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CHAPTER 9 

CARBON FLUXES ACROSS REGIONS  

Observational Constraints at Multiple Scales 

BEVERLY E. LAW, DAVE TURNER, JOHN CAMPBELL, 
MICHAEL LEFSKY, MICHAEL GUZY, OSBERT SUN,

 STEVE VAN TUYL, AND WARREN COHEN 

9.1 INTRODUCTION 

Scaling biogeochemical processes to regions, continents, and the globe is critical for 
understanding feedbacks between the biosphere and atmosphere in the analysis of 
global change. This includes the effects of changing atmospheric carbon dioxide, 
climate, disturbances, and increasing nitrogen deposition from air pollution 
(Ehleringer and Field 1993, Vitousek et al. 1997). Quantification and uncertainty 
analysis of carbon pools and fluxes by terrestrial biota is needed to guide policy and 
management decisions. Unanswered questions include: (1) how and where is the 
terrestrial biosphere currently sequestering carbon? (2) how might forests be 
managed to maximize carbon sequestration? Managed carbon sequestration would 
have to be optimized within and among geographic regions with attention to how 
this might affect biodiversity and how to manage for the effects of “natural” 
disturbances on carbon storage and fluxes.  

Processes in the terrestrial biosphere are dynamic and occur over a wide range of 
spatial and temporal scales. For example, net ecosystem production is the net effect 
of several large fluxes: photosynthetic uptake, and release of carbon dioxide (CO2) 
by respiration from autotrophs (plants) and heterotrophs (e.g., microbial 
decomposition). Scales range from micrometers and microseconds (e.g., cellular 
processes such as photosynthesis) to kilometers and centuries (e.g., decomposition 
of recalcitrant pools of soil carbon) (Figure 9.1). Disturbance can have a significant 
effect on CO2 loss to the atmosphere through decomposition of necromass such as 
that left from logging of forests, or pulses of CO2 to the atmosphere from fire, and 
through manufacturing of forest products. Interannual variation in climate can 
influence photosynthesis and respiration differently such that net CO2 uptake can 
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change significantly. These factors complicate any simple scheme to quantify 
carbon storage and fluxes from ecosystems, yet it is important to know how 
disturbance and climate interact to affect biogeochemical processes for more 
informed management at the regional scale. 

 

Figure 9.1. Temporal and spatial scales of major processes affecting forest ecosystems. 

Scaling strategies in terrestrial processes often involve upscaling process data at 
a scale smaller than the scale of interest (e.g., leaf-level photosynthesis), and 
combining this information with structural and environmental data to quantify 
process rates at the scale of interest (Aber et al. 1993, Jarvis 1995, Wu and Li, 

In this chapter, we demonstrate an approach to using field observations, remote 
sensing tools, and a biogeochemistry model (Biome-BGC) in a spatially nested 
hierarchy (Wu 1999) to improve predictions of carbon pools, productivity, and net 
ecosystem production (NEP) for every square kilometer of forests in a region. We 
examine uncertainty in a variety of ways for the different levels of data analysis. 

9.2 ISSUES IN SCALING ECOSYSTEM PROCESSES 

The interaction of processes operating at different spatial and temporal scales is one 
of the greatest challenges to regional estimates of biogeochemical processes. At any 
scale there is heterogeneity in types and rates of processes. For example, 
photosynthetic rates vary within a tree canopy (Reich et al. 1997). At larger scales, 

Chapters 1 and 2). Such strategies take into account the feedbacks among components 
(e.g., atmosphere and vegetation), and linkages across scales (e.g., leaf-stand-
landscape), and require that models are used and tested at each scale. 
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the rates vary among different developmental stages of a given tree species as an 
indirect result of disturbance, and among different plant functional groups or 
biomes. Field observations are necessarily limited in scope, and logistical 
considerations make it infeasible to measure everything everywhere all of the time. 
Moreover, we simply do not understand some processes (e.g., respiration, carbon 
allocation within plant) as well as we understand others (e.g., photosynthesis). 
Simple aggregation and extrapolation schemes to larger spatial and longer temporal 
scales using field observations miss the critical role of feedbacks, which is an 
essential feature of scaling (Jarvis 1995, Wu and Li, Chapter 2).  

Scientists have studied ecological systems for decades through observational 

Biogeochemistry models are quantitative representations of our understanding of 
the storage and transport of carbon, water and nutrients through soil, vegetation and 
the atmosphere. They incorporate nonlinearity of processes, and the multiple scales 
and interactions of processes. They generally operate in two-dimensional space and 
are typically run with hourly to daily climate data over years to centuries. A 
limitation of such process models is that they require mass and energy balance, 
sometimes at temporal and spatial scales that may not make sense relative to how 
processes actually occur. Mass and energy balance also cannot necessarily be 
quantified with field measurements to test model assumptions. For example, flux 
sites that measure ecosystem energy components have found that on average, they 
can only account for ~80% of net radiation (Wilson et al. 2002). As a result, models 
are often evaluated by comparison with measurable budget components (e.g., Law  
et al. 2001a).  

