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Abstract: The long history of gradient analysis is anchored in the observation that species turnover can be described
along elevation gradients. This model is unsatisfying in that elevation is not directly relevant to plants and the ubiqui-
tous “elevation gradient” is composed of multiple intertwined environmental factors. We offer an approach to landscape-
scale vegetation analysis that disentangles the elevation gradient into its constituent parts through focused field sam-
pling and statistical analysis. We illustrate the approach for an old-growth watershed in the Oregon Western Cascades.
Our initial model of this system supports the common observation that forest community types are highly associated
with specific elevation bands. By replacing elevation and other crude environmental proxy variables with estimates of
more direct and resource gradients (radiation, temperature, and soil moisture), we create a vegetative model with stron-
ger explanatory power than the proxy model in both cross-validation analysis and validation using an independent data
set. The resulting model is also more biologically interpretable, which provides more meaningful insight into potential
forest response to environmental change (e.g., global climate change scenarios). Acquiring a better mechanistic under-
standing of the relationship between plant communities and environmental predictor variables presents the next great
challenge to community ecologists conducting gradient studies at landscape scales.

Résumé : L’analyse de gradient s’appuie depuis toujours sur le fait que le renouvellement des espèces peut être décrit
en suivant des gradients d’altitude. Ce modèle n’est pas satisfaisant puisque l’altitude n’est pas directement pertinente
pour les plantes et que le terme omniprésent « gradient d’altitude » est composé de multiples facteurs environnementaux
entremêlés. Les auteurs proposent une approche d’analyse de la végétation à l’échelle du paysage qui décompose le
gradient d’altitude en ses parties constituantes en ciblant l’échantillonnage de terrain et l’analyse statistique. Ils illustrent
cette approche à partir d’un bassin versant composé de vieux peuplements de l’ouest des Cascades, en Oregon. Leur
modèle initial de ce système est en accord avec l’observation courante que les types forestiers sont étroitement associés
aux bandes spécifiques d’altitude. En remplaçant l’altitude et d’autres variables environnementales indirectes par des es-
timations de gradients de ressources plus directs (radiation, température et humidité du sol), ils créent un modèle de
végétation ayant un pouvoir explicatif plus grand que celui du modèle indirect, ce qui a été vérifié dans les cas d’une
analyse de validation interne et d’une validation à l’aide d’un fichier de données indépendantes. Ce modèle facilite aussi
l’interprétation biologique des résultats, ce qui permet d’approfondir nos connaissances sur la réaction potentielle de la
forêt en fonction de changements environnementaux (p. ex., des scénarios de changement global du climat). L’acquisition
d’une meilleure compréhension fonctionnelle des relations entre les communautés végétales et les variables environne-
mentales de prédiction constitue le prochain grand défi pour les écologistes des populations qui s’intéressent aux études
de gradient à l’échelle du paysage.

[Traduit par la Rédaction] Lookingbill and Urban 1753

Introduction

The Humboldtian tradition of gradient analysis in forest ecol-
ogy involves the association of communities of co-occurring
species with various descriptors of the environmental tem-
plate. The results of these studies are often projected into an
aspatial parameter space derived from environmental “proxy”
variables. For example, Whittaker (1956, 1960, 1967, 1978)
and a host of others (reviewed by Stephenson 1990) have ar-

rayed species or vegetation types as distinct domains within
an environmental setting defined by the principal axes of el-
evation (an estimator of temperature) and a variety of estima-
tors of plant-available moisture (usually related to exposure).

Many practical applications of these models require their
rendering in a spatial context (Franklin 1995). An example
of this approach and its implications is found in the global
change literature, where several studies have predicted the
spatial displacement of vegetation communities along eleva-
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tion gradients in response to a warming climate (Peters and
Darling 1985; Fujiware and Box 1999). In light of these pre-
dictions, some have argued for specific management re-
sponses, such as the design of networks of forest reserves
that incorporate elevation and latitudinal gradients to allow
for future species migration (Noss 2001).

