DEVELOPMENT OF META-MODELS FOR ASSESSING ECOLOGICAL EFFECTS OF ALTERNATIVE THINNING REGIMES

Steven L. Garman Dept. of Forest Science Oregon State University 3200 SW Jefferson Way Corvallis, OR 97331 garmans@fsl.orst.edu (541) 737-2777

Submitted To:

John H. Cissel James H. Mayo Central Cascades Adaptive Management Area/ Cascade Center for Ecosystem Management Blue River Ranger District Willamette National Forest Blue River, OR 97413

Table 4. Simulated silvicultural experiment 10/1 the early stem-exclusion developmental

TABLE OF CONTENTS

Introduction	<u> </u>
Methods	
Simulation Model	1
Experimental Design & Model Development	7
Results & Discussion	
First-rotation Models	8
Second-rotation Models	14
Caveats	27
Calculations with the Meta-Models	29
Literature Cited	31

LIST OF TABLES

		Pg.
Table 1.	Attributes of the initial stand used in all first-rotation simulation experiments	
Table 2.	Simulated silvicultural experiments for the early stem-exclusion developmental stage, 260-yr rotation strategy	3
Table 3.	Simulated silvicultural experiments for the early stem-exclusion developmental stage, 180-yr rotation strategy	4
Table 4.	Simulated silvicultural experiments for the early stem-exclusion developmental stage, 100-yr rotation strategy	5
Table 5.	Simulated silvicultural experiments for the early stem-exclusion developmental stage, 80-yr rotation strategy	6

1

i

LIST OF TABLES CONT'D.

		Pg.
Table 6.	Attributes and threshold values characteristic of late-successional forest conditions for the western hemlock series - modified from Franklin and Spies (1991) and USDA Forest Service Region 6 Interim Old-Growth	1.5.
	Definitions (USDA Forest Service, 1993)	. 7
Table 7.	First-rotation experimental thinning treatments used in generating data for the response-surface models of second-rotation performance	. 8
Table 8.	Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 260-yr rotation strategy (First rotation experiment in Table 2)	9
Table 9.	Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 180-yr rotation strategy (First rotation experiment in Table 3)	. 11
Table 10	Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 100-yr rotation strategy (First rotation experiment in Table 4).	12
Table 11	. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 80-yr rotation strategy (First rotation experiment in Table 5)	. 13
Table 12	. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 260-yr rotation strategy (Second rotation experiment in Table 2)	. 15
Table 13	. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 180-yr rotation strategy (Second rotation experiment in Table 3)	. 18

-

ii

LIST OF TABLES CONT'D.

is the rest of the Pg .
Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 100-yr rotation strategy (Second rotation experiment in Table 4)
Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late- successional criteria were satisfied for the 80-yr rotation strategy (Second rotation experiment in Table 5)
Percentiles of absolute percent difference between meta-model predictions and simulated values
Table 7 Regression coefficients and model standues for predicting extracted merchantable volume, stand uttributes, and stand age when late- successional criteria were satisfied for the 180-yr rotation strategy (First rotation experiment in Table 3)

iii

INTRODUCTION

1

Simulation modeling offers a rapid means to evaluate potential implications of silvicultural prescriptions. However, even with well-designed experimental designs, simulation assessments can seldom evaluate every possible thinning combination. Interest in evaluating additional thinning regimes often arises after analyses of previous assessments, but these regimes can not always be evaluated from interpolation of existing simulation results. This is often due to the difficulty in determining trends in responses among input combinations. Newly designed thinning regimes thus must be evaluated by additional simulation experiments. Recursive evaluation of thinning regimes with simulation modeling can be costly and time consuming. These costs can easily preclude or severely limit exploration of thinning regimes.

Meta-model methods (i.e., making a model of a model) are commonly used to produce a proxy for complex simulation models. Essentially, these methods result in a statistical estimate of simulated responses given combinations of input conditions. Often, meta-models are little more than responses-surface models derived from polynomial regression methods. Although meta-models are typically used to evaluate model behaviors, they also provide a simple means to estimate simulated responses over a broad range of input conditions.