Biogeochemistry models use input parameters for the physiology, biochemistry, 
structure, and allocation patterns of vegetation functional types, or biomes. For 
single-stand simulations it is possible to measure many of the required model 
parameters, but as spatial coverage increases, data availability decreases, and 
generalized biome parameterizations are applied. For example, parameterization 
may be simplified to constant foliar nitrogen across a biome or life form in a region 
using data from the literature. Similarly, allocation of carbon to plant tissues may be 
assigned as fixed fractions across age classes and climatic zones. Undocumented 
parameter selection and unknown model sensitivity to parameter variation for larger-
resolution simulations are currently a major limitation to regional and global 
modeling (White and Running 1994, White et al. 2000). Although some ecosystem 
process models are dynamic and converge towards carbon, nitrogen and water 
balances, they can result in the right answer for the wrong reasons, or a predicted 
variable such as net primary productivity can be quite inaccurate because of a 
variety of uncertainties in model structure or parameters.  

studies, experiments, and development of models that incorporate their understanding 
of ecosystem function. Process models can be used to extend knowledge across time 
and space and to test hypotheses about coupling of processes and responses to 
environmental conditions. Considerable efforts have been expended to develop 
biogeochemical models to examine terrestrial ecosystem responses to global change 
(Melillo et al. 1993, Cramer et al. 2001). However, the connections between climate, 
soil conditions, and vegetation dynamics are poorly understood and are highly 
simplified in most models.  
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Decision rules are usually developed for selecting parameters in regional 

modeling. The procedure is usually to identify the simplest parameterizations (the 
default variables) and to then test the model to determine which parameters need 
more specification. Another method for parameterization is data assimilation, which 
has been used for a long time in atmospheric research, but it is relatively new to 
scaling ecosystem processes (e.g., Cescatti 1997). Data assimilation is the process of 
finding the model representation that is most consistent with the observations. Data 
assimilation usually proceeds sequentially in time. The model organizes and 
propagates forward the information from previous observations. Information from 
new observations is used to modify the model state, and to be as consistent with 
them and the previous observations (e.g., time series in Kalman filter, a Bayesian 
approach). As more data become available, such an approach may make sense for 
some parameters in regional carbon cycle scaling applications. 

Another scaling issue is the mismatch of scales between observations and 
predictions. Model output variables include carbon storage in live and dead pools, 
net primary production (NPP), and net ecosystem production (NEP). Computational 
logistics and availability of spatial data for running the models may require 
simplifications that include linear aggregation of input and output variables. “Big 
leaf ” models such as Biome-BGC assume a homogeneous 2-dimensional layer of 
foliage for resource use, carbon uptake and transpiration over a grid cell that can 
range from 30 m to 1 km to 0.5 degree (longitude and latitude) on a side. Evaluation 
of modeled NPP across a region is often conducted by comparing 1 km mean NPP 
values with 1 hectare means from tree structure measurements scaled by allometry, a 
mismatch in spatial scales when in reality, NPP may be heterogeneous within 1 km 
(e.g., clearcut and mature forests within 1 km; Turner et al. 2003). Temporal 
mismatches in scale also occur, whereby time-integration of available data and 
model output differ. Limited availability of field estimates of NPP or biomass across 
regions and continents has resulted in comparisons between model averages over 
years with field estimates over a variety of single or multiple years. The mismatch in 
time and space has uncertainties associated with it, yet this is difficult to quantify 
and overcome. 

9.3 AN APPROACH TO SCALING AND UNCERTAINTY ANALYSIS OF 
ECOSYSTEM PROCESSES IN FORESTS – A CASE STUDY 

The goal of the regional TERRA-PNW project is to estimate carbon storage, NPP 
and NEP for every square km of forest across a region over several climate years 
with improved accuracy, and explain sensitivity of NEP to cover type, forest age, 
disturbance, and interannual variability in climate. The approach is to spatially 
distribute a biogeochemistry model (Biome-BGC) which assimilates a wide range of 
spatially explicit information about the environment, using a combination of remote 
sensing and field observations as model input and for model testing. To treat the 
complexity of the carbon cycle, our modeling approach takes advantage of the near 
decomposability (sensu Wu 1999) of the ecological hierarchy (Table 9.1). At the 
level of the ecosystem, our emphasis is on NEP (annual time step). The associated 
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processes of photosynthesis and heterotrophic respiration are treated separately at 
the daily time step. At the ecosystem level, the key dynamic is the successional trend 
from negative NEP to positive NEP over multiple years. Because our emphasis here 
is primarily on annual NEP, we do not treat the longer time frames and processes 
relevant to interactions within holons at the upper levels of the hierarchy, e.g., 
interactions among age classes within a landscape mediated by fire, or interactions 
among ecoregions within a region mediated by climate change. However, 
differentiation of these upper levels remains useful because it permits specification 
of unique model parameterizations for ecophysiological constants such as specific 
leaf area (SLA). 

Table 9.1. Delineation of the ecological hierarchy. 

Level  Examples 
Region  Pacific Northwest 
Ecoregion  Coast Range, West Cascades 
Landscape  Intensive Management, Wilderness 
Ecosystem  Young, Mature, Old Growth Stands 
Functional Group  Producers, Decomposers 

 

Figure 9.2. Hierarchical approach to collecting the field data used to develop model 
parameters, develop remote sensing algorithms, and validate model output. Due to 
confidentially requirements, mapped locations are only approximate. 

Biome-BGC is fundamentally a daily time step model of coupled carbon, 
nitrogen, and water cycles (version 4.1.2; Thornton et al. 2002). It requires spatial 
data on land cover classification, stand age, and a reference leaf area index (LAI), all 
provided by satellite remote sensing, and it is driven with a distributed daily 
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climatology (DAYMET model). Model outputs included gross photosynthesis 
(GPP), net primary production (NPP of foliage, above- and belowground wood, fine 
roots), heterotrophic respiration (Rh) and NEP. 

Model sensitivity tests are used to determine critical input variables to measure 
in the field for a range of forest types and developmental stages. White et al. (2000) 
conducted a sensitivity analysis with Biome-BGC and found that simulated NPP for 
all biomes is significantly affected by variation in foliar and fine root C:N, and NPP 
of woody biomes is strongly controlled by leaf nitrogen in Rubisco, maximum 
stomatal conductance, and SLA while non-woody biomes are sensitive to fire 
mortality and litter quality. 