In evaluating model predictions of species range shifts, it
is important to bear in mind that although elevation may be
strongly correlated with forest pattern, elevation differences
are not responsible for the distribution of forest species.
Trees do not respond directly to elevation, but rather to vari-
ables such as temperature and precipitation that covary with
elevation. Relying on correlations with indirect gradients such
as elevation to predict future vegetation patterns becomes
complicated if some of the factors underlying the gradient
change while others do not. For example, temperature may
increase in response to rising atmospheric CO2 levels, but
precipitation (which is also a function of elevation) is likely
to have a much more spatially variable response (IPCC 2001),
and other environmental factors (e.g., soil properties, hillslope
topography) are unlikely to change at all. Observed correla-
tions between species distributions and elevation, therefore,
may be insufficient to predict forest response to climate
change (Halpin 1997; Urban et al. 2000).

Austin and Smith (1989) have long argued that indirect
environmental proxy variables should be replaced in com-
munity ecology studies with variables representing resource
and environmental gradients that have a direct physiological
impact on plant biology. Yet the literature is replete with ref-
erences to species associations with indirect environmental
gradients that are merely correlative (Austin 1987; Hobbs
1997). Only a small handful of gradient analysis studies
(e.g., Gagnon and Bradfield 1987; Allen et al. 1991; Ohmann
and Spies 1998; Bunn et al. 2005) have attempted to quantify
and relate direct and resource gradients such as temperature
and moisture to plant community pattern. As a consequence,
ecological theory over the past few decades has stressed the
importance of temperature and moisture as independent factors
in explaining forest pattern on one hand, while empirical
studies continue to apply elevation-based inference of pat-
tern on the other.

This incongruity can be explained by the great difficulty
in describing the variability in direct environmental gradi-
ents at the landscape scale, the operational unit of most gra-
dient analysis studies. Intensive fine-grain studies are able to
capture complex patterns in temperature and soil moisture
explicitly (e.g., Yeakley et al. 1998), while much of the detail
averages away at regional to global scales (e.g., Neilson 1991).
Conventional empirical methods are poorly suited, however,
to gathering fine-resolution information on the distribution
of these variables at extents of kilometres to tens of kilo-
metres (Chen et al. 1999). To meet the growing demands of
environmental managers, vegetation models must be generated
at these landscape scales (Christensen et al. 1996); therefore,
modelers are forced to rely on the ubiquitous elevation gra-
dient to parameterize their models.

We offer an approach to landscape-scale vegetation analysis
that disentangles the indirect elevation gradient into its con-
stituent parts through focused field sampling and statistical
modeling. We illustrate the approach with an examination of
the spatial transition in community dominance from the Tsuga

heterophylla (Raf.) Sarg. (western hemlock) to Abies amabilis
(Dougl. ex Loud.) Dougl. ex Forbes (Pacific silver fir) vege-
tation zones in the Oregon Western Cascades. Historically,
this transition has been described along an altitudinal band
between 1000 and 1200 m (Fonda and Bliss 1969; Franklin
and Dyrness 1988; Franklin and Halpern 2000), but efforts
to identify the causes of the transition have been minimal.
The relatively few studies that have focused on describing
mechanisms for this transition have differed in their empha-
sis of underlying control factors. Krajina (1969), for example,
suggested that low drought tolerance limited the distribution
of A. amabilis and described the transition from T. heterophylla
to A. amabilis along a gradient of increasing precipitation.
Thornburgh (1969) argued that the influence of snowpack
on T. heterophylla seedlings was critical to the transition.
Zobel et al. (1976) proposed that the T. heterophylla and
A. amabilis vegetation zones could be differentiated by an
index of temperature, which was used by Packee (1990) to
suggest that T. heterophylla was physiologically limited at
low temperatures.

The competing postulates have different implications under
greenhouse warming scenarios. For example, an ecotone formed
primarily by differences in physiological response to temper-
ature may respond linearly to changes in temperature, while
an ecotone maintained primarily by drought tolerances may
react less predictably to temperature shifts. An improved un-
derstanding of the direct and resource gradients underlying this
community transition is needed to assess the potential im-
pacts of changes in climate or management. In this study, we
develop a predictive model of the T. heterophylla – A. amabilis
ecotone based on modeled environmental variables (temper-
ature, soil moisture, and radiation) that have a direct physio-
logical influence on plant processes. We compare this model
to one based entirely on indirect topographic variables (ele-
vation, topographic convergence, and aspect) and discuss the
differences with respect to global warming scenarios.