This goal of this study was to develop meta-models of key ecological attributes using results of a previous simulation assessment of thinning regimes (Garman et al. in press). Specific objectives were to generate statistical models to predict selected stand attributes and stand ages when live late-successional attributes satisfied specific threshold levels, for one and two rotations of the four rotation strategies being considered for the Central Cascades Adaptive Management Area. An additional objective was to create a computer program that used the meta-models to calculate selected responses for user-specified input thinning densities.

METHODS

Simulation Model

Details of the previous simulation study are given in Garman et al. (in press). In summary, the PNWGAP (formerly known as ZELIG.PNW ver.3.0) model was used to simulate thinningtreatment effects on stand dynamics. The initial condition used in all simulations was a site-class 3, 40-yr old Douglas-fir stand (Table 1) of the Young-stand Thinning and Diversity Study (Cascade Center for Ecosystem Management, 1993). Stems of the observed stand were evenly distributed over the initial 2.56-ha model stand (8 x 8 model plots). Environmental parameters (i.e., monthly mean temperature, precipitation, and solar radiation) used in all simulations corresponded to mid-elevation (ca. 800m) conditions of the Blue River Watershed, Willamette National Forest. Each simulation experiment was replicated eight times with different initial random-number seed values.

	Total density	Total basal area	Shade tol. basal area	Mean dbh (cm) - standard
Stand developmental stage	(No./ha)	(sq.m/ha)	(sq.m/ha)	deviation
Early stem-exclusion	648	42.3	1.85	27.5 - 8.6

Table 1. Attributes of the initial stand used in all first-rotation simulation experiments.

Rotation strategies considered in the previous study included a 260-yr rotation with 15% canopy retention at the rotation harvest (i.e., stand age 260), a 180-yr rotation with 30% canopy retention, a 100-yr rotation with 50% canopy retention, and an 80-yr rotation with 15% canopy retention (standard matrix-allocation prescription) (Tables 2-5). The rotation harvest in all rotation strategies also included the artificial creation of 10 snags/ha >50-cm dbh from live stems (snags were created prior to the live-canopy retention) and a mixed-species underplanting.

Simulated thinning experiments for each rotation strategy consisted of variable entry times, thinning densities, and thinning methods prior to the rotation harvest. A total of 64 experimental thinning-density combinations were simulated over one rotation for each thinning strategy (Tables 2-5). A limited subset of first-rotation experiments was extended over a second rotation using a similar combination of 64 thinning treatments (Tables 2-5). For each simulation, values of late-successional attributes at rotation age prior to harvest and the stand age at which threshold values for these attributes were attained (q.v. Table 6) were recorded and analyzed. Also, total amount of extracted merchantable volume was calculated using the HARVEST model (Harmon et al. 1996).

A Late-successional Index (LSI) was derived to compare treatment effects when rotation intervals were too short for any of the threshold levels of live criteria to be satisfied:

LSI = ((BI+ SQRT(STI + CHI))/2.0) *100where; BI = 0.02 + (1-EXP(-0.5 * No. of large boles/ha))STI = (No. of shade tolerant stems >40-cm dbh/ha)/ 10.0 CHI = CHDI/8.0

The large bole (BI), shade-tolerant density (STI), and CHDI (CHI) components of the LSI index were constrained to a maximum of 1.0. Large boles had a greater influence on the LSI index than the other two attributes. LSI values range from 0 (least similar to late-successional conditions) to 100 (threshold values of all three criteria are met).

Table 2. Simulated silvicultural experiments for the early stem-exclusion developmental stage, 260-yr rotation strategy. Under Thinning method, 'below' refers to removal from below, 'proportional' refers to removal of stems while preserving species' size-class distributions. Target thinning density is the number of stems per hectare remaining in a thinning entry; retention level is the percent canopy cover retained in the rotation harvest.

