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Abstract. Fires associated with tropical deforestation, land conversion and
land use greatly contribute to emissions as well as the depletion of carbon and
nutrient pools. The objective of this research was to compare change detection
techniques for identifying deforestation and cattle pasture formation during a
period of early colonization and agricultural expansion in the vicinity of Jamari,
Rondônia. Multi-date Landsat Thematic Mapper (TM) data between 1984 and
1992 were examined in a 94 370 ha area of active deforestation to map land cover
change. The tasselled cap (TC) transformation was used to enhance the contrast
between forest, cleared areas and regrowth. TC images were stacked into a
composite multi-date TC and used in a principal components (PC) transforma-
tion to identify change components. In addition, consecutive TC image pairs
were differenced and stacked into a composite multi-date differenced image. A
maximum likelihood classification of each image composite was compared for
identification of land cover change. The multi-date TC composite classification
had the best accuracy of 0.78 (kappa). By 1984, only 5% of the study area had
been cleared, but by 1992, 11% of the area had been deforested, primarily for
pasture, and 7% lost due to hydroelectric dam flooding. Finally, discrimination
of pasture versus cultivation was improved due to the ability to detect land
under sustained clearing opposed to land exhibiting regrowth with infrequent
clearing.

1. Introduction

Before 1975, deforestation in the Brazilian Amazon was less than 1%; however,

the deforestation rate increased exponentially between 1975 and 1987 (Moran

1993). According to Fearnside (1997), approximately 11% (421 600 km2) of the

forested area of Amazonia had been cleared as of 1991. Deforestation rates
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increased in the 1980s due to colonization projects that created fiscal incentives for

agricultural expansion in remote areas of the Amazon (Molion 1991, Hecht 1993,

Moran 1993, Browder and Godfrey 1997). Rondônia, a western state in Brazil, has

had a recent history of high rates of deforestation. Beginning in 1960, with the tin
rush and the opening of the unpaved BR-364 highway providing an overland

route between Rondônia and the Atlantic Coast, prospectors and settlers have been

migrating to Rondônia (Browder and Godfrey 1997). Paving of the BR-364

highway was completed in 1984 with the intent to increase immigration and

stimulate markets for agriculture and forest products (Tucker et al. 1984, Stone

et al. 1991, Browder and Godfrey 1997). Rondônia comprises an area of

243 000 km2 of the Brazilian Legal Amazon’s 5 000 000 km2. By 1997, nearly 24%

(50 529 km2) of the original 215 000 km2 Rondônian forest area had been deforested
(Instituto National de Pesquisas Espaciais (INPE) 1998). Annual deforestation

rates (excluding forest loss from hydroelectric dams) in Rondônia were 2100 km2

(1978–1988), 1400 km2 (1988–1989), 1700 km2 (1989–1990) and 1100 km2

(1990–1991); at annual rates of 1% or less (Fearnside 1997). Recent estimates by

INPE (1998) suggest that average annual deforestation estimates were 2767 km2

or an annual rate of 1.3% (1994–1997). Deforestation rates in Rondônia have

remained high relative to other Amazonian states (Fearnside 1997).

In spite of numerous estimates of deforestation using satellite imagery and other
sources, several uncertainties exist, including estimates of the rates and extent of

deforestation and land uses mapped with satellite imagery. In most studies, a single

date of satellite imagery is used to map deforestation and land clearing (Tardin

et al. 1980, Tucker et al. 1984, Woodwell et al. 1986, Skole and Tucker 1993,

Fearnside 1997). In general, forest clearing, vegetation regrowth and water can be

distinguished visually in Landsat data. It is difficult, however, to differentiate land

cover types exhibiting vegetation regrowth such as regenerating forest, cultivation

and young pastures and to identify logging and surface fires, particularly in a single
date of imagery (Tucker et al. 1984, Woodwell et al. 1986, 1987, Nepstad et al.

1999). Hence, there are conflicting and limited data on rates and the areal extent of

deforestation and land conversion. The extent of deforestation in Rondônia in 1978

was estimated in the range of 4200 km2 (Tardin et al. 1980) to 6300 km2 (Fearnside

1997). By 1982, the range was 9200 km2 (Tucker et al. 1984) to 11 400 km2

(Woodwell et al. 1987) and as of 1988, 24 000 km2 (Skole and Tucker 1993),

29 600 km2 (Fearnside 1997) and 37 200–37 900 km2 (Stone et al. 1991) was

reported.
In other tropical and temperate regions, change detection techniques in a time

series of imagery have been used to monitor changes in land use, shifting

cultivation, vegetation phenology, pasture development and to assess deforestation,

crop stress and damage (Singh 1989, Collins and Woodcock 1996, Coppin and

Bauer 1996, Cohen et al. 1998). Digital change detection allows quantification of

temporal phenomena in multi-date satellite imagery (Coppin and Bauer 1996).

Change detection techniques using multi-date tasselled cap, principal components

analysis and image differencing integrate spectral transformations to enhance
change in land cover features (Richards 1984, Fung 1990, Cohen et al. 1998).

