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Abstract. The conceptual framework used by ecologists and biogeochemists must allow
for accurate and clearly defined comparisons of carbon fluxes made with disparate tech-
niques across a spectrum of temporal and spatial scales. Consistent with usage over the
past four decades, we define ‘‘net ecosystem production’’ (NEP) as the net carbon accu-
mulation by ecosystems. Past use of this term has been ambiguous, because it has been
used conceptually as a measure of carbon accumulation by ecosystems, but it has often
been calculated considering only the balance between gross primary production (GPP) and
ecosystem respiration. This calculation ignores other carbon fluxes from ecosystems (e.g.,
leaching of dissolved carbon and losses associated with disturbance). To avoid conceptual
ambiguities, we argue that NEP be defined, as in the past, as the net carbon accumulation
by ecosystems and that it explicitly incorporate all the carbon fluxes from an ecosystem,
including autotrophic respiration, heterotrophic respiration, losses associated with distur-
bance, dissolved and particulate carbon losses, volatile organic compound emissions, and
lateral transfers among ecosystems. Net biome productivity (NBP), which has been proposed
to account for carbon loss during episodic disturbance, is equivalent to NEP at regional or
global scales. The multi-scale conceptual framework we describe provides continuity be-
tween flux measurements made at the scale of soil profiles and chambers, forest inventories,
eddy covariance towers, aircraft, and inversions of remote atmospheric flask samples, al-
lowing a direct comparison of NEP estimates made at all temporal and spatial scales.

Key words: atmospheric CO2; biosphere–atmosphere fluxes; carbon accumulation by ecosystems,
measuring; carbon balance; disturbance; net biome production; net ecosystem production; net primary
production; scaling.

INTRODUCTION

Some of the biogeochemical processes that affect the
carbon balance of terrestrial ecosystems include pho-
tosynthesis (Farquhar et al. 1980, Collatz et al. 1991),
plant respiration (Ryan 1991), microbial respiration
(Parton et al. 1993), leaching losses (Neff and Asner
2001), erosion (Stallard 1998), herbivory (McNaugh-
ton et al. 1989), fire (Crutzen and Andreae 1990), ice-
sheet expansion and retreat (Harden et al. 1992, Schles-
inger 1997), and rates of rock weathering (Berner
1993). Human appropriation and modification of the
earth’s surface over the last several centuries has al-
tered many of these processes, with consequences for
net ecosystem carbon fluxes, atmospheric mass bal-
ance, and inputs to oceans (Vitousek et al. 1986,
Houghton 1996, DeFries et al. 1999). With attention
focused by the Kyoto Protocol (Schulze et al. 2000)
and subsequent international dialogue on carbon emis-
sions from individual nations, there has been an in-
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creasing need to define carbon budgets at regional and
continental scales (Steffen et al. 1998). Unfortunately,
direct measurements of carbon fluxes at regional to
global scales are difficult with current technology (Tans
1993) so estimates of regional- and continental-scale
C fluxes require the integration of remote atmosphere
and satellite observations with field measurements and
experimental manipulations (Running et al. 1999).

Initial investigations of biosphere–atmosphere car-
bon exchange made the assumption that the net flux
can be approximated as the balance between photo-
synthesis and respiration (Keeling 1961, Machta 1972,
Pearman and Hyson 1980, Fung et al. 1983). This was
sensible given that many diurnal and seasonal patterns
of atmospheric CO2 concentration can be explained by
considering only these two processes (Denning et al.
1996, Heimann et al. 1998). However, analysis of in-
terannual and decadal dynamics in atmospheric CO2

driven by changes within the terrestrial biosphere re-
quires consideration of additional processes including
fire, dissolved organic carbon (DOC) and dissolved in-
organic carbon (DIC) losses in rivers, erosion, and
land-use changes such as agriculture and timber harvest
(Canadell et al. 2000, Pacala et al. 2001).
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TABLE 1. Summary of contemporary terrestrial ecosystem carbon fluxes.

Concept
Acronym/

symbol Global flux Definition

Gross primary production GPP ;100–150 Pg C/yr carbon uptake by plants during pho-
tosynthesis

Autotrophic respiration Ra ;½ of GPP respiratory loss (CO2) by plants for
construction, maintenance, or ion
uptake

Net primary production NPP ;½ of GPP GPP 2 Ra

Heterotrophic respiration (on land) Rh ;82–95% of NPP respiratory loss (CO2) by the hetero-
trophic community (herbivores, mi-
crobes, etc.)

