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Abstract

Motivated by the increasing importance of hyperspectral remote sensing data, this study sought to determine whether current-generation

narrow-band hyperspectral remote sensing data could better track vegetation leaf area index (LAI) than traditional broad-band multispectral

data. The study takes advantage of a unique dataset, wherein field measurements of LAI were acquired at the same general time and grain

size as both Landsat ETM+ and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imagery in four different biomes. Biome types

sampled included row-crop agriculture, tallgrass prairie, mixed hardwood-conifer forest, and boreal conifer forest. The effects of bandwidth,

band placement, and number of bands were isolated from radiometric quality by comparing regression models derived from individual

AVIRIS channels with those derived from simulated ETM+ and MODIS channels using the AVIRIS data. Models with selected subsets of

individual AVIRIS channels performed better to predict LAI than those based on the broadband datasets, although the potential to overfit

models using the large number of available AVIRIS bands is a concern. Models based on actual ETM+ data were generally stronger than

those based on simulated ETM+ data, suggesting that, for predicting LAI, ETM+ data suffer no penalty for having lower radiometric quality.

NDVI was generally not sensitive to LAI at the four sites. Band placement of broad-band sensors (e.g., simulated ETM+ and MODIS) did not

affect relationships with LAI, suggesting that there is no inherent advantage to MODIS spectral properties over those of ETM+ for estimating

LAI. Spectral channels in the red-edge and shortwave-infrared regions were generally more important than those in the near-infrared for

predicting LAI.

Published by Elsevier B.V.
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1. Introduction Measuring LAI on the ground is difficult and requires a
Leaf area index (LAI) is an important property of

vegetated systems. LAI, defined here as one-half the total

surface area of leaves per unit ground area, can be used to

infer processes (e.g., photosynthesis, transpiration, and

evapotranspiration) and estimate net primary production

(NPP) of terrestrial ecosystems (Bonan, 1993; Pierce &

Running, 1988). As such, LAI is increasingly desired as a

spatial data layer (i.e., map), to be used as input for

modeling biogeochemical processes (Reich et al., 1999).
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great amount of labor and cost (Gower et al., 1999). To

produce an LAI map of a large area, a model relating field

data with remote sensing data is typically developed, the

model is inverted, and the remote sensing data are then

used to extrapolate that relationship to the landscape

(Cohen et al., 2003a).

Many studies have sought to establish relationships

between LAI and remote sensing data (Badhwar et al.,

1986; Peterson et al., 1987; Turner et al., 1999). Most of

these studies have relied on empirical relationships between

the ground-measured LAI and observed spectral responses

(Curran et al., 1992; Peddle et al., 1999), although several

have used canopy reflectance models (Jacquemond et al.,

1995; Kuusk, 1998; Smith, 1993). With few exceptions,
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such studies used broad-band multispectral data, like Land-

sat TM or ETM+ rather than narrow-band, hyperspectral

sensors, such as the Airborne Visible Infrared Imaging

Spectrometer (AVIRIS).

As a hyperspectral sensor, AVIRIS (Green et al., 1998)

may have two theoretical advantages over a broad-band

sensor like Landsat ETM+. First, if LAI affected spectral

reflectance primarily in narrow spectral regions, then the

narrow bands of AVIRIS would track these effects better

than the broad bands of Landsat ETM+. Second, AVIRIS

has higher radiometric quality than ETM+. AVIRIS has 12-

bit data-depth, compared to the 8-bit depth of ETM+. The

high signal-to-noise ratio of AVIRIS, particularly in the

shortwave-infrared (SWIR) region, allows greater discrim-

ination of subtle spectral responses. If such subtleties are in

any way related to LAI, AVIRIS would have an advantage

over Landsat ETM+.

It is difficult to infer from existing studies whether

AVIRIS (or other hyperspectral sensors) offers an improved

sensitivity to LAI over multispectral sensors. Some studies

suggest no improvement of hyperspectral remote sensing

over broad-band remote sensing for capturing vegetation

properties. However, these studies have examined vegeta-

tion properties other than LAI (Lefsky et al., 2001), used

early-generation, low signal-to-noise ratio AVIRIS data

(Spanner et al., 1994), or relied exclusively on reflectance

models rather than actual imagery and field data (Broge &

Leblanc, 2001; Jacquemond et al., 1995). Studies that

suggest an improvement of AVIRIS over broad-band sen-

sors have not focused on LAI, inferring instead other

vegetation properties such as vegetation fraction (Asner &

Heidebrecht, 2002; Roberts et al., 1993), canopy chemistry

(Wessman et al., 1988; Johnson et al., 1994), and plant

species (Martin et al., 1998). Nearly all such studies have

focused on a single biome type, which makes any conclu-

sion difficult to generalize to other ecological systems. Also,

given their dimensionality, use of hyperspectral data can

lead to overfitting of statistical models (Thenkabail et al.,

2000), and thus an overoptimistic view of their power.