The tasselled cap (TC) linear transformation, or data plane rotation, is used to

reduce the spectral redundancy of the Landsat Thematic Mapper (TM) visible and

infrared bands to create the vegetation indices of brightness, greenness and wetness

(Crist and Cicone 1984, Schowengerdt 1997). The weights of the TC transformation

are fixed, sensor specific, and are not scene dependent.
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Cohen et al. (1995) reported that, as canopies develop in old-growth forests of

the Pacific Northwest, USA, although leaf area index is relatively high, shadowing

increases. Therefore, we infer that brightness and greenness will generally be lower

for mature or primary forests than for regrowing vegetation due to shadowing from
variation in canopy heights in later stages of succession. Old-growth forests

generally are lower in brightness and higher in greenness and wetness than in clear-

cut areas (Cohen et al. 1998). In contrast, a deciduous forest stand would have

higher brightness and greenness, but lower wetness than evergreen forest (Cohen

et al. 1995). Therefore, in the Amazon, primary forest and areas of well-established

vegetation regrowth would likely have high values of wetness. In cleared areas

undergoing vegetation regrowth, greenness will generally increase to the point of

canopy closure. Depending on soil colour and moisture content, brightness will
either increase or decrease during regrowth. If the regrowing vegetation is brighter

than the soils and the soils have moderately high reflectance, TC brightness would

likely increase during regrowth. Darker soil types and moist soils will decrease in

brightness. Brightness, however, may decrease initially during vegetation regrowth

due to shadowing, but increases as vegetation cover density increases, eliminating

the shadowing effect.

The principal components (PC) transformation is also a data compression

technique but, unlike TC, is not physically based. PC images have new coordinate
axes that are orthogonal to each other and explain decreasing levels of variance

with each successive component (similar to TC) (Richards 1984, Singh 1989, Collins

and Woodcock 1996, Coppin and Bauer 1996, Schowengerdt 1997). Unlike TC, the

weights in PC transformation matrix are not fixed and are scene dependent

(Schowengerdt 1997). By combining multi-date TM data in a PC analysis, a

spectral–temporal transformation results, creating some components indicative of

change over time. Richards (1984) combined two Multispectral Scanner (MSS)

scenes in a PC analysis to examine change from fire damage to vegetation regrowth.
Richards found that, in addition to lower order components, higher order

components can highlight land cover change. For example, change from vegetation

in the first date to burn scar in the second date or change from burn scar on the

first date to vegetation regrowth on the second date was detected in higher order

components. In addition to change components, stable components (commonly

the first component) may be used in land cover change classification. Stable

components can provide a frame of reference and improve classification results

(Cohen and Fiorella 1998). However, Collins and Woodcock (1996) selected change
components for classification and further analysis, leaving out stable components,

which usually account for spatial scene variation and not variation between dates.

Image differencing is a third common change detection approach for forested

and agricultural areas (Woodwell et al. 1986, Singh 1989, Fung 1990, Coppin and

Bauer 1996, Cohen et al. 1998). Image differencing is a simple approach whereby

coincident bands of spatially registered date pairs are subtracted. The output

image of positive and negative values represents change and the values close to

zero represent no change. Interpreting the differenced image can be difficult because
different input values can have the same result after subtraction and the original

pixel value information is not retained (Singh 1989, Cohen and Fiorella 1998).

Further confusion could be associated with change caused by atmospheric

conditions or Sun angle differences between dates rather than land cover change.

Also, it is difficult to determine where to select threshold boundaries of change and

no change (Singh 1989). In Rondônia, Woodwell et al. (1986, 1987) used change
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detection techniques of red and near-infrared band differencing between image date

pairs using the Landsat MSS data. Woodwell found that deforested areas would

show an increase in reflectance in the red band and a decrease in reflectance in the

near-infrared band. Therefore, for a deforested area, the difference between the red

bands between dates would be on a positive scale and the difference between the

near-infrared bands would be on a negative scale, provided the earlier date was

subtracted from the later date. Fung (1990) used image differencing between two

dates of TM data. The differenced image for the near-infrared band gave high

accuracy (100%) in detecting change from bare soil to pasture, among other crop,

pasture and bare soil cover types. However, there was difficulty in detecting change

for cover types with low near-infrared reflectances, possibly due to date of

acquisition and phenology. Cohen et al. (1998) found that both merged image

differencing and simultaneous image differencing yielded high accuracy (w90%)

for clear-cut harvest activity. Both merged and simultaneous image differencing

techniques were based on TC indices which further enhanced the spectral contrast

of clear-cut logging in forested land.
The objective of this research was to use multi-date TM data for the period

1984–1992 to compare change detection techniques for creating a land cover and

change map. The purpose of this project is to map reliably forest clearing and to

differentiate pasture (sustained clearing) and shifting cultivation (clearing inter-

rupted with periods of regrowth) in an area of Amazon forest in Rondônia, Brazil.

This area was undergoing active deforestation and land cover change associated

with early colonization.

2. Methods

To develop a method to map land cover and change, we compared three change

detection techniques to detect change in land cover types (primary forest,

regenerating forest and cleared/pasture) using: (1) multi-date TC images, (2) PC

analysis of TC images, and (3) image differencing of TC images.

2.1. Study area

We examined land use/land cover change from 1984–1992 over a 94 370 ha area

of primary forest in Rondônia, Brazil. The study area is located along the BR-364

highway in an area of recent colonization, coinciding with the completion of the

highway in 1984, and resulting in active deforestation during the period of our

study. Areas along the BR-364 highway have been subject to intense deforestation

for cultivation, cattle pastures, timber exploitation and mining. The study area is

centred at approximately 9‡ 11’ S and 63‡ 10’W and about 100 km south-east of the

State’s capital, Pôrto Velho (figure 1). The small town of Jamari is located along the

Jamari River, a backwater tributary of the Madeira River. The study area consists

of both small landholdings of subsistence farms and large ranches. It is adjacent to

the Jamari National Forest, which contains the Santa Bárbara tin mine.

