NN implemented in the WEKA data

mining system (Witten and Frank 2005) for model learning and testing. In this

study, the input is a vector that consists of the tasseled cap brightness, greenness and

wetness indices for the FIA plots and the output is the corresponding forest

successional stages.

3.1.3 Decision trees (DTs). DT algorithms were originally developed by Quinlan

(1993) and have been widely used in many different applications, including remote

sensing image processing (Friedl and Brodley 1997, Huang and Jensen 1997, Friedl

et al. 1999). A DT is a logical model represented as a binary (two-way split) tree that

shows how the value of a target (dependent) variable can be predicted by using the

values of a set of predictor (independent) variables. The structure of a typical DT is

shown in figure 2. The rectangular boxes shown in the tree are called ‘nodes’, each of

Figure 1. Three-layer fully connected multilayer perceptron (MLP) neural network. The
number of neurons at input layer is equal to the dimension of the input vector. The network
will have n output neurons if it is designed to distinguish n classes. The input layer and output
layer are connected by a hidden layer where patterns in the input layer are recognized.

Predicting forest successional stages 3859
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which represents a set of samples from the original dataset. Nodes that have child

nodes (nodes 1 and 3 in the example) are called ‘interior’ nodes. Nodes that do not

have child nodes (nodes 2, 4 and 5 in the example) are called ‘terminal’ or ‘leaf’

nodes. The topmost node (node 1 in the example) is called the ‘root’ node.

The divide-and-conquer approach is widely used to construct a DT for a

classification problem. First, the DT algorithm selects a variable and places it at the

root node. The selected attribute is determined by a certain statistic, such as entropy.

Then the DT applies a binary split that divides the samples in the root node into two

groups (child nodes). The same procedure is repeated recursively to split the child

nodes. The splitting process terminates when it reaches either of the two conditions:

(1) a few samples remain in a node; or (2) the standard deviation of the samples in a

node is just a small fraction (say, less than 5%) of that of the original sample. DT

models commonly overfit the data, which can limit its predictive potential. In the

current study we used a pruning technology that merges some of the lower leaves or

nodes to avoid the overfitting problem. Once a DT is created, we can use it to

predict the target value for specific samples where only the predictor variables are

known. Similar to LR and NN models, DTs use the spectral data from Landsat to

predict the FIA successional age classes.

3.2 Feature combination with multitemporal Landsat imagery

To fully understand how multitemporal Landsat images affect the predictive

accuracy of forest successional stages, we created six feature combinations as shown

in table 2. The 1997 image was used as the base image as the time of the image

acquisition best matches the time of FIA data collection. Therefore, the first feature

combination consists of the tasseled cap brightness, greenness and wetness indices

from the 1997 image. We continued adding additional images to create new feature

combinations. The last feature combination includes the tasseled cap brightness,

Figure 2. Classification scheme of decision trees.

3860 W. Liu et al.
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greenness and wetness indices from all four images, as well as the changes in these

indices between the 1984 and 1997 images. The feature combinations presented in

table 2 were tested using all three predictive models described above.

3.3 Model calibration and validation

To evaluate more efficiently and accurately the performance of each model, we used

a fivefold cross-validation technique, where the data are split five times, each time

into a training (calibration) and testing (validation) set. Samples are used only once

for training and testing purposes (Zhu and Rohwer 1996) and at no time are samples

used simultaneously for training and testing. Each split is done such that 80% of the

data are used for training, and the remaining 20% of the data are used for testing,

allowing for a true out-of-sample evaluation of the model. When testing is complete,

we base our evaluation of each model on the predictions from all five testing

samples.

During the study, we found several FIA plots whose recorded successional stage

appeared to be in disagreement with the observed spectral response recorded by

Landsat. The primary cause of this disagreement is probably the result of changes in

ground cover occurring directly before or after image acquisition. Based on past

experience (Song et al. 2002, 2007), we manually removed plots whose positions in

the spectral space were in obvious disagreement with the age class information

recorded by the FIA. To fully evaluate each predictive model we report our results

for both the original and cleaned datasets.