Here, we present a study designed to resolve several of

the uncertainties described above. The study capitalizes on

an unusual body of remote sensing and field data collected

at sites across four diverse biomes to examine the relation-

ship between LAI and spectral reflectance. The study design

allows controlled comparison of the different components of

the potential LAI-spectral reflectance relationship, and thus

allows inferences to be made about whether, where, and

why hyperspectral imagery may improve maps of LAI.
Table 1

Study sites, LAI measurement methods, and site characteristics

Study site Location Major c

Agriculture cropland (AGRO) Champaign, IL, USA soybean

Konza Prairie (KONZ) Manhattan, KS, USA tallgras

Northern old black spruce (NOBS) Thompson, Manitoba, Canada evergre

Harvard Forest (HARV) Petersham, MA, USA mixed
2. Data and methods

2.1. Study sites and LAI measurements

This study was conducted in context of the BigFoot

project (http://www.fsl.orst.edu/larse/bigfoot), which was

designed to provide local validation of global estimates of

biophysical variables, including land cover, LAI, and NPP

using MODIS data (Cohen & Justice, 1999; Cohen et al.,

2003b; Turner et al., 2003). Four separate BigFoot study sites

were used: agricultural cropland (AGRO), tallgrass prairie

(KONZ), evergreen needleleaf boreal forest (NOBS), and

temperate deciduous broadleaf-dominated forest (HARV),

all in North America (Table 1). These sites, and related data

collection, are described in more detail by Campbell et al.

(1999), Burrows et al. (2002), and Cohen et al. (2003b). At

each study site, a 5� 5 km area included around 100 plots

where LAI was measured. Each plot was 625 m2, with plot

center locations recorded with a real-time differential global

positioning system (GPS) unit having an accuracy of < 0.5 m

in both the x and y directions. The sample design permitted

direct assessment of the spatial scale of actual LAI from the

field data. Spatial scale of LAI at each site was in excess of

100 m.

At all plots, LAI was measured at each of five subplots

and these were averaged to provide a single LAI value for

each plot. Methods of LAI measurement involved both

direct and indirect methods (Campbell et al., 1999; Cohen

et al., 2003b; Gower et al., 1999), optimized for the type of

vegetation and site (Table 1). At AGRO, LAI was measured

from destructively sampled corn and soybean plants. At

KONZ and HARV, LAI was estimated indirectly using an

Li-Cor LAI 2000 canopy analyzer with appropriate clump-

ing coefficients for each site (Campbell et al., 1999; Gower

et al., 1999). At NOBS, overstory LAI was based on site-

specific allometric equations developed by Gower et al.

(1997) for over 250 trees ranging in size from < 1 to 25 cm

diameter at breast height. The minimal understory LAI at

NOBS was estimated from percent cover of understory

plants. There was no understory at the HARV site. At all

sites, the within-plot variation among the five subplot

measurements was minimal and the average coefficient of

variation was about 6%.

To build a meaningful relationship between phenologi-

cally varying vegetation and remotely sensed data, ground

measurements must be contemporaneous with the date of

image acquisition. The BigFoot project provided unusually

robust matches between field data measurement and image
over type(s) LAI measurement method LAI (mean)

, corn destructive sampling 2.50

s prairie, shrub optical 1.93

en needleleaf boreal forest allometric equations 4.15

hardwood and conifer forest optical 5.08

 http:\\www.fsl.orst.edu\larse\bigfoot 


Table 3

Regression results for atmospheric corrections (x = simulated ETM+;

y =ETM+)