Stand age (yrs since		Diameter	Target thinning density (No./ha)	Artificial creation of dead wood			
last rotation harvest)	Thinning method	limit (cm)	or retention level (% canopy cover)	Snags (No./ha)	Logs (Mg/ha)	Reforestation (No./ha)	
			First rotation experim	nent			
40 60 80	below proportional proportional	na ≥10-≤60 ≥10-≤60	136, 272, 408, all 99, 198, 297, all 62, 124, 186, all	0 0, 2, 4 0, 2, 4	0 0, 5, 10 0, 5, 10	na* na na	
260	below	na	15% (95% si, 5% st)**	10	0	988 (75% si, 25% st)	
			Second rotation experiment				
12	below	na	494	0	0	na	
40	below	na	136, 272, 408, all	0	0	na	
60	proportional	<u>≥</u> 10- <u>≤</u> 60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	proportional	<u>≥</u> 10- <u>≤</u> 60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
260	below	na	15% (95% si, 5% st)	10	0	988 (75% si, 25% st)	

* na = not applicable

.

** 'si' = shade-intolerant species (mostly Douglas-fir), 'st' = shade-tolerant species (mostly western hemlock)

Table 3. Simulated silvicultural experiments for the early stem-exclusion developmental stage, 180-yr rotation strategy. Under Thinning method, 'below' refers to removal from below, 'proportional' refers to removal of stems while preserving species' size-class distributions. Target thinning density is the number of stems per hectare remaining in a thinning entry; retention level is the percent canopy cover retained in the rotation harvest.

Stand age (yrs since	tand age		rarget tilling		reation of wood		
last rotation harvest)	Thinning method	limit (cm)	or retention level % canopy cover)	Snags (No./ha)	Logs (Mg/ha)	Reforestation (No./ha)	
			First rotation experime	ents			
40	below	na	136, 272, 408, all	0	0	na*	
60	proportional	≥10-≤60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	proportional	≥10- <u>≤</u> 60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
180	below	na	30% (80% si, 20% st)**	10	0	741 (60% si, 40% st)	
			Second rotation exper	iments			
12	below	na	494	0	0	na	
40	below	na	136, 272, 408, all	0	0	na	
60	proportional	>10-<60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	proportional	>10-<60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
180	below	na	30% (80% si, 20% st)	10	0	741 (60% si, 40% st)	

* na = not applicable

** 'si' = shade-intolerant species (mostly Douglas-fir), 'st' = shade-tolerant species (mostly western hemlock)

Table 4. Simulated silvicultural experiments for the early stem-exclusion developmental stage, 100-yr rotation strategy. Under Thinning methods, 'below' refers to removal from below, 'proportional' refers to removal of stems while preserving species' size-class distributions. Target thinning density is the number of stems per hectare remaining in a thinning entry; retention level is the percent canopy cover retained in the rotation harvest.

5

Stand age (yrs since Dia		Diameter	Target thinning density (No./ha)	Artificial c dead v		uni Uni	
last rotation harvest)	Thinning method	limit (cm)	or retention level (% canopy cover)	Snags (No./ha)	Logs (Mg/ha)	Reforestation (No./ha)	
			First rotation experim	nent			
40	below	na	136, 272, 408, all	0	0	na*	
60	proportional	≥10 - ≤60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	proportional	≥10-≤60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
100	proportional	na	50% (40% si, 60% st)**	10	0	494 (65% si, 35% st)	
			Second rotation expe	Second rotation experiment			
12	below	na	494	0	0	na	
40	below	na	136, 272, 408, all	0	0	na	
60	proportional	≥10 - ≤60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	proportional	≥10- <u>≤</u> 60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
100	proportional	na	50% (40% si, 60% st)	10	0	494 (65% si., 35% st)	

* na = not applicable

** 'si' = shade-intolerant species (mostly Douglas-fir), 'st' = shade-tolerant species (mostly western hemlock)

Table 5. Simulated silvicultural experiments for the early stem-exclusion developmental stage, 80-yr rotation strategy. Under Thinning method, 'below' refers to removal from below, 'proportional' refers to removal of stems while preserving species' size-class distributions. Target thinning density is the number of stems per hectare remaining in a thinning entry; retention level is the percent canopy cover retained in the rotation harvest.

