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Abstract. Image-to-image registration requires identification of common points
in both images (image tie-points; ITPs). Here, we describe software implementing
an automated, area-based technique for identifying ITPs. The ITP software was
designed to follow two strategies: (1) capitalize on human knowledge and pattern-
recognition strengths, and (2) favour robustness in many situations over optimal
performance in any one situation. We tested the software under several con-
founding conditions, representing image distortions, inaccurate user input, and
changes between images. The software was robust to additive noise, moderate
change between images, low levels of image geometric distortion, undocumented
rotation, and inaccurate pixel size designation. At higher levels of image geometric
distortion, the software was less robust, but such conditions are often visible to
the eye. Methods are discussed for adjusting parameters in the ITP software to
reduce error under such conditions. For more than 1600 tests, median time needed
to identify each ITP was approximately 8 s on a common image-processing
computer system. Although correlation-based techniques—such as those imple-
mented in the free software documented here—have been criticized, we suggest
that they may, in fact, be quite useful in many situations for users in the remote
sensing community.

1. Introduction
When two images of the same area are to be analysed, they must be geometrically

registered to one another. Image-to-image registration involves: (1) the identification
of many image tie-points (ITPs), followed by (2) a calculation based on those
points for transforming one image’s pixel coordinates into the coordinate space of
the other image, followed finally by (3) a resampling based on that transformation.
While steps 2 and 3 are relatively standardized processes, the manual identification
of image tie-points may be time-consuming and expensive, and includes bias of the
interpreter. For these reasons, automated techniques for detection of ITPs have been
developed that are potentially cheaper and repeatable.

The variety of automated registration techniques has been amply summarized
elsewhere (Bernstein 1983, Brown 1992, Fonseca and Manjunath 1996, Schowengerdt
1997). Briefly, the techniques to identify tie-points in two images fall into two main
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categories: area-based matching and feature-based matching. Area-based matching
approaches compare spatial patterns of pixel grey-scale values (digital numbers) in
small image subsets (Pratt 1974, Davis and Kenue 1978). Match-points between
image subsets are located by maximizing some function of similarity between an
image subset in one image and the image subset in another image. The function of
similarity may be a modified difference function or a more complex correlation
function (Bernstein 1983, Schowengerdt 1997). Variations on this basic theme exist
that seek to decrease computation time (Barnea and Silverman 1972) or to compute
a simultaneous solution for multiple points, rather than using sequential image
subsets (Rosenholm 1987, Li 1991). In contrast to area-based matching, feature-
based matching does not attempt to directly match grey-scale pixel patterns between
the two images. Rather, pattern-recognition algorithms are applied to grey-scale
pixel patterns within each image separately to identify prominent spatial features,
such as edges (Davis and Kenue 1978, Li et al. 1995) or unique shapes (Tseng et al.
1997). These features are described in terms of shape or pattern parameters that are
independent of the image grey-scale values (Goshtasby et al. 1986, Tseng et al. 1997).
The separate features in the two images are then matched based on those shape and
pattern parameters.

Although these techniques have been in existence for decades and are well-
documented in image-processing texts (Pratt 1991, Schowengerdt 1997), many users
of satellite data still rely on manual designation of tie-points. To assess use of
automated techniques, we surveyed every article published in the International
Journal of Remote Sensing for the year 2001 (i.e. all of volume 22, not including the
shorter communications in the L etters section). Of 206 articles surveyed, 59 included
methodology that required co-registering of images, and thus could have benefited
from the use of an automated approach. Only five of those (~8%) used some type
of automated approach for locating ITPs, while 24 (~40%) appeared to use manual
co-location of points (table 1). Another 13 studies (~22%) stated that they
co-registered images, but provided no detail how they did so. However, we infer
from the lack of attention paid to describing geo-registration methodology that most
or all of these studies did not use techniques other than the traditional manual
approach. Thus, it appears likely that over 60% of the studies used manual ITP
identification, while fewer than 10% of the studies used an automated approach.
The remaining 30% of the studies manually registered both images to a common
system, which is another situation where automated approaches could have been
used. In all, more than 90% of the studies that could have used automated techniques
did not.

Table 1. Tallies of International Journal of Remote Sensing 2001 articles that co-registered
images, broken down by the method used to identify ITPs.

Image co-registration method Number of papers

Images separately registered to common system 17
Manual ITP selection 12
Manual ITP selection inferred, but not explicitly stated 12
Automated approach 5
Method not stated 13

Total 59
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The cause for this avoidance of automated techniques is unclear. Certainly,
reviews of automated techniques have stressed the weaknesses of both categories of
automated tie-point designation. Area-based methods require significant computer
time (Barnea and Silverman 1972), may only deal with translational offsets (Pratt
1974), and may not be useful for data fusion between optical and non-optical sensors
(Rignot et al. 1991, Li et al. 1995). Feature-based methods require the existence of
robust features that are relatively invariant between images, and also require use of
sophisticated feature-extraction algorithms (Fonseca and Manjunath 1996). From
the perspective of an applied user of satellite data, it may appear that the automated
detection of tie-points holds more risk than potential reward.

