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Abstract

A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize

agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an

automated ground control point selection program. Radiometric normalization was performed using a semiautomated approach based on the

identification of no-change pixels in forest, urban, and water classes. Reference data were developed using existing data sets, including low-

level 35-mm color slide photographs, 1:24,000 color airphotos, and ancillary geographic information system (GIS) coverages. Preliminary

examination of the data structure included plotting of training set temporal trajectories in spectral space with reference to existing crop

calendars. A subsequent stratified, unsupervised classification algorithm, in combination with a geoclimatic rule set and regression analysis,

was used to label mapped cells. A map of 20 land cover classes was developed. Classes included agricultural crops and orchards, forest and

natural cover types, and urban building densities. An accuracy assessment indicated a final map error of only 26%. The map is now being

used to model present and future landscapes for the basin. D 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The Pacific Northwest region of the US has been a

major focus for resource-related issues throughout the

1990s (Tuchmann, Connaughton, Freedman, & Moriwaki,

1996; United States Department of Agriculture, 1993).

Recent debates have centered around the effects of forest

management on survival of late successional forest dwell-

ing species and on fish habitat. These and related topics

were addressed in the President's Northwest Forest Plan

(Tuchmann et al., 1996). In direct response to the Plan, the

Pacific Northwest Ecosystem Research Consortium (PNW-

ERC) was formed by the Environmental Protection Agency

(EPA) in 1994. The PNW-ERC consists of 13 individual

projects with the common research goal of understanding

`̀ . . . ecological consequences of possible societal decisions

related to changes in human populations and ecosystems in

the Pacific Northwest and [developing] transferable

approaches and tools to support management of ecosys-

tems at multiple spatial scales'' (Environmental Protection

Agency, 1997).

An important data layer required by the PNW-ERC was a

land cover map of the Willamette River Basin (WRB). The

land cover map would be used both as a baseline to

document current ecological conditions and as a base for

projections of alternative future landscapes. The PNW-ERC

projects required a high-resolution land cover map for the

study area (Fig. 1), which would characterize the wide

variety of natural and anthropogenic microenvironments,

including detailed information about forest condition, agri-

cultural practices, and urban development. The framework

for the PNW-ERC research was based on an initial pilot

study of the 23-km2 Muddy Creek watershed in Benton

County, OR (Hulse et al., 1999). That study identified 30

land use/land cover types using 1:24,000 aerial photographs

and ancillary information, and served as a potential model

for the land cover map of the entire basin.
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We referred to a large literature on the use of Thematic

Mapper (TM) data for land cover mapping, especially for

the land cover types that we were asked to identify:

agricultural crops (Bauer, Hixson, Davis, & Etheridge,

1978; Buechel, Philipson, & Philpot, 1989; Shueb & Atkins,

1991), grasslands (Lauver & Whistler, 1993), riparian areas

(Hewitt, 1990), and urban cover (Haack, Bryant, & Adams,

1987; Plunk, Morgan, & Newland, 1990). Our previous

work had been focused on single-date TM data for forest

cover mapping (Cohen, Spies, & Fiorella, 1995; Cohen,

Maiersperger, Spies, & Oetter, 2001) and forest cover

change detection using multiyear Landsat data (Cohen &

Fiorella, 1998; Cohen, Fiorella, Gray, Helmer, & Anderson,

1998). In this study, we followed the lead of many other

researchers who have recognized the benefits of using

multiseasonal imagery (within a given year) to map crops

(Brewster, Allen, & Kopp, 1999; Brisco & Brown, 1995;

Ehrlich, Estes, Scepan, & McGwire, 1994; Lo, Scarpace, &

Lillesand, 1986; Panigrahy & Sharma, 1997; Pax-Lenney &

Woodcock, 1997; Pax-Lenney, Woodcock, Collins, &

Hamdi, 1996; Ryerson, Dobbins, & Thibault, 1985; Wil-

liams, Philipson, & Philpot, 1987), grasslands (Henebry,

1993), forests (Schriever & Congalton, 1995; Wolter, Mla-

denoff, Host, & Crow, 1995), and wetlands (Lunetta &

Balogh, 1999; Munro & Touron, 1997). In addition, we

elected to augment our remotely sensed data with ancillary

geographic information system (GIS) data (Adinarayana,

Flach, & Collins, 1994; Carbone, Narumalani, & King,

1996; Ehrlich et al., 1994; Zhuang, Engel, Baumgardner,

& Swain, 1991) and a digital elevation model (DEM)

(Henebry, 1993).

Since the upland forest portion of the WRB had pre-

viously been mapped (Cohen et al., 2001), our task was to

map the valley floor, which we defined as a contiguous area

of � 315-m elevation. Our objectives for this study were to

use multiseasonal Landsat TM data (1) to produce a land

cover map of the valley floor that would, to the extent

possible, match a list of desired classes for agricultural,

forest, natural, and urban cover types (Table 1), and (2) to

extend our working knowledge of the Tasseled Cap trans-

formation (Crist & Cicone, 1984) into an agricultural set-

ting. The resultant land cover map incorporates the

advantages of multiseasonal satellite imagery and GIS

information to map relatively detailed cover types across

the Willamette Valley.

1.1. Study area

The WRB occupies a 29,740-km2 region in northwest

Oregon bounded by the mountains of the Coast Ranges and

the Cascade Range (Willamette Valley Livability Forum,

1999). Over 2 million people inhabit the basin, primarily in

the metropolitan areas of Portland, Eugene, and Salem.

Although the basin contains only 12% of the State's land

Fig. 1. The WRB in northwest Oregon. The Willamette River drains north from Eugene to Portland, where it joins with the Columbia River. Inset on left shows

elevation. Blowup at right shows the basin divided into four mapping units that define the steps used to complete mapping of the basin.
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area, it accounts for over 50% of its $3.5 billion agricultural

economy (ODA, 1999). In addition, the basin supports a

thriving forest product industry, primarily due to highly

productive Douglas fir forests.