80	proportional)					1711	
Stand age (yrs since	below below proportional	Target thinning Diameter density (No./ha)		Artificial c dead v		1997 1997 1997	
last rotation harvest)	Thinning method	limit (cm)	or retention level (% canopy cover)	Snags (No./ha)	Logs (Mg/ha)	Reforestation (No./ha)	
			First rotation experim	nent			
40	below	na	136, 272, 408, all	0	0	na*	
60	proportional	$\geq 10 - \leq 60$	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
80	below	na	15% (95% si, 5% st)**	10	0	988 (75% si, 25% st)	
			Fast rolution exper-	tooM			
			Second rotation expe	eriment			
12	proportional	na	494	0	0	na	
20	proportional	na	136, 272, 408, all	0	0	na	
40	proportional	≥10 - ≤60	99, 198, 297, all	0, 2, 4	0, 5, 10	na	
60	proportional	≥10 - ≤60	62, 124, 186, all	0, 2, 4	0, 5, 10	na	
	proportional		15% (95% si, 5% st)	, _ , .	-, -,		

* na = not applicable

** 'si' = shade-intolerant species (mostly Douglas-fir), 'st' = shade-tolerant species (mostly western hemlock)

Table 6. Attributes and threshold values characteristic of late-successional forest conditions for the western hemlock series - modified from Franklin and Spies (1991) and USDA Forest Service Region 6 Interim Old-Growth Definitions (USDA Forest Service, 1993).

Attribute	Threshold Value	
Density of large boles (>100 cm dbh)	10/ha	
Canopy Height Diversity Index	8.0	
Density of shade-tolerant species >40-cm dbh	10/ha	
Density of snags >50-cm dbh, >5-m tall	10/ha	
Log mass, ≥10 cm large-end diameter	30 Mg/ha	

Experimental Design & Model Development

This study used response-surface regression methods to generate predictive models for stand attributes and developmental rates over a first and over a second rotation for the four rotation strategies evaluated in Garman et al. (in press) (Tables 2-5). Regression models predicting responses over the first rotation were based on data in Tables A1, A7, A13, and A22 in Garman et al. (in press). Separate regression models were developed to predict stand age when large bole, canopy-height diversity, and shade-tolerant stem density criterion was satisfied, and when all live criteria were satisfied. Also, models were developed to predict values of these criteria at the end of a rotation prior to the final rotation harvest, and to predict extracted merchantable volume. Because threshold levels of late-successional were generally not attained in the 80-100 yr rotation strategies, models were generated to predict the LSI index instead of age when all criteria were satisfied. Predictions of stand conditions consisted of number of stems >60-cm dbh and Stand Density Index (SDI) by thinning entry. Models were not generated for any dead-wood attribute. Independent variables of regression equations included the actual thinning densities in each of the three entries. Both second and third-order polynomial models were evaluated. Only significant variables (P < 0.05) were included in a model; only models with the best fit are shown.

To develop predictive models of thinning performance after two rotations, 16 of the first rotation experiments were extended over a second rotation (see Tables 2-5). All 64 experiments were implemented in a second rotation assessment, for a grand total of 1024 thinning-density combinations (16 first-rotation strategies * 64 second-rotation strategies). The 16 first-rotation experiments were determined from a Latin-Hypercube experimental design (Table 7).

Table 7. First-rotation experimental thinning treatments used in generating data for the responsesurface models of second-rotation performance. Stands at the end of the first-rotation thinning strategy were subjected to the full factorial experimental design for an additional rotation. Experiment number is from Table A1 in Garman et al. (in press). Thinning density refers to number of stems 10-60 cm dbh per hectare remaining after a thinning entry. 'All' refers to no entry.