Ecosystem respiration Re ;91–97% of GPP Ra 1 Rh

Non-CO2 losses ;2.8–4.9 Pg C/yr CO, CH4, isoprene, dissolved inor-
ganic and organic carbon, erosion,
etc; see Table 2.

Non-respiratory CO2 losses (fire) ;1.6–4.2 Pg C/yr combustion flux of CO2; see Table 2.
Net ecosystem production NEP ;62.0 Pg C/yr total carbon accumulation within the

ecosystem; defined in Defining Net
Ecosystem Production: A compre-
hensive definition of NEP.

In part because of the rapid expansion of carbon
cycle analyses at regional to global scales, we are left
with ambiguities in our conceptual framework (see Ta-
ble 1 for a summary of ecosystem flux concepts).
Should net ecosystem production (NEP), which was
initially approximated in the first biosphere–atmo-
sphere CO2 studies as the difference between photo-
synthesis and respiration, formally include all carbon
exchanges that influence net carbon accumulation by
an ecosystem (as the name ‘‘net ecosystem production’’
implies)? Alternatively, should NEP refer solely to the
photosynthesis and respiration components (as sug-
gested by some recent analyses, e.g., Schulze and Hei-
mann [1998], Steffen et al. [1998], and Buchmann and
Schulze and [1999])?

DEFINING NET ECOSYSTEM PRODUCTION

Historical perspective

The simultaneous definition of NEP as the carbon
accumulation within ecosystems and as the difference
between gross primary production (GPP) and ecosys-
tem respiration extends back in the ecological literature
over four decades (Woodwell and Whittaker 1968,
Woodwell and Botkin 1970, Reichle et al. 1975). These
two definitions are equivalent when non-photosynthetic
gains and non-respiratory losses to an ecosystem are
negligible, and so in many applications over the last
few decades the two definitions have been used inter-
changeably. Increasing interest in the global carbon
budget and the partitioning of land and ocean carbon
sinks in the late 1970s focused attention on the need
to quantify non-respiratory losses from terrestrial eco-
systems, including fire and river fluxes (Bolin et al.
1979). As described by Lugo and Brown (1986), even
if the terrestrial biosphere were close to steady-state
carbon balance, a substantial biosphere–atmosphere
CO2 sink would be required to match river carbon
losses.

With new assessments of volatile organic compound
(VOC), methane, fire, and river fluxes, the sum of non-
CO2 and non-respiratory losses from terrestrial eco-
systems is substantial at stand, regional, and global
scales. Combined, these fluxes represent a loss of
;10% of global net primary production (NPP) (Table
2), and thus provide motivation for defining NEP solely
in terms of carbon accumulation at all scales of inquiry.

A comprehensive definition of NEP

To reconcile carbon flux measurements made with
diverse techniques and across widely varying time and
space scales, NEP must be defined as the rate at which
carbon (C) accumulates within an ecosystem (i.e., the
change in carbon storage over some time interval):

NEP 5 dC/dt. (1)

A critical element of this definition is that the ecosys-
tem in consideration must have defined boundaries in
three dimensions (it must be possible to enclose the
ecosystem with a three-dimensional container or box).
For example, in a forest ecosystem, the top of the box
might be defined as the height of the tallest tree, while
the bottom of the box might be defined as a specified
soil depth. Another critical feature of this definition is
that the start and end times of the measurement period
(or interval of integration) must be specified. Conser-
vation of mass requires that fluxes (F ) across the eco-
system boundaries equal the rate of change in C within
the ecosystem. Thus, NEP has the equivalent definition
(Olson 1963):

NEP 5 F 1 Fin out

ø F 1 F 1 F 1 F 1 FGPP R fire leaching erosione

1 F 1 F 1 F 1 · · · . (2)hydrocarbons herbivory harvest

Therefore, NEP encompasses all fluxes (Fi) across all
the boundaries of the ecosystem, independent of the
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TABLE 2. Global non-CO2 and non-respiratory carbon losses from terrestrial ecosystems.