4. Results

4.1 Analysis of FIA and remote sensing data

The analysis of the mean tasseled cap brightness, greenness and wetness indices

extracted over the FIA plots shows that none of the predictive variable has a normal

distribution (table 3). The skewness indicates that the spectral variables are

misaligned either to the left or right with differing magnitudes. The correlation

analysis found that the relationships between successional age classes and the

independent variables are weak, particularly for the 1991, 1994 and 1997 wetness,

and the changes in greenness. This indicates that the LR model may have limited

accuracy in predicting forest age with the spectral variables in table 2.

To better understand how forest stand age and spectral signals are related, we

plotted all stands in the brightness and greenness spectral space constructed with the

1997 image (figure 3). The spectral data for each FIA sample is plotted as a symbol

Table 2. List of feature combinations for training and testing in predicting forest successional
stages using multiple regression, MLP NN and DT models.

Feature Independent variables

1 BGW of 1997
2 BGW of 1997 and 1994
3 BGW of 1997, 1994 and 1991
4 BGW of 1997 and 1984
5 BGW of 1997, 1994, 1991 and 1984
6 BGW of 1997, 1994, 1991 and 1984, changes in BWG between 1984 and 1997

B, brightness; G, greenness; W, wetness.
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that represents one of the three successional stages. While each stage appears to

occupy a dominate region of the spectral space (e.g. lower left corner for old growth,

upper right region for young stands and middle area for mature stands), it is obvious

that there is not a clear boundary where each stage is distinctly separate from the

others. As a result, accurate prediction of forest successional stage with spectral

information alone appears to be a difficult pattern recognition problem. There are

multiple sources of errors that may contribute to the noisy pattern observed in

figure 3, including, but not limited to, the accuracy of the age classes reported by the

FIA, the natural variation of stands with similar ages located in different geographic

positions, georegistration and atmospheric variations in the Landsat images, as well

as errors associated with FIA plot coordinates. All these sources of error contribute

to the noisy relationship between spectral data and forest stand age, leading to

erroneous predictions of the successional stage classes.

4.2 Multitemporal image classification

We tested the three predictive models with six feature combinations in table 2 to

understand the effect of using multiple Landsat images to predict forest successional

stages. To test model performance, we aggregated the 22 age classes in the FIA

dataset into three classes for use with the DT and MLP NN predictive models. As

regression requires the dependent variable to be continuous, we preserved the

variability in the ages for the regression model. We first built an LR model with 22

forest age classes. Then the predicted age classes were aggregated into the same three

age classes for comparison with DT and MLP NN. The results in figure 4 indicate

that the NN models consistently outperformed the DT models, although the latter

produced higher accuracy than the LR models when using all six feature

combinations. For all three methods tested, the prediction of forest successional

stages with a single image (year 1997) shows the lowest accuracy. The predictive

accuracy increases as each additional image is added. Both the NN and LR models

produce the highest accuracy (65.2% and 48.5%) when using feature 6 (table 2). One

Table 3. Results of statistical analysis for independent variables and their correlation
coefficients with stand ages.

Variable Mean Standard deviation Skewness Correlation with age

B84 0.2256 0.0909 2.088 20.51
G84 0.1753 0.0634 0.691 20.50
W84 20.0551 0.0430 21.991 0.33
B91 0.2620 0.0943 0.425 20.56
G91 0.2093 0.0730 0.513 20.56
W91 20.0528 0.0422 21.886 0.15
B94 0.2148 0.0777 0.775 20.53
G94 0.1707 0.0612 0.658 20.50
W94 20.0455 0.0385 22.198 0.22
B97 0.2065 0.0734 0.546 20.55
G97 0.1782 0.0592 0.504 20.54
W97 20.0380 0.0327 22.305 0.16
DB84297 20.0191 0.0650 23.294 0.10
DG84297 0.0029 0.0471 1.129 20.02
DW84297 0.0171 0.0407 0.853 20.22

B, brightness; G, greenness; W, wetness. B84 means brightness value of year 1984; DB84297
indicates change in brightness between 1984 and 1997 images; and so on.
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interesting finding is that the NN models built on features 4 and 5 (table 2) show

similar performances, indicating that after the 1997 and 1984 images are used, the

1991 and 1994 images do not contribute much in improving the prediction of forest

successional stages. Because forest succession is a gradual process, once the 1984

and 1997 images are used, the 1991 and 1994 images in the middle have little new

information to add, particularly for mature and old-growth stands. Overall, the DT

model using feature 4 achieved the highest predictive accuracy (61.2%) of any of the

models tested. This clearly shows the enhanced value of using 1984 and 1997 images

simultaneously in prediction forest successional stages compared to using any one of

them alone.