We suggest that many applied users of remote sensing data could benefit from a
simple automated approach. In this paper, we describe a publicly-available software
package we have developed that uses a simple area-based approach for automated
detection of image tie-points. We base the software on two strategies: (1) capitalize
on user knowledge and pattern recognition ability, and (2) favour robustness to a
variety of image conditions over optimality in any one condition. The former strategy
eliminates the greatest unknowns and the costliest components of automated image-
matching. The latter relies on the high speed of today’s computers to overcome the
time-consumption of the area-based approach. In addition to describing the software,
we report on tests designed to characterize its usefulness under a range of potentially
limiting conditions.

2. Methods
2.1. Automated location of tie-points

Locating each tie-point is a three-step process. In the first step, an approximate
tie-point pair is defined in the two images. The approximate tie-point pair is fed to
the area-based correlation module that derives the precise image tie-point pair.
Finally, the new pair is validated. The next cycle begins by referring to the position
of the previous tie-point pair.

Step 1: L ocating approximate tie-point pairs. For each image pair, the user supplies
the coordinates of the first approximate tie-point pair. This simple user input follows
the strategy of capitalizing on human input. The match need not be a true image
tie-point, only an approximation to seed the process (see section 4.7 for a brief
discussion of this strategy). After the first image tie-point is found and validated
(Steps 2 and 3 below), the program automatically locates the second and all sub-
sequent approximate tie-point pairs along a regular grid pattern, working systematic-
ally left to right and up to down within the images. The spacing of the grid is
adjustable.

For the grids to be scaled properly, the true pixel size (pixel-centre to pixel-centre
distance on the ground) of each image must be known, as well as the rotation of
the images relative to each other. The user supplies both of these values. Tests of
the sensitivity of the process to errors in these estimates are described in section 2.2.
Again, the rationale for requiring this user input is based on the strategy of capitaliz-
ing on human strengths: the human user likely knows this basic information
about the two images, and even if these two values are not already known, they can
be approximated easily from simple trigonometry. This is far more efficient than
designing an iterative procedure to derive these values automatically under any set
of circumstances.
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Step 2: L ocating potential tie-point pairs. An area-based matching approach is the
core of the method. A small subset (dimensions W and H, in units of reference image
pixels, adjustable by the user) is extracted from each of the two images (figure 1).
The subsets are centred at the coordinates of the approximate tie-point pair supplied
from Step 1. If the user has specified that the true pixel size differs between the two
images, or that the images are rotated relative to one another, the program adjusts
the input image subset to match the size and orientation of the reference image subset.

Once subsets have been defined, the process is identical to that described in
Schowengerdt (1997). Conceptually, the reference image subset is anchored on a
plane while the input image subset floats over it in incremental i and j pixel offset
distances. At each offset, the pixel values in the intersection of the two subsets are
used to calculate a spatial similarity index. As implemented in the routine, the two
image subsets (hereafter R and I, for reference and image subsets, respectively) are
first standardized to a mean of 0.0 and a standard deviation of 1.0, resulting in Rn
and In . For each i, j offset, the intersection regions are identified as Rn

i,j and In
i,j , and

the mean values of the intersection regions are calculated (Rn
i,j and In

i,j ). For the pixels
in the intersection, the following similarity index is calculated:

S
i,j=

∑
K

k=1
∑
L

l=1
(r
k,l · ik,l )−(Rn

i,j · Ini,j )

N
(1)

where K and L are the dimensions of the intersection, r
k,l and i

k,l are grey-scale
values of the normalized reference and input image subsets, respectively, at position
k, l of the overlap area, and N is the number of pixels in the overlap area (=K·L ).
For computational reaons, S

i,j is formulated slightly differently than the normalized
cross correlation (Fonseca and Manjunath 1996). Nevertheless, because the input
images are standardized to mean 0.0 and standard deviation 1.0 before calculating
the similarity index, the expected range of S

i,j is still −1.0 to +1.0 (this result is
similar to the observation that the square of standard normal distribution is a chi-
square distribution with expected value of 1.0). The calculation of S

i,j for all i, j pairs
creates a surface of similarity index values (figure 2). The i, j corresponding to the
peak of this surface marks the offset with the best match. Adjustments are made to
the offset values based on image rotation or pixel size differences, and then the offset
values are related to the original approximate tie-point coordinates of the two image
subsets to yield the precise coordinates of the potential image tie-point pair. If no
peaks are identified, the range of i, j offsets is doubled and peaks sought over the
larger similarity surface. If range doubling happens twice with no success, the area
is abandoned and the program moves onto the next approximate point.