Materials and methods

Study area
The H.J. Andrews Experimental Forest (HJA) is located

80 km east of Eugene, Oregon, on the west slope of the Cascade
Mountains. At the time of its designation as an experimental
watershed in 1948, the HJA was an intact forest with about
65% of the land in old-growth stands (i.e., 400–500 years
old). Since that time, old-growth forest has been reduced to
approximately 40% of the total area, and it has been adopted
into the Long Term Ecological Research (LTER) network
(Cissel et al. 1999). The 6400-ha LTER site ranges in eleva-
tion from 410 to 1630 m (McKee 1998).

Ohmann and Spies (1998) argued that large-scale climatic
factors are more important than soil variability in controlling
vegetation in this region. Pseudotsuga menziesii (Mirb.) Franco
(Douglas-fir), T. heterophylla, and Thuja plicata Donn ex D.
Don (western redcedar) are the dominant species at lower el-
evations, while A. amabilis, Abies procera Rehd. (noble fir),
and Tsuga mertensiana (Bong.) Carr. (mountain hemlock)
dominate upper elevations (Franklin and Dyrness 1988). Cli-
mate is characteristic of the Pacific Northwest, with dry
summers and wet winters. Annual precipitation ranges from
2200 mm at the base of the catchment to 3400 mm at upper
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elevations, with less than one-tenth of total precipitation falling
during the summer growing season (Grier and Logan 1977).
Soils are mostly deep, well-drained Inceptisols derived pri-
marily from colluvial and residual parent materials. Textures
range from gravelly, silty clay loam to very gravelly clay loam.
Rooting occurs almost entirely in the upper 200 cm of soil.

Data
We collected georeferenced data on vegetation and site

characteristics at a total of 175 plots (Fig. 1). The initial
analyses were conducted on 164 of these plots, which were
sampled from 1997 to 1999. The remaining 11 plots were
sampled in 2002 in areas deemed most difficult to classify
by the models and were used primarily for model validation.
All plots were located exclusively in old-growth forest com-
munities using a stratified-cluster sampling design, whereby
clusters of 20 m × 20 m (0.04 ha) plots were distributed
along transects across the landscape. Stratified clusters have
been shown to be more efficient at capturing fine-scaled pat-
tern over large extents than either random or stratified random
sampling (Urban et al. 2002). Clusters consisted of three or
four plots located at random distances (<100 m) and random
azimuths from cluster center points along the transects. Clus-
ter center points were separated by 200–400 m. Transects
were separated by hundreds to thousands of metres.

Samples were intended to represent a homogeneous slope
facet, so the plots were oriented on the slope with the base-
line of the plot running across the slope and the left edge of
the plot aligned in the direction of maximum slope. Each
tree with a diameter at breast height (dbh, 1.37 m) greater

than 2.5 cm was tallied and its dbh and species identity re-
corded. Tree diameters were converted to basal area (cross-
sectional area at breast height), and basal area was summed
over each species at each plot.

Physical proxy variables: aspect, elevation, and
topographic convergence

Aspect, elevation, and topographic convergence (common
proxies for radiation, temperature, and soil moisture) were
used to construct the first of two alternative models describing
the distribution of forest tree community types. The lower-
left corner of each plot was staked and its position recorded
with a global positioning system unit. The locational data
were used to extract the proxy measures from a 10-m resolu-
tion digital elevation model. Aspect was transformed to a
more direct measure of radiation load on a scale of –1.0
(northeast-facing slopes) to 1.0 (southwest-facing slopes)
(TAspect = –cos(45 – Aspect); after Beers et al. 1966). A top-
ographic convergence index (TCI; Beven and Kirkby 1979)
was also derived from the digital elevation model to describe
relative wetness. We will refer to these terrain-based indices
as “physical proxies” for environmental variables.

Plant-relevant variables: radiation, temperature, and
soil moisture

The second model was constructed using more direct esti-
mates of the environmental factors that potentially influence
the distribution of forest communities: temperature, radia-
tion, and soil moisture. We will refer to these measures as
“plant-relevant variables”. The specific models used to cre-
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Fig. 1. Locations of 175 sample plots in the H.J. Andrews Experimental Forest. Sampling of vegetation was conducted in old-growth
stands, stratified across elevation, slope and aspect, and vegetation type. Shading indicates decreasing elevation with increasing shading.
Elevation ranges from 410 to 1630 m. Filled circles indicate 11 sample plots used for model validation.



ate spatially explicit estimates of these factors are briefly
summarized below and described in greater detail elsewhere
(Lookingbill and Urban 2003; Lookingbill and Urban 2004;
Pierce et al. 2005).