Site Band Intercept Slope R2

AGRO 1 � 3.21 1.11 0.62

2 � 3.90 1.08 0.67

3 � 6.75 1.32 0.70

4 � 13.97 1.81 0.59

5 3.80 0.82 0.73

7 1.30 0.82 0.79

KONZ 1 � 5.16 1.00 0.71

2 � 5.13 0.94 0.70

3 � 10.78 1.21 0.66

4 � 2.19 1.32 0.45

5 1.00 0.72 0.55

7 � 2.55 0.73 0.66

NOBS 1 � 3.61 0.60 0.25

2 � 7.16 0.98 0.56

3 � 8.60 0.95 0.50

4 � 8.21 0.96 0.71

5 � 3.48 0.80 0.69

7 � 2.45 0.64 0.66

HARV 1 1.84 0.07 0.01

2 3.65 0.05 0.00

3 2.41 0.03 0.00

4 3.31 0.63 0.24

5 � 2.35 0.81 0.20

7 1.64 0.50 0.06

Table 2

Data acquisition dates for AVIRIS, ETM+, and field LAI measurements

Study site AVIRIS ETM+ Field LAI

measurements

AGRO June 22, 2000 June 29, 2000 June 16, 2000

KONZ June 22, 2000 June 7, 2000 June 6, 2000

NOBS July 10, 2000 July 10, 1999 June 21, 1999

HARV May 16, 2000 June 18, 2000

July 28, 2001 July 27, 2000
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acquisition, both for Landsat ETM+ imagery and AVIRIS

imagery (Table 2). At three study sites, Landsat ETM+ data

was acquired at nearly the same date (AGRO and KONZ) or

day of year (NOBS) as the AVIRIS data acquisition and the

LAI measurements. At HARV, however, date discrepancies

were larger, particularly with the AVIRIS acquisition. There,

LAI and AVIRIS data were matched for one date, and LAI

and ETM+ matched for another date.

2.2. Geometric and radiometric corrections

AVIRIS data were acquired during the months of May

and June of 2000. Imagery was collected by the NASA ER-

2 aircraft at 20-km altitude with approximate pixel size of 17

m. The data contain 224 spectral bands, each approximately

10 nm wide, ranging from 370 to 2500 nm. Landsat ETM+

images were purchased for the dates indicated in Table 2.

AVIRIS and ETM+ images were georeferenced, radiomet-

rically calibrated, and converted to surface reflectance.

Initially, the ETM+ data were georeferenced to UTM

coordinates (WGS84) using either precision-corrected

high-resolution imagery (e.g., IKONOS) or USGS digital

orthophoto quadrangles (Cohen et al., 2003b). Geometric

registration of the ETM+ data to the high resolution data

resulted in a root mean square error of position of less than 7

m. The AVIRIS data were co-registered to the ETM+ data

(RMSE< 15 m) using 30–40 ground controls points.

When comparing remotely sensed data across sites,

atmospheric correction of the data can be important. In this

study, comparisons across sites never mix data between

sensors or sites in the same statistical relationship, so strict

correction is less necessary. Atmospheric correction should

bring digital number values from disparate sensors into

rough agreement in terms of range and dynamics, however,

and thus we chose to atmospherically correct all images.

The carefully designed experimental AVIRIS sensor has

attendant, well-developed atmospheric correction algo-

rithms. Atmospheric water-vapor is a key factor in the

atmospheric correction of remote sensing data. The atmo-

spheric correction of hyperspectral data has a clear advan-

tage over multispectral data since the magnitude of water-

vapor effects in every pixel can be directly assessed from a

few spectral channels of the data themselves. In this study,

we used the ACORN program (AIG, 2002), which was

based on the MODTRAN-4 radiative transfer code.

ACORN used two water absorption channels (940 and
1140 nm) in AVIRIS data to estimate the amount of water

vapor at the time of data acquisition.

Such post-hoc atmospheric correction is more difficult

with the broad bands of Landsat data. Although several

studies have dealt with atmospheric correction of Landsat

data (Liang, 2001), there is no method as elegant and site-

specific as that described for the AVIRIS data above. For

this study, we chose to apply the ACORN program to the

ETM+ data, using a standard atmospheric model and a fixed

value of water vapor. While this method was unlikely to

produce a perfect match with the more-detailed AVIRIS

data, it did place the ETM+ data into approximately the

same range of variation as the AVIRIS data.

To aid in interpreting later results, the comparative effects

of atmospheric correction were investigated. Corrected

AVIRIS data were convolved into ETM+-like bands (de-

scribed below, under Derived Image Datasets) for compar-

ison with corrected ETM+ imagery. Areas with minimal

landscape change were isolated, and pixels compared one to

one. A simple regression of AVIRIS-simulated ETM+

reflectance values on corrected actual ETM+ reflectance

values was calculated, and the results summarized in Table

3. Fits between the two images were relatively good at

AGRO, although the AVIRIS-simulated ETM+ data

appeared to have a much narrower dynamic response in

Band 4. At KONZ, strongly negative intercept values with

slopes near 1 in the visible bands (bands 1–3) indicate that

correction of atmospheric scattering in the ETM+ image was

incomplete. The relationship in bands 4 through 7 was

generally better than for the visible bands. The situation
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was similar at NOBS, with the degree of mismatch in the

visible bands even stronger, and the discrepancies in the

infrared bands slightly more pronounced. The situation at

HARV was more complicated than at the other sties. In the

visible bands, there was almost no relationship between

images (slopes of AVIRIS on ETM+ less than 0.10), while

the relationships in the infrared bands (4 through 7) were

generally similar to the relationships seen at the other sites.