4.3 Age class resolution

As multitemporal images can improve predictive performance, we used feature 6 in

table 2 to assess the effects of age class resolution on prediction of forest successional

stage. This analysis is similar to section 4.2, except the LR, DT and MLP NN

predictive models are used with the features from table 2 to predict two aggregated

groupings of the forest successional classes (i.e. the three and five class groups

described earlier). The predictive accuracy of the three methods (figure 5) clearly

indicates that it is not practical to separate forest successional stages into 22 classes

using Landsat TM images. None of the predictive models can accurately predict all

22 successional stage classes. Not surprisingly, the accuracy improves dramatically

when successional stage classes are grouped into more general categories. The

highest overall accuracy was achieved when predicting three broad successional

Figure 3. Distribution of FIA plots in the brightness/greenness space of 1997 image as they
are aggregated to three successional stages: young (age,50 years), mature (age 512149 years)
and old (age.150 years).
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classes. Similarly, Cohen et al. (1995) concluded that categorizing forest successional

stages into more than three classes significantly reduced classification accuracy.

In this sense, it is likely that accuracy is reduced given the distribution of the

independent variables is not normal and the noise level in the data set is high. The

adjusted R2 value of the LR model is relatively low (0.39), indicating a weak overall

relationship between forest age and the spectral information captured by Landsat.

As the DT and MLP NN models do not require data to be normally distributed,

they typically perform better than linear models when data are noisy. This is

apparent as our results indicate that both the MLP NN and DT models do a better

job predicting forest successional stages (figure 4) from the relatively noisy Landsat

data.

4.4 Error analysis

One crucial reason for the relatively low accuracy in predicting forest successional

stages in this study is the nature of the dataset itself. There is a significant amount of

spectral overlap among the different successional stage classes (figure 3). To better

understand the forest successional stage prediction capability of the MLP NN model

and the nature of the spectral characteristics of the FIA dataset, we analysed the

error matrix based on feature 6 in table 2. The error matrix for the NN model is

Figure 4. Predictive accuracy of models with six feature combinations in table 2 and three
successional stages: young (age,50 years), mature (age 512149 years) and old (age.150
years).
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shown in table 4. With total accuracy of 65% and kappa statistics of 0.48, the model

predicted young and old stands more accurately than mature stands. Approximately

48% of mature stands were misclassified as either young or old stands. The spectral

separation between young and old stands is fairly good, resulting in fewer prediction

errors from one class to another. The error matrix of DTs with feature 6 in table 2 is

shown in table 5. Again we see higher user’s and producer’s accuracies for young

and old stands, but lower accuracies for mature stands. A similar pattern is seen in

the predictive results based on the LR model in table 6, but with a much lower

overall accuracy and kappa statistic.

To understand the nature of the error, we analysed the prediction results at the

finest class resolution (22 classes). Within the prediction results of the NN model

built on feature 6, each misclassified sample was counted based on its original class

label (22 classes). Figure 6 shows the distribution of the sample data through each of

the 22 age classes and the corresponding percentage of misclassified samples for

each class. As shown in figure 6, a higher percentage of misclassification occurs at

the class transition stages (age classes 5, 6, 7 and 8 represent the transition from

young to mature; age classes 14, 15 and 16 represent the transition from mature to

old). Relatively low misclassification rates occur for very young and very old stands.

Figure 5. Predictive accuracy for FIA plots in 3, 5 and 22 classes for feature 6 in table 2.