Source Components
Flux

(Pg C/yr)
Flux range
(Pg C/yr) Reference

Non-CO2 losses
Rivers dissolved organic carbon 0.40 0.20–0.90 Schlesinger and Melack (1981),

Degens (1982), Degens et al.
(1991), Meybeck (1982),
Suchet and Probst (1995),
Stallard (1998)

dissolved inorganic carbon
particulate organic carbon

0.30
0.30

†
†

Volatile organic compounds,
VOCs

isoprene
monoterpene
other reactive VOCs
other non-reactive VOCs

0.50
0.12
0.26
0.26

†
†
†
†

Guenther et al. (1995)

Methane natural sources
anthropogenic biosphere

0.16
0.27

0.11–0.21
0.20–0.35

Prather et al. (1996)

Carbon monoxide, CO fires 1.0 0.50–1.50 Bergamaschi et al. (2000)
photochemical oxidation of

organic matter
0.06 0.03–0.09 Schade and Crutzen (1999)

thermal oxidation of organic
matter

0.04 0.01–0.08 Schade et al. (1999)

Non-respiratory CO2 losses
Fires ··· 3.0 1.6–4.2 Crutzen and Andreae (1990)

Total sum of non-CO2 and non-
respiratory CO2 losses‡

··· 6.6 4.4–9.2

† Range of estimates not available.
‡ Total flux is ;11% of global NPP at 60 Pg C/yr, which is ;6 times larger than the net terrestrial carbon flux estimated

by Prentice et al. (2001).

FIG. 1. Regulation of net ecosystem production (NEP) by processes in terrestrial ecosystems varies with the time–space
scales. At longer timescales and larger spatial scales, dissolved organic and inorganic river fluxes (DOC/DIC), fires, and
erosion play critical roles in regulating ecosystem carbon balance. On shorter timescales, gross primary production (GPP)
and ecosystem respiration (Re) are dominant processes.

driving mechanism or the degree of biological regu-
lation (Fig. 1). This definition must include all fluxes
because, in many instances, it is difficult to distinguish
between C fluxes that are regulated solely by abiotic
or biotic processes. Clear examples of fluxes with direct
biological regulation include gross primary production

(GPP) and ecosystem respiration (Re; including both
autotrophic and heterotrophic components) in which
CO2 diffuses directly through a cell membrane. Fluxes
associated with fire (Ffire) and soil erosion (Ferosion) also
are strongly regulated by biological and ecological pro-
cesses, though not necessarily at a cellular level. The
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fire flux (Ffire; which includes CO2, CO, CH4, VOCs,
and particulates) needs to be included in this definition,
so that NEP is equivalent to the ecosystem mass rate
of change over any timescale.

The role of non-CO2 fluxes

Not all ecosystem C fluxes are in the form of CO2

gas. Leaching (Fleaching) and hydrocarbon emissions
(Fhydrocarbons) contribute significantly to NEP in many
ecosystems. For example, in boreal peatlands and arctic
tundra, vertical and lateral fluxes of dissolved organic
carbon (DOC), dissolved inorganic carbon (DIC), and
methane are as much as 5% to 10% of the net ecosys-
tem–atmosphere CO2 flux (Waddington and Roulet
1997, King et al. 1998, Reeburgh et al. 1998). In tundra
ecosystems, the inclusion of dissolved CO2 and meth-
ane fluxes in calculations of NEP reduced carbon up-
take rates by 20% relative to the ecosystem–atmosphere
CO2 flux (Kling et al. 1992). Isoprene, terpene, and
other volatile organic compound (VOC) emissions also
contribute to NEP (Lerdau 1991, Monson et al. 1991,
Guenther et al. 1995).

While stream fluxes of DOC are generally within the
range of 0–10 g C·m22·yr21 and average ;5 g
C·m22·yr21, there is large variability (2–52 g
C·m22·yr21) across ecosystems (Hope et al. 1994). Rates
of DOC flux are also substantially higher in soils than
in streams, indicating the need to explicitly define a
vertical (depth) ecosystem boundary in NEP calcula-
tions (Neff and Asner 2001). The impact of soluble
carbon fluxes on carbon balance may be especially im-
portant in streams draining boreal forests and in areas
with substantial wetland cover (e.g., Moore 1989, Hope
et al. 1994, Waddington and Roulet 1997). Particulate
C losses can also be substantial in some ecosystems,
particularly following disturbance (Bormann et al.
1974, Stallard et al. 1998). Are these losses significant
when integrated to the global scale? A 1 Pg C/yr net
terrestrial flux evenly distributed over all biomes cor-
responds to approximately a 10 g C·m22·yr21 flux. Thus,
when integrated, stream and river losses are compa-
rable in magnitude to the net terrestrial flux (Prentice
et al. 2001).