	Thinnin	g density b	y stand age	
Exp#	40	60	80	
3	136	99	186	
6	136	198	124	
9	136	297	62	
16	136	all	all	
19	272	99	186	
22	272	198	124	
25	272	297	62	
32	272	all	all	
33	408	99	62	
38	408	198	124	
44	408	297	all	This study no. I company and the company of the
47	408	all	186	
51	all	99	186	
54	all	198	124	
60	all	297	62	
64	all	all	all	

Response-surface models were similar to those evaluated for the first-rotation experiments except they included actual thinning densities of the first rotation. Also, because of the additional dimensions of the second rotation experiments, 3rd and 4th order terms were evaluated.

RESULTS & DISCUSSION

First-rotation Models

Regression results are shown in Tables 8-11. In general, third-order polynomial models provided the best fit. Across all rotation strategies, models of total merchantable volume explained 79-91% of the variation. Excluding the 100-yr rotation strategy, models for stand age when live-late-successional thresholds were attained or for Late-successional Index explained 77-96% of

Table 8. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 260-yr rotation strategy (First rotation experiment in Table 2). Independent variables are thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LSc - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was satisfied; density (no./ha) and CHDI values are at age 260 prior to the rotation harvest. SDI is Stand Density Index.

Danandant	Independent variables									
Dependent variable	Intercept	TD40	TD40 ²	TD40 ³	TD60	TD60 ²	TD60 ³	TD80	TD80 ²	TD80 ³
Total merch. volume Live LSc (age)	1059.642 -203.6501	1.136065 2.193206	-0.001021 -0.005649	0 0.000004333	0.067294 0.981709	-0.000075214 -0.00163	0 0.000000788	-0.188808 0.175878	0.000139 -0.000268	0 0.000000123
Large bole (age) No. large boles	48.2217 -36.63964	0.415826 0.420888	-0.000981 -0.001206	0.000000726 0.000000986	0.165367 0.257525	-0.000239 -0.000412	9.93154E-08 0.00000019	0.08159 0.131745	-0.000089225 -0.00021	2.34156E-08 9.66021E-08
CHDI (age) CHDI value	-251.9417 19.98232	2.599894 -0.051348	-0.006785 0.00013	0.000005236 -0.0000001	1.094276 -0.014478	-0.001908 0.00002203	0.000000967 -9.2671E-09	0.152904 -0.013613	-0.000333 0.000020393	0.000000199 -8.68616E-09
Shade tolerant stems (age) No. Shade tolerant stems	-174.4745 145.6446	1.933346 -0.29207	-0.00503 0.00092	0.000003906 -0.000000782	0.819514 -0.376377	-0.001391 0.000604	0.000000682 -0.000000275	0.192248 -0.275374	-0.000244 0.000493	8.41028E-08 -0.000000245
Density of stems >60-cm										
Age 40	0	0	0	0	0	0	0	0	0	0
Age 60	44.66549	-0.257305	0.000541	-0.000000374	-0.002639	0.000002898	0	0	0	0
Age 80	64.18993	0.023384	-0.000685	0.000000787	0.229597	-0.0004	0.00000205	0	0	0
SDI										
Age 40	-28.042847	1.575321	-0.002057	0.000001167	0	0	0	0	0	0
Age 60	-51.178867	0.697732	-0.002171	0.000001788	1.662943	-0.001225	0	0	0	0
Age 80	0	0.675374	-0.002925	0.000002661	1.419096	-0.002111	0.00000895	0.973489	-0.000636	0

Table 3. Com'd.

Table 8. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were valuated for the 260-yr rotation strategy (First rotation experiment in Table 2). Independent variables are thinning densities (TD - number of stems 560-cm dbBremaining after thinning) by stand age of entry (e.g., TD40 thinning density at age 40). Polynomiel terms are indicated by the superscript. Volume is m⁵that Live LSc - all live late-successional enterist. (age) (neters to stand age (yrs) when threshold level of corresponding variables was satisfied; density (no. he) and CHDI values are at age 260 prior to the rotation harvest. SDI is Stand Density Index.