The WRB consists of three physiographic provinces: the

Coast Ranges, Willamette Valley, and Western Cascades

(Franklin & Dyrness, 1988). The dominant natural vegeta-

tion of the volcanic and sedimentary Coast Ranges includes

Thuja plicata (western red cedar), Tsuga heterophylla (wes-

tern hemlock), and Pseudotsuga menziesii (Douglas fir).

The volcanic Western Cascades montane province contains

mixed conifer forests, primarily Douglas fir and western

hemlock. Both provinces have substantial Acer macrophyl-

lum (bigleaf maple) and Alnus rubus (red alder) hardwood

stands in disturbed areas. The Willamette Valley contains

alluvial terraces and floodplains interrupted by rolling hills

of volcanic and sedimentary origin. The natural vegetation

of this area consists of riparian hardwood forests, wet and

dry prairie grasslands, herbaceous transition areas, Quercus

garryana (Oregon white oak) woodlands, and mixed conifer

remnant forests (Franklin & Dyrness, 1988; Johannsen,

Davenport, Millet, & McWilliams, 1970; Towle, 1982; John

Christy, personal communication).

The WRB has a cool Mediterranean climate (Jackson &

Kimerling, 1993). The valley floor averages 100±125 cm of

annual precipitation, while the Coast Ranges and the

Cascades get much more, with averages up to 300 cm.

Average temperatures on the valley floor range from a mean

January minimum of 1°C to a mean July maximum of 30°C

(Oregon Climate Service, 1999). Elevation in the basin

varies from 15 to 3200 m amsl (Willamette Valley Livabi-

lity Forum, 1999).

While timber extraction is the main industry in the

upland forests of the basin, agriculture dominates the valley

floor. Because of the rich alluvial soils and the temperate

climate, the Willamette Valley supports over 120 different

crops (ODA, 1999). Depending on soil type and location,

commodities range from exotic fruits and vegetables to a

variety of grains and nuts (Daryl Ehrensing, personal com-

munication). The leading products include nursery and

greenhouse stock, seed crops, Christmas trees, fruit and

nut crops, and peppermint (ODA, 1999).

2. Methods

2.1. Remotely sensed imagery and preprocessing

The TM scenes used in this study included multiple rows

(28±30) in path 46 (EROS Data Center; Sioux Falls, SD).

We selected 1992 because ground and airphoto reference

data from 1992 and 1993 were available. Moreover, that

was a dry year in the valley, and five nearly cloud-free TM

image data sets from one growing season were available.

The dates of the TM images were March 19, May 6, June 7,

July 25, and August 26 (Fig. 2). Each date of imagery

Table 1

Categorical list of the land cover/land use classes desired by the PNW-ERC

1. Urban

a. Residential

i. 0± 8 dwellings/acre

ii. 9 ± 16 dwellings/acre

iii. � 17 dwellings/acre

b. Commercial

c. Industrial

d. Open space

e. Herbaceous-roads

2. Built (nonurban)

a. Commercial

b. RR2-5 zoning

c. Within 2 acres of structures

d. Railroad

e. Roads

i. Primary roads

ii. Secondary highway

iii. Light duty road

iv. Unimproved road

f. Revetments

3. Hydrology

a. Headwater streams

b. Open-standing water

c. Streams > first order

4. Forest

a. 0 ±40-year-old Douglas fir

b. 41± 120-year-old Douglas fir

c. >120-year-old Douglas fir

d. Mixed conifer/deciduous

e. Deciduous

f. Lower riparian forest

5. Agriculture

a. Grass seed/grain

b. Hybrid poplar

c. Nursery operations

d. Orchards

e. Pasture and haylands

f. Row crops

g. Vineyards, berries, and hops

h. Christmas trees

i. Mint

j. Meadowfoam

k. Confined animal operations

l. Farmsteads

6. Open/woody

a. Shrub/brush

b. Fence rows

c. Oak savanna

d. Prairie (grass/forb)

e. Marsh (nontreed wetlands)

7. Percent impervious surface

a. < 10%

b. 10± 20%

c. >20%

The research effort required a fine-detailed map of many different

microenvironments.
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covered all three consecutive rows from the same path and

captured the entire study area. As such, imagery from each

date could be treated as a single spectral data set for

processing purposes. These five dates represent the near

full progression of phenological development of the major

crops grown in the valley, which is critical for the accurate

classification of agricultural land cover types (Pax-Lenney

& Woodcock, 1997). All images were of excellent quality,

and only the June image contained clouds confined to small

areas in the northwest corner of the scene.

Because we intended to analyze changes in Tasseled Cap

vegetation indices among the five different imagery dates to

identify land cover types, georegistration and radiometric

normalization of the images were performed. Georegistra-

tion was accomplished in two steps. First, we registered the

four other images to the June 7 image using an affine

transformation. Second, all five images were resampled to

match a geocoded TM base image mosaic from 1988 using

a second-order polynomial nearest-neighbor transformation.

To select the points used to build the transformation matrix

(tie points), we employed a program developed by Kennedy

and Cohen (Pers.comm.). The procedure locates tie points

by maximizing an index of normalized cross-correlation for

small subsets of the two images to be matched. A minimum

of 150 points for each image provided a second-order

polynomial transformation with less than one-half pixel root

mean square (RMS) error.

Our radiometric normalization procedure was based on

the approach of defining radiometric control sets along a

brightness gradient from very dark (e.g., water and forest) to

very bright (e.g., urban) using colocatable pixels. Rather

than selecting colocated control sets manually in both the

`̀ subject'' and `̀ reference'' images (e.g., Eckhardt & Verdin,

1990; Vogelmann, 1988), we elected to use `̀ difference-

image'' space to capture the control set of no-change pixels.