We developed and used a simple geographic information
system (GIS) algorithm to describe the spatial distribution of
summer radiation within the catchment. This algorithm cap-
tures both local hillshading effects and the temporal variability
in sun angle over the course of the day and year. In model
comparison testing (Pierce et al. 2005), 1000 randomly se-
lected points from a data-intensive, computationally rigorous
radiation model of the HJA (Smith 2002) were more highly
correlated with estimates from our GIS-based model (r2 = 0.59)
than with the proxy variable, transformed aspect (r2 = 0.20).

We also used GIS data to locate stratified field samples of
temperature and soil moisture and to build local regression
equations for estimating the spatial distribution of these
variables for the HJA watershed. The temperature model
extrapolates relative differences in monthly mean tempera-
ture measurements, as recorded in July 2000, using a sam-
pling network of 45 portable dataloggers. The dataloggers
were stratified across major watershed units, elevation, as-
pect, and distance from stream. Likelihood ratio tests of
competing nested models identified the most parsimonious
statistical model. This model reduced the prediction error of
an independent validation data set recorded in July 1999 (N =
33, the majority of which were located on vegetation plots
included in this study) by over 30% when compared to a
lapse rate model using only elevation to predict temperature
(Lookingbill and Urban 2003).

We estimated soil moisture using a statistical description
of 88 synoptic volumetric moisture measurements collected
during a critical period of summer drought (4 July 2001).
The model incorporates both macroscale (climate) and meso-
scale (drainage) influences on the water balance and recreates
the characteristic spatial scaling of soil moisture in geo-
statistical variogram analysis (Lookingbill and Urban 2004).
Importantly, it incorporates both the positive (climate) and
negative (drainage) relationships between moisture and eleva-
tion. We collected 114 validation samples the following year,
and these data were more strongly correlated with predic-
tions from the statistical model (r2 = 0.33) than with either
TCI (r2 = 0.16) or output from RHESSys (Band et al. 1991), a
process simulation model parameterized for the HJA (r2 =
0.23).

Each of the environmental models was designed to de-
scribe spatial patterns in plant-relevant environmental vari-
ables specifically for vegetation analysis; therefore, we did
not expend the effort to account for the comprehensive suite
of processes that influence radiation, temperature, and soil
moisture variability. The models provide improved estimates
of plant-relevant environmental variables given advancements
in technology, data accessibility, and statistical theory, but
are purposively kept simple enough for the methods to be
easily translated to most montane systems. It is important to
note, however, that the models are meant to provide relative
differences only. The estimates are properly used to describe
locations that are warmer–cooler, wetter–drier, and sunnier–
shadier. The numerical estimates provided in this analysis
should be interpreted in that context (e.g., plots with mean
July 2000 temperatures greater than 14 °C = warmer sites).

Analyses
Community ecologists have shown an affinity for combin-

ing complementary analytical methods to improve the inter-
pretability or robustness of their analyses. The chief tools in
this, by far, have been clustering and ordination (Whittaker
1967; Gauch 1982; Pielou 1984; Jongman et al. 1995). This
combination of methods can be used to identify discrete
community types, whose relationships with environmental
gradients can be explored in ordination space. Classification
and regression tree (CART) analysis offers a rather new and
compelling alternative to ordination for exploring differences
among groups (Breiman et al. 1984; Moore et al. 1991;
Vassières et al. 2000). We rely on the complementary tools
of clustering and classification tree analysis to define the
forest communities of the HJA and to describe the associa-
tion of these communities with the environmental template.

Community identities
Hierarchical clustering analysis was used to identify natu-

ral breaks indicative of major community types in the 164
plots sampled from 1997 to 1999 (Sneath and Sokal 1973).
This analysis is highly dependent upon the choice of dis-
tance measure used to assess group similarity and the link-
age criteria used to determine the distance between groups
for joining purposes (Legendre and Legendre 1998). We used
the Bray–Curtis index (Bray and Curtis 1957) as the distance
measure, because this index has been shown to perform well
with compositional data (Legendre and Legendre 1998; McCune
and Grace 2002). We used unweighted pair-group method
with arithmetic means (UPGMA; Sneath and Sokal 1973) as
the joining criteria, because it minimized the amount of chaining
in the analysis (5.6%). Chaining, the sequential addition of small
groups to a few large groups, can cause considerable difficul-
ties in clearly defining subgroups (McCune and Grace 2002).