We chose to conduct our study in this region because it is thought to represent

typical patterns of relatively recent colonization and deforestation activity at the

onset of our analysis (since the early 1980s). In addition, the availability of relevant

long-term ground-based data and knowledge of land use in the area assisted the

interpretation of land use types and practices (Kauffman et al. 1995, 1998, Guild

et al. 1998, Hughes et al. 2000). Other related research in the region has occurred

south of Jamari from Ariquemes to Vilhena along the BR-364 highway, where more
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long-term deforestation, agriculture and mining have occurred (Tucker et al. 1984,

Neill et al. 1997, Fujisaka et al. 1998, Moraes et al. 1998).

The primary forest type of Rondônia and the study region is submontane

open forest consisting of over-storey broadleaved canopy and subcanopy with an

abundance of palms and vines (Departmento Nacional de Produção Mineral 1978,

Instituto Brasileiro de Desenvolvimento Florestal (IBDF) and Instituto Brasileiro

de Geographia e Estatı́stica (IBGE) 1993, Cummings 1998). Soil types include red–

yellow podzolic latosols and red–yellow latosols (Neill et al. 1997).

Climatological data come from Pôrto Velho, Rondônia, about 100 km north

of the region. Mean annual precipitation is 2354 mm (Departmento Nacional de

Meteorologia 1992). During the dry season, between June and September, mean

precipitation is typically v100 mm per month. Dry season mean temperature is

y25‡C, ranging from a minimum of y21‡C to a maximum of 31‡C, with a mean

relative humidity of 85%.

2.2. Data

Available Landsat TM data for path 232, row 66 were selected from the

National Aeronautics and Space Administration (NASA) Landsat Data Collection

at the Earth Resource Observation System (EROS) Data Center, Distributed

Figure 1. The Brazilian state of Rondônia comprises an area of 243 000 km2. The location
of the study area is 100 km south-east of Pôrto Velho in the vicinity of Jamari along
the BR-364 highway. The study area is 94 372 ha and is centred at 9‡ 11’S and
63‡ 10’W with the approximate extent outlined on the map.
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Active Archive Center (DAAC). This scene extends from Pôrto Velho in the north

and south to just north of Ariquemes, Rondônia, following the Jamari River and

the BR-364 highway. The study area corresponds to a 102461024 pixel subscene

of approximately 94 370 ha, with a centre point at roughly 9‡ 11’ S and 63‡ 10’W.

From the archive, dry season dates were selected for minimizing spectral variability

associated with phenological differences. Therefore, scenes were selected on

anniversary dates. The following cloud-free images were selected: 24 June 1984,

16 July 1986 and 24 July 1992. Scenes were co-registered using an automated tie

point and area correlation technique (Kennedy and Cohen 2003). The procedure

locates tie points by maximizing an index of normalized cross-correlation for small

subsets of the two images to be matched. Required user input is limited: pixel size,

relative rotation of the two images, an initialization point in the two images, and

the desired density of the output grid of tie points. Images were co-registered to

the 1992 image using a second-order transformation. Radiometric correction was

considered but not performed because preliminary analysis indicated that the

spectral change associated with deforestation and land clearing is far greater than

changes associated with Sun angle and atmospheric variation (Cohen et al. 1998).

Moreover, because we analysed the digital numbers in a set of statistical analyses

for land cover classification, calibration was not important.

2.3. Change detection

We tested three methods of change detection to map deforestation and land

cover change between 1984 and 1992. We chose to use the TC transformation as the

basis of the three methods because the TC images show sharp contrasts between

forest, regrowth and cleared land (figure 2(a), (b) and (c)).

2.3.1. Composited tasselled cap

Brightness, greenness and wetness indices were generated for the 1984, 1986 and

1992 TM images using Landsat 4 and Landsat 5 TM TC coefficients, respectively.

The three TC images were stacked to create a nine-band, multi-date composite. To

improve classification performance on the multi-date composite, a classification

of the 1992 TC image using unsupervised techniques in a maximum likelihood

classification was used to delineate primary forest and non-forest. This classification

was used to create a mask of primary forest and non-forest and the forest mask was

used to eliminate this area of no change from further analysis in the multi-date

composite. Using the masked multi-date composite, unsupervised techniques were

used to train a second-level maximum likelihood classification, producing a 60-class

image. Although ground data were not available, familiarity with the site from field

visits assisted visual interpretation of the original TC data for comparison with the

classification. Groupings of similar classes were determined and an 18-class land

cover change map for the 1984–1992 time period was generated. Change class labels

include combinations of forest, cleared areas, vegetation regrowth, vegetation

dieback, flooded areas, dry/barren areas and water.

2.3.2. Tasselled cap with principal components analysis

In a second method, we combined all TC brightness, greenness and wetness

bands for each of the three dates in one unstandardized PC transformation. We

found that several of the components were dominated by a change in the expanse of
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the Jamari River that made other land cover change features more subtle and not

as easily delineated. The construction of the Samuel Hydroelectric Dam in 1989

caused a substantial increase in the expanse of the Jamari River between the 1984/

1986 images and the 1992 image. Therefore to eliminate this expanse change from

the PC analysis, a mask of the river’s extent in 1992 was used on all three dates

prior to performing the PC transformation. Nine components, one for each input

band, were generated in the PC transformation based on the covariance matrix.