The scaling strategy is to use a spatially nested hierarchy (Wu 1999) to optimize 
field measurements for model parameters and testing. Field observations range from 
inventory data (many locations, few variables), to extensive sites, and intensive sites 
(chronosequences and tower flux sites, greater frequency and types of 
measurements, fewer locations) (Figure 9.2). Some field measurements are 
relatively easy to make, and are needed for the wide range of vegetation types and 
environmental conditions. For example, the model parameters foliar C:N and SLA 
can be measured at mid-season at many locations (extensive sites). More difficult 
measurements, such as stomatal conductance, are carried out at fewer intensive sites, 
or values are obtained from the literature. Remote sensing is a useful tool for 
obtaining spatially distributed vegetation characteristics (Wessman and Bateson, 
Chapter 8). A large pool of field data is required to develop and test remote sensing 
algorithms for vegetation mapping, so field observations are needed at many 
locations to cover the domain of application (e.g., LAI, forest type, and forest age at 
extensive sites).  

To aid diagnostics, model outputs are evaluated with observations at a variety of 
spatial and temporal scales, starting with the most intensive observations and 
followed by more distributed sites that have less information. Then necessary 
improvements in model structure and parameters are identified and implemented, 
and model testing is reiterated at multiple scales.  

We demonstrate the scaling approach over an east-west swath across central 
Oregon (300 km × 50 km) that covers a strong climatic gradient from the mild 
coastal conditions where water is not limiting to growth, to the Cascade Mountains 
where snowfall and freezing temperatures occur, to the semi-arid east side of the 
Cascade Mountains where temperatures are more continental (as in Figure 9.3). 

9.4 FIELD OBSERVATIONS 

9.4.1 Flux Sites: Measurements 

Eddy covariance flux sites, such as the AmeriFlux network of sites (currently 80 sites 
in North, Central and South America) provide net CO2 and water vapor exchange 
data. Flux systems comprise three-axis sonic anemometers that measured wind speed 
and virtual temperature, and infrared gas analyzers that measure concentrations of 
water vapor and CO2 above the canopy. Fluxes are averaged half-hourly, and data are 
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evaluated for quality (Law et al. 2001a, Baldocchi 2003). Additional biological 
measurements typically made at the sites provide data for evaluating flux 
components (e.g., transpiration, respiration). Flux data are aggregated daily to 
examine seasonal trends in simulated and observed GPP, net ecosystem production 
(NEP), and latent energy flux (LE, evaporation and transpiration), and diagnose 
potential causes for discrepancies.  
 

 

Figure 9.3. Forest cover type map derived from remote sensing and supplementary GIS data. 
Grey lines denote ecoregions in each of which are recognized five forest classes (conifer, 

the forested area and as such do not resolve on this figure. 

9.4.2 Flux Sites: Uncertainty Analysis 

deciduous, mixed, semi-open, and open). Semi-open, and open together represent only 8% of 

In previous studies (Anthoni et al. 1999) we quantified uncertainty in eddy flux 
estimates of NEP by combining systematic errors geometrically, and estimated that 
the overall uncertainty of the daytime carbon dioxide flux was ~±12% of the mean 
half-hourly flux. Nighttime fluxes are more problematic due to low wind conditions 
in tall canopies, and when data are screened to remove these periods, the cumulative 
error can result in substantial uncertainty in annual estimates of NEP. Therefore, the 
flux data are most useful for testing models when aggregated to a daily or monthly 
timestep, a range consistent with the time-step of Biome-BGC. 
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9.4.3 Chronosequence Plots: Measurements 

To expand the range of forests types for which we had reliable estimates of NEP, 36 
additional study plots were established across a strong precipitation gradient in the 
study region. The chronosequence plots are consist of 3 independent replicates of 4 
age classes blocked by 3 forest types. Forest ages range from 10 to 300 years and are 
classified as either initiation, young, mature or old.  

The mass balance approach we used to estimating NEP is: 

NEP = (NPPA – RWD) + (∆CFR + ∆CCR + ∆Csoil – fine litterfall)    (9.1) 

where NPPA is aboveground net primary production (wood and foliage by both 
over- and understory plants), RWD is the respiration from woody debris 
(decomposition of coarse and fine woody debris, stumps and snags), ∆CFR is the net 
change in fine root C (not different from zero in this study), ∆CCR is the difference 
between the net growth live coarse roots and the decomposition of coarse roots 
attached to stumps, ∆Csoil is the net change in mineral soil C (not different from zero 
in this study), and fine litterfall includes leaves and twigs <1 cm diameter falling to 
the ground in one year.  

Procedures for measuring the components of equation 1 are detailed in Law et al. 
(2003) and generally rely on radial stem growth and allometric biomass equations 
for estimating woody production, optical measures of LAI and leaf turnover for 
estimating foliar production, volume inventory and decay functions for estimating 
dead wood respiration, and soil coring for estimating change in soil and fine root C.  

9.4.4 Chronosequence Plots: Uncertainty Analysis 

Both an experimental and measurement uncertainty was assessed for the NEP values 
(Table 9.2). For the purpose of describing the range of behavior exhibited by a 
certain condition class (forest type and age in this study) the most useful measure of 
uncertainty is an expression of the variance among true replicates of the condition, 
i.e., “experimental” uncertainty. This was calculated for all measured parameters, 
including NEP, simply as the standard deviation among the replicated plots (3 per 
age class). Computing the experimental uncertainty is appropriate only when there 
are true plot replicates (see Hurlbert 1984). 

For the purposes of model validation, there is a desire to know the measurement 
error, which can stem from both the instrument error (e.g., calibration of carbon 
dioxide gas analyzer) and the error that arises from sample design (e.g., variation 
among soil cores used to estimate plot-level fine root mass). To assign measurement 
uncertainty to a composite parameter such as NEP, it is necessary to know the 
uncertainty associated with its components such as wood production or coarse 
woody debris decomposition. However, it is not possible or practical to account for 
all sources of uncertainty. For instance, measurement uncertainty exists in the coring 
of tree boles to determine their radial growth, however we know from prior analysis 
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that this error is insignificant compared to the extrapolation of these data to uncored 
trees on the same plot based on diameter-increment regressions. Consequently, the 
uncertainty in the radial increment component of NPPA is based solely on the 
diameter-increment regressions. 