The lack of dynamic range in the visible bands of the

AVIRIS image may have been caused by its early-season

acquisition date (May 16, during flushing of deciduous

leaves) or by heavy atmospheric scattering in the visible

bands.

Overall, the ETM+ correction appeared to be less effec-

tive than the AVIRIS correction. Again, because this study

did not mix data from different sites or sensors into a single

statistical relationship, this disparity was not a problem. The

generally high statistical relationship between the ETM+

and AVIRIS images (as reflected by R2 value in Table 3),

however, suggests that the two images are tracking similar

properties, and that statistical tests applied separately to the

different sensors at a given site and between sites can yield

meaningful comparisons. The one exception might be the

HARV site, where special conditions may require special

interpretation.

2.3. Derived image datasets

The goal of this study was to determine the relative value

of broad-band, multispectral versus narrow-band hyperspec-

tral imagery for measuring LAI. The general format of the

study was to develop simple statistical relationships between

field-measured LAI and some raw or derived spectral image
Table 4

Image datasets derived from AVIRIS to be compared with LAI

Dataset AVIRIS bands selected (center wavelength, nm)

Simulated ETM+ 93 bands covering the spectrum of six reflected ET

Simulated MODIS 29 bands covering the spectrum of the first 7 MOD

NDVI 2 AVIRIS bands (655, 846)

Selected AVIRIS channels AGRO (2) 703, 1334

KONZ (18) 750, 760, 956, 1004, 1080, 1089,

1284, 1424, 1504, 1583, 1603,

1693, 1723, 1743

NOBS (21) 433, 452, 462, 904, 947, 1080,

1713, 1723, 1733, 1773, 1783,

2111, 2141, 2171, 2191, 2201, 230

HARV (23) 413, 433, 442, 491, 655, 665, 69

760, 1454, 1464, 1802, 1991, 2001

2081, 2131, 2251, 2390, 2410, 242

7-channel selected AVIRIS AGRO 655, 674, 1165, 1314, 1504,1971,

KONZ 760, 956, 1284, 1504,1563, 1643,

NOBS 452, 520, 1633, 1723,1773, 2201,

HARV 578, 607, 646, 684, 2390, 2410, 2

PC of AVIRIS 193 bands (excluding water-absorption and noise b

from 224 bands of original AVIRIS)
values. By varying the character of the spectral images, it

was possible to isolate the effects of bandwidth and band

placement from the effects of radiometric resolution, spatial

resolution, and atmospheric condition.

The base spectral images were simply the atmospheri-

cally corrected images of spectral reflectance for the orig-

inal ETM+ and AVIRIS imagery. Bands 1 through 5 and

band 7 were used for the ETM+ data. Of the 224 bands in

the full AVIRIS dataset, 193 bands were used that did not

contain strong water-absorption or instrument noise. In

addition to these two base spectral reflectance images,

several other datasets were derived from the AVIRIS data

(Table 4).

Two simulated image sets were derived from the AVIRIS

imagery. The first was a simulated ETM+ image, with the

same six bands as the base ETM+ image. Simulation was

achieved by weighting the appropriate narrow AVIRIS

spectral bands within the ETM+ spectrum according to the

spectral response function of the ETM+ instrument. This

simulated image had the same radiometric quality as the

AVIRIS data from which it was derived, but essentially the

same band placement and bandwidth as the original, or base

ETM+ data. The second derived image was one of simu-

lated MODIS (Moderate Resolution Imaging Spectrometer)

image. Only bands 1 through 7 of the MODIS instrument

were simulated, again using a weighted average of AVIRIS

bands. The MODIS bands differ from their ETM+ analogs

in being narrower and in including an additional band at the

far end of the near-IR wavelength region (1230–1250 nm).

For both of the base spectral images, a normalized

difference vegetation index (NDVI) image was calculated.

NDVI has seen ubiquitous use in predicting LAI. Following

Teillet et al. (1997), we derived an AVIRIS NDVI dataset
Methods

M+ bands weighted averaging by the spectral responsivity of each

ETM+ band

IS bands weighted averaging by the spectral responsivity of each

ETM+ band

(NIR-R)/(NIR+R)

stepwise multiple regression with significance level 0.15

1117, 1254,

1613, 1643,

1593, 1633,

1971, 1981,

0

4, 703, 751,

, 2051, 2061,

0

2400 stepwise multiple regression with maximum R2 for seven

1743 independent variables

2300

449

ands the first 10 principal components of 193 AVIRIS bands



K.-S. Lee et al. / Remote Sensing of E512
using channel 30 (655 nm) and channel 53 (846 nm). It is

possible that some other combination of specific red and

near-infrared bands would have provided slightly improved

results (Gong et al., 2003), but identifying this specific band

combination was not our objective. The NDVI image from

the ETM+ data was derived using bands 4 and 3 in the

standard manner (Turner et al., 1999).