Each component was evaluated along with the PC eigenvectors, which are linear

combinations for the PC axes rotations. The PC factor loadings, describing the

(a )

(b ) (c)

Figure 2. Tasselled cap images from Landsat TM data for the Jamari, Rondônia study area.
(a) 24 June 1984. Forest conversion for pasture and cultivation is present along the
highway. Red indicates cleared areas with little or no vegetation, yellow represents
areas of vegetation regrowth, green/blue designates primary forest, and blue areas are
water. (b) 16 July 1986. Forest conversion for pasture and cultivation has expanded
along the BR-364 highway and radiates out from the highway. (c) 24 July 1992. The
Jamari River extent increased due to completion of the Samuel Hydroelectric Dam in
1989. Some forest, pasture and cultivation areas were lost due to flooding of the
Jamari River.
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correlation between the original bands and the PC bands, were plotted for each

component against the corresponding TC indices. The graphs indicated contrasts

occurring between dates as well as within and among indices. This analysis assisted

inspection of single PC band images for change, but did not indicate the type of

change. Band by band, the PC images were analysed with the original TC images,

the eigenvectors and the factor loadings to identify component bands exhibiting

change through time due to deforestation, clearing and regrowth. Three resultant

principal components indicating change during the 1984–1992 study period,

together with the first component, were used in a maximum likelihood classification

using unsupervised techniques. The first component was a stable component that

was used as a reference for change to improve the classification (Collins and

Woodcock 1996, Cohen and Fiorella 1998). Without the inclusion of the first

component or stable component in the classification, there appeared to be no frame

of reference and the spatial integrity of the image was lost. The original TC images

for each of the three dates were used to interpret 60 classes in the classification.

Subsequent grouping of similar classes generated a 13-class land cover change map

using the same land cover labels used in the TC classification previously described.

2.3.3. Tasselled cap image differencing

TC image date pairs were subtracted one from the other to create TC

differenced images. Subtracted image date pairs included: (1) 1984 and 1986, and

(2) 1986 and 1992. The two TC differenced images along with the 1992 TC image,

which served as a reference image for change, were combined into one image

creating a nine-band composite image. A maximum likelihood classification using

unsupervised techniques was performed on this nine-band image creating 60 classes.

Following inspection of the classes with the original TC images, 18 unique change

classes were identified with the land cover labels previously discussed in the TC

classification.

2.4. Accuracy assessment

An equalized stratified random sampling approach was used to assess the

accuracy of each of the three land cover change classifications. Approximately 15

random pixels were selected for each class and visually compared with the original

TC images. Based on the number of classes, between 195 and 270 points per

classification were verified for classification accuracy. The class label was unknown

when the pixels were compared with the TC images. In addition, validation of the

land cover change classes came from knowledge of the history of the land use in

the area based upon experiences of ground-based research in this region. An error

matrix was used to calculate producer’s accuracy (indication of omission errors),

user’s accuracy (indication of commission errors) and the overall accuracy of the

classifications. In addition, the more conservative kappa statistic was calculated.

Kappa is a maximum likelihood estimate from a multinominal distribution that

measures the actual agreement of the classification output with what is observed in

the information or data used for ‘truthing’ minus the chance agreement. Essentially,

kappa is the difference between the observed accuracy and the chance agreement

divided by one minus the chance agreement (Lillesand and Kiefer 1994). Finally,

kappa was calculated using only the 12 classes that were common to all three

change detection classifications.
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3. Results

3.1. Comparison of methods

Clearing of primary forest was evident and easily detected in the land cover

change classification approaches. All three classification techniques yielded

acceptable accuracy given the number of unique classes generated for each land

cover change map and for a multi-date analysis (tables 1, 2 and 3). The PC

classification had fewer classes (13 classes) than the TC (18 classes) and TC

difference (18 classes) classifications because areas associated with flooding and

the Jamari River were masked out prior to classification. Masking out these areas

eliminated classification of these features. The PC classification missed classifying

an area that was in regrowth between 1984 and 1986 and was cleared by 1992

(Class 16). The TC difference classification missed two classes identified in the TC

classification. Both of these classes involved regrowth or cleared areas that were

flooded by 1992 (Classes 2 and 6). The TC classification, however, missed a class

delineated in both the TC difference and PC classification that indicated areas in a

cleared state between 1984 and 1986, but had regrowing vegetation by 1992 (Class

18). The TC difference classification gave a high accuracy for Class 18, but the PC

classification had only moderate accuracy. Discrepancies with class 18 are likely to

be due to confusion with areas in a cleared state for the entire study period. A

second class that was missed by the TC classification, but was captured by the TC

difference classification, was water in 1984, cleared (bare soil) in 1986 and water in

1992 (Class 19). This class is associated with the variation in water levels in the tin

mine reservoir and is not a change of interest for this study. The TC classification

performed better than the other classifications in capturing clearing of both primary

forest and areas in a stage of regrowth.

The TC classification gave the highest accuracy of all three approaches, with an

overall accuracy of 79.3% and kappa of 0.78 (table 1 and figure 3). Additionally,

kappa for the 12 classes common to all three change detection approaches was

0.725. The TC classification gave high producer’s accuracies (87–100%) and user’s

accuracies (67–100%) for classes of primary forests converted to clearing (Classes 5,

7, 9, 10, 12). For classes of primary forest that were cleared and followed by

regrowth (Classes 11 and 14), the producer’s accuracies were 69% and 100% and

user’s accuracies were 56% and 100%. For the class that was interpreted as being

in a state of sustained clearing (Class 8), the producer’s accuracy was 41% and the

user’s accuracy was 54%. The low accuracy is associated with spectral confusion of

regrowth areas. We suspect that some of the uncertainty in the classification is

associated with sprouting of surviving vegetation and the establishment and rapid

growth of secondary broadleaved plants in pastures. This situation could be

exhibiting relatively high brightness and greenness similar to vegetation regrowth

in shifting cultivation sites. Therefore, some of the error may be overestimated.