Table 4. Error matrix of MLP NN prediction (three successional stages) with the feature 6 list
in table 2. The total accuracy is 0.65 with the kappa statistic 0.48.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 326 113 23 462 0.71
Class 2 108 231 102 441 0.52
Class 3 44 68 302 414 0.73
Total 478 412 427 1317
User’s accuracy 0.68 0.56 0.71
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This finding matches the natural characteristics regarding the spectral response of

forests. Stands with similar successional stages have similar canopy structure, and

thus have similar spectral signatures. The spectral similarity of stands in different

successional stage classes results in erroneous predictions.

Applying the models to the cleaned FIA dataset with feature 6 from table 2, we

found that the overall prediction accuracy of the three successional stage classes

Table 5. Error matrix of DTs prediction (three successional stages) with the feature 6 list in
table 2. The total accuracy is 0.59 with the kappa statistic 0.39.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 289 133 40 462 0.63
Class 2 110 212 119 441 0.48
Class 3 45 88 281 414 0.68
Total 444 433 440 1317
User’s accuracy 0.65 0.49 0.64 0.59

Table 6. Error matrix of LR prediction (three successional stages) with the feature 6 list in
table 2. The total accuracy is 0.49 with the kappa statistic 0.23.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 98 359 5 462 0.21
Class 2 46 329 66 441 0.75
Class 3 15 187 212 414 0.51
Total 159 875 283 1317
User’s accuracy 0.62 0.38 0.75 0.49

Figure 6. Distribution of errors and sample size with 22 age classes. The grey bars indicate
the percentage of wrong prediction of the samples within the age class. The black bars indicate
the percentage of sample size of the total plots.
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improved from 65% to 71% for MLP NN (table 7), from 59% to 64% for DT

(table 8), and from 49% to 55% for LR (table 9). The most dramatic improvement in

both the user’s and producer’s accuracies was observed for young stands as the

cleaning removed those plots that are labelled as mature or old stands in the FIA
dataset but are young in the image as a result of change on the ground.

5. Discussion

5.1 The importance of forest age in ecosystem functions

Ecosystem functions are closely related to forest successional stages, particularly in

the forest’s ability to sequestrate carbon from the atmosphere (Harmon et al. 1990,

Chen et al. 2002, Pregitzer and Euskirchen 2004), and its value in protection of other
species (Dobson et al. 1997) and conservation of fresh water resources (Jones and

Grant 1996, Watson et al. 1999). Young fast-growing forests, as in our study area,

have high potential to sequester large amounts of carbon (Song and Woodcock

2003a) whereas old-growth forests typically store very large amounts of carbon.

Although their capacity of additional carbon storage may be limited, disturbance of

old-growth forests can lead to the rapid release of large quantities of carbon to the

atmosphere that require many years to recover to equilibrium (Harmon et al. 1990,

Korner 2003). Old-growth forests also provide suitable habitat for species such as

Table 7. Error matrix of MLP NN prediction (three successional stages) with the feature 6 list
in table 2 and cleaned dataset. The total accuracy is 0.71 with the kappa statistic 0.56.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 271 64 17 352 0.77
Class 2 54 195 98 347 0.56
Class 3 12 58 263 333 0.79
Total 337 317 378 1032
User’s accuracy 0.80 0.62 0.70

Table 8. Error matrix of DT prediction (three successional stages) with the feature 6 list in
table 2 and cleaned dataset. The total accuracy is 0.64 with the kappa statistic 0.46.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 260 66 26 352 0.74
Class 2 79 157 111 347 0.45
Class 3 21 68 244 333 0.73
Total 360 291 381 1032
User’s accuracy 0.72 0.54 0.64

Table 9. Error matrix of LR prediction (three successional stages) with the feature 6 list in
table 2 and cleaned data set. The total accuracy is 0.55 with the kappa statistic 0.33.

Class 1 Class 2 Class 3 Total Producer’s accuracy

Class 1 122 226 4 352 0.35
Class 2 31 242 74 347 0.70
Class 3 0 125 208 333 0.62
Total 153 593 286 1032
User’s accuracy 0.80 0.41 0.73
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the spotted owl and red tree vole that are listed as threatened or endangered species

(Lamberson et al. 1992). Thus, accurate maps of forest successional stage classes

over a large area would be of great value for planning environmental protection and

conservation efforts. Such maps, however, are rarely available. Although the

accuracy of our prediction of forest successional stages is far from satisfactory, it is a

major step forwards as both the training data and the imagery are widely available.