The fourth derived image was a subset of the 193

AVIRIS bands. Band selection has been one of primary

concerns in analyzing hyperspectral data, with selections

largely dependent on the type of information desired (Price,

1997; Warner et al., 1999). In this study, we selected a

subset of AVIRIS channels using stepwise multiple regres-

sion on LAI. A relaxed p-value tolerance of 0.15 was used,

with as many as 23 AVIRIS channels being selected at each

of the four sites. This is about one-fifth the number of

observations (f 100) at each site, and thus at or below the

recommended maximum ratio of selected bands to data

points to minimize model overfitting, as discussed by

Thenkabail et al. (2000). For each site, this fourth derived

image was named the ‘‘selected AVIRIS channels’’ image.

Even though the number of spectral bands contained in

the selected AVIRIS channels image did not exceed the

maximum ratio of bands to data points recommended by

Thenkabail et al. (2000), we desired to further minimize the

possible effect of overfitting. Moreover, we were interested

in removing the effect of using more hyperspectral bands

than multispectral bands when comparing models derived

from each. This would enable a more direct assessment of

bandwidth and placement. Thus, we derived a fifth image

dataset of only the first seven selected channels from the

multiple stepwise regression. This corresponds to the max-

imum number of bands in other data sets (simulated

MODIS, and simulated and actual ETM+). We called this

the ‘‘7-channel selected AVIRIS’’ image.

The sixth derived dataset was calculated from a standard

principal component (PC) analysis of the 193 original

AVIRIS bands. For all study sites, the first 10 principal

components explained about 99% of total variability of

original AVIRIS dataset. This dataset captured the spectral

dimensionality of the AVIRIS instrument, but may have

obscured subtle and specific narrow-band relationships with

LAI. The first 10 principal components of 193 AVIRIS

bands were named the ‘‘PC of AVIRIS’’ image.

For all of these spectral images, spectral reflectance

values were derived for the field plots in the same manner:

each plot was identified in each spectral image using a

vector map of plot locations, and the four pixels spanning

each plot boundary were spatially averaged to obtain a mean

spectral vector for each plot. Although the four pixels area

of AVIRIS and ETM+ is larger than the actual plot size (625

m2), the reflectance values of the four pixels exhibited

minimal variance due to high spatial autocorrelation. The

use of four pixel averages also minimized possible misrep-

resentations that might be caused from location error related

to geometric correction.
2.4. Correlation analyses

The simplest statistical investigation was calculation of a

band-by-band correlation between spectral image value and

field-measured LAI. This was conducted on the two base

spectral images (ETM+ and AVIRIS) as well as on the

simulated ETM+ and the simulated MODIS images. Be-

cause each spectral image represented a different combina-

tion of spectral strengths and weaknesses, discrepancies in

correlation at particular wavelengths can be used to begin

inferring which spectral qualities are important in measuring

LAI.

The next statistical investigation was a regression of

AVIRIS- or ETM+-derived NDVI on the field-measured

LAI values. Although similar to many studies in the

literature, this investigation is unique in having such close

temporal agreement between AVIRIS and ETM+ data and in

representing four distinct biomes. We also regressed the

multiple-band images on field-measured LAI. The multiple-

band images involved were the ETM+ image, the simulated

ETM+ image, the simulated MODIS image, the PC of

AVIRIS image, the selected AVIRIS channels image, and

the 7-channel selected AVIRIS image. We used canonical

correlation analysis (CCA), a multivariate statistical method

used in a similar context by Cohen et al. (2003a), to derive

an integrated spectral index to plot against measured LAI

values. CCA is a generalized form of multiple regression

designed to align two sets of variables (multiple X’s and

multiple Y’s) by maximizing the correlation between a

composite of variables from one set with a composite of

variables from the other set (Tabachnick & Fidell, 1989).