Carbon can also be removed or delivered to an eco-
system by lateral transfer of organic material, as me-
diated by herbivores (Fherbivory) (McNaughton et al.
1989) or harvest (Fharvest) (Harmon et al. 1990). In many
cases herbivores are an internal component of an eco-
system, and will not cause a net transfer of C across
the three-dimensional shape defined for the purpose of
the NEP measurement. In other cases, herbivores may
transfer C across the predefined spatial boundaries of
the ecosystem, and thus contribute to NEP. Possible
situations where this might occur include mass migra-
tions, insect outbreaks, or agricultural grazing, or in
any situation where the defined ecosystem is small as
compared to the size of a typical herbivore. These com-
ponents have not been explicitly incorporated into pre-

vious definitions of NEP although they have been fre-
quently inferred as a part of heterotrophic respiration
(Parton et al. 1993). Either we need still another con-
cept that reflects total ecosystem C accumulation or (as
we argue here) we need to explicitly include all C ex-
changes in NEP, so that this term truly reflects the net
C accumulation by ecosystems, as has been implied in
the past.

Disturbance and NEP

All of the flux components that contribute to NEP
defined in Eq. 2 are either a direct result of disturbance
events or are responding to a complex history of mul-
tiple disturbances that leave a long-term biological leg-
acy (Reichle et al. 1975).

‘‘Disturbance’’ is frequently defined as a relatively
discrete event that induces widespread mortality of the
dominant species within an ecosystem (e.g., Aber and
Melillo 1991). Climate variability, N deposition, and
stimulation of plant growth by elevated levels of at-
mospheric CO2 are often considered as separate pro-
cesses (in terms consequences for C fluxes), though
they also have the potential to cause stand-leveling
mortality events (Neilson 1993) and thus also have the
potential to serve as agents of disturbance.

As with the definition of NEP described above, a
comprehensive definition of disturbance should be
based on clearly defined spatial boundaries and time
intervals. Here we suggest following the framework
developed by Pickett et al. (1989). Pickett et al. (1989)
define the ecological concept of disturbance as a change
in the minimal structure of a system caused by an ex-
ternal agent. Applying these concepts at the ecosystem
scale, minimal structure includes the species compo-
sition, the distribution of plant functional types, and
canopy architecture. Stand-leveling wind storms, fires,
mortality induced by insect outbreaks, stand-killing
droughts, and harvesting by humans all fundamentally
alter this minimal structure and originate from a dif-
ferent level of ecological organization, thus qualifying
as external agents. At the biome scale, a change in the
disturbance regime from climate change or humans
may constitute an external agent, with the ensemble of
vegetation types and stand ages defining the minimum
structure.

Human impacts on NEP

Humans affect all of the NEP components on the
right-hand side of Eq. 2 by modifying the atmospheric
composition, nutrient levels, climate, erosion rates, and
disturbance regime. Examples of fluxes associated with
humans include the removal of crops in agricultural
ecosystems for use in distant feedlots and cities, the
lateral transfer of wood from forests to paper mills,
from paper mills to suburban and urban areas, and then
to landfills, and the altered heterotrophic respiration of
plowed soils when disturbance reduces the protection
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of soil organic carbon from microbial attack (Kurz et
al. 1995, Barlaz 1998, Skog and Nicholson 1998).

The dominant components of NEP vary with scale

As indicated in the discussion above, NEP poten-
tially involves different processes and forms of carbon
(i.e., not just CO2). These processes are best repre-
sented and studied at certain scales. For example, dis-
turbances such as fire kill individual plants and con-
sume individual detritus parts, but are best considered
in the NEP context at the level of landscapes or at the
stand scale over very long time periods relative to the
disturbance return interval. This is in part because the
probability of a fire occurring increases with the extent
of the temporal or spatial scale. At finer scales fires
are irregular and they appear to add an unreasonable
and often misleading variance in NEP. We suggest that
this feature of NEP could be addressed by explicitly
defining the level that NEP is being reported by use of
subscripts. This would then clarify the processes that
are usually included and excluded from the analysis.
Any scaling of NEP from one level to another would
then involve the addition of the processes that are most
appropriately studied at that scale. For example, NEP at
the level of individual stands (NEPstand, with length scales
roughly from 1 m to 1 km) would require study of fluxes
associated with GPP (FGPP), ecosystem respiration (FRe),
hydrocarbons (Fhydrocarbons), leaching (Fleaching), and erosion
(Ferosion), although over short time spans the latter three
terms might be neglected for some purposes. Fluxes as-
sociated with fire (Ffire), herbivory (Fherbivory), and har-
vest (Fharvest) may not be explicitly addressed at this
scale (unless a disturbance occurs during a sampling
interval). They would be seen at this scale as rare events
that export C from the system. At larger scales, how-
ever, some of these processes would be seen as internal
transfers while others would emerge as substantial con-
tributors to NEP (Fig. 1).