Another example of using sampling error as the primary source of measurement 
error is in the assessment of plot-level LAI, which was measured with an LAI-2000 
at 39 points regularly stratified throughout each plot. The standard deviation of these 
39 measurements served as the plot-level uncertainty. Potentially, uncertainties in 
LAI could also be attributed to error in clumping corrections at both leaf and stand 
scale, but such errors are not quantifiable in practice. Fractional values of LAI (e.g., 
0.5) make little difference biologically and in process modeling as indicated by 
model sensitivity tests (Thornton et al. 2002). 

Table 9.2. Means, experimental uncertainties, and measurement uncertainties for field 
estimates of aboveground net primary production (NPPA), belowground net primary 
production (NPPB), and net ecosystem production (NEP), for each age class and cover type 
represented by the chronosequence plots. 

 NPPA 
(gC m-2 yr-1) 

NPPB 
(gC m-2 yr-1) 

NEP 
(gC m-2 yr-1) 

Cascade Head       
Initiation 793 (83, 22)* 273 (83, 95) 555 (95, 37) 
Young 801 (26, 48) 259 (99, 73) 393 (104, 63) 
Mature 657 (44, 59) 202 (22, 70) 423 (55, 73) 
Old 486 (145, 49) 217 (68, 81) 238 (98, 71) 
HJ Andrews       
Initiation 315 (24, 34) 252 (52, 118) 199 (23, 35) 
Young 476 (127, 31) 234 (45, 66) 288 (115, 44) 
Mature 478 (103, 40) 274 (74, 99) 314 (170, 54) 
Old 318 (53, 56) 218 (34, 128) −24 (148, 83) 
Metolius       
Initiation 114 (42, 8) 94 (52, 43) −129 (110, 17) 
Young 231 (27, 19) 169 (47, 43) 117 (59, 31) 
Mature 323 (151, 36) 162 (75, 62) 169 (200, 46) 
Old 180 (71, 27) 152 (34, 45) 34 (121, 35) 

* The first value in parentheses is the experimental uncertainty (1 SD of the mean of 3 
replicate plots). The second value in parentheses is the average measurement uncertainty 
calculated for each site-age combination (measurement uncertainty determined for each plot 
by Monte Carlo simulation as 1 SD of 1000 standard normal iterations, accounting for 
covariance among equation components). 

Once an appropriate measurement uncertainty was assessed for each of the 
components of NEP (Equation 9.1), Monte Carlo simulations were used to 
determine a final aggregate uncertainty. By randomly sampling within the probable 
distribution of each variable (set by its own measurement uncertainty), a single 
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Monte Carlo run generates one probable value for NEP. Repeating the simulation 
1000 times generates a distribution of probable NEP values. A final measurement 
uncertainty for NEP is expressed as the standard deviation of this distribution. In this 
study we assumed that uncertainty about each component of NEP had a standard 
normal distribution. When using Monte Carlo simulations it is important to consider 
the covariance among component variables. Some Monte Carlo models 
accommodate a correlation matrix that quantifies the covariance among equation 
components. A simpler alternative, employed here, was to combine equation 
components known to be computationally linked (such as understory wood and 
foliage mass which are both derived from stem diameter) into one variable before 
running the Monte Carlo simulation. In this study, experimental uncertainties in 
NEP averaged 44% and measurement uncertainties averaged 19% of the mean NEP, 
with the highest uncertainties in the oldest forests (Table 9.2). 

9.4.5 Extensive Plots: Measurements 

There is generally a large gap in field observations between the relatively low 
number of sites where it is feasible to make intensive measurements, and the large 
number of inventory sites where only a few measurements are made. To bridge this 
gap, we established 60 additional plots using a hierarchical random sample design 
that allowed maximum representation of forest types that exist in the region, the age 
classes present, and the climate space. A single visit to the plots provided data on 
soil and canopy C and N, maximum LAI, biomass and aboveground productivity for 
the range of environmental conditions and forest types. LAI measurements from 
these plots were used to develop the regressions that predicted LAI from remote 
imagery. 

9.4.6 Extensive Plots: Uncertainty Analysis 

Uncertainty computations for the extensive plots followed the same procedures 
described above for the intensive plots. The uncertainty in field estimates of NPPA 
and live mass aboveground (LMA) at the extensive plots averaged 8 and 9% of the 
means (1 SD), respectively.  

9.4.7 FIA/CVS Inventory Plots: Measurements 

Federal forest inventories are repeated on a large number of forested plots in Oregon 
that are visited relatively infrequently. Current Vegetation Survey (CVS) plots are 
on federal national forest lands (4468 CVS plots in Oregon) and Forest Inventory & 
Analysis plots (FIA) are on private lands (1120 plots). CVS and FIA sampling 
intervals are 10 and 8-12 years, respectively. The measurements made on these plots 
are primarily tree structural dimensions and species. These data are used to estimate 
biomass during each measurement period, and ~10-year mean stemwood production. 
Limited measurements of some variables, such as wood increment (33% of trees) 
and tree height (23% of trees), reduce confidence in the accuracy of the estimates of 



 SCALING UP CARBON FLUXES ACROSS REGIONS 177 

 

biomass and productivity but remain valuable since the large number of plots can be 
used to evaluate trends in stemwood biomass and growth across climatic zones and 
forest types, and to determine relative accuracy of model predictions in these 
different conditions. For the inventory plots, stemwood mass was calculated from  

Biomassb = Volumeb Wood Density       (9.2) 

where Volumeb is stemwood volume, and wood density is the dry density of wood.  
The ~10 year mean NPP of aboveground stemwood was estimated from  