Indicator Species Analysis (ISA) was used to assign spe-
cies to the group for which they had the highest indicator
value (Dufrene and Legendre 1997). Indicator values com-
bine information on species relative frequency and relative
abundance in different groups. Relative frequency was calcu-
lated as the percentage of plots in which a species was pres-
ent for a given group. Relative abundance was calculated as
the average basal area of a species in a given group of plots
divided by the average basal area of that species in all plots.
Statistical significance of group assignment was tested by
Monte Carlo simulation with 1000 permutations.

In addition, ISA was used to determine the appropriate
number of groups to be used in the final classification, as
suggested by Dufrene and Legendre (1997). Because groups
are defined at multiple levels in hierarchical clustering algo-
rithms, choosing a meaningful level of clustering can present
a challenge for which ISA can serve as a useful tool. Indica-
tor values are low for poorly defined clusters and typically
peak at an intermediate level of clustering. By plotting the
sum of the indicator values for all the species versus the
level of clustering, we determined the level of clustering that
maximized the group differentiation. We used this level of
classification for all subsequent analyses.

Community associations
To determine how the environmental variables influence

the distribution of community types, we created classifica-
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tion trees of the species groups using the physical proxy and
plant-relevant environmental data as predictor variables. CART
analysis is the recursive partitioning of a data set into in-
creasingly homogenous subsets (Breiman et al. 1984; De’ath
and Fabricius 2000; Urban 2002). Applied to a categorical
response variable (here, community types), the goal of a
classification tree is to partition the samples such that each
node of a treelike diagram comprises only one group type.
At each branch of the partitioning, the environmental vari-
ables are examined to find the best variable to separate groups.

The technique offers several attractive qualities. First, the
interpretation of the tree is rather intuitive and can be easily
implemented into a GIS for visualization of the results (Moore
et al. 1991; Urban et al. 2002). Second, it is non- parametric
and recursive and thus can handle a variety of ecological sit-
uations that are unwieldy using conventional linear classifi-
cation models (see Vassières et al. (2000) for a comparison
to other models). For example, because each branch of the
tree is defined independently of other branches and the deci-
sion rules rely on no assumptions regarding the underlying
model structure, a given group (e.g., T. heterophylla) may ap-
pear on multiple branches of the tree, each branch representing
alternative (possibly compensatory) environmental conditions
under which that group occurs.

Unfortunately, the high degree of precision with which
CART analysis can classify a data set frequently results in
an overfitting of the model to most ecological data (Legendre
and Legendre 1998). The resulting model may explain the
input data extremely well, but be too specific to those data to
be generalized to broader patterns. To account for this ten-
dency to overfit, we split the initial 164 plots into 10 roughly
equal parts for cross-validation analysis (Venables and Ripley
2002). We generated cross-validated trees using combinations
of nine of the parts and tested them with the excluded part.
Classification errors were then determined from an average
of the 10 cross-validated trees. The effect of this cross-
validation was to penalize classification trees that overfit the
data. We assessed the branching patterns on our final trees to
identify splits that caused an increase in the cross-validation
misclassification rate. In addition, we conducted a validation
of the complete classification trees with the 11 independent,
“difficult to classify” samples that were collected in 2002.
Based on these validation criteria, we compared the CART
model using the indirect physical proxy variables as explan-
atory factors with the model using radiation, temperature,
and soil moisture. All models were generated using the RPART

library (Therneau and Atkinson 1997) in S-plus version 6.1
(Insightful, Seattle).

Results

Dominant tree species are provided in Table 1, along with
the basal area, density, and frequency of occurrence of each
species observed in the 164 sample plots. None of the other
species sampled contributed as much as 1% to the total basal
area observed in the sampling, and these rarer species were
excluded from the analyses. Pseudotsuga menziesii was by
far the greatest contributor to total basal areas (nearly 60%),
while T. heterophylla contributed the most to total density
(32%).