Similarly, a class interpreted as cleared followed by regrowing vegetation (Class 17)

had a producer’s accuracy of 78% and a user’s accuracy of 47%. In other words,

although 78% of all areas cleared and allowed to regrow were correctly identified as

this class, only 47% of the areas identified as ‘clearing followed by regrowth’ within

the classification were actually that class. The spectral confusion associated with

this class was with assignment of regrowth areas to clearing. Because it is

impossible to ground-truth historic satellite data, there could be some error in our

visual interpretation of this class in the TC images over time. Perhaps some of the

error is overestimated. Additionally, this class represented less than 1% (351 ha)
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Table 1. Error matrix for the tasselled cap land cover change classification. User’s accuracy and producer’s accuracy are reported for each class. Overall
accuracy was 79.3% and kappa statistic was 0.78.

Class

Reference data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 User’s accuracy (%)

0 Forest 84–92 15 100
1 Water 84–92 11 1 3 73
2 Cleared 84–86, Flooded 92 13 100
3 Flooded 84–86, Dry 92 1 14 93
4 Forest 84–86, Flooded 92 1 14 93
5 Forest 84, Cleared 86, Flooded 92 1 14 93
6 Regrowth 84–86, Flooded 92 1 1 12 1 80
7 Forest 84–86, Cleared 92 10 4 1 67
8 Cleared 84–92 7 2 2 2 54
9 Forest 84, Cleared 86–92 13 1 93

10 Forest 84, Regrowth 86, Cleared 92 2 10 2 1 67
11 Forest 84, Cleared 86, Regrowth 92 15 100
12 Forest 84–86, Regrowth 92 14 100
13 Regrowth 84–92 12 1 2 80
14 Forest 84, Regrowth 86–92 7 9 56
15 Regrowth 84, Cleared 86–92 1 2 13 81
16 Regrowth 84–86, Cleared 92 1 6 8 53
17 Cleared 84, Regrowth 86–92 1 6 1 7 47

Producer’s accuracy (%) 100 79 87 93 82 100 100 91 41 87 100 100 100 46 69 50 100 78
Overall accuracy (%) 79.3
Kappa statistic 0.78
Kappa statistic (classes 0, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17) 0.725
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Table 2. Error matrix for the tasselled cap with principal components land cover change classification. User’s accuracy and producer’s accuracy are
reported for each class. Overall accuracy was 68.4% and kappa statistic was 0.66.

Class

Reference data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 User’s accuracy (%)

0 Forest 84–92 14 1 1 88
1 Water 84–92
2 Cleared 84–86, Flooded 92
3 Flooded 84–86, Dry 92 14 100
4 Forest 84–86, Flooded 92
5 Forest 84, Cleared 86, Flooded 92
6 Regrowth 84–86, Flooded 92
7 Forest 84–86, Cleared 92 14 1 93
8 Cleared 84–92 7 1 2 2 1 54
9 Forest 84, Cleared 86–92 1 5 7 2 1 31

10 Forest 84, Regrowth 86, Cleared 92 3 4 6 2 27
11 Forest 84, Cleared 86, Regrowth 92 1 13 1 87
12 Forest 84–86, Regrowth 92 15 100
13 Regrowth 84–92 2 1 8 2 1 57
14 Forest 84, Regrowth 86–92 3 1 4 8 50
15 Regrowth 84, Cleared 86–92 2 13 87
16 Regrowth 84–86, Cleared 92
17 Cleared 84, Regrowth 86–92 3 1 11 73
18 Cleared 84–86, Regrowth 92 4 1 1 2 6 43

Producer’s accuracy (%) 82 100 100 35 83 67 62 65 67 50 68 61 86
Overall accuracy (%) 68.4
Kappa statistic 0.66
Kappa statistic (classes 0, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17) 0.65
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Table 3. Error matrix for the tasselled cap image differencing. User’s accuracy and producer’s accuracy are reported for each class. Overall accuracy was
71.4% and kappa statistic was 0.67.

Class

Reference data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 User’s accuracy (%)

0 Forest 84–92 13 1 93
1 Water 84–92 13 1 93
2 Cleared 84–86, Flooded 92
3 Water 84–86, Dry 92 15 100
4 Forest 84–86, Flooded 92 1 14 1 88
5 Forest 84, Cleared 86, Flooded 92 1 5 9 60
6 Regrowth 84–86, Flooded 92
7 Forest 84–86, Cleared 92 15 1 94
8 Cleared 84–92 14 1 93
9 Forest 84, Cleared 86–92 5 7 3 45

10 Forest 84, Regrowth 86, Cleared 92 1 2 1 6 2 1 1 1 40
11 Forest 84, Cleared 86, Regrowth 92 3 8 2 62
12 Forest 84–86, Regrowth 92 2 14 88
13 Regrowth 84–92 15 100
14 Forest 84, Regrowth 86–92 1 1 4 5 3 1 33
15 Regrowth 84, Cleared 86–92 5 8 2 53
16 Regrowth 84–86, Cleared 92 6 2 7 45
17 Cleared 84, Regrowth 86–92 1 9 6 56
18 Cleared 84–86, Regrowth 92 1 5 83
19 Water 84, Cleared 86, Water 92 1 4 8 62

Producer’s accuracy (%) 93 93 94 70 75 100 48 45 86 73 93 56 100 50 88 69 36 100
Overall accuracy (%) 71.4
Kappa statistic 0.67
Kappa statistic (classes 0, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17) 0.68
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of the study area and hence does not lessen the high overall accuracy of this

classification.

The TC difference classification had an overall accuracy of 71.4% and kappa

of 0.67 (table 3). Kappa for the 12 classes common to the three approaches was

0.68. The TC principal components classification was the most computationally

intensive and time-consuming technique, both in terms of time for computation of

components for multiple dates and for interpretation of components, eigenvectors

and factor loadings, but was the least reliable for capturing and identifying the

type of change. The TC principal components classification yielded a 68.4% overall

accuracy and a kappa of 0.66 (table 2). Kappa for the 12 classes present in the three

classifications was 0.65.