An area-based approach allows sub-pixel scale estimation of match points. A
common method is to fit a polynomial surface to the similarity index values and
interpolate between integer i and j offsets (Bernstein 1983). However, in our examina-
tion of this technique we found that no rule for surface fitting was generically
applicable across different image-to-image registration situations. Following our goal
of robustness, we chose instead a simpler method for subpixel estimates: if the user
desires subpixel matching, we simply interpolate the original digital image subsets

Figure 1. Schematic diagram of steps involved in calculating a similarity index surface
(Step 1 and the first portion of Step 2 in the text, section 2.1).
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Figure 2. An example of a similarity index surface. The peak of this surface occurs at the i, j
offset where the two subsets have the greatest similarity. Here, it is at i=1, j=2,
indicating that the two image subsets are offset by 1 pixel and 2 pixels in the X and
Y dimensions, respectively.

and re-calculate the similarity surface with i, j offsets corresponding to sub-pixel
distances. This method is substantially less efficient, but appears to be much more
robust across image conditions.

Step 3: T esting potential tie-point pairs. Because not every similarity peak necessarily
corresponds to a meaningful image match, screening of points is the critical process
in any automated tie-point detection approach. In our package, we use two tests for
each point.

The first test is based solely on the similarity index value for the two image
subsets. A tall peak in the similarity index is considered a good match. The height
of the peak is defined as the distance from the peak to the plane describing the base
of the peak. That plane is interpolated between the inflection points of the slope
surface in each of the four cardinal directions in i, j offset space. Importantly, the
height is scaled to the total range of similarity index values in the tested window to
yield a score for the peak (with a range of 0.0 to 1.0). If the peak’s score surpasses
a defined threshold (an adjustable parameter), it is deemed valid. Because the height
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of the peak is scaled to the values observed in each subset image, a general threshold
can be used that appears to be robust for many different image conditions. If two
or more peaks are determined to be valid with this test, the highest peak is accepted
only if it exceeds the second-highest peak by a determined proportion. Based on the
i, j offset of the peak, the coordinates of the image tie-points are calculated and a
second test is performed.

The second test is based on the relationship between the newly-matched point
and the body of existing tie-points. The distance between any two tie-points can be
measured either in input image pixel counts, or in reference image map units.
Dividing the former distance by the latter distance yields a quantity we refer to as
the pixel size ratio. Unless there is severe distortion in one image, this ratio should
be relatively similar across all tie-point pairs. For the second test, then, we estimate
this ratio using only pairs involving the new point and compare that to the estimate
using only pairs without the new point. If the comparison suggests that the new
point is not from the same population (as determined by a user-alterable threshold),
the point is discarded. Note that this second validity test can only be performed
when a large enough sample of pre-existing image tie-points has been built, and thus
cannot be applied to the first few image tie-points located by the methodology. In
every run of the software reported in section 2.2, the second validity test was only
used once 10 pairs of tie-points had accumulated.

Although the double-testing process screens out most poor ITPs, a low percentage
of sub-optimal pairs may still persist. Before a final matrix of polynomial transforma-
tion coefficients is calculated from the points, human screening is advised as a last
check. An initial model for the geometric projection solution is calculated and
positional error calculated for all points. Those points with unusually high contribu-
tions to the error of the model should be investigated to determine if they are
blatantly incorrect and should be screened. As described in section 2.2, it is also
possible to automate this screening process.

Both the ITP software and the testing software were written in IDL v5.2 (Research
Systems, Inc., Boulder, CO). They are available at ftp://ftp.fsl.orst.edu/pub/gisdata/
larse/itpfind.tar.gz.

2.2. Method for evaluating the ITP location software
Ideally, the above procedure should be capable of locating ITPs on image pairs

when there are several confounding factors. Broadly, those factors are: (1) the images
are geometrically distorted relative to each other; (2) image metadata supplied by
the user is not perfectly accurate; and (3) some parts of the images are obscured by
clouds or have changed. To evaluate the influence of these factors, we developed a
procedure to quantify error in the ITP process run on any image-to-image pair. We
could then apply a confounding factor to an image pair, run the ITP software, and
determine error. By repeating this across many levels of confounding factors, we
were able to build a general evaluation of the conditions under which the software
was appropriate.

The procedure to quantify error in a single image pair had three steps. In the
first, an input image was created from a reference image. Reference images from five
different landscapes were used, as described in section 2.2.1 below. Reference images
were 601 by 601 pixels in size. Input images were created by projecting the reference
image with a polynomial transformation coefficient matrix and resampling with a
nearest-neighbour rule. By creating the input image from the reference image, we
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were able to strictly control the types of confounding factors present in the matching
process. Geometric distortions were applied by appropriate alteration of the trans-
formation matrix prior to resampling. Landscape changes and cloud effects were
simulated by replacing portions of the input image with randomly-placed solid disks
of known density, size, and grey-scale value. Simulated inaccuracies in image
metadata were passed to the ITP process along with the input image.