We first created difference images (Coppin & Bauer, 1996)

by subtracting the subject image from the June 7 reference

image for each of the six reflectance bands. We then added

Band 4 from the June 7 image as a baseline against which

spectral differences could be contrasted (see Cohen &

Fiorella, 1998). Each of these seven-band images was

individually subjected to iterative clustering to define an

optimal control set of no-change pixels, which were selected

both by visual inspection of the image and histogram

analysis. The addition of Band 4 from the reference image

helped ensure that pixels along the full brightness gradient

(water, forest, and urban) were selected as candidate control

sets. Subsequent iterations of clustering successively elimi-

nated questionable control set pixels until an optimum set

was retained. The pixels kept as the no-change control set

were then subsampled to produce 666 pixels for each of the

water, forest, and urban classes, for a total of 1998 pixels for

each subject image. Sorted geographically, half of these

pixels were used to develop univariate regression models

relating the subject DN to the reference DN for each band;

the other 999 pixels were withheld for testing of the

normalization models.

Preliminary examination of the data set revealed a wide

range of spectral contrasts among land cover types and a

generally consistent signature pattern within individual

agricultural fields. To reduce the data set size, we elected

to use the first three components of the Tasseled Cap

transformation (Crist & Cicone, 1984) for further analysis.

Previous experience mapping forests in western Oregon

demonstrated a great utility in the physical interpretation

of the brightness, greenness, and wetness indices for the

interpretation of natural conditions (Cohen & Spies, 1992;

Cohen et al., 1995; Cohen et al., 1998). The needs of this

project afforded us our first opportunity to extend our

knowledge of these indices into the agricultural land cover

system for which the transformation was originally designed

(Kauth & Thomas, 1976).

Fig. 2. Landsat TM images acquired in 1992. Each image is a multiple scene combination of Rows 28, 29, and 30 from path 46, shown in the Tasseled Cap

transformation (brightness, greenness, and wetness in red, green, and blue, respectively).
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2.2. Ground and airphoto reference data

Our mapping approach in this project involved stratifying

the WRB into four broad cover types: upland forest, urban

areas, valley forest, and valley nonforest (agricultural,

natural, and built) (Fig. 1). The land cover mapping of the

upland forest (defined by a boundary based on the 315-m

contour) had already been completed as part of a separate

project covering Oregon forests west of the Cascade Range

crest (Cohen et al., 2001). The products from that effort

were continuous predictions for % green vegetation cover,

% conifer cover, and closed conifer stand age, derived from

single-date 1988 TM imagery. Thus, our research focused

on the other three broad cover types of the basin.

For the urban areas, we obtained six 260-ha 1997 color

digital orthophotographs (DOPs) (Table 2) at 1.2-m pixel

resolution (Metro; Portland, OR). These photos were used to

reference an initial classification of land cover types within

the urban areas.

To reference the valley forest, we obtained access to a

collection of 1993 color photographs at 1:24,000 scale

(WAC; Eugene, OR) (Table 2). These photos were distrib-

uted across the valley floor, and we randomly selected 110

photos in forested areas. For 235 forest plots averaging 2 ha

in size, we photointerpreted estimates of % cover for

conifer, broadleaf, shrub, open, and shadow (Table 2; Fig.

3). Half of these plots were used for training, and the rest

were left for testing. In addition to forest, we used the

photos to identify 43 plots of semipermanent nonforest (i.e.,

orchards, vineyards, and silviculture).

The aerial photographs proved adequate for the relatively

stable land cover types, but for most agricultural and

nonforest classes, annual variation in cropping patterns

required time-relevant photography. Thus, our primary

reference data were 35-mm color slide photographs [USDA

Farm Service Agency (FSA); Tualatin, OR; Table 2]. FSA

offices contract annual aerial photography missions to

provide documentation of countywide crop conditions to

certify farmer's crop reports (Buechel et al., 1989). The FSA

agents typically target image collection in late May or early

June. Imagery was acquired using standard hand-held 35-

mm cameras from a height of approximately 1.5 km. They

provide a color image of the land surface that is roughly

3� 2 km in size. We purchased 369 slides, covering 33

separate focus areas, from seven different FSA offices. The

focus areas were selected both to match the existing 1993

WAC airphoto coverage and to capture the widest diversity

of land cover types in each county. Each slide was scanned

into a tagged image file (.tif) at 300 dpi using a Polaroid

Sprintscan 35/ES slide scanner and then georeferenced to

the TM imagery using a minimum of nine ground control

points for a root mean square error of under 10 m. To use the

slides, we projected them on a white wall above our work-

station while displaying the digital mosaic of the scanned

and rectified version on the computer monitor. The pro-

jected image (about 1:1500) allowed a substantial amount of

interpretable detail, with individual trees, houses, roadways,

and even plowing patterns and irrigation marks that are

easily discernible.

The color and texture of fields on the slides were related

to crop types (Goodman, 1964). Most of the field crops,

especially grass seed and winter wheat, were at peak growth

at the time of image acquisition. The row crops, which were

planted later and depend on irrigation through the summer,

had barely broken soil and had visual evidence of irrigation.

Other land cover types, such as improved pasture and

hayfields, were denoted by animal paths or the accumulation

of hay bales. We photointerpreted land cover for 501 fields

in 5 of the 33 geographically separate focus areas (Fig. 3),

and then compared our interpretations with crop reports

filed on those fields by the farmers. Only 153 of the 501

fields were included in the crop reporting system for that

year (Table 2).