3.2. Change analysis

The TC land cover change map was selected for land cover change analysis due

to the classification’s higher accuracy and number of classes (table 1 and figure 3).

Four of the 16 classes represented no change in primary forest, regrowth, sustained

clearing or water (including the Jamari River and the tin mine reservoir). The

classification was successful in delineating the original extent of the Jamari River

as well as the extent following the completion of the Samuel Dam in 1989. The

classification shows that there were approximately 5440 ha of primary forest lost

from the flooding and rise in the river level and associated tributaries (table 4). This

area remained under water in 1992. In addition, an area of 1270 ha was lost due

to inundation, but the water had receded leaving an area mostly devoid of green

vegetation with relatively dry, bare soil resembling clearing in the 1992 data.

Figure 3. Classification of the tasselled cap composite image (1984, 1986 and 1992 TC
indices) for the Jamari, Rondônia study area. Land cover change classes include
primary forest, regrowth (regenerating forest/cultivation), cleared areas (pasture/
cultivation), flooded (Samuel Dam), dieback (prior inundation), water (Jamari River
and other tributaries) and reservoir (tin mine).
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As of 1984, approximately 4740 ha, or nearly 5% of the 94 370 ha study area,

had been cleared (including areas in regrowth) for agriculture or for the tin mine

(table 4). Between 1984 and 1992, about 16 660 ha of additional primary forest were

lost due to conversion to agriculture, pasture or inundation. This loss of primary

forest represents nearly 18% of the study area. This contributed substantially to the

study area’s primary forest conversion (i.e. cleared, regrowth, inundation and tin

mine) total of 23% (about 21 400 ha) as of 1992. In 1984, approximately 1230 ha, or

1% of the study area, was in a state of clearing and remained cleared by 1986. This

area remaining in a cleared state is probably pasture, as shifting cultivation sites

would have evidence of regrowth due to infrequent clearing. By 1986, the area in

clearing/pasture increased to about 2690 ha, or 3% of the study area, and remained

cleared as pasture until 1992. In addition, we found that between 1984 and 1992,

only 615 ha of regenerating forest had been cleared and even less (213 ha) between

1986 and 1992. For each of these time periods, clearing of regenerating forest

accounted for less than 1% of the study area.

In 1984, both areas in regrowth and in clearing each represented 2% of the

study area (table 4). New areas in regrowth increased at a lower rate than new

areas in clearing increased between 1984 and 1986, but the total area of each was

essentially equal and each represented about 4% of the study area. Areas in

regrowth for the duration of the study period represented a little over 1% of the

study area. Both areas deforested between 1984 and 1986 and previously cleared

areas that indicated sustained vegetation regrowth between 1986 and 1992

Table 4. Land cover change classes interpreted from the tasselled cap composite classi-
fication, which included TC indices for years 1984, 1986 and 1992. Land cover
classes include primary forest, regrowth (regenerating forest/shifting cultivation),
cleared areas (pasture/shifting cultivation), flooded (Samuel Dam), dieback (prior
inundation), water (Jamari River and other tributaries) and reservoir (tin mine).
The Jamari, Rondônia study area encompasses 94 372 ha.

Land cover change class Area (ha) Percentage of study area

Forest 1984
No change 71 881 76.2
Flooded in 1992 5443 5.8
Flooded dieback 1992 1270 1.3
Cleared/regrowth by 1992 7352 7.8
Cleared/regrowth by 1986

Flooded in 1992 192 0.2
Regrowth in 1992 1503 1.6
Cleared in 1992 898 0.9

Regrowth 1984
No change 1305 1.4
Flooded in 1992 130 0.1
Cleared by 1992 213 0.2
Cleared by 1986

Cleared in 1992 615 0.7
Cleared 1984

Regrowth 1986–1992 352 0.4
Cleared 1986, Flooded in 1992 51 0.1
No change 1180 1.2

Reservoir 1984–1992 (tin mine) 892 0.9
Water 1984–1992 1095 1.2

Total 94 372 100.0
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represented approximately 2% of the study area. Between 1986 and 1992, 8% of the

study area was cleared and 3% remained in a state of clearing since 1984. During

this period, the total area in a state of clearing increased whereas the area in

regrowth decreased.
The resultant land cover change map identified deforestation (an indication of

forest slash burning events), regrowth (an indication of regenerating forest/shifting

cultivation and carbon sequestration) and areas in a state of clearing (an indication

of areas maintained as pasture and continued carbon sources to the atmosphere).

Our knowledge of land use in Rondônia from fieldwork and interviews with

landowners is that sites that remained cleared during the study period were

indicative of pastures, whereas clearings interrupted by regrowth through time

indicated shifting cultivation. Classes indicating pasture and shifting cultivation
land use sequences emerged from the TC classification. If a site remained cleared

between two dates analysed during the study period, the site was presumed burned

by each date to maintain pasture. For example, the class interpreted as forest in

1984, cleared/regrowth in 1986, and cleared in 1992 indicated that primary forest

had been cleared and burned between 1984 and 1986, and that there was sub-

sequent burning between 1986 and 1992 to maintain a state of clearing (table 4).