The second testing step involved running the automated ITP process to locate
ITPs and then deriving a transformation matrix from those points. For this research,
the subset image size was set to 60 reference pixels, with spacing of 80 reference
pixels between points, resulting in a grid with a maximum of 60 ITP pairs. To
facilitate the large number of tests, the human post-processing screen was replaced
with an automated approach. In this approach, an initial transformation solution
was derived after all ITP pairs had been designated. The contribution of each point
to the total positional error was assessed. The point with the highest contribution
to the error was eliminated and the transformation matrix re-calculated. Again, the
point with the highest error was eliminated. The process was continued until the
total root-mean square error for all points was less than one reference pixel. In cases
where there were too few ITPs to calculate a valid transformation matrix, the entire
run was declared invalid. This would only occur when the software had failed to
adequately locate stable points, and thus the number of successful test runs served
as an indicator of robustness of the ITP-locating process.

If the run was valid, the final derived transformation matrix was then used to
project the input image back into the coordinate system of the original reference
image. The distance between each pixel in the recreated reference image and its
position in the original reference image was the error of position for that pixel. The
average of all errors of position was calculated as the true root-mean-square error
of position (true RMS error). The true RMS served as the final and most useful
measure of the effectiveness of the software.

Several geometric distortions were used in the first step of the testing process.
The first distortion involved rotating the input image relative to the reference image
(ranging from 0 to 14°, in increments of 2°; compare figure 3(a) to figure 3(b)). The
second was a simple scaling effect, where the input image was resampled to contain
pixels of twice the true pixel size of the reference image. In both cases, the software
was supplied with accurate information about these confounding factors, both of
which regularly occur in real-world applications. These tests represent validation
that the software will function when the user can supply accurate information about
the relative characteristics of the images. Additionally, we tested two geometric
distortions that cannot be specified in the software. The first, referred to here as
skew, is the condition where true pixel size is a linear function of the pixel position.
Visually, a skewed image appears compressed on one end and expanded on the
other (figure 3(c)). The second distortion is similar to skew in that pixel size is a
function of position, but in this case the function is curvilinear. The image appears
bowed (figure 3(d)). It will be referred to as warping. The maximum of either effect
was the condition where the skew or distortion would either completely compress
or bow adjacent corners of the image. The magnitude of both effects was quantified
as a proportion of a maximum (0.0 for no effect, 1.0 for maximum effect). We tested
values from 0.02 to 0.18 for skew and −0.10 to 0.10 for warping.

The second type of confounding factor was inaccurate geometric information
supplied by the user to the software. The first test involved inaccuracies in the ‘true
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Examples of some of the confounding factors tested, using (a) an example image
with no confounding factors as a base. Shown is the example image with: (b) rotation
of 6°; (c) skew of 0.10; (d) warp of 0.10; (e) noise of 2.0; and ( f ) change density of 50%
and change level of 1.5.

pixel size’ parameter (the pixel-centre to pixel-centre distance) of the input image.
Here, the input image was maintained at the same pixel size as the reference image,
but the program was incorrectly informed that the value for input image was either
larger or smaller than that of the reference image. Hence, a ‘true pixel size distortion’
of 1.10 meant that the supplied parameter value for input image true pixel size was
110% that of the reference image. Tested values ranged from 0.85 to 1.20. The second
type of inaccurate geometric information involved rotation of the input image. The
input image was rotated relative to the reference image, but the program was
informed that the two images were unrotated. This effect was tested for rotation
mismatches of 1 to 10°.

The final type of confounding factor was change between input and reference
images. Atmospheric noise was simulated by additive random noise (figure 3(e)).
Coherent change was simulated by replacing portions of the input image with flat
grey disks. The percentage of the surface area of the image covered by the disks
varied from 0 to 50%. In one set of tests, the grey-scale value of the disks was set
at 150% of the mean value of the image, simulating landscape changes (figure 3( f )).
In a second set, the value was 250% of the mean value of the image, simulating
bright objects such as clouds.
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2.2.1. Sources of imagery
Because the ITP process is based on spatial pattern analysis, the spatial pattern

in test images may be important. Therefore, we repeated all tests on Landsat TM
images from five landscapes with different spatial patterns (see figure 4). From each
landscape, we extracted a region approximately 1500 pixels square where the spatial
patterns were relatively consistent. When each test was run, a reference image of 601
by 601 pixels was extracted at a random location within that larger region.

For each combination of landscape and confounding factor, seven repetitions of
the entire testing process described in the previous paragraphs were conducted. For
example, the influence of unknown rotation was tested across rotations of 1 to 10°
with a single degree step, making 10 levels of the confounding factor. At each degree
increment, the test was repeated seven times for each of the five landscapes, making
35 tests per degree increment, 350 tests in total, with a possible maximum of
350·60=21 000 image tie-point pairs.

3. Results
3.1. Geometric distortions

Figure 5(a) shows how the ITP software performed for the conditions where the
input image was rotated relative to the reference image, and that rotation was passed
correctly to the ITP software by the user. The figure shows the average true RMS
error for tests at rotations from zero to 14°. RMS error is reported in units of pixels.