When one side of the equation has only one variable (such

as LAI in this study), CCA provides a set of coefficients to

transform the other set of variables (in this case, spectral

vectors) into a single transformed variable called the canon-

ical variable (or axis) that is maximally correlated with the

single variable on the other side of the equation. In such

cases, the canonical correlation coefficient (r) is equivalent

to the square root of the coefficient of determination (R2) of

multiple regression.

nvironment 91 (2004) 508–520
3. Results and discussion

3.1. Correlations between LAI and spectral reflectance

Correlation coefficients between LAI and spectral re-

flectance were highly variable by both wavelength and site

(Fig. 1). In general, the non-forested and forested sites

behaved differently. For the two non-forested sites (AGRO

and KONZ), the highest positive correlations were in the

near-IR regions for all image sources (ETM+, AVIRIS,

simulated ETM+, and simulated MODIS). For all other

spectral regions at these sites, correlation coefficients were

negative, or near zero. AGRO showed high correlations

across the spectral range, and strong agreement between



Fig. 1. Correlation coefficients for the relationship between field-measured LAI and spectral reflectance at the four study sites along the AVIRIS channels and

the other three multispectral bands.
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ETM+ and derived AVIRIS datasets. Agreement was

weaker at KONZ, particularly in the visible region and

the SWIR regions (around 1600 and 2200 nm). Notably,

LAI at KONZ was more strongly correlated in several

bands to the actual ETM+ data than to the simulated ETM+

data, the simulated MODIS data, or the original AVIRIS

data.

At the two forested sites, correlation between spectral

data and LAI was negative across nearly the entire spectral

range. At NOBS, the SWIR regions had stronger negative

correlations than either the near-IR region or the red region.

LAI at NOBS was more strongly correlated to the actual

ETM+ data than to any of the AVIRIS or AVIRIS-derived

image datasets. The situation at HARV was less clear than at

the other sites. Agreement between ETM+ data and AVIRIS

and AVIRIS simulated data was generally strong in the

visible region, but quite weak (even oppositional) across the
infrared regions. If disagreement between sensors were

related to discrepancies in atmospheric correction (summa-

rized in Table 3), agreement patterns would be reversed:

agreement low in the visible bands, and high in the infrared.

It appears that date of image acquisition plays the dominant

role in the differences between the sensors, with the ETM+

image captured at the height of biomass for the system

(Table 2) and the AVIRIS image captured before full

flushing of the deciduous canopy.

Several general inferences can be made from these

correlations. The agreement between the original AVIRIS

bands and the simulated ETM+ and MODIS bands suggests

that narrow bands have no discernible advantage over broad

bands, at least when viewed on a single band-by-band basis.

Moreover, the comparison between simulated ETM+ and

real ETM+ data suggests that the real ETM+ data suffers no

penalty for its lower radiometric quality. Regardless of
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sensor, the relationship between LAI and spectral values

seems to exhibit few patterns of correlation that are univer-

sal across the sites: different regions of the spectrum are

important in different biomes. It is interesting to note that

the contrast between the near-IR and the red regions—the

foundation of most of the common vegetation indices in use

today—is the dominant feature primarily in the agricultural

system, where the common vegetation indices were origi-

nally exploited with great success. These results suggest that

complex natural systems may be better served by a vegeta-

tion index that includes regions of the spectrum other than

the near-IR and red wavelengths. As seen in Fig. 1, the

magnitude of correlation coefficients in SWIR region is

higher than other wavelength, particularly at the forested

sites.

3.2. Correlations between NDVI and LAI

NDVI (and its counterpart the simple ratio) has been the

most widely used spectral vegetation index to estimate LAI

(Cohen et al., 2003a). Thus, it is important in a study such as

this to contrast other results against the NDVI. The four sites

in this study represent a diverse group of vegetation types,

and having results across these sites should enable some

general observations to be made about the strength of

NDVI–LAI relationships.

Results suggest that the NDVI was generally not

sensitive to values of LAI measured at the four study sites

(Fig. 2). Only at AGRO was there any meaningful trend,

and that trend was evident primarily for the relatively low

LAI soybeans only (Fig. 2). There was a slight trend in the

relationship between NDVI and LAI at HARV, but only at

the very lowest LAI values. This general low correlation

between NDVI and LAI has been noted in numerous

studies (Chen & Cihlar, 1996; Cohen et al., 2003b; Turner

et al., 1999). NDVI has been (for nearly three decades) a

popular index with which to estimate LAI across diverse

systems, but these results suggest that other indices may be

more appropriate. Fortunately, numerous recent studies

have noted a strong contribution of SWIR bands to the

strength of relationships between reflectance and LAI

(Brown et al., 2000; Cohen & Goward, 2004; Nemani et

al., 1993).