Regional-scale estimates of NEP (NEPreg, with length
scales roughly from 1 km to 102 km) would include
fluxes from a mosaic of stands with different distur-
bance histories and intensities. At this level, NEP is
strongly regulated by direct CO2 losses from fire and
other disturbances as well as fluxes associated with
GPP and Re at various times following disturbance. It
would include CO2 emissions from crop burning, CO2

and organics that enter groundwater and are subse-
quently emitted from lakes and streams, and CO2 emit-
ted from landfills and feedlots that was derived from
NPP transported laterally from other ecosystems.

For the case of biome-level NEP (NEPbiome, with
length scales roughly from 102 km to 104 km), fires,
deforestation, erosion, and river DOC are significant
contributing processes, even on relatively short time
scales (months to years). At this scale, the impact of
any individual disturbance event may be small com-
pared with the ensemble of disturbance events that are
simultaneously occurring, and human- and climate-in-

duced changes in the disturbance regime become crit-
ical regulators of NEP (Schulze and Heimann 1998,
Canadell et al. 2000).

At the global scale, the integral of NEP over the
entire land surface (NEPglobal) represents the change in
the total mass balance of the terrestrial biosphere, in-
cluding plants, soils, herbivores, etc. NEP at this scale
represents a transfer of C to ocean, atmosphere, and
lithosphere reservoirs. By definition all transfers are
internal, except the net flow to the atmosphere, oceans,
or lithosphere. At the global scale, a clear definition of
the borders of the terrestrial system is difficult given
the dynamic mixing processes and CO2 fluxes that oc-
cur at coastal margins and in estuaries.

The minimal scale for NEP

Use of a multiscale definition of NEP raises the issue
of whether there is a minimal scale that emerges from
NEP as a property. We suggest that this minimum scale
is the same as the minimum scale for the definition of
an ecosystem (Odum 1959). While most ecosystems
include some combination of heterotrophs and auto-
trophs, the temporary or permanent absence of light-
harvesting (photosynthetic) organisms clearly does not
preclude application of the ecosystem concept neither
should it preclude characterization of the ecosystem
carbon balance with NEP.

MEASUREMENTS OF NEP AND BIOSPHERE-
ATMOSPHERE CO2 EXCHANGE

On short timescales (typically less than a decade), it
is difficult to accurately measure changes in total eco-
system carbon storage against large and heterogeneous
stocks of C in soils and vegetation using Eq. 1. More
precision can be obtained by measuring fluxes across
the boundaries of the ecosystem via Eq. 2 (Fig. 2). Use
of Eq. 2 to estimate NEP requires that we identify and
measure the dominant components of the flux. In prac-
tice, it also requires the conscious decision to neglect
certain components, if they are believed to be small at
the temporal or spatial scale of measurement.

At the time and space scale of eddy covariance flux
measurements, the dominant one-way components of
NEP are GPP and Re. This has led to the definition of
net ecosystem exchange (NEE) as the balance between
GPP and Re at half-hour to decadal time intervals (Wof-
sy et al. 1993). Defined in this way, NEE is a partial
flux out the top of a three-dimensional box enclosing
the ecosystem and is equivalent to NEP (Eq. 1 and 2)
only at sites where other lateral and vertical C fluxes
are demonstrably small. NEP at eddy flux tower sites
in managed forests also includes any lateral removal
of coarse woody debris in the footprint area, in addition
to the ecosystem–atmosphere CO2 flux. A tower in an
eroding field might record a net uptake of C, even
though NEP is at steady state, with ecosystem–atmo-
sphere gains balanced by erosion losses (Harden et al.
1999). Moreover, the ecosystem boundaries should be
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FIG. 2. The temporal and spatial domain of different techniques used to measure components of net ecosystem production
(NEP) in terrestrial ecosystems. Atmospheric-inversion methods have been applied to contemporary flask CO2 measurements
as well as ice-core records extending over the last 1000 years (Joos et al. 1999, Rayner et al. 1999). Eddy covariance flux
measurements from the Harvard Forest (Petersham, Massachusetts, USA) extend over one decade (Wofsy et al.1993).

clearly defined in stand- and regional-scale flux studies
by disturbance age, erosion setting, and other key var-
iables that affect NEP as it is ‘‘scaled up’’ to regional
or global estimates (e.g., Rapalee et al. 1998).