Since this class had been cleared by 1986 and remained in a state of clearing by

1992, we assumed that this is an example of pasture maintenance. Cultivation is
possible during the 1986–1992 period, however, because clearing was evident in the

1992 image and the timing of the 1992 image was early in the dry season and likely

before clearing for the season occurred, the clearing identified corresponded to

1991. Therefore, only a five-year shifting cultivation cycle would have occurred. We

assumed that it was more likely to have remained cleared for pasture. Under the

typical pasture burning practices of this region, there were likely to have been two

to three pasture burning events for this class between 1986 and 1992. Another class

likely following characteristics of pasture maintenance is the class that was in a
state of regrowth in 1984 and then was in clearing by 1986 and remained clear

by 1992. This class was likely a fallow shifting cultivation site in 1984, with

regenerating forest. By 1986, this class was cleared and presumably converted to

pasture in 1986 and maintained as pasture through 1992. This class represents less

than 1% of the study area. This class experienced a regenerating forest slash burn

followed by a minimum of two pasture burns. A clearer example of a pasture site

scenario is for the class that was in a state of clearing for all dates (i.e. 1984, 1986

and 1992); here we assumed a minimum of three burning events under a two- to
three-year pasture burning scenario.

If regrowth was prevalent during the study period, shifting cultivation practices

or regenerating forest was assumed and site burning only occurred when clearing

was evident. The class depicted as regrowth between 1984 and 1986 and as cleared

in 1992, indicates a regenerating forest slash burn between 1986 and 1992. Due

to the infrequency of clearing, we assume this class likely represents a shifting

cultivation scenario. Another possible example of shifting cultivation was found in

the class that was forest in 1984, was in a state of clearing or regrowth in 1986, and
continued to be in a state of vegetation regeneration by 1992. This particular

shifting cultivation class had an initial primary forest burn, but was likely not

followed by subsequent burning but to cultivation or second-growth forest

establishment.

Deforestation of primary and regenerating forest was easily detected in the 30 m

resolution classification of the multi-date TC composite. Most of the inaccuracy of
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the classification was associated with spectral confusion of some regrowth areas

that were classified as being in a cleared state. If these regrowth areas were actually

young pastures, with recently planted pasture grasses with fairly dense regenerating

forest vegetation cover, these conditions could exhibit both relatively high
brightness and greenness and give an indication of vegetation regrowth.

During the study period, the area of primary forest that was cleared comprised

8250 ha and represented 9% of the study area (table 4). We assume this scenario

corresponded to primary forest conversion to pasture. In contrast, the primary

forest area cleared and allowed to regrow as second-growth forest or to become

cultivated represented less than 2% (1503 ha) of the study area. Regenerating forest

areas were about equally likely to be cleared again or continue forest establishment.

Each scenario represented about 1% of the study area. Finally, cleared areas
remaining cleared (pasture) during the study period included 1180 ha and

represented over 1% of the study area whereas areas cleared then allowed to

regrow represented less than 1% (352 ha) of the study area. Additional areas that

were forest or in a state of clearing prior to 1992, but were flooded by 1992 due to

the completion of the Samuel Dam in 1989, were not interpreted as one of the

above land use scenarios due to their flooded condition. These areas lost to flooding

comprised an area of 7086 ha and represented 8% of the study area. This time series

of imagery supports our and others’ (C. Neill, personal communication 1995)
observations that primary forest was more commonly converted to pasture than

allowed to establish as second-growth forest in this area of subsistence agriculture

in Rondônia.

4. Discussion

Previous studies in the Amazon have used single-date and multi-date satellite

data to quantify deforestation, but most have neglected to identify shifting

cultivation and pasture clearing (Woodwell et al. 1986, Stone et al. 1991, Skole and
Tucker 1993, Alves and Skole 1996, Frohn et al. 1996, Rignot et al. 1997, Moraes

et al. 1998). To quantify regional and global emissions, elemental pools and losses

more accurately, land clearing and burning estimates are needed other than from

conversion of primary forest. Many of the methods of previous research could be

useful in identifying land clearing and burning. Frohn et al. (1996) classified

forested and cleared areas in Rondônia in multi-date Landsat MSS and TM data.

These classifications were compared with modelled simulations of clearing to

describe the pattern of clearing in the study area, but did not classify type of

clearing (i.e. pasture or cultivation). Stone et al. (1991) used single dates of MSS,
TM and Advanced Very High Resolution Radiometer (AVHRR) data to map the

area and rate of deforestation in Rondônia to look at spatial trends of clearing and

for comparison with information in federal statistical atlases. The multi-date

analysis of Stone et al. (1991) could have indicated additional types of land cover

conversion (i.e. areas remaining cleared versus areas allowed to regenerate). Moraes

et al. (1998) used a single date of TM data to map forests and pastures in a study

area south of Ariquemes in Rondônia. Moraes et al. (1998) were able to map

different ages of pastures with only 0.595 accuracy (kappa). The objective was to
assign vegetation and soil carbon stocks to land cover types for estimating carbon

pools and fluxes. A multi-date TM analysis may improve the accuracy of iden-

tifying pasture age for this study.

Alves and Skole (1996) used a time-series of Système pour l’Observation de la

Terre (SPOT) data to map deforestation near Ariquemes, Rondônia, and to
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separate secondary vegetation regrowth within the deforested areas. Although the

accuracy of these classifications was not reported, it was stated that a limitation

was that cacao plantations could not be separated from secondary vegetation. The

methods of Alves and Skole (1996) go beyond estimating deforestation to estimate
secondary vegetation regrowth. It is likely that areas that remained cleared

following deforestation, indicative of pasture, could have been identified using these

methods. Rignot et al. (1997) analysed multi-resolution data of Spaceborne

Imaging Radar C (SIR-C) for 1994, TM data for 1993, SPOT data for 1986, 1988,

1989, 1991, 1992 and 1994, and Japan Earth Resources Satellite (JERS-1) radar

data for 1994 and 1995 to map deforestation and secondary growth in Rondônia.