At three of the sites (AGRO, KONZ and NOBS),

AVIRIS NDVI values were considerably higher than

ETM+ NDVI values. This can be caused by insufficient

removal of atmospheric scattering effects in the visible

bands of the ETM+ data. Scattering in the visible bands

inflates the red component of the NDVI relationship,

which dampens the contrast between near-IR and red,

and diminishes NDVI values (Turner et al., 1999). This

is consistent with our observations of post-atmospheric

correction imagery, summarized in Table 3: atmospheric

correction of ETM+ in the visible bands was generally

incomplete, leading to inflated ETM+ reflectance in those

bands.
3.3. Canonical correlation analysis

CCA was used here as a convenient way of integrating

several selected wavebands into a single index from each

dataset. In Fig. 3, canonical axis scores from different image

datasets are shown regressed against LAI values by site.

Were these relationships to be inverted and used in mapping,

it would desirable to withhold some proportion of plots to

assess map error. However, the purpose of this study is to

illustrate the relative information content of the different

image datasets, and thus it is appropriate to use these best-

case conditions to explore the tradeoffs in different image

source datasets in tracking LAI.

Inferences about the relative importance of band place-

ment, bandwidth, sensor radiometric quality, and model

overfitting can be made by comparing different pairs of

graphs in Fig. 3. The top two graphs at each site use the full

complement of AVIRIS band placement and radiometric

quality, but the top graph (selected AVIRIS bands, n = 2–

23) capitalizes on individual AVIRIS narrow bands to

develop a site-specific relationship with LAI, while the

second graph (10 principal components of AVIRIS) uses

compressed AVIRIS data which obscures the relative

strengths of individual bands. A better fit by the former

over the latter might suggest that individual narrow bands

have an advantage over compressed data. However, given

that the PC of AVIRIS image contained over 99% of the

variance of the full 193 channel dataset, it is difficult to

assess the relative effects of overfitting between models

developed on that dataset versus the models developed with

the selected AVIRIS channels dataset. Comparing the

graphs derived from the selected AVIRIS channels dataset

with the 7-channel selected AVIRIS dataset (third set of

graphs) reveals the effect of adding more bands to, and

potentially overfitting of, models based on AVIRIS data.

Comparing the fourth and fifth graphs (ETM+ data versus

simulated ETM+ data, respectively) at each site sheds light

on whether improved radiometric quality of AVIRIS data

can provide an advantage over actual ETM+ data. By

comparing simulated ETM+ and simulated MODIS imag-

ery, the fifth and sixth graphs address the issue of broad-

band width and placement. Finally, comparisons among all

graphs suggest which combination of these effects has the

greatest potential for capturing patterns in LAI, within the

context of the potential effects of model overfitting.

At all sites, comparison of the top two graphs suggests

that the use of individual narrow bands allowed for a better

fit of LAI than PC-based compressed bands. At AGRO,

the two are comparable, but at all other sites the fit from

the selected AVIRIS channel-derived CCA axis is better

than that derived from the PC of AVIRIS-derived CCA.

Comparing these results with the third row of graphs

reveals the potential effects of model overfitting. With

the exception of AGRO, the models based on seven

AVIRIS channels are less powerful than those based on

the selected AVIRIS channels image. These are still
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Fig. 2. Relationship between field-measured LAI and NDVI for ETM+ and AVIRIS at the four study sites.
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stronger than the PC of AVIRIS models, suggesting that

even if the PC of AVIRIS images (which contained 99% of

the variation of the full 193 band AVIRIS datasets) are

overfit, their compressed nature obscures their value rela-
tive to the even smaller subset of seven individual AVIRIS

bands datasets.

There appeared to be no improvement in prediction of

LAI from the higher radiometric quality of the AVIRIS data.



Fig. 3. The relationship between LAI and CCA-transformed spectral reflectance for six derived data sets at each study site.
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Fig. 3 (continued).
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Fig. 4. Distribution of two datasets of AVIRIS spectral channels selected

from the stepwise multiple regression to predict LAI at four study sites.
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At AGRO, the actual ETM+ data and simulated ETM+ data

were comparable. At NOBS and KONZ, the simulated data

were moderately weaker than the ETM+ data. It is not

possible to isolate indirect influences of this difference

within our study, although two likely possibilities are differ-

ences in grain size or slight variations in image acquisition

date. At HARV, the simulated ETM+ data better captured

LAI patterns, which may be related to better atmospheric

correction of the AVIRIS data, or simply due to the greater

discrepancies in date of acquisition of image and field data

at HARV. Bandwidth and band placement of simulated

ETM+ and MODIS data appear to make little difference

across sites.