We then used the knowledge gained from the crop

reports to develop an interpretation technique, which

employed 59 separate land cover codes based on visual

interpretation of the FSA slides. In some cases, the land

cover code depended on the timing of green-up or senes-

cence, which we inferred from inspection of the five dates of

TM imagery. The information obtained from the farmer's

crop reports helped us identify several spectrally unique

crops (e.g., radish seed, sugar beet seed, and mint). We also

created land cover codes for nonagricultural land cover,

including rural residential buildings, other urban, wetlands,

natural prairies, natural shrub, and oak savanna. Most of

these codes were based on our inspection and knowledge of

the landscape, without the benefit of verification from the

crop reports. Following the verification stage, an additional

Table 2

Ground reference data

Source Scale/resolution Date Used for Training plots Testing plots Total

WAC airphotos 1:24,000 1993 Valley forest 119 116 235

Nonforest 20 23 43

FSA slides � 1:1500 1992 Verification 153 153

Nonforest 406 553 959

Urban 23 23

Metro digital orthophotographsa 1.2 m 1997 Urban ± ± ±

Moser landscape photosa n/a 1994± 1998 Nonforest ± ± ±

Total 698 715 1413

a These data sets were not used to develop training and testing plots but for visual reference and as interpretation aid.
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634 plots in the remaining 28 focus areas were interpreted to

provide a total of 1135 FSA plots for training and testing

(Table 2). All of the 153 verification plots were used for

training the image classification.

In addition to the photographic data sets, we employed

county zoning GIS coverages to help interpret land cover

types, as well as a collection of 452 oblique color photo-

graphs that were referenced with global positioning satellite-

determined points (Tom Moser, personal communication).

While these photographs were taken over several years of

field reconnaissance after 1992, they were still useful for

cross-checking our interpretation of the FSA slides and for

identifying general cropping patterns (Fig. 4).

2.3. Image analysis

The hierarchical image processing steps used to construct

the WRB land cover map were specifically designed for

each of the three broad cover types in this study: urban,

valley forest, and nonforest (Ehrlich et al., 1994; Lauver &

Whistler, 1993; Pax-Lenney et al., 1996; Fig. 5).

The first step in mapping the Willamette Valley involved

stratifying the pixels contained within Oregon's urban

growth boundary zoning areas. Each of the 89 urban areas

in the WRB (Fig. 1) had an identified boundary. Our goal

was to identify several land cover types that could be

combined with census data to indicate land use and popula-

tion density. Unsupervised classification of the 15-band

five-date Tasseled Cap data set, using the Metro DOPs as

reference, was used to separate urban areas into three

desired classes (high-density built, medium-density built,

and water), and a confused class (urban other) that was

reclustered in later steps.

Secondly, all the pixels outside the urban areas were

assessed to distinguish forest vs. nonforest. The forested

areas were further classified based on forest characteristics

Fig. 3. Ground reference plots (training and testing) for forest and nonforest sites within Willamette Valley, shown over the four mapping units.
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Fig. 4. Photographs that exemplify Willamette Valley landscapes (courtesy of Tom Moser). (a) The bright radish seed crop in the foreground stands out against

the mixed forest, pastures, and farm homes of the hills behind. (b) Hayfields typically occupy the vales ringed by broadleaf, and conifer forest stands above. (c)

The Willamette Valley contains many creeks that flood during the wet winters, retaining a dense riparian gallery of hardwoods surrounded by grass fields and

pastures. (d) Extensive fields of hops, destined for one of Oregon's microbeer productions, line the Willamette River near Salem. (e) The valley's cool dry

summers aid several large nursery and container crop operations. (f) The poorly drained southern portion of the valley produces most of the nation's rye grass

seed interspersed by farm operations, such as this poultry farm. (g) Farms and fields are giving way to suburban expansion throughout the valley, but especially

in the high-growth region around Portland. (h) Valley River mall in Eugene, next to the Willamette River, represents a high-density built environment typical of

the more populous urban areas.
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(Fig. 5). The training plots developed from the 1993 color

photographs were used to label unsupervised clusters

derived from the 15-band Tasseled Cap data. Pixels labeled

as closed forest (defined as � 70% forest cover) were

separated into closed conifer (0±30% hardwood), closed

mixed (31±69% hardwood), and closed hardwood (70±

100% hardwood) classes with a supervised classification

(Schriever & Congalton, 1995). Closed conifer pixels were

then reclassified into three age categories by applying

multiple regression stand age models developed for the

upland forest (Cohen et al., 2001) to the 1988 TM imagery

for which they were developed.

The third step involved classification of all remaining

pixels, including the urban other class from the first step and

the pixels rejected as closed forest from the second step

(Fig. 5). We had some confidence in the spectral separability

of tentative class groups based on preliminary graphs of the

training clusters (Fig. 6). The temporal signatures of the

agricultural cover types (Lo et al., 1986; Williams et al.,

1987), especially the Tasseled Cap greenness component,

resembled a Willamette Valley cropping calendar (ODA,

1999). Using a 16-band image created by adding a DEM to

the 15-band Tasseled Cap spectral data set, we conducted a

maximum likelihood supervised classification to produce 10

major classes (tree crop, row crops, field crops, pasture,

natural, bare, built, seasonally flooded, irrigated, and water).

We separated the major groups into subclasses, where

further divisions were statistically justifiable (San Miguel-

Ayanz & Biging, 1997).

One final clustering was performed to reclassify pixels

that were obscured by clouds in the June 7 image (Fig. 5).

This was done with a supervised classification of a 13-band

(four-date with DEM) image to cluster those pixels into the

final classes using similar decision rules as above.

Fig. 5. Flow chart of the image processing steps.
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2.4. Map generation and error characterization

For the generation of our final map, we combined the

output classes from the three stages of image processing to

produce 20 distinct classes. The accuracy of the entire map

was assessed by constructing an error matrix using 715

testing plots divided among valley forest, nonforest, and

urban (Table 2). Assessment of the closed forest conifer age

classes was done separately using ground reference data for

71 plots in the upland forest area (Cohen et al., 2001). For the

land cover class accuracy assessment, we employed a mode-

decision rule for each plot determination (i.e., the predicted

value of a plot was set to the class that had the highest

number of pixels within that plot; there were no ties).