NPPAw = Biomassw2 – Biomassw1       (9.3) 

Where NPPAw is aboveground NPP of stemwood and Biomassw2 and Biomassw1 are 
aboveground woody biomass at current and previous time steps, respectively. 
Previous and current height of unmeasured trees was modeled using height-diameter 
equations developed in the region from forest inventory data (Garman et al. 1995). 
The study area was divided into four geographic regions, each corresponding to 
commonly acknowledged physiographic zones in Oregon (Oregon Coast Range, 
Western Cascades, and Eastern Cascades – after Franklin and Dyrness 1973). When 
possible, physiographic zone and species-specific allometric equations were applied 
to estimate volume. Wood density data were acquired for most of the major 
hardwood and softwood species of western Oregon through wood density surveys 
conducted by the U.S. Forest Service (USDA Forest Service 1965, Maeglin and 
Wahlgren 1972).  

9.4.8 FIA/CVS Inventory Plots: Uncertainty Analysis 

Error estimates for NPPAw are based on uncertainty in radial growth propagated 
through the allometric models. In Van Tuyl et al. (2005), we made estimates of the 
potential magnitude of error associated with using generic wood densities and non-
site specific allometry. The error associated with using generic versus plot-specific 
wood densities on 36 plots was estimated to be about 10%. An empirical comparison 
of volume equations used in this study suggests that errors as high as 40% of the 
mean could result from using equations not developed in the study area. These 
results suggest that site-specific volume allometry is much more important to 
making quality estimates of biomass and NPP than are site-specific wood density. 

9.5 REMOTE SENSING OBSERVATIONS 

The role of remote sensing in this study, as in many regional studies, is to provide 
large-domain spatial data layers that the biogeochemistry process model requires: 
LAI, stand age, and forest type. In particular, the prediction of stand age throughout 
this ecologically diverse region required different approaches in different stand 
types. While reasonable continuous estimates of stand age have been made using 
remote sensing of closed-canopy Douglas-fir/western hemlock forests in western 

×
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Oregon (Cohen et al. 2001), similar efforts in the open forests east of the Cascade 
Mountains were met with only limited success. Therefore, questions of scaling over 
these varying stand types must inherently address the varying data precisions in each 
area.  

9.5.1 Land Cover 

Forest cover for the study area was created by updating the 1988 forest cover layer 
created by Cohen et al. (2001) using the same land cover classes (Table 9.3). Non-
forest areas (primarily urban and agricultural areas totaling 24% of land area) were 
defined using masks taken from Cohen et al. (2001) and supplemented with 
information from the National Land Cover Database (NLCD) for the eastern portion 
of the study area (Vogelmann 1998). For the purposes of this study, all forested 
areas in the East Cascades ecoregion were considered closed coniferous forest, and 
their extent was fixed by the NLCD coverage. Of over 8.8 million hectares of forest, 
3% was in an open condition, 8% was semi-open, 5.5% was deciduous, and 16% 
was mixed forest (Figure 9.3). The resulting land cover information was validated 
using 24 aerial photos distributed throughout the western study area, with an average 
accuracy of 82%, and a range of 49% to 97%.  
 

 

Figure 9.4. Leaf area index (LAI) map derived from Landsat EMT+. 
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9.5.2 Forest Age 

The date of stand replacing disturbance can serve as a surrogate for stand age, with 
the caveat that stand re-establishment periods can vary according to resource 
availability and competition for resources (e.g., Law et al. 2003). To increase the 
accuracy of the estimates of age in the earliest stages of forest succession (when 
carbon flux changes rapidly), the continuous estimates of stand age were combined 
with age estimates based on mapping of disturbance through change detection. 

A map of forest age was created by using an existing 1988 dataset of Cohen et al. 
(2001) extending it to the east side of the Cascade Mountains. It was updated  
to reflect age in Year 2000, and masked to remove areas that had changed since 
1988. Regression between the 2000 tasseled-cap image and the ages in 1988 were 
used to estimate the remaining ages needed for new conifer areas. This relationship 
explained 68% of variance of log-transformed age, with an RMS residual of 0.392 
log-years, which were similar to the 65.9% of variance and 0.592 RMS residual of 
0.57 reported by Cohen et al. (2001). 

Table 9.3. Forest cover definitions for remote sensing land cover classification. 

Cover Class Definition 
Non-forest Forested Cover < 0 
Open Total Forest Cover < 30% 
Semi-open 30% < Total Forest Cover < 70% 
Deciduous  Total Cover > 70% and Conifer Cover < 30% 
Mixed Total Cover > 70% and 30% < Conifer Cover < 70% 
Conifer Total Cover and Conifer Cover > 70% 

9.5.3 Leaf Area Index 

The remote sensing estimates of leaf area index (LAI) ranged from 1 to 12 in the 
West Cascades and Coast Range, and 0.5 to 8 in the East Cascades (Figure 9.4). To 
construct LAI algorithms, LAI was measured at the 96 extensive and intensive plots 
following methods in Law et al. (2001b). Polygons were hand digitized around each 
of the plots in reference to the Landsat ETM+ scene to ensure that a homogenous 
region was being referenced in the comparison of spectral characteristics and LAI. 
Both the tasseled-cap index and NDVI indices were calculated from the ETM+ 
mosaic and stepwise multiple regressions were used to determine the best set of 
variables for predicting LAI. The resulting equation uses brightness raised to the 
second power and wetness raised to the power of 11.606, explains 80% of variance, 
and has an RMSE of 1.668 (Figure 9.5). Subsequent analysis of the residuals for the 
East Cascades ecoregion indicated that LAI in those plots was underestimated by 
~20%. Using a combined data set of 24 plots collected in 1999 and 2001, a new 
coverage was calculated for the East Cascades. The resulting equation uses only the 
wetness variable, raised to the power of 14.876, explains 82% of variance and has an 
RMSE of 0.742 (Figure 9.5). Both equations explain similar percentages of 
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variance, but the RMSE for the East Cascades is lower, probably due to the lower 
number of observations in this ecoregion.  