For similar reasons, biosphere–atmosphere CO2 flux-
es inferred from atmospheric model inversions of CO2

flask or aircraft measurements (Rayner et al. 1999) are
also only partially representative of terrestrial NEP. At
the global scale, river runoff contains DOC (dissolved
organic C) and DIC (dissolved inorganic C) of mixed
terrestrial and aquatic origin on the order of 0.2–0.9
Pg C/yr for DOC and 0.3 Pg C/yr for DIC (Schlesinger
and Melack 1981, Degens 1982, Meybeck 1982, De-
gens et al. 1991, Suchet and Probst 1995). As previ-
ously stated, if the terrestrial biosphere were at steady
state, then this net hydrologic C transport would require
a one-way atmosphere–biosphere flux of the same mag-
nitude (Lugo and Brown 1986). Estimates of C accu-
mulation within the terrestrial biosphere based on at-
mosphere-biosphere fluxes must account for these hy-
drologic losses, and also assess the spatial domain and
timescale over which the land–ocean flux returns to the
atmosphere in coastal margins and in the open ocean.
Atmospheric inversions of CO2 will also fail to properly
assign sources and sinks of total C when oxidation of
CH4, CO, and some VOCs occur in atmospheric regions
that are offset from their terrestrial sources.

On timescales greater than a decade, it is possible
to measure changes in total ecosystem C storage (Fig.
2). Chronosequences of stands of different ages show
decade-to-century scale increases in C stocks following
clearing (Richter et al. 1999), glacial retreat (Crocker
and Major 1955, Harden et al. 1992), floodplain de-
velopment (Yarie et al. 1998), fire (Harden et al. 2000),

and large C losses associated with disturbance (Kas-
ischke et al. 1995, Cohen et al. 1996). The C accu-
mulation over any long time period depends on GPP
(gross primary production) and the respiration of newly
fixed carbon, respiration and other loss pathways for
carbon that was fixed prior to the last disturbance, and
carbon losses associated with the disturbance event.
For example, NEP measurement following disturbance
includes variable proportions of recent and old soil C
(Trumbore and Harden 1997, Goulden et al. 1998).

NEP AND NET BIOME PRODUCTION

The new concept proposed by Schulze and
Heimann (1998)

To address the issue of disturbance (which was wide-
ly neglected in initial biosphere–atmosphere modeling
analyses and field measurement programs), Schulze
and Heimann (1998) proposed the concept of net biome
production (NBP), defined as the regional net carbon
accumulation after considering C losses from fire, har-
vest, and other episodic disturbances. Specifically, the
NBP concept acknowledges that small but consistent
rates of C accumulation over most of the land surface
(i.e., what occurs in most forests and grasslands) must
be balanced by relatively infrequent, but large-mag-
nitude releases associated with episodic disturbance
(e.g., Rapalee et al. 1998). The infrequent nature of
these release events makes it difficult to design terres-
trial sampling programs that provide a true measure of
the regional- or continental-scale C flux (Schulze and
Heimann 1998).

In the definition of NBP, Schulze and Heimann
(1998) distinguish between directional forcing (such as
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changing levels of atmospheric CO2 or temperature)
and disturbance by episodic forcing (such as fires and
harvest). According to Schulze and Heimann (1998),
directional forcing affects NEP (net ecosystem pro-
duction) fluxes through changes in NPP and microbial
and herbivore respiration. In contrast, episodic distur-
bance is said to only affect NBP because of the different
time scale and impact on ecosystem processes (fre-
quently decimating aboveground and belowground bio-
mass stocks) and the different measurement approach
required. NBP is considered as a downstream flux at
the landscape, regional, or continental scale, after
stand-level fluxes of GPP, Ra, Rh, and NEP have been
estimated. Here we question whether episodic distur-
bances that are included in NBP can be partitioned
conceptually or practically from processes that are in-
cluded in NEP.