The sum of the indicator values across all seven species
was maximal for the four-cluster solution (Table 2). The four
major communities can be described as follows:
(1) Tsuga heterophylla – P. menziesii group (TSHE): char-

acterized by T. heterophylla and P. menziesii. Thuja plicata
and Taxus brevifolia present about 50% of the time in
this group and never found in the other three communi-
ties.

(2) Abies procera group (ABPR): indicated by A. procera
with some A. amabilis and P. menziesii. Small number
of T. heterophylla also commonly observed.

(3) Abies amabilis group (ABAM): dominated by A. amabilis
with T. mertensiana and A. procera often represented.

(4) Tsuga mertensiana group (TSME): indicated by T. merten-
siana with A. amabilis also present but in lower abun-
dance. No other species common.
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BA (m2/ha)

Scientific name Common name Frequency (%) Density (no./ha) Mean Max. SD

Abies amabilis Pacific silver fir 42.7 173.6 5.2 57.9 10.7
Abies procera Noble fir 24.4 47.6 6.0 96.4 16.0
Pseudotsuga menziesii Douglas-fir 78.0 110.1 50.5 168.2 42.6
Taxus brevifolia Pacific yew 40.9 58.4 0.9 13.3 2.2
Thuja plicata Western redcedar 38.4 52.7 5.2 83.1 12.2
Tsuga heterophylla Western hemlock 82.9 231.4 15.5 71.0 16.6
Tsuga mertensiana Mountain hemlock 13.4 42.2 2.6 107.8 12.1

Note: BA, basal area; SD, standard deviation.

Table 1. Seven dominant species observed on 164 plots in the H.J. Andrews Experimental Forest used to con-
struct the models.

Group N Species
Indicator
value

TSHE 130 Tsuga heterophylla 80
Pseudotsuga menziesii 57
Taxus brevifolia 54
Thuja plicata 50

ABPR 11 Abies procera 84
ABAM 18 Abies amabilis 64
TSME 5 Tsuga mertensiana 89
Mean 68

Note: Species were assigned to the group for which they
had the largest indicator value.

Table 2. Group membership assignment for four-
cluster solution.



The first CART analysis, based on physical proxies, indicated
that elevation and transformed aspect were the environmen-
tal variables that most strongly sort the four communities
(Fig. 2). Elevation was the strongest predictor variable, sepa-
rating the T. heterophylla – P. menziesii community from the
high-elevation species at the first branch of the tree (though
nine T. heterophylla – P. menziesii plots were found at eleva-
tions greater than 1242 m). Misclassification rates provide a
measure of the ability of the model to discriminate among
groups (Table 3). Total misclassification in the model was
10.4%, most of which was at the A. procera end node.

In the second CART model, we examined the ability of
our modeled estimates of the plant-relevant variables tem-
perature, soil moisture, and radiation to explain patterns in
community composition (Fig. 3). Temperature was the strongest
predictor variable in this classification tree, and three distinct
zones were identified: (1) a high-temperature zone (mean July

2000 temperature greater than 14 °C) in which all but 1% of
the plots were T. heterophylla – P. menziesii; (2) a low-temperature
zone (mean July 2000 temperature less than 13.4 °C) in which
none of the plots were T. heterophylla – P. menziesii; and
(3) a zone in between these two temperature extremes in
which T. heterophylla – P. menziesii plots were found mixed
with A. procera (in areas of high radiation) and A. amabilis
(in areas of low radiation). The total misclassification rate
for this model was 11.0%, with better prediction of the ac-
tual T. heterophylla – P. menziesii plots and worse predic-
tion of the A. amabilis plots than for the proxy variable
model (Table 4).

Because classification tree models are developed through
recursive partitioning, error rates can be calculated for mod-
els of increasing complexity (i.e., more splits in the tree).
The models using the two different sets of predictor vari-
ables had similar decreases in error rates with increasing
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Fig. 2. Classification tree from classification and regression tree
(CART) analysis using environmental proxy variables based on
topography. Groups were defined by a clustering analysis and are
described in the text and in Table 2. Length of branch corre-
sponds to the amount of variance explained by that variable. Pa-
rentheses at terminal nodes provide the misclassification errors as
number misclassified divided by total N in node.