(a) (b)

(c) (d)

(e)

Figure 4. Representative regions from the five Landsat TM images used for testing, showing:
(a) undisturbed tropical rainforest, southeast of Santarem, Brazil; (b) large-field agricul-
ture in Gallatin Valley, Montana, USA; (c) large-block conifer forest and high-altitude
open areas, Gallatin Mountains, Montana, USA; (d) small-field agriculture, hardwood,
and mixed forest, St Croix River valley, Minnesota and Wisconsin, USA; (e) conifer
forest with clearcut openings, Blue River, Oregon, USA.
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Figure 5. Test results when rotation and scale were accurately passed to ITP software: (a)
for rotation of the input image from 0 to 14°; and (b) for pixel scale of 0.5, analogous
to MSS to TM matching. True RMS error of position is the mean positional error
(in pixels) of all pixels after being resampled using ITPs designated with the software.
Thick horizontal line indicates mean value; thin horizontal line inside shaded box
indicates median value; boundaries of shaded box represent 25th percentiles away
from median; whiskers extend to 40th percentiles away from median; individual dots
represent tests falling outside those percentile ranges. Except where noted, distribution
statistics were calculated from n=35 tests.

In all cases for this figure, all 35 tests for each increment of rotation were successful.
As would be hoped, the true RMS error was 0.0 when the images were identical (at
a rotation of 0°). Rotations greater than zero had small but non-zero true RMS
error. Because nearest-neighbour resampling was used in the creation of the input
image from the reference image, slight rotation alters the interpixel geometry and
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Figure 6. Test results when the input image was distorted relative to the reference image
with: (a) skew of 0.02 to 0.18 (see figure 3(c) for an example of skew); and (b) warping
of −0.10 to 0.10 (see figure 3(d) for an example of warping). Thick horizontal line
indicates mean value; thin horizontal line inside shaded box indicates median value;
boundaries of shaded box represent 25th percentiles away from median; whiskers
extend to 40th percentiles away from median; individual dots represent tests falling
outside those percentile ranges. Except where noted, distribution statistics were
calculated from n=35 tests.

prevents zero-error co-registration. Figure 5(b) shows the condition where input
image pixels had a true pixel size twice that of the reference image, and where that
information was accurately passed to the ITP software. Again, true RMS error was
small but non-zero.

Skew and warping caused more error. Figure 6(a) shows trends in true RMS
error for increasing skew values. As skew increased, both the mean and variance



Image-to-image coregistration 3479

about the mean increased. For skew values of 0.02 to 0.10, the mean and median
true RMS error values were below one-half pixel. An image with a skew of 0.10 will
have one side with length 10% narrower and the other side 10% wider than the
centre of the image, as illustrated in figure 3(c). In relation to skew, warping caused
similar but amplified effects (figure 6(b)). At a warping of positive or negative 0.05,
true RMS error was moderately low (means and medians less than 0.4 pixels). It
was moderately higher for a warping value of positive 0.10, but much higher (greater
than 1.0 pixel ) for a warping value of negative 0.10. Figure 3(d) provides a sample
warped image with a warping value of 0.10. An image with negative warping would
have convex rather than concave edges. Recall that for both skew and warping tests,
only the input image is distorted; the reference image geometry remains as in
figure 3(a).

3.2. Inaccurate input information
The next set of tests involved situations where the user supplied the software

with inaccurate information about the images. Figure 7(a) shows how true RMS
error changed when true pixel size was inaccurate. When the true pixel size parameter
of the input image was claimed to be within 5% of the actual value (true pixel size
distortion of 0.95 to 1.05), the error was relatively small ( less than 0.2 pixels). But
when the distortion was 10%, true RMS error was near or over 0.5 pixels. By the
time distortion was 15%, error was large (near 1.5 pixels) and several tests failed
(note that successful test counts indicated in the figure are much lower than the
possible 35), indicating that there were too few tie-points to adequately calculate
geometric transformation matrices.

Undocumented rotation also caused error. In this situation, the input image was
rotated relative to the reference image, but the software was not informed of that
rotation. When the input image was rotated 5° relative to the reference image, the
mean and median true RMS error were under 0.5 pixels (figure 7(b)). When rotation
reached 6°, however, variability in true RMS was much higher, and the mean was
much larger than the median. Three runs at a rotation of 6° had extremely high true
RMS values (>5 pixels). This is indicative of the breakdown of the software at higher
rotations: by 10° of rotation, even the median true RMS value was near 2.5 pixels,
and fewer than half of the runs (12 of 35) provided enough valid points to calculate
a transformation matrix (figure 7(b)). For reference, figure 3(b) shows an example of
an image with a rotation of 6°.