3. Results

Radiometric normalization coefficients of determination

for the models ranged from 0.78 to 0.99 (Table 3). Slopes

Table 3

Radiometric normalization models

Source image date Band normalization equations Model R2 Testing R2 Testing slope Testing intercept

March 19 b1n = 1.436*b1ÿ 20.535 .889 .896 1.02 ÿ 1.47

b2n = 1.463*b2ÿ 6.449 .887 .894 1.01 ÿ 0.31

b3n = 1.635*b3ÿ 11.869 .919 .924 1.01 ÿ 0.23

b4n = 1.449*b4ÿ 3.738 .922 .920 0.99 0.46

b5n = 1.412*b5ÿ 0.661 .933 .933 1.00 0.30

b7n = 1.567*b7ÿ 0.911 .931 .935 1.02 ÿ 0.14

May 6 b1n = 1.151*b1ÿ 9.082 .964 .955 0.98 2.15

b2n = 1.136*b2ÿ 2.215 .968 .956 0.98 1.27

b3n = 1.193*b3ÿ 2.615 .972 .965 1.00 0.46

b4n = 1.059*b4 + 0.697 .955 .949 0.99 0.91

b5n = 1.117*b5ÿ 0.655 .987 .984 1.00 0.60

b7n = 1.121*b7 + 0.320 .975 .975 0.99 0.73

July 25 b1n = 0.832*b1 + 16.497 .897 .892 1.00 ÿ 0.13

b2n = 0.853*b2 + 6.057 .822 .816 0.96 1.00

b3n = 0.844*b3 + 6.100 .824 .805 0.93 1.57

b4n = 1.011*b4 + 4.597 .945 .941 1.01 ÿ 0.28

b5n = 1.037*b5 + 2.750 .936 .914 0.99 0.09

b7n = 0.976*b7 + 1.423 .846 .829 1.00 ÿ 0.17

August 26 b1n = 1.114*b1 + 7.161 .913 .902 0.99 0.67

b2n = 1.056*b2 + 5.376 .788 .772 1.03 ÿ 0.67

b3n = 1.017*b3 + 7.049 .777 .684 0.93 1.69

b4n = 1.139*b4 + 8.358 .969 .966 1.00 0.13

b5n = 1.178*b5 + 2.639 .955 .949 0.98 0.76

b7n = 1.206*b7 + 2.070 .895 .886 1.00 0.16

The band normalization equations calculate the normalized band value (bxn) as a function of the raw value (bx), where x is the band number. Model R2 was

calculated for the training pixels, while testing R2 was calculated on an independent testing set. The testing slope and testing intercept refer to the regression line

of predicted vs. observed values for the testing set. Testing slopes close to 1 and testing intercepts close to 0 are considered ideal.

Table 4

Preliminary FSA slide photointerpretation error matrix

FSA crop report reference

Photo interpretation BER CO ERC F FC G IFC LFC M O P R RC X Total

Berries (BER) 1 1

Conifer orchard (CO) 1 1

Early row crop (ERC) 1 1 2

Fallow (F) 3 1 1 1 6

Field crop (FC) 40 4 2 1 47

Grass seed (G) 26 26

Irrigated field crop (IFC) 1 4 5

Late field crop (LFC) 2 1 3

Mint (M) 3 3

Orchard (O) 8 8

Pasture (P) 1 1 1 16 19

Radish seed (R) 3 3

Row crop (RC) 1 1 25 27

Christmas trees (X) 2 2

Total 1 1 1 5 42 32 5 5 3 8 18 4 26 2 153

Accuracy (%) 100 100 100 60 95 81 80 40 100 100 89 75 96 100 88.2
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and offsets varied from 0.83 to 1.64 and from ÿ 21 to 16,

respectively. The testing half of the control set was used

to determine the effectiveness of the normalization equa-

tions. For each image and every band, the slope of the

line between the normalized subject and reference pixels

was close to 1 and the intercept was close to 0, indicating

that the regression equations were effective at normalizing

the imagery.

Initial FSA interpretations within 5 of the 33 study sites

were confirmed for 153 plots. Only 18 plots were inter-

preted incorrectly, for an overall photointerpretation error of

12% (Table 4).

While most of the upland forest was intentionally

excluded from this study, several small islands of land

(totaling 257 km2) above 315-m elevation were contained

within the study boundary. These islands represented only

1.9% of the study area and were mapped into seven forest

classes: open ( < 31% green vegetation cover, 3.8%), semi-

closed (31±69% green vegetation cover, 10.2%), closed

hardwood (7.8%), closed mixed (36.2%), closed conifer 0±

80 years (22.4%), closed conifer 81±200 years (16.7%), and

closed conifer >200 years (2.9%). The rest of the study area

was mapped in three successive stages as urban areas

(13.0%), valley forest (26.3%), and nonforest (58.8%).

Fig. 7. The 1992 20-class land cover map of the Willamette Valley.
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Most of the 1802-km2 urban area was mapped into three

built classes using a subjective standard for the level of

development: built high-density (10.3%), built medium-

density (35.6%), and built low-density (4.5%). The remain-

der of the urban area was mapped as pasture/natural

(14.1%), field crop (9.6%), orchard (7.3%), forest closed

hardwood (7.1%), forest closed mixed (4.6%), and water

(2.1%). Nine other classes combined to account for less than

5% of the area.

We labeled 3642 km2 of the study area as valley forest,

defined as forest with at least 70% canopy closure, and

further distinguished this cover type into five classes based

on the estimated percentages of hardwood and conifer

(Cohen et al., 2000): closed hardwood (22.1%), closed

mixed (37.6%), closed conifer 0±80 years (20.0%), closed

conifer 81±200 years (16.8%), and closed conifer >200

years (3.4%).