Ambiguities introduced by the NBP concept

The distinction between NEP and NBP has limita-
tions that compromise communication among biogeo-
chemists, atmospheric scientists, and ecologists work-
ing at different scales. The limitations stem from three
sources: (1) The definition of NBP assumes episodic
disturbance and directional forcing can be distin-
guished from one another, allowing an unambiguous
partitioning of fluxes between NEP and NBP. (2) The
definition of NBP suggests that other terrestrial C fluxes
(GPP, NPP, Re, and NEP; Table 1) can be estimated
(either measured or modeled) separately from episodic
disturbance (and thus NBP). (3) The name and defi-
nition of NBP implies that episodic disturbance emerg-
es only as a regulator of C fluxes at continental or
‘‘biome’’ scales, as a downstream process from NEP.
We address these issues in the following paragraphs.

In many instances, episodic disturbances and direc-
tional forcing cannot be easily separated, yet our frame-
work (and carbon accounting systems) must be rigorous
enough to include this reality. For example, tempera-
ture increases could be classified as a directional forc-
ing (and thus fall under NEP in the definition proposed
by Schulze and Heimann [1998]). Consider the case,
however, of a severe temperature or drought event that
kills some of the vegetation. How much of this mor-
tality must occur before the flux is considered NBP
instead of NEP? If fire is an annual occurrence, as in
many grassland ecosystems, or consumes only a small
fraction of the vegetation, as in many ground fires, is
this an episodic disturbance? Similar issues arise with
herbivory and wind damage. Low levels of insect her-
bivory and wind damage are common in most ecosys-
tems, while outbreaks and hurricanes may be relatively
infrequent. If an outbreak or windstorm does occur, at
what level of severity does it constitute an episodic
disturbance vs. a directional one? Low levels of her-
bivory are usually treated as a component of NPP, but
if certain levels of herbivory are counted in NBP one
needs to decide which form goes with which process.

In the case of harvest, ecosystems may experience se-
vere disturbance of the soil and canopy understory dur-
ing clearing (Black and Harden 1995) or harvest may
be restricted to removal of berries or removal of dead
wood for fuel (Hao and Liu 1994). Should the harvest
flux (associated with NBP according to Schulze and
Heimann [1998]) include the changes in soil respiration
triggered by harvest removal or subsequent soil ero-
sion?

The implications of attempting to separate episodic
and directional forcing are severe. Previous estimates
of global NEP, based on the assumption that episodic
disturbances are associated only with the NBP flux, are
as high as 10 Pg C/yr into the land surface (Steffen et
al. 1998, Prentice et al. 2001). Yet, as shown in the
examples above, it is unclear as to exactly what fluxes
should be included when NEP is defined in this way.
It is essential that we separate our theoretical paradigm
of terrestrial C balance from our ability (or inability)
to accurately measure the net flux and its components.
From a practical perspective, NEP and NBP are im-
possible to measure separately (it is impossible to make
a pure measurement of NEP following the NBP–NEP
distinction presented in Schulze and Heimann [1998],
Buchmann and Schulze [1999], and Schulze et al.
[2000]).

Disturbance is an integral and defining element of
all ecosystems. Therefore measurements of GPP, NPP,
Ra, and Rh are impossible to consider outside the context
of both episodic disturbance and directional forcing.
For example, canopy photosynthetic capacity depends
strongly on leaf nitrogen, which in turn, depends on
soil N availability and the cumulative history of dis-
turbance events that have precipitated N loss (Field and
Mooney 1986, Schulze et al. 1994). Likewise, ecosys-
tem respiration fluxes critically depend on total eco-
system carbon stocks and their distribution among live,
labile, chemically recalcitrant, and physically protected
forms (Schimel et al. 1994). Again, past disturbance
frequencies and intensities are critical regulators of the
distribution and amounts of C in these forms. The def-
inition of NBP does not emphasize the fundamental
role of episodic disturbance in shaping ‘‘upstream’’
fluxes (GPP, NPP, Ra, and Rh); the primary effect of
disturbance is assumed to occur at very large spatial
scales (Buchmann and Schulze 1999: Fig. 1).