3.3. Change between images
The final tests were designed to emulate the situation where parts of the scene

change between images. Additive noise did little to reduce the effectiveness of the
routine (figure 8(a)), although a relative noise level of 2.0 confused the software
enough to eliminate some tests from validity (only 28 of 35 runs successful ). Simulated
landscape change also had little effect (figure 8(b)). Even when 50% of the input
image was covered with opaque disks masking underlying patten (i.e. change density
of 0.5; see figure 3(e) for an example of change density of 0.5), true RMS error was
less than 0.2 pixels. The situation was less predictable when the opaque disks were
much brighter than the background scene, as might be the case with clouds
(figure 8(c)). True RMS error was much less predictable, and was generally higher,
than for the simulated landscape changes. When 10% of the image was obscured
with these brighter disks, all runs except one had true RMS error of a third of a
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Figure 7. Test results when user-supplied information was inaccurate, for the situations
where: (a) the input image pixel size was different than that claimed, indicated here as
the ratio between the claimed and true values; and (b) where the input image was
rotated relative to the reference image, in units of degrees. Thick horizontal line
indicates mean value; thin horizontal line inside shaded box indicates median value;
boundaries of shaded box represent 25th percentiles away from median; whiskers
extend to 40th percentiles away from median; individual dots represent tests falling
outside those percentile ranges. Except where noted, distribution statistics were
calculated from n=35 tests.

pixel or less, but one run had a true RMS error greater than 20, causing the mean
to be extremely high. When 20% of the image was obscured, there were no such
anomalous runs, and the mean and median values were very low. But again at 30%,
and continuing at 40 and 50% coverage, several runs had dramatically high true
RMS values, which increased mean values far above the medians.



Image-to-image coregistration 3481

3.4. T ime per point
Figure 9 shows a histogram of the number of runs by the average number of

seconds per tie point in that run. This figure incorporates all runs referenced in this
paper. Recall that each run represents the average of up to 60 image tie points.
Median time per point was 7.8 seconds. Because of the highly skewed distribution,
the mean was much higher than the median (approximately 27 seconds per point).
All runs were conducted on a Sun Ultra-1 workstation (1996 technology).

4. Discussion
4.1. Overview

Correlation-based identification of image tie points has been criticized for being
too computationally expensive (Barnea and Silverman 1972, Brown 1992), and for
being unable to handle certain types of image distortion (Pratt 1974) and cross-
platform matching (Fonseca and Manjunath 1996). While these drawbacks certainly
limit its usefulness in some cases, correlation-based matching may be very helpful
for many users. Our goal has been to introduce a software package that uses
correlation-based matching, and, more importantly, to test its constraints.

The tests provided herein were designed to be illustrative, not exhaustive.
Nevertheless, we feel that the confounding factors we tested are an important subset
of those that might influence the ITP software. Two unaddressed factors in particular
should be considered before using the ITP software. First, to capture spatial pattern,
the size of subset windows used to build the correlation indices (section 2.1) should
be much larger than the dominant spatial patterns of the images being matched. As
their sizes converge, precision will drop. Second, the method of locating maximum
spatial correlation requires that dark and light features in one image be correspond-
ingly dark and light in the other. This will not necessarily be the case for images
acquired on different platforms, as noted in many reviews of the subject (Rignot
et al. 1991, Fonseca and Manjunath 1996). In summary, the utility of the method
will ultimately depend upon the unique combination of scene spatial features, sensor
detection characteristics, and the parameters used to run the ITP software.

4.2. Known and unknown distortions
The tests reported here show that the ITP software can be useful under a wide

variety of conditions, although it does have limits. When the images were exactly as
the software expected i.e. when the user provided precisely accurate information
about the images, the software was accurate and precise (figure 5(a)). The slight
pixel-based error due to nearest neighbour resampling is an error source that was
present in all of the tests, and was essentially impossible to separate on a test-by-
test basis. Despite this error, the total error of position was minimal for both rotation
and true pixel size differences, so long as those differences were accurately known
(figure 5). This is likely the case for many users of satellite imagery: the images are
minimally-distorted, any rotations are systematic and documented, and true pixel
size is relatively consistent and well-known.

Even when rotation and true pixel size were slightly inaccurate, error was still
relatively small (figure 7). This suggests that the user need only provide rough
estimates of these two quantities. Following the strategy of capitalizing on human
strengths in pattern recognition, the user can quickly locate two approximate match
points and use simple trigonometry to gain these rough estimates.

Users of low-altitude aerial photography or of aerial scanners (such as AVIRIS)
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may find the results of the skew and warp tests relevant. Skew was a minor problem
at low values, but became a significant issue when the distortion was quite noticeable
to the eye (figure 6(a)). Warping was more of a problem than skewing (figure 6(b)).
Even at a level of warping that appeared relatively minor (0.10), the true RMS error
was considerable (near 1.0 pixel ).

The cause of these errors, as well as those caused by inaccurate rotation or pixel
size, may be traced to the process of locating points. Recall that an approximate
match point is calculated from the prior point based on the supplied pixel size and
rotation. If those two parameters are incorrect, the approximate match point will be
far from the true match point. If the true match point is outside the range of i and
j offsets used for building correlation surfaces (Step 2 in section 2.1), any false
correlation peak that occurs by chance within the range of i and j offsets may be
designated the true peak. Consequently, anything that causes true pixel size or
rotation to be incorrect will increase the probability of false matches, and, hence,
the total error of position of the matching. Warping and skewing cause local distor-
tions in the true pixel size and rotation; incorrect user input causes image-wide error
in pixel size and rotation.