In the remaining 8127 km2 of nonforested area, we

mapped the landscape into 17 land cover classes, including

a small percentage of forest classes (5.7%), which were

obtained by reexamining the pixels rejected as forest in the

second classification step. The majority of this area was

mapped as field crop (37.7%) or pasture/natural (34.2%),

two land cover types that are prevalent in the valley. Other

important land cover classes included row crop (6.7%),

orchard (4.1%), bare/fallow (3.3%), built low-density

(2.9%), and water (2.3%). The 28 km2 of pixels covered

with cloud and cloud shadow were then classified into the

same land cover types using a cloud-free training set.

The final map was created by combining the three stages

of this study with the existing upland forest map (Fig. 5) to

generate a 20-class map of the study area (Fig. 7). These

classes are presented in Table 5, which reveals that the most

dominant land cover types in the valley are field crop

(23.4%), pasture/natural (21.9%), and forest closed mixed

(12.5%). The error matrix for the map (Table 6), excluding

Table 5

Final land cover classes for WRB study area

Class Area (km2) %

Bare/fallow 276.9 2.0

Built high-density 228.4 1.7

Built low-density 315.3 2.3

Built medium-density 642.0 4.6

Field crop 3233.8 23.4

Flooded/marsh 88.6 0.6

Forest closed conifer 0± 80 years 872.2 6.3

Forest closed conifer 81±200 years 743.9 5.4

Forest closed conifer >200 years 170.9 1.2

Forest closed hardwood 1046.8 7.6

Forest closed mixed 1727.9 12.5

Forest open 9.7 0.1

Forest semiclosed 26.2 0.2

Hops 33.0 0.2

Mint 28.7 0.2

Orchard 460.6 3.3

Park 92.2 0.7

Pasture/natural 3032.7 21.9

Row crop 570.5 4.1

Water 226.0 1.6

Total 13,826.3 100.0

Table 6

Error matrix for land cover (excluding conifer age) using the mode-decision rule to assign map classes to each polygon

Reference
Accuracy

Map prediction B/F BHD BLD BMD FC FL FCC FCHW FCM H M O PK P/N RC W Total (%)

Bare/fallow (B/F) 21 1 1 2 1 3 29 72.4

Built high-density (BHD) 9 1 1 11 81.8

Built low-density (BLD) 3 6 2 11 54.5

Built medium-density (BMD) 3 10 2 15 66.7

Field crop (FC) 175 3 3 4 1 17 17 220 79.5

Flooded/marsh (FL) 4 4 100.0

Forest closed conifer (FCC) 44 11 4 59 74.6

Forest closed hardwood (FCHW) 31 1 4 1 37 83.8

Forest closed mixed (FCM) 3 12 16 2 33 48.5

Forest semiclosed 1 2 3 0.0

Hops (H) 17 1 2 20 85.0

Mint (M) 3 10 2 15 66.7

Orchard (O) 2 1 32 6 1 42 76.2

Park (PK) 1 1 2 1 5 40.0

Pasture/natural (P/N) 1 8 17 1 1 3 11 73 3 118 61.9

Row crop (RC) 1 13 1 77 92 83.7

Water (W) 1 1 100.0

Total 25 13 18 10 212 7 48 44 28 21 13 54 3 112 105 2 715

Accuracy (%) 84.0 69.2 33.3 100.0 82.5 57.1 91.7 70.5 57.1 81.0 76.9 59.3 66.7 65.2 73.3 50.0 73.8

Table 7

Closed conifer forest age error matrix

Reference
Accuracy

Map prediction 1 ±80 years 81± 200 years >200 years Total (%)

1 ± 80 years 15 4 19 78.9

81± 200 years 5 20 2 27 74.1

>200 years 5 20 25 80.0

Total 20 29 22 71

Accuracy (%) 75.0 69.0 90.9 77.5
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the closed conifer age classes, indicates an overall map

accuracy of 73.8%. The accuracy assessment for the closed

conifer forest age classes was performed independently,

using ground reference sample points from the upland forest

region (Cohen et al., 2001). Table 7 shows a closed conifer

forest age accuracy of 77.5%.

The final 20-class Willamette Valley land cover map

portrays a landscape in which land use is determined by

topography, access to irrigation, and urbanization. Most of

the built pixels are found within the major urban centers of

Portland, Salem, and Eugene (Figs. 1 and 7). In the flat

southern portion of the valley characterized by deep silty

soils, the predominant land cover is field crop, exemplified

best by rye grass grown for seed. In the vicinity of the

Willamette River and its major tributaries, the availability of

surface water for irrigation makes row crop farming feasi-

ble, as well as other lucrative crops, such as mint, hops, and

orchards. The greatest diversity of crop types is found north

of Salem and outside Portland, where farm tracts are smaller

and more varied than in the south. Where foothills break the

valley floor, the pasture/natural class dominates. This class

includes pastures, shrub lands, oak savanna, vineyards, and

Christmas tree plantations. Along the fringe of the valley

toward the Coast Ranges and the Cascades, pasture/natural

cover gives way to closed forest, including vast oak and

conifer stands.

4. Discussion

4.1. Desired vs. mapped classes

The main objective of this project was to deliver a map of

the Willamette Valley that matched a list of desired land use

and land cover classes (Table 1). Many of those classes,

especially in the urban, built, and hydro groups, were

essentially land use designations that `̀ convey the human

employment of the land,'' as opposed to land cover classi-

fications that `̀ denote the physical state of the land'' (Turner

& Meyer, 1994). We knew at the onset that we would be

unable to map certain land use classes with TM imagery, but

that many of those classes could be mapped with ancillary

GIS data, such as census data, zoning information, and

transportation coverages. Therefore, we were more con-

cerned with detecting spatial variation within the forested,

agriculture, and open/woody classes.