Comparing across all image datasets, it appears that the

use of individual, narrow bands of AVIRIS data yielded

the best relationships with LAI. One exception was at

AGRO, where all image datasets performed similarly. This

result was driven primarily by the discrete contrast be-

tween the two agricultural vegetative types (corn and

soybeans). That more bands of AVIRIS data added to

the apparent strength of predictive LAI models is not

surprising, given the relatively lower canonical correlation

coefficients with the 7-channel selected AVIRIS dataset;

however, the possibility that the models based on the

selected AVIRIS channels images are overfit remains a

major concern. Models based on the 7-channel selected

AVIRIS dataset yielded higher correlations than those

based on the broad-band datasets (i.e., 6-band actual and

simulated ETM+, and 7-channel simulated MODIS data-

sets). This result does suggest that bandwidth and place-

ment might be important factors in relative model

strength.

3.4. Distribution of selected AVIRIS channels for the

estimation of LAI

Two interesting observations arise from examining the

bands chosen for the ‘‘selected AVIRIS’’ and the ‘‘7-channel

selected AVIRIS’’ image datasets (Fig. 4). First, the area of

vegetation’s ‘‘red-edge’’ (around between about 710 and

750 nm) was identified as important at three of the four sites

(AGRO, KONZ, and HARV). The correlation with LAI

around this region has been reported in previous studies

(Asner, 1998; Danson, 1996). Second, although the near-IR

region (up to f 1100 nm) has been the cornerstone of the

ubiquitous vegetation indices (NDVI, simple-ratio), it

emerged as an important region of the spectrum for both

datasets only at the KONZ site. However, for all datasets,

bands from the SWIR region (beyond f 1300 nm) were

important. A number of studies have identified this region of

the reflectance spectrum as potentially important for track-

ing vegetative properties. Considering that the SWIR bands

were important at all four biomes in this study, vegetation

indices that do not include this spectral region may be less

than satisfactory for estimating LAI. Other recent studies

have demonstrated the same general result for a variety of
vegetation attributes (Asner, 1998; Cohen et al., 2003b;

Eklundh et al., 2001).
4. Conclusions

It has been more than 15 years since hyperspectral

remote sensing began its emergence as an important remote

sensing device (Goetz et al., 1985). With many airborne

imaging spectrometer systems in use today and the rise of

spaceborne hyperspectral sensors, better understanding of

this type of image data is increasingly needed. This study

was designed to explore whether and why narrow-band,

hyperspectral data may improve remote sensing of LAI

over broad-band, multispectral data. Its strength was in

utilizing a unique field and remote-sensing dataset devel-

oped for the BigFoot project, allowing comparison of

sensor types using consistent techniques across four diverse

vegetative systems.

The major results of this work can be concluded as

follows:

� Number of bands appears to be the most important

advantage of using hyperspectral data over multispectral

data to predict LAI within four diverse biome types. By

comparing regression models derived from individual

AVIRIS channels with those derived from simulated

ETM+ and MODIS channels using the AVIRIS data, the

effects of bandwidth, band placement, and number of

bands were largely isolated from radiometric quality.

Models with selected AVIRIS channels performed better

to predict LAI than the other datasets, with the best

models having up to 23 AVIRIS channels. However, these
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latter models may have been overfit. When the number of

channels was limited to seven, model strengths were

intermediate between those derived from seven broad

bands, and those having more, narrow channels. This

suggests some advantage of using narrow, select channels

over broad bands. Nonetheless, models based on actual

ETM+ data were generally stronger than those based on

simulated ETM+ data, suggesting that ETM+ data suffer

no penalty for having lower radiometric quality than the

AVIRIS-simulated ETM+ data for predicting LAI.
� If number of bands is the primary advantage of

hyperspectral data over multispectral data for predicting

LAI, a considerable amount of work remains to

determine when a predictive model is overfit. Studies

like those of Thenkabail et al. (2000) that use neutral

models to compare random and actual datasets are useful,

but they are only one approach. Testing of models with

independent datasets will also help determine if a given

model is overfit.
� NDVI was generally not sensitive to LAI at the four sites.

Contrasting agricultural types produced apparent sensi-

tivity at one site, but within types, only the very low LAI

type had a useful relationship. This suggests that the

ubiquitous near-IR-based indices are not capitalizing on

important spectral information of available datasets.
� Spectral channels in the red-edge and SWIR regions are

generally more important than those in the near-IR for

predicting LAI. Because of its narrow wavelength

characteristic, the red edge is only detectable with

hyperspectral sensors, whereas the SWIR region is

observable with many multispectral sensors.
� Band placement of broad-band sensors (e.g., simulated

ETM+ and MODIS) did not affect relationships with LAI.

This suggests that there is no inherent advantage to

MODIS spectral properties over those of ETM+ for

estimating LAI. However, other characteristics of the

sensors, such as spatial and temporal resolution, may be

very important.
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