These effects can be combated relatively easily. One approach is to increase the
error tolerance by increasing the range of i, j offsets considered for correlation. The
true match point will thus have a greater chance of being located on the correlation
surface, and the probability of identifying false peaks will diminish. A second
approach seeks to reduce error by reducing inter-point distances. Recall that approxi-
mate match points are calculated by multiplying the true pixel size by the desired
distance between match points, while adjusting for rotation. As the distance between
points increases, any given error in true pixel size or rotation is multiplied over a
larger distance. This increases the error of position of the approximate match point,
and consequently increases the probability of locating a false correlation peak. By
decreasing the span between match points, the errors in true pixel size or rotation
are multiplied over shorter distances, thus decreasing error of estimation and increas-
ing the probability that the true match point will lie on the correlation surface. As
a secondary benefit, this increases the density of the grid of points, providing a larger
sample from which to calculate a transformation matrix. The primary drawback in
both approaches is an increase in the total time spent on finding points.

The latter approach was used to match AVIRIS (Airborne Visible Infra-Red
Imaging Spectrometer) imagery to TM imagery. As a whisk-broom scanner mounted
on an aerial platform, AVIRIS has a different geometric distortion for every pixel.

Figure 8. Test results for situations where change has occurred between images. In part (a),
random additive noise was added to input image only. A noise value of 2.0 indicates
that the mean value for the noise was twice the mean value of the pre-noise image. In
part (b), many small disks were added to the input image. Disk size was 10 reference
pixels and the grey-scale value of the disks was 150% of the mean grey-scale value of
the image. Change density refers to the proportion of the input image covered by
opaque disks (see figure 3 for an example of change disks). Part (c) was as for part (b),
but with disks having grey-scale values 250% of the mean grey-scale value of the
image. Thick horizontal line indicates mean value; thin horizontal line inside shaded
box indicates median value; boundaries of shaded box represent 25th percentiles away
from median; whiskers extend to 40th percentiles away from median; individual dots
represent tests falling outside those percentile ranges. Except where noted, distribution
statistics were calculated from n=35 tests.
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As is commonly the case, the ephemeris and surface elevation data necessary to
deterministically locate each pixel (such as in Meyer 1994) were not available at the
level of precision necessary to accurately locate each point. In this case, the software
was parameterized to run with a short inter-point separation. Although computa-
tionally expensive, the process was faster and the resultant dense grid of more than
500 tie-points far better than could be achieved manually (data not shown).

4.3. Change between images
Low to moderate levels of change between images may cause few problems. The

ITP software was robust to many of the simulated scene-changes tested here, especi-
ally where the amplitude of the change was relatively moderate compared to that of
the average pixel’s grey-scale value. It is important to note, however, that only one
size of disks was used to simulate change for these tests. It is expected that the
spatial scale of the change would interact with the size of the image subset window
to affect error. While it is not reasonable to test all permutations of size combinations,
exploratory tests on simulated images (data not shown) indicated that this interaction
did influence error, but that it did not alter the underlying conclusion that the
method is relatively robust to moderate levels of scene change. These results are
promising, as they suggest that the method could be used without penalty in
change-detection studies.

The change-detection results are encouraging for another situation: where image
matching across sensor-platforms is desired. For correlation approaches to function
there must be positive correlation across images in response to scene components.
The disks we used to test change were completed uncorrelated across images, and
still the software was relatively robust. This suggests that even when sensor spectral
response is not perfectly correlated across every feature in the image, the software
can still provide useful results.

Although the tests reported here show that clouds may cause potential problems,
such problems can be circumvented with a relatively simple technique. If clouds are
bright enough to cause problems for the software, they can readily be identified by
simple thresholding. It is thus possible to set clouds and shadows to the background
value, alert the software to ignore those areas in its calculations, and run the software
in an otherwise normal mode. This process was used to match TM images from the
Amazon. To illustrate the success of the process, a tiled image composite of the input
and reference images is shown in figure 10. Note the match of drainage patterns
across the tile boundaries.

4.4. Comparisons to other techniques
The case of the cloudy images in Brazil illustrates the flexibility of the correlation-

based technique. Not only can the software ‘work around’ the clouds, but it can
locate tie-points on a landscape where man-made features like roads are not present.
Both of these situations could pose problems for feature-based techniques (Fonseca
and Manjunath 1996). Another advantage of an area-based approach over a feature-
based approach is in its ability to create regular grids of points. Although strategies
for approximating a regular grid with feature-based approaches have been proposed
(Davis and Kenue 1978), they are still constrained by the presence or absence of a
robust feature in a given grid cell. Moreover, area-based techniques can create grids
of tie-points at any arbitrary density.

Another useful technique for tie-point designation is a sequential-similarity
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Figure 9. Histogram of the average time needed for each ITP within each run. The average
time per run could include as many as 60 ITPs. All runs were conducted on a Sun
Ultra-1 workstation with IDL 5.2. Median 7.7 s over 1696 runs.