For both the forested and the nonforested portions of the

valley, we collected ground reference data that reflected

both the desired class list, as well as the full landscape

diversity of the valley. The combination of a rich ground

reference data set (Table 2) with an extensive nonforest

cover scheme allowed us to finely separate the TM imagery

into unique land cover classes. To isolate the forested

portion of the valley, we generated percent forest cover data

for 235 photointerpreted plots similar to the methods of

Cohen et al. (2001). In the nonforest, we used a combination

of the FSA slides and the multidate Tasseled Cap images to

identify 59 unique types of agricultural and natural land

cover distributed over a wide geographic range (Fig. 3). Our

photointerpretation of the more common land cover classes

was independently verified by FSA crop reports (Table 4).

Having confidence in our photointerpretation, combined

with the broad diversity and areal representation of the

ground reference data set, gave us a considerable advantage

in using a supervised classification to separate the nonforest

pixels into the final classes (Table 5).

The rich five-date TM data set allowed us to map many

classes that could not have been captured without multi-

seasonal imagery (Lo et al., 1986; Williams et al., 1987). A

different map of the basin (Uhrich & Wentz, 1999), which

used June and August 1992 images for the WRB, mapped

nine land cover classes (urban, water, mature forest,

regrowth forest, nonforest upland, native vegetation-valley

floor, irrigated crops, grass fields/small grains, and peren-

nial snow). The addition of three more dates allowed us to

separate the nonforested portion of the valley into nine

classes other than water and built. For example, the bare

fallow class was discernable, because we knew that

throughout that growing season, there was no green vege-

tation cover on those fields. Likewise, the flooded/marsh

class required having imagery from the wet season

(March), as well as throughout the rest of the growing

season to differentiate seasonal wetlands from permanent

water bodies.

Not surprisingly, the spectral separability of the TM

imagery did not match the highly refined ground reference

data set, and we were unable to capture the full comple-

ment of known land cover types in the valley (Table 8).

Many of our initial classification results were later aggre-

gated into broader classes (e.g., pasture, natural grasslands,

natural shrub, and Christmas trees were combined to form

one pasture/natural class). Other spectrally distinct classes

were collapsed into final classes either because they repre-

sented very small percentages of the valley (e.g., sugar beet

seed) or because we lacked sufficient ground reference

plots to statistically justify separate classes (e.g., closed

oak forest). In addition, we were not able to map new

crops, such as hybrid poplar and meadowfoam, which have

just recently appeared on the landscape in sufficient area to

warrant mapping.

Our attempt to estimate percent impervious cover within

urban areas was confounded by a lack of usable ground

reference data (Plunk et al., 1990). However, for our final

classes, we decided to create three relative levels of built

land cover types (built high-density, built medium-density,

and built low-density) that would reflect the relationship

between vegetation and impervious cover. The high-density

class mapped large buildings, parking lots, and other artifi-

cial features with minimal vegetative cover; the medium-

density class reflected apartment buildings and residential

settings where vegetation was present but not prevalent; and

the low-density class represented the well-vegetated suburbs
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where trees, shrubs, and lawns share the spectral signal

more equally with roads and rooftops. As there was no

available ground reference data, we could not ascertain how

well these class distinctions modeled percent impervious

cover. Furthermore, our mapping of the urban areas may

have been limited due to our exclusion of the fourth

Tasseled Cap band (Goward & Wharton, 1984).

4.2. Multiseasonal Tasseled Cap trajectories

A second objective of our research was to extend our

working knowledge of the Tasseled Cap transformation into

the agricultural lowlands of the WRB. We had previously

relied on ancillary GIS data to separate forest (especially

hardwood) and agricultural cover in the valley (Cohen et al.,

Table 8

Final map status of the classes desired by the PNW-ERC (n/m = not mapped)

Desired class Final map class Comments

1. Urban

a. Residential n/m Land use classification

b. Commercial n/m Land use classification

c. Industrial n/m Land use classification

d. Open space Park, pasture/natural

e. Herbaceous-roads n/m Spatial resolution limitations

2. Built (nonurban)

a. Commercial n/m Land use classification

b. RR2-5 zoning n/m Land use classification

c. Within 2 acres of structures n/m Land use classification

d. Railroad n/m Spatial resolution limitations

e. Roads n/m Spatial resolution limitations

f. Revetments n/m Spatial resolution limitations

3. Hydro

a. Headwater streams n/m Spatial resolution limitations

b. Open-standing water Water

c. Streams > first order Water, n/m Spatial resolution limitations

4. Forested

a. 0 ±40-year-old Douglas fir Forest closed conifer 0 ±80 years Derived from continuous age estimates

b. 41±120-year-old Douglas fir Forest closed conifer 0 ±80 years, forest closed conifer 81±200 years Derived from continuous age estimates

c. >120-year-old Douglas fir Forest closed conifer 81±200 years, forest closed conifer > 200 years Derived from continuous age estimates

d. Mixed conifer/deciduous Forest closed mixed

e. Deciduous Forest closed hardwood

f. Lower riparian forest Forest closed mixed, forest closed hardwood Proximity to water was not mapped