Predicted group Total

Actual
group TSHE ABPR ABAM TSME Corr. Misclass.

TSHE 121 8 1 — 121 9
ABPR — 9 1 1 9 2
ABAM 1 3 13 1 13 5
TSME — 1 — 4 4 1

Note: Rows are actual community types, columns are predicted commu-
nity types. Row totals are listed as number correct (corr.) and number
misclassified (misclass.). Total misclassification rate is 10.3%. See Table 2
for description of community types.

Table 3. Misclassification matrix for four community types
based on environmental proxy model.

Fig. 3. Classification tree from classification and regression tree
(CART) analysis using modeled estimates of summer radiation,
temperature, and soil moisture as potential explanatory variables.
Groups were defined by a clustering analysis and are described
in the text and in Table 2. Length of branch corresponds to the
amount of variance explained by that variable. Parentheses at ter-
minal nodes provide the misclassification errors as number
misclassified divided by total N in node.

Predicted group Total

Actual
group TSHE ABPR ABAM TSME Corr. Misclass.

TSHE 123 7 — — 123 7
ABPR — 8 1 2 8 3
ABAM 6 1 10 1 10 8
TSME — — — 5 5 0

Note: Rows are actual community types, columns are predicted commu-
nity types. Row totals are listed as number correct (corr.) and number
misclassified (misclass.). Total misclassification rate is 11.0%. See Table 2
for description of community types.

Table 4. Misclassification matrix for four community types
based on plant-relevant explanatory model.



model complexity (Fig. 4). However, the cross-validation er-
ror was much higher for the model using the indirect proxy
variables (Fig. 5), suggesting that this model overfit the data
below the second split in the tree. In addition, nearly all the
validation plots (9 of 11) were misclassified by the proxy
model, while only 3 of 11 validation plots were misclassified
by the plant-relevant model.

Discussion

An underlying tenet of many climate-change predictions
is that elevation acts as a proxy for temperature in ecological
systems (Peters and Darling 1985). For years, ecologists have
called for the use of direct and resource gradients in describ-
ing forest vegetation patterns to test these types of assump-
tions (Austin and Smith 1989, and many others). However,
efforts to infuse more physiologically meaningful data into
gradient studies were hindered by the difficulty of collecting
these data at fine resolutions over large spatial extents. As a
result, theoretical and simulation modeling (e.g., Urban et al.
1993) have been the best and often only options to represent

the relationships between forest vegetation and factors such
as temperature, soil moisture, and radiation. Recent advances
in data collection technology, sampling methodology, and
GIS-based modeling have greatly enhanced the ability to
capture detailed environmental variability across large areal
extents. Our study serves as an example of how these ad-
vances can provide valuable information for testing and re-
fining gradient analysis models.

Model comparison of community associations
The communities characterized by the cluster analysis in

our study agree with the published sorting of forest tree spe-
cies within this watershed (Dyrness et al. 1974; Zobel et al.
1976). Classification tree analysis is specifically designed to
distinguish among the different group types by addressing
the companion questions: (1) Are plots that are compositionally
dissimilar also different in terms of their environmental at-
tributes? (2) If so, which environmental variables best differ-
entiate the groups (Urban 2002)? The CART analysis with
physical proxy variables supports the existing community model
(e.g., Franklin and Dyrness 1988) that the T. heterophylla –
P. menziesii community is found below approximately 1250 m,
T. mertensiana is found above approximately 1450 m, and in
between these elevations is found a mix of A. amabilis,
A. procera, and T. heterophylla – P. menziesii. The results il-
lustrate two of the benefits of the flexible recursive partition-
ing algorithm used in CART analysis: (1) the ability to use
predictive variables multiple times (e.g., elevation) to repre-
sent situations in which interactions among variables are not
simply multiplicative and (2) the ability to describe multiple
environmental settings associated with the same group (e.g.,
T. heterophylla – P. menziesii). The model thus identifies not
only the average case (T. heterophylla – P. menziesii below
1242 m) but also cases that emerge as exceptions to the rule
(nine T. heterophylla – P. menziesii plots above 1242 m on
south-facing aspects).