(a) (b)

Figure 10. Registration matching example for cloudy images in the Brazilian rainforest,
showing: (a) a checkboard of image tiles taken alternately from a 1984 TM image and
1986 TM image registered to it using the ITP software; and (b) the key for the image
tiles shown in part (a). Note continuance of drainage patterns, as well as density of
clouds and shadows obscuring the surface.
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detection algorithm (SSDA; Barnea and Silverman 1972). Like a correlation
approach, an SSDA builds a similarity surface for a range of i, j offsets. For a given
offset, absolute differences between pixel values are added sequentially in an increas-
ing radius around a random point until a threshold is met. The similarity measure
is the number of pixels added before the threshold is met; the matchpoint lies at the
maximum. Although clearly faster than a correlation based approach, it may not be
as robust across situations. Bernstein (1983) notes difficulty in designating a threshold
that is generally applicable. Moreover, because the method includes only a sample
of the image subset pixels, it may be more susceptible to isolated anomalous features,
such as regions of changed pixels. In the search for a general approach, then, the
SSDA may not be as useful as a correlation-based approach.

In contrast to both feature-based approaches and the SSDA strategy, correlation
techniques allow for subpixel approximation of matchpoint position (Bernstein 1983).
This is again computationally expensive, but may be useful where high precision is
required.

4.5. Computational costs
The biggest criticism of correlation-based approaches is their high computational

expense. Yet with today’s computers, the computational cost of the correlation-based
approaches may be small enough to be insignificant for many potential users.
Approximately 75% of the runs reported here had a mean time per ITP under 20
seconds, and 90% were under 1 minute. In practice, we have found that new TM
images can be accurately, repeatably matched and resampled in under 45 minutes,
with user attention required for only a few minutes of that time.

4.6. Examples of applications
We have applied the software successfully in many situations and environments.

In fact, for Landsat TM to TM matching, a single set of parameters has been
successful for images from the forest, agriculture, and mountainous regions sampled
for the tests in this study. We used it to co-register five dates of Landsat TM imagery
in forested and agriculture regions of western Oregon (Oetter et al. 2001), and to
register five years of Landsat TM imagery in Rondonia, Brazil (Guild 2000). By
slightly altering the parameters, we have used the software to match TM and MSS
imagery in the Rocky Mountains (Parmenter et al. in press). We have also used it
to register small subsets of TM imagery to panchromatic high-resolution digital
imagery (figure 11), to register multitemporal AVHRR imagery to TM imagery
(figure 12), and to register images of canopy heights derived from small-footprint
LIDAR (Light Detection and Ranging) to those derived from ground measurements
(Dr Michael Lefsky, personal communication 2002, Hudak et al. 2002).

4.7. Evaluation of strategy
The strategies underlying the ITP software were: (1) require basic user input and

(2) choose robustness and flexibility over efficiency, relying on availability of cheap
computational speed. These strategies make the software inappropriate for quickly
processing large batches of imagery (hundreds of images per day), but entirely
appropriate for use in any study where manual interpretation would otherwise occur.
The basic user input required is minimal, and can be estimated by the user directly
from the imagery with minimal effort. Moreover, if many copies of the same type of
imagery are to be processed, the software could be adapted to eliminate the need



Image-to-image coregistration 3487

(a)

(b)

Figure 11. Example of tie-points created with the software described herein for images with
unknown geometric relationships. (a) Near-infrared band from an IKONOS image
(4 m nominal pixel size) at the Sevilleta Long Term Ecological Research Site, New
Mexico, US, with enlarged area showing detail of four ITPs. (b) A corresponding
subset of the near-infrared band of a Landsat ETM+ image (28.5 m nominal pixel
size) for the same area at approximately the same time of year, with a similar
enlarged area.

for image-by-image input altogether. The computational burden is relatively minor
compared to many other image processing tasks common today, and is likely not
to be an issue for many users.

5. Conclusions
We feel that the correlation-based matching approach has great potential for use

in the general satellite remote sensing community. Because the grid of tie-point pairs
produced by the software is regular, it is optimal for capturing the geometric
relationships of images. The computational costs are higher than for other methods,
but these costs are relatively small in today’s terms. They are certainly lower than
costs of manual interpretation. Moreover, the technique is repeatable, ensuring that
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(a)

(b)

Figure 12. As figure 11, but for imagery acquired over western Oregon, US. (a) The greenness
band from a tasselled-cap transformation of Landsat TM data (28.5 m nominal pixel
size) mosaicked from five scenes, with an enlargement to show detail around nine
ITPs. (b) An NDVI image composited from two weeks of AVHRR imagery (nominal
pixel size 1 km; data courtesy Brad Reed, USGS EROS Data Center) around the same
time as the TM scene, with an enlargement showing detail for an area of nine ITPs.

image libraries built up over time have consistent geometric properties. It is relatively
robust to simple distortions and inaccuracies, although special attention must be
paid to warping and to inaccuracies in pixel size estimation. Nevertheless, the
correlation-based approach is flexible, and the software allows complete control over
image-matching parameters. By focusing on robustness over absolute efficiency, and
by relying on simple user input, we feel that correlation-based software can be useful
to many users in the remote-sensing community.
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