Figure 9.5. Predicted and observed leaf area index (LAI) for field plots in the Eastern 
Cascades and combined plots of the Coast Range and Western Cascades. 

9.6 IMPLEMENTATION OF THE DISTRIBUTED MODELING 

9.6.1 Overview 

The Biome-BGC model (Thornton 1998, Thornton et al. 2002) was selected for this 
application because it includes the complete carbon cycle, it can assimilate input 
data from multiple sources (notably plot level measurements of parameters such as 
foliar nitrogen concentration), and it disaggregates carbon cycle processes 
sufficiently enough to allow comparisons with a wide variety of observations. The 
model has been previously tested at individual plots in coniferous forests of the 
PNW region (Running 1994, Law et al. 2001a). 

Biome-BGC was run on a 25 m grid covering most of Oregon west of the 
Cascade Mountains. Much of the forested portion of the Pacific Northwest is 
characterized by clearcut patches smaller than 1 km2 (Cohen et al. 2002), so high 
spatial resolution is essential to characterize spatial patterns in carbon flux (Cohen  
et al. 1996, Turner et al. 2000). Conversely, a 1 km resolution is suitable to capture 
much of the significant variation in climatic variables. 

9.6.2 Climate Inputs 

For climate inputs, Biome-BGC requires daily estimates of minimum and maximum 
temperature, precipitation, vapor pressure deficit, and solar radiation. A daily time 
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step, 1-km grid for these variables over the period of 1980-1997 was used in this 
application. This data set was generated by interpolation of meteorological station 
data using the DAYMET program (Thornton et al. 1997, Thornton and Running 
1999, Thornton et al. 2000). 

9.6.3 Model Spinup 

Biome-BGC was specifically designed to simulate changes in carbon fluxes over 
long periods. The model must therefore be run over a 1000+ year “spinup” to bring 
the slow turnover soil carbon pools into near steady state. Disturbances such as 
clearcut harvests are then imposed, accounting for tree carbon affected by the 
disturbance. For each model run in this analysis, two successive disturbances 
separated by 60-90 years (depending on location) were simulated at the end of each 
spin-up such that 1/3 of the live tree carbon was transferred to the coarse woody 
debris pool at each disturbance. The model was then run forward to the age specified 
by the remote sensing classification. The 18-year climate time series was run 
repeatedly in these analyses and manipulated such that the last year of secondary 
succession was always 1997. 

9.6.4 LAI Optimization 

LAI is prognostic in BIOME-BGC, and although LAI can be remotely sensed, it 
cannot simply be prescribed in the model because of the continuous interaction 
among the various model compartments. Earlier analysis in Pacific Northwest 
conifer stands has shown a strong linear relationship between stand LAI and a site 
water balance index based on annual precipitation, annual potential evapo-
transpiration, and soil water holding capacity (Grier and Running 1977). To achieve 
agreement between remotely sensed LAI and simulated LAI for a given cell in this 
application, a secant method (Cheney and Kincaid 1985) was used with model runs 
at different soil depths to iteratively solve for the soil depth that minimizes the 
difference between a reference LAI (e.g., from remote sensing) and simulated LAI 
at a specified stand age. An initial value of soil depth to seed the iterations was taken 
from a digital map of soil depths based on the State Soil Geographic (STATSGO) 
database (Kern et al. 1997). In young stands that may not have achieved equilibrium 
LAI, the minimum possible soil depth was constrained by the distribution of 
STATSGO soil depths in the ecoregion. Using this approach, the fit between 
remotely sensed LAI and Biome-BGC LAI was good (r2  = 0.97) with an RMSE of 
0.5 LAI units. 

9.6.5 Integrating 1 km and 30 m Data 

A critical issue in the distributed model implementation was the scale mismatch 
between land cover and LAI data at the 25 m resolution and the climate data at 1 km 
resolution. Because of computational constraints associated with the model spinups, 
a unique model run could not be made at each 25 m cell in the region of interest. 
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Thus, a separate model run was made only once in each 1 km cell for each 
combination of cover type and age class. For use in the soil depth determination, a 
reference LAI was determined for each cover type × age class combination within 
each 1 km cell. The remotely sensed reference LAI was the mean for all 25 m cells 
belonging to each cover type × age class combination within the 1 km cell. 

9.6.6 Ecophysiological Inputs 

Biome-BGC requires a set of ecophysiological constants for model initialization. 
We created a generic set of constants for each cover type based on the values in 
White et al. (2000). The White et al. (2000) analysis determined that the model was 
particularly sensitive to values of foliar C:N and SLA, so we also created ecoregion-
specific sets of constants where foliar C:N and SLA values were means based on 
field measurements at the intensive and the chronosequence plots. 

9.6.7 Comparisons of Simulations with the Survey Data 

The comparison of simulated stemwood production with observations from the FIA 
survey data was constrained by a number of factors. Besides the initial problem of 
converting information on distributions of diameter and growth increment into wood 
production, these factors included (1) plot location, (2) convergence of model output 
and inventory data on a common parameter, and (3) achieving overlap in time 
between the observations and the simulations. 

Perhaps the most significant issue for model evaluation inaccuracy in some plot 
locations. Federal law currently prohibits release of FIA plot locations for both 
private and public lands (recent amendment of the Food Security Act). Thus, 
researchers outside of the FIA program are extremely limited in their ability to 
conduct analyses of the data in a spatial context. In addition, locations of the CVS 
plots on public land were not determined with Global Positioning Systems, so the 
locations are somewhat uncertain. 