The model using the more traditional variables of gradient
analysis (indirect elevation, topographic convergence, and
aspect gradients) can be compared to the one created using
our spatial estimates of more direct environmental and re-
source gradients. Because of the flexibility of the recursive
partitioning algorithm used in CART analysis, the structure
of the models (i.e., the branching patterns) differ slightly,
and a direct comparison of the individual decision rules used
in the classification trees is not appropriate. CART provides
an overall assessment of how groups are different and which
variables distinguish the groups. Interpreting the complete
classification trees in this context, the results provide corrob-
orating evidence that upper (1443 m) and lower (1242 m) el-
evation thresholds are associated with temperature (mean
July 2000 temperatures of 13.4 and 14 °C in Fig. 4).

We did not find a 1:1 correspondence between elevation
and temperature as explanatory variables, however. For exam-
ple, the transition from A. amabilis to T. mertensiana, which
occurs at the upper elevation threshold according to the proxy
model, is more strongly correlated with soil moisture differ-
ences than temperature; thus, a warming climate would not
be expected to stimulate an encroachment of A. amabilis on
T. mertensiana. It may instead create a constriction of the
A. amabilis range through drought effects, if this community’s
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upper boundary is physiologically defined and a warmer cli-
mate translates to a drier climate.

Both models indicate a similar habitat envelope for the
A. procera community: high elevation and high exposure in
the proxy model compared to low temperature and high radi-
ation in the more plant-relevant model. These conditions are
consistent with the literature (Franklin and Dyrness 1988).
The suggestion in the proxy model that A. procera is found
in areas of high convergence (TCI > 49) is difficult to inter-
pret physiologically and is not supported by the model of
more direct explanatory variables. As CART models can
tend to be statistically overfitted to the data, it is appropriate
to ask whether this branch of the classification tree is real or
an artifact of the modeling process. The increase in error
rate with increasing complexity in the cross-validation anal-
ysis (Fig. 5) and the failure of this model to predict the inde-
pendent validation plots suggest that the TCI split is likely
an artifact.

Model validation
By nearly every measure, the classification tree using ra-

diation, temperature, and soil moisture provides a better ex-
planatory model than the tree using less direct proxy variables.
Although the error rates of the unvalidated models are simi-
lar (Fig. 4), the cross-validation error rates are much higher
for the proxy model below the first split of the trees (Fig. 5).
In other words, the predictive power of the proxy variables
diminishes drastically after the first use of elevation as a pre-
dictor variable.

The use of independent data is preferred for model valida-
tion when such a data set exists (Reynolds and Chung 1986),
and the model that uses more plant-relevant explanatory vari-
ables does a much better job than the proxy model at pre-
dicting the 11 independent validation plots. The practice of
translating between the parameter space of models and the
geographic space of the study area is fundamental to the inte-
gration of models and data. Using a series of “IF… THEN…”
conditional statements, the CART predictions were mapped
onto the study site. Given these maps, it was rather easy to
choose validation sampling locations that would test the predic-
tions of the two CART models. These validation plots were
selected specifically because they were in areas of high com-
munity turnover that should be difficult to classify (Congalton
1991; Urban et al. 2002); yet, the plant-relevant model still
had a 73% success ratio in predicting community type com-
pared to a 18% success rate for the proxy model. By replac-
ing elevation and other indirect measures with explanatory
factors that are more directly responsible for the distribution
of plants, we have increased our ability to predict the ar-
rangement of forest communities in these highly sensitive
regions of the watershed.

Most importantly, the model using more direct estimates
of temperature, soil moisture, and radiation is more biologi-
cally interpretable and provides more meaningful insight into
potential forest response to environmental change (e.g., global
climate change scenarios). Collectively, the results illustrate
how vegetation models using indirect environmental proxy
variables should be used not as a final product, but as a point
of departure to try to identify more physiologically meaning-
ful relationships. While associations between forest commu-
nities and elevation are often assumed to reflect gradients in

temperature, we show that other resources can contribute to
the ubiquitous “elevation gradient”. Acquiring a better un-
derstanding of forest community patterns relative to more
plant-relevant environmental variables will yield better pre-
dictive power and management information for responding
to any potential shifts in environmental conditions. We envi-
sion the next generation of gradient analysis to be one in
which relationships between elevation and basal area are
replaced with more ecologically meaningful relationships be-
tween plant-relevant environmental variables and direct de-
mographic mechanisms.
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