5. Agriculture

Grass seed/grain Field crop

Hybrid poplar n/m Inadequate ground reference

Nursery operations n/m Spectral resolution limitations

Orchards Orchard

Pasture and haylands Pasture/natural

Row crops Row crop

Vineyards, berries, and hops Row crop, pasture/natural, hops

Christmas trees Pasture/natural

Mint Mint

Meadowfoam n/m Inadequate ground reference

Confined animal operations n/m Inadequate ground reference

Farmsteads Built low-density

6. Open/woody

Shrub/brush Pasture/natural

Fence rows n/m Spatial resolution limitations

Oak savanna n/m Spectral resolution limitations

Prairie (grass/forb) Pasture/natural

Marsh (nontreed wetlands) Flooded/marsh

7. Percent Impervious surface

< 10% n/m Reflected by built low-density

10±20% n/m Reflected by built medium-density

>20 n/m Reflected by built high-density

D.R. Oetter et al. / Remote Sensing of Environment 76 (2000) 139±155152



2001), but for this project, we attempted to use the spectral

data alone to guide the separation of forest, agricultural, and

natural land cover types. In addition to conserving storage

space, the TM Tasseled Cap transformation produces

indices that have physically interpretable characteristics,

both in geographic space and in feature space (Crist &

Cicone, 1984; Crist, Laurin, & Cicone, 1986; Kauth &

Thomas, 1976). The more familiar spectral responses of

forest and shrub cover were easily distinguishable against a

backdrop of spectrally unique agricultural crops. In feature

space, the multiseasonal trajectories of our training plot

means were well separated in brightness-greenness (B-G)

and brightness-wetness (B-W) space (Fig. 6c and d).

A major advantage of using multiseasonal Tasseled Cap

imagery is the ability to separate land cover classes with

attention to the seasonal greenness curves (Crist & Malila,

1980; Lo et al., 1986). Fig. 6a shows the confusion in B-G

space that would occur by using only one date of imagery

(in this case, 7 June) for a supervised classification. While

the forest and flooded/marsh classes may have been separ-

able in this instance, the remaining classes appear confused

in two major clusters depending on the presence or absence

of vegetative cover in June. For that one date, the row crop,

hops, and bare/fallow classes are indistinguishable, since all

those plots reflected bare soils at that time. Similarly, the

agricultural cover types that were vegetated in June (field

crop, mint, and orchard) are confused with each other, and at

the same time, they are closely associated with pasture/

natural and park cover responses.

The five-date multiseasonal TM data set facilitated better

separation of land cover classes by allowing classification

of the pixels based on their temporal trajectories through

the growing season. In feature space, these trajectories can

be plotted as vectors moving through time (Fig. 6c and d).

Each training reference mean is more significantly separ-

able, because it defines that cover type in 15 dimensions

through time rather than just in the three dimensions of a

one-date Tasseled Cap image. The flooded/marsh class, for

example, begins its path through B-G space near the water

bulb (low brightness, low greenness) in March, and then

increases dramatically in brightness through the growing

season, as the surface water and soil moisture diminish.

Row crop and field crop classes are readily separable, as

field crops begin the growing season with high-greenness

peak in May and drop rapidly as natural precipitation

diminishes during the dry months of July and August,

whereas, row crops are planted later and do not green up

until July. Parklands remain high in greenness throughout

the growing season with the aid of irrigation and main-

tenance. At the other end of the spectrum, the bare/fallow

class has low greenness throughout the season and

increases in brightness as the bare soil loses moisture,

which is evidenced by a steep decline in wetness (Crist,

Laurin, Colwell, & Kauth, 1984). While the mint and hops

signals are separable based on the timing and direction of

their feature space trajectories, the orchard and pasture/

natural classes show a considerable amount of overlap in

both B-G and B-W space. It is interesting to note the

behavior of the orchard signal, which resembles that of the

forest closed hardwood class but with higher brightness and

lower wetness. We speculate that these differences are

caused by the ground cover between orchard trees. Many

of the orchards we sampled were young filbert orchards

with considerable gaps between trees. These gaps typically

reveal grass or bare soil, which directs the orchard response

away from that of forest closed hardwood. The three broad

forest classes are well separated, both in the leaf-off

condition in March and by the movement of the hardwood

and mixed classes from more open to their closed canopy

positions in both feature spaces.

The position and direction of the training class mean

trajectories correlate well with the discoveries of Crist et al.,

1986, who analyzed the first four bands of the Tasseled Cap

transformation using both laboratory and field information.

With the exceptions noted above, we observed similar

feature space trajectories through the growing season. For

the late-season cover types (row crop, hops, and mint), the

movement from March to May was marked by sharp

decrease in wetness and an increase in brightness, as the

bare soil dried before the growing season began. The

physical interpretations of brightness, greenness, and wet-

ness allowed us to infer a great deal of information about

the vegetative cover of our study area at each of our

acquisition dates.

4.3. Summary

Our purpose in this project was to produce a land cover

map that would serve the needs of the PNW-ERC in their

goal of characterizing the existing conditions of the WRB,

both as a baseline for later research and as the starting point

for the development of futures scenarios (PNW-ERC, 2000).

We produced a map with 20 urban, agricultural, and natural

land cover classes.

Since our work was based almost solely on predicting

land cover from TM imagery, the first task of the consortium

was to augment our map with available ancillary data,

especially US Census data, transportation information, and

hydrology coverages. In addition, the map was amended

using an agricultural projection model that employed current

knowledge of irrigation withdrawal permits and county

cropping statistics to predict spatial agricultural patterns

for a given year. The resultant map (Existing Conditions

1990) features 60 classes, representing a wide variety of

urban, forest, and nonforest land use and land cover types

(PNW-ERC, 2000).

The major strengths of our mapping approach came from

the wealth of interpretable spectral information available in

our multiseasonal Tasseled Cap imagery, especially when

trained using the FSA crop compliance photography. While

several TM-based vegetative indices and band ratios have

been applied to land cover mapping (Lauver & Whistler,
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1993; Lo et al., 1986; Pax-Lenney et al., 1996; Williams et

al., 1987), we must conclude from our experience that a land

cover mapping project such as this, across a large region

with many diverse land cover types, could be accomplished

with the analysis of multiseasonal Tasseled Cap imagery

(Crist, 1984). We feel confident that our map product serves

the needs of the consortium and other regional users,

however, we hope to improve upon this effort in the future,

perhaps by incorporating real-time ground reference data

collection with the increased data availability provided by

Landsat 7 and other sensors.
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