Because much of the forested land in the study area is publicly owned, the set of 
CVS plots was used for the purposes of comparing survey-based and simulated 
wood production. CVS locations were accepted as reported and the coordinates were 
used to determine an associated 1 km cell within the climate grid. In the model 
spinups used to determine soil depth, the reference LAI was the mean value for all 
25 m cells in the relevant cover class within the 1 km cell. After the soil depth was 
selected, the model spinup completed, and the disturbances imposed, the model was 
run to the age specified by the CVS data. 

The problem with temporal overlap in the CVS and simulated data is caused by 
the nonuniformity in the year of visit to the permanent plots, and the observation 
that there is large interannual variation in bolewood production based on climate 
variation in the Pacific Northwest (Turner et al. 2003). CVS plots are visited on a 
roughly 10-year interval, and the growth increment is reported for the previous 10 
years. There are also delays in getting the data into the FIA database. Thus data at 
the time it was received from FIA (in the year 2001) may have been five or more 
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years old. The model NPPAw can be aggregated over any interval desired, and for 
this study the mean NPPAw over the 10 yr period from 1988-1997 was selected for 
the comparisons. Because of the many constraints on achieving a implemented in 
this Biome-BGC application such that allocation to fine roots and leaves one-to-one 
comparison in space and time between the CVS data and the simulation data, 
comparisons were made more generally by examining relationships of NPPAw to 
stand age within the ecoregions.  

An age-specific allocation scheme was increased in older stands, except those of 
the East Cascades ecoregion where empirical data indicated that allocation to fine 
roots is greater in young stands (Law et al. 2003). The ecological rationale for 
increased root and leaf allocation with age follows the nutrient limitation hypothesis, 
i.e., nutrients become more limited in late succession because they are increasingly 
sequestered in the biomass. Allocation to fine roots thus increases, and 
correspondingly stemwood production decreases. This is not an appropriate rationale 
for water-limited ecosystems, where relatively large allocation to roots throughout 
stand development is critical for survival. 

Figure 9.6. Simulated and observed aboveground stemwood production in relation to stand 
age for the West Cascades CVS inventory plots. Grey bars are the standard deviation of 6 to 
36 plots depending on age class. 

To implement the allocation shift in the model simulations for the Coast Range 
and West Cascades ecoregions, a nonlinear increase in the allocation to leaves and 
fine roots was prescribed in late succession. The relevant parameters were a 
maximum stemwood production rate in young stands, a lower stable stemwood 
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production rate in older stands, and an age that indicated the midpoint of the 
transfer. These parameters were based on a cubic polynomial fit to the CVS NPPAw 
data by ecoregion (Figure 9.6). With the dynamic allocation implemented in the 
model, the ratio of NPPAw in old and young stands came into much closer agreement 
with the observations (Table 9.4). 

Table 9.4. Model/data comparisons (CVS plot data) for the ratio of aboveground net primary 
production for wood (NPPAw) at the low and high extreme points of the cubic polynomial fit 
for NPPAw versus forest age. Units are g C m-2 y-1. N is the number of observations, CI is the 
95% confidence interval for the predictions at the forest ages corresponding to the high 
(young) and low (old) extremes of the fitted cubic polynomial model. 

Across all ecoregions, the model NPPAw values were similar to the CVS data in 
that the highest magnitudes were in the Coast Range ecoregion, slightly lower values 
in the West Cascades ecoregion, and much lower values in the East Cascades. There 
was generally more scatter in the CVS observations than in the simulations. This may 
occur in part because of a tendency for the scaling approach to under-represent sites 
with low and high LAI (due to the necessity of averaging LAI within each cover class 
by age class combination over the 1 km grid cells). The permanent plot data will be 
further utilized for model improvement by examining the relationships of NPPAw to 
climate indices such as annual potential evapotranspiration, and evaluating the degree 
to which the model is responding in a similar fashion. 

9.6.8 Comparisons of Simulations with the Extensive Plot Data 

Comparisons were made between observations and modeled NPPAw, total 
aboveground NPP (NPPA), and stem mass at the 96 extensive plots (including the 
intensive chronosequence plots). The model was run with the same protocols as for 
the CVS plots but used field observations of LAI as the reference LAI in 
determining soil depth. The comparisons (Table 9.5) showed good agreement for 
 

 N Ratio Young CI Old CI 
Observations       
Coast Range 383 0.50 705 272 -1137 354 −64 - 772 
West Cascades 1677 0.44 469 214 - 724 208 −45 - 462 
Model-Before 
Dynamic Allocation       
Coast Range 373 0.92 353 263 - 443 324 243 - 413 
West Cascades 1626 0.86 330 182 - 477 285 138 - 432 
Model-After Dynamic 
Allocation       
Coast Range 373 0.69 456 353 - 559 314 211 - 416 
West Cascades 1626 0.51 366 235 - 497 185 55 - 315 
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NPPAw and NPPA, but a tendency for the model to underestimate stem mass at older 
stand ages. A potential cause of stem mass underestimation is overestimation of tree 
mortality and those relationships are being explored with model sensitivity analyses 
and with evaluation of mortality estimates in the literature. 

Table 9.5. Regression statistics (observed vs. modeled) for extensive plot and chronosequence 
plot comparisons (b = slope and a = intercept). Flux units are g C m-2 y-1, mass units are g C 
m-2. See text for NPP abbreviations. 

Table 9.6. Effects of alternative parameterization schemes on regression statistics for 
comparison of observed and modeled aboveground net primary production (NPPA; b = slope 
and a = intercept). In the default case, all sites were run with the same set of ecophysiological 
constants. In the ecoregion case, there was a unique parameterization of the ecophysiological 
constants for each ecoregion, and in the site-specific case, there was a unique 
parameterization for each site. 