The combination of the radar data classifications with the TM classification allowed

discrimination of forest, non-forest with no woody biomass, recent clearings with
slash of high woody biomass, initial regrowth, intermediate regrowth, flooded dead

forest, and open water. The researchers add that there was substantial variability of

woody biomass within classes and they suggested that the classification was not

appropriate for estimating biomass inputs for carbon models. These methods,

however, likely identify land conversion rates and land cover change through time.

Woodwell et al. (1986) used multi-date MSS data to map forest to non-forest

change in Rondônia. The methods could not determine change from bare ground to

agriculture or pasture. In addition, forest clearing identified on MSS was compared
to an AVHRR scene to develop methods to scale deforestation to the lower

resolution AVHRR data. Finally, Skole and Tucker (1993) visually interpreted

deforestation in black and white photos of TM mid-infrared data for 1988 Amazon

deforestation. Deforestation for 1978 was digitized from deforestation maps derived

from single-channel MSS data. Deforestation, forest fragments, and edge effects by

Amazon state were reported for both dates; however, the nature of this

comprehensive project and the state of computational capabilities would not have

allowed a feasible means for analysis of land cover beyond forest and non-forest.
We found that analysis of a third date, during an eight-year period, provided

the information on clearing needed to delineate a pasture from a shifting cultivation

scenario. Additional TM data around the year 1989 could have improved the

analysis since the six-year gap in our selected data from 1986 to 1992 may have

confused interpretation of land cover change classes. The ability to identify clearing

events/trends and the type of land cover cleared using our methods is valuable as

clearing gives an indication of timing of burning. The value of predicting the extent

and frequency of burning events and the type of land cover burned is that these
data can be used to improve estimates of emissions from biomass burning and site

elemental pool losses (Guild 2000, Guild et al. in press).

The utility of our methods in expanding the analysis to the state of Rondônia

could be tested in other areas of the state experiencing the range of deforestation

from early colonization to extensive agricultural expansion. The analysis of the

full TM scene for each of the dates in our study period would be a logical next

step for analysis and testing whether the methods are appropriate at the regional

scale. Since the TC transformation reduces the dimensionality of the data, a TC
composite of dates covering a full TM scene is appropriate. The computational

limit in a TC composite classification would likely be due to the number of dates

in the analysis. In addition, the date interval for the time series might be

appropriate at two- to three-year intervals; whereas intervals of four to six years in

areas of less rapid change may be appropriate. Both date interval selection of data

and length of the time series are considerations for computational limitations.

Deforestation and land conversion in Rondônia, Brazil 747



Based on the utility of our methods, we suggest that mapping forest clearing and

areas in pasture/agriculture could improve estimates of deforestation, regrowth

(regenerating forest/cultivation) and pasture at a regional scale. Additionally, as

TM data became more frequent with the launch of the Landsat 7 satellite in 1999

(having a repeat cycle offset from Landsat 5 by eight days), TM data are available

every eight days for as long as Landsat 5 is operational. The use of high-resolution

TM data has recently become more feasible and less expensive for regional analysis

of multi-date imagery and will likely improve a variety of regional estimates

associated with land cover/land use and change.

5. Conclusion

The importance of this multi-date TC classification was the reliable detection of

clearing and the ability to predict the type of land cover that was cleared given the

clearing rate. Since clearing is an indication of burning in this region of the

Amazon, this land cover change map has already been used to estimate area burned

associated with deforestation (Guild 2000, Guild et al. in press). Additionally, areas

delineated as pasture on this map were used to model the cumulative area of

pasture burned, accounting for the frequent burning cycle of pastures. It is

important to distinguish primary forest burns from fires used to maintain pasture

and to burn fallow fields for cultivation since the nature of the emissions and the

biomass, carbon and nutrient contents are very different. Together, knowledge of

land use pattern and multi-date TM imagery, instead of single TM date analysis,

led to better interpretation of land cover types, contributed to resolving problems

of interpreting the land use following clearing, and assisted quantification of

burning frequency. Hence, estimates of resultant emissions and terrestrial carbon

and nutrient pools and losses associated with deforestation and land conversion are

likely to be improved.

Although not reported here, land cover change detected from this multi-date TC

analysis can be useful in studies to quantify sources of atmospheric emissions

associated with various land use burning practices and assessing their overall

contribution of emissions to the region. This could be accomplished by a

combination of ground-based data of biomass, carbon and nutrient dynamics with

remote sensing data to better quantify local and regional elemental sinks, sources

and atmospheric emissions (Guild et al. in press).

Finally, our study area and study period results come from a landscape in the

early stages of disturbance and may provide some interesting deforestation and

land use comparisons with landscape studies of areas following many years of

intense disturbance.
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in Rondônia, Brazil, using Imaging Radar and Thematic Mapper data. Remote
Sensing of Environment, 59, 167–179.

SCHOWENGERDT, R. A., 1997, Remote Sensing, Models and Methods for Remote Sensing (San
Diego, CA: Academic Press).

SINGH, A., 1989, Digital change detection techniques using remotely sensed data.
International Journal of Remote Sensing, 10, 989–1003.

SKOLE, D., and TUCKER, C., 1993, Tropical deforestation and habitat fragmentation in the
Amazon: satellite data from 1978 to 1988. Science, 260, 1905–1910.

STONE, T. A., BROWN, I. F., and WOODWELL, G. M., 1991, Estimation by remote sensing of
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TUCKER, C. J., HOLBEN, B. N., and GOFF, T. E., 1984, Intensive forest clearing in Rondônia,
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