5.2 Complexity of the data set

Our study revealed that noise in the training data is a major source of error in

predicting forest successional stages. In spectral space, data samples of different

forest ages are heavily mixed, causing difficulty in separating forests into distinct age

classes. This may be caused by several factors. One might be errors in recording

forest ages during field data collection. This can add noisy information to the data

and further mislead models causing serious misclassification problems. A second

factor is the timing of field data collection in relation to the ground-cover changes

associated with forest thinning or clearcutting. Differences between significant

ground-cover changes in relation to FIA and image acquisition will add noise to the

spectral signature associated with forest age. In addition, there are large natural

variations in the spectral response for stands of similar ages. Spectral differences

arise when stands of similar age and canopy structure are located at different

geographic positions (i.e. slope, aspect). These differences result in added noise,

further complicating the prediction of forest successional stage classes. It is not

surprising, then, that the prediction accuracy is lower for forest successional stages

than for traditional land-cover classifications, which typically focus on predicting

ground features with distinctly different spectral responses (e.g. forest vs. urban).

Although the highest prediction accuracy in our study is around 65% (which is

typically lower than most land-cover classifications), the results demonstrate the

characteristics of FIA data and show the potential of mapping forest successional

ages over a large area with Landsat data. Our study also demonstrates how

prediction accuracy can be improved by cleaning FIA data before model

development.

5.3 Model characteristics

LR is a popular statistical tool and can generate robust empirical predictive models.

Its popularity may be attributed to the interpretability of model parameters and ease

of use. However, LR models assume normal distribution of the dependent variables

with respect to independent variables. This assumption may not always be true for a

given dataset. In addition, LR models are not appropriate for use when

relationships are nonlinear in nature. Thus, the use of both MLP NNs and DTs

are appealing for a number of reasons:

N They are rich and flexible nonlinear systems that show robust performance in

dealing with noisy data and have the ability to discover hidden patterns

automatically from input data.

N They may be better suited than linear modelling systems to predict outcomes

when the relationships between the variables are complex, multidimensional

and nonlinear, as found in the complex and noisy forest successional stage

dataset.

N There is no need for assumptions about data distribution, such as normality.
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The construction of NN architecture, however, is a complex ‘trial–test’ process and

there are no set methods for it. Another limitation of NN models is that the

contribution of each variable to the model cannot be easily calculated and presented

as they are in regression models. NN analysis generates weights that are implicitly

stored inside the network architecture. The lack of interpretability at the level of

individual variables (predictors) is one of the most criticized features in NN models.

Compared to MLP NNs, DTs have several advantages:

N They are simple to understand and interpret.

N They use a white box model. If a given result is provided by a model, the

explanation for the result is easily replicated by simple mathematics.

N Symbolic rules (IF-THEN like) can be automatically extracted from the

learned trees for better explanation of the predictive outcomes and decision-

making process.

All the advantages of NN and DT models favour their use over linear models for

predicting forest successional stages. There is, however, no single algorithm that

performs better than all other algorithms. To this end, there is room for much more

work to be done before a definite conclusion can be reached.

6. Conclusions

Our study revealed the complexity of predicting forest successional stages with

optical satellite imagery acquired by the Landsat sensor. While there is great

potential in using FIA plot data to train models for predicting broad successional

stages of conifer forests, it seems that overlap in spectral space will probably

preclude the prediction of finer groupings of successional stage classes with

optical imagery. Our results indicate that multitemporal remotely sensed Landsat

imagery improves the predictive accuracy with all three models used in this study:

LR, NN and DT. Because of the spectral overlap and the non-normal distribution

of the independent variables, LR models had the lowest overall predictive

accuracy. DT and MLP NN models, however, were more successful at predicting

forest successional stages as they do not require data with normal distributions

and can more effectively handle the noise commonly associated with the spectral

response of forests sampled over broad age class continuums. In addition,

cleaning data to remove plots with obvious successional stage/spectral mismatches

will help to ensure that FIA data are best utilized during model development,

ultimately resulting in improved predictive accuracy of forest successional stage

classes.
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