Parameterization a SE b SE R2 RMSE 
Default 107 36 0.92 0.07 0.70 148 
Ecoregion 49 33 0.94 0.06 0.75 121 
Site Specific 63 41 0.89 0.08 0.63 150 

To reveal the benefits of using the ecoregion-specific observations of foliar  
N concentration, SLA, and leaf retention, a comparison of observed and modeled 
NPPA was also made for a model run using a generic conifer parameterization. 
Without the ecoregion parameterization, the model produced significant additive 
bias, and the RMSE was considerably higher (Table 9.6). The use of even more 
specialized (site-specific) values of foliar N, SLA, and leaf retention also showed 
improved fit over the generic conifer parameterization, but the RMSE was just as 
high due to large model error at a few sites. For each parameterization scheme, 
regressions of model-error against climate indices such as annual precipitation and 
summer precipitation were weak at best, except for the site-specific parameterization 
scheme. Possibly, other parameters linked to foliar C:N and SLA must be changed 
in parallel to achieve consistent improvements. Further analyses of these model 
errors in relation to climatic gradients may be helpful for diagnostic purposes. 

Variable a SE b SE R2 RMSE 
Extensive Plots (N=75) 
NPPAw 90 26 0.80 0.08 0.59 116 
NPPA 59 32 0.93 0.06 0.75 121 
LMAw 3770 863 0.57 0.04 0.74 8950 
Chronosequence Plots (N=36) 
NPPAw 62 31 0.81 0.09 0.69 100 
NPPA 36 37 0.93 0.08 0.82 103 
NPP 20 79 1.10 0.11 0.73 207 
LMAw 4240 1210 0.54 0.05 0.76 9630 
NEP 99 38 0.55 0.12 0.37 183 
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9.6.9 Comparisons of Simulations with Chronosequence Data 

At the chronosequence plots, comparisons were made between field-based and 
modeled NPPAw, NPPA, total NPP, stem mass, and NEP (Table 9.5, Figure 9.7). The 
agreement between model and observations was best for NPPA and NPP. For other 
variables the correlations were positive (with regression slopes >0.5), but further 
work on model development is needed. Future work will focus on the mortality 
parameter and on components of heterotrophic respiration, which strongly influence 
modeled NEP.  

 

Figure 9.8. Comparison of flux tower 
observations and model simulations of 
gross primary production (GPP) and net 
ecosystem production (NEP) at the 
Metolius young ponderosa pine site in 
2002. 

9.6.10 Comparisons of Simulations with Flux Tower Data 

Flux tower estimates of evapotranspiration were initially used to evaluate the 
generic parameterization derived from White et al. (2000). In examining observed 
and modeled evapotranspiration, it became evident that the default maximum 
stomatal conductance parameter was too high, and it was therefore reduced 
significantly. For the year 2001 comparisons, the time series plots of daily GPP at 
the young pine tower site suggested a slight underestimation of GPP in mid-growing 

class combination. 

Figure 9.7. Simulated and observed net 
primary production (NPP) and net  ecosystem 
production (NEP) for the chronosequence 
study plots. Values are means and standard 
deviation of 3 replicate plots per site × age 
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season (Figure 9.8). The model also consistently underestimated NEP throughout 
most of the growing season. There remain significant uncertainties in the nighttime 
NEE estimates from the tower data and the modeled NEE is the small net of the 
large GPP and heterotrophic respiration (errors in both). Thus, the comparisons must 
be considered tentative. Comparisons will be made with results of continuing efforts 
to quantify heterotrophic respiration fluxes in the field (Law et al. 2001a, 2003).  

9.6.11 NEP Surfaces 

After completion of model testing and parameterization based on the complete suite 
of observational data, the model will be run wall-to-wall over the east-west swath in 
western Oregon. Preliminary test areas in the three ecoregions (e.g., Figure 9.9) 
show the effects of management and environmental gradients. NEP is relatively low 
in areas recently clearcut for harvest, and highest in young stands (age 30-100) that 
have a closed canopy and have lost most residues from their stand-originating 
disturbance. NEP on the drier east side of the Cascades tends to be relatively low. 

sensing/
modeling scaling approach will also permit analysis of interannual variation in NEP 
(Turner et al. 2003). 

Figure 9.9. Simulated net ecosystem production (NEP) for selected areas in the study region. 

Besides analysis of within region heterogeneity in NEP, the remote 
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9.7 CONCLUSIONS 

Scaling in space and time is essential if we are to address global change issues 
relevant to terrestrial carbon cycling. We demonstrated a scaling strategy that uses a 
spatially nested hierarchy of observations for model parameterization and testing, 
along with a simulation model that provides a means of integrating environmental 
information at a range of spatial and temporal scales. Observations that include flux 
towers, intensive field sites, and inventory data increase understanding of ecological 
processes and permit the iterative process of model testing and improvement, 
recognizing there are uncertainties in field observations as well as model estimates. 
Uncertainty estimates for field observations, that are aggregates of multiple 
measurements, can be calculated by determining upper and lower boundaries for 
each component measurement and propagating these estimates through to a single 
variable (NEP in this case) with Monte Carlo models. Field observations over a 
range of environmental conditions are necessary for accuracy assessment of remote 
sensing estimates of vegetation characteristics. Knowledge of model sensitivities to 
key parameters helps to determine measurements that should be made at inventory 
sites (e.g., wood increment and density), extensive sites (e.g., foliar and soil carbon 
and nitrogen), and intensive sites (e.g., A-Ci curves – photosynthetic response to 
internal CO2). In coniferous forests of the Pacific Northwest, disturbance history and 
environmental gradients are the major controls on carbon pools and fluxes. Thus, for 
regional analysis of carbon, nitrogen and water cycling it is critical to have spatial 
data layers such as remotely sensed estimates of cover type, changes in cover or 
disturbance, and spatially distributed climate. Advancements of the approach might 
include more iterative model development and testing and data assimilation 
techniques. 
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