Within every square meter of an ecosystem, the net
C balance (and all of the one-way components) is in-
fluenced by the cumulative history of multiple, pre-
vious disturbances. In the boreal forest, for example,
logs remain after fire from trees that grew two or more
fire cycles previously and are still decomposing. Hard-
en et al. (2000) found that it was very difficult to dis-
tinguish between heterotrophic respiration from the de-
composition of organic material exposed or killed dur-
ing the last major disturbance and microbial respiration
of decomposing leaf and root litter derived from living
vegetation.
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Reconciling NBP with NEP

Because of the ambiguities created by distinguish-
ing between NBP and NEP, we suggest a conceptual
framework where NBP is equivalent to a compre-
hensive definition of NEP (see Defining NEP: A com-
prehensive definition, above) at regional or global
scales. Thus, NBP also represents the total mass bal-
ance of terrestrial C:

NBP 5 NEP 5 dC/dt. (3)

Is the concept of ‘‘net biome productivity’’ then nec-
essary? Given the conceptual framework described by
ecologists over the last few decades (Woodwell and
Whittaker 1968, Reichle et al. 1975, Lugo and Brown
1986, Aber and Melillo 1991), NBP does not represent
a quantity that is fundamentally different from NEP.
However, the NBP concept is extremely useful because
it highlights the role of rapid episodic fluxes in shaping
NEP at very large scales and the challenges of extrap-
olating terrestrial C measurements made at individual
sites (where these rapid episodic fluxes are not easily
measured). NBP also highlights the non–negligible
contribution of lateral (harvest) fluxes out of ecosys-
tems that may be very difficult to quantify at individual
sites.

While there is value in the NBP concept, we believe
that it is impossible to attempt to partition fluxes from
the terrestrial biosphere in terms of their origin as either
arising solely from episodic disturbance or directional
forcing from climate or other processes, or to make a
unique distinction between NEP and NBP.

NEP, NBP, AND CARBON MANAGEMENT

The relevance of disturbance effects on carbon ex-
change is also important to the development of C emis-
sion restrictions in the Kyoto Protocol.7 Article 3.4 of
the protocol includes the possibility that ecosystem-
management activities focused on containing distur-
bances such as fire and pest outbreaks could be con-
sidered for carbon uptake credits. At the scale of coun-
tries or continents, disturbance-associated C fluxes are
very large. For example, the direct loss of C during
boreal forest fires is predicted to reach as high as 0.8
Pg C/yr over the next 30–100 yr (Kasischke et al.
1995). Reductions in the rates of these emissions could,
in theory, qualify for C credits. The amount of C that
could be affected by such policy decisions is signifi-
cant. For example it has been suggested that a 5%
reduction in fire-induced C losses in United States
could yield a 0.5 Pg C/yr reduction in C emissions
(Sohngen and Haynes 1997).

The critical issues involving NEP (net ecosystem
production) and NBP (not biome production) estimates
from a policy perspective are based on the need to
document changes in C storage associated with man-
agement activities. For the reasons discussed in this

7 URL: ^http://www.unfccc.de/resource/convkp.html&

manuscript, it is critical to clearly define the boundaries
of the region considered for C balance and to evaluate
the impacts of previous disturbances on current rates
of C uptake or loss at all spatial and temporal scales.
Without consideration of these two issues, the account-
ing requirements defined in the Kyoto Protocol for the
inclusion of terrestrial C fluxes in a broader C restric-
tion cannot be met.

CONCLUSIONS

1) A robust definition of net ecosystem production
(NEP) should be based on a full ecosystem mass bal-
ance and include non-CO2 and non-respiratory com-
ponents of the C flux and clearly defined temporal and
spatial boundaries. Defined in this way, NEP provides
an unambiguous measure of change in C storage that
is conceptually consistent across all spatial and tem-
poral scales, from an individual plot to the entire ter-
restrial biosphere. In our view, definitions of NEP sole-
ly based on the difference between NPP and Rh or GPP
and Re encourages a perspective in which other C trans-
fers are ignored at the local scale, and thus reconciling
carbon mass balance with ocean and atmosphere res-
ervoirs becomes difficult at the global scale.

2) Disturbance is an integral property of all ecosys-
tems. It affects all one-way C fluxes including GPP, Ra ,
and Rh, and hydrologic fluxes at all spatial and temporal
scales. It does not emerge as a regulator solely at re-
gional or biome scales.

3) Net biome production (NBP) as previously de-
fined by Schulze and Heimann (1998) cannot be dis-
tinguished from NEP in many instances because epi-
sodic disturbance is frequently impossible to distin-
guish from directional forcing and because most C flux-
es respond to disturbance over a wide range of temporal
scales.

4) Equivalent mass-balance definitions of the two
terms ‘‘NBP’’ and ‘‘NEP’’ allows for a consistent treat-
ment of carbon in political frameworks for taxation,
and for efficient comparison of fluxes at various spatial
and temporal scales and between models and field ob-
servations.
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