Model	n	MSE	Adj R ²	F	Р				
A465 80	0		0.00100	500000	0.00000000000				
Total merch. volume	64	496.7	0.91	109.7	0.0001				
Live LSc (age)	64	486.0	0.77	24.1	0.0001				
Large boles (age)	64	21.7	0.86	44.9	0.0001				
No. large boles	64	23.1	0.82	33.9	0.0001				
CHDI (age)	64	772.6	0.68	15.7	0.0001				
CHDI value	63	0.8	0.55	9.6	0.0001				
Shade tolerant stems (age)	64	422.7	0.73	20.3	0.0001				
No. Shade tolerant stems	64	77.5	0.72	18.8	0.0001				
Density of stems >60-cm d	bh								
Age 40	64	na	na	na	na				
Age 60	64	0.1	0.99	4051.2	0.0001				
Age 80	64	22.2	0.95	203.9	0.0001				
Carge bole (apo)						0 165562			2 241565-08
SDI									
Age 40	64	0	1.0	-0.005649	>0.0001				
Age 60	64	1309.1	0.93	185.6	0.0001		-9.0000,07.01		
Age 80	64	2178.3	0.98	532.2	0.0001				

Table 8. Cont'd.

....

Table 9. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 180-yr rotation strategy (First rotation experiment in Table 3). Independent variables are thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LSc - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was satisfied; density (no./ha) and CHDI values are at age 180 prior to the rotation harvest.

Dependent					Ind	ependent va	ariables				
variable	Inte	ercept	TD40	TD40 ²	TD40 ³	TD60	TD60 ²	TD60 ³	TD80	TD80 ²	TD80 ³
Total merch. volume Live LSc (age)		0056	1.521453 2.193206	-0.002667 -0.005649	0.000001481 0.000004333	1.128956 0.981709	-0.001944 -0.00163	0.000000943 0.000000788	0.89234 0.175878	-0.001631 -0.000268	0.000000826 0.000000123
Large boles (age) No. large boles		217 9079	0.415826 -0.092705	-0.000981 0.000077311	0.000000726 0	0.165367 0.026832	-0.000239 -0.000022765	9.93154E-08 0	0.08159 -0.04544	-0.000089225 0.000037364	2.34156E-08 0
CHDI (age) CHDI value		.9417 931	2.599894 -0.035476	-0.006785 0.000097889	0.000005236 -7.89697E-08	1.094276 -0.012472	-0.001908 0.000021963	0.000000967 -1.13094E-08	0.152904 0.007596	-0.000333 -0.000011224	0.000000199 4.26396E-09
Shade tolerant stems (age) No. Shade tolerant stems		4.4745 .7984	1.933346 -0.571561	-0.00503 0.00164	0.000003906 -0.000001332	0.819514 -0.480095	-0.001391 0.000775	0.000000682 -0.000000357	0.192248 -0.082578	-0.000244 0.000138	8.41028E-08 -6.69664E-08
									13380		
Model	n	MSE	Adj R²	F	Р						
Total merch. volume Live Lsc (age)	64 64	488.5 486.0	0.90 0.77	63.2 24.1	0.0001 0.0001						
Large boles(age) No. large boles	64 64	21.7 30.2	0.86 0.59	44.9 16.0	0.0001 0.0001						
CHDI (age) CHDI value	64 64	772.6 0.2	0.68 0.52	15.7 8.7	0.0001 0.0001						
Shade tolerant stems (age) No. Shade tolerant stems	64 64	422.7 67.0	0.73 0.79	20.3 28.0	0.0001						

Table 10. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 100-yr rotation strategy (First rotation experiment in Table 4). Independent variables are thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LS Index - late-successional index based on all live attributes; density (no./ha) and CHDI values are at age 100 prior to the rotation harvest.

				1	Ind	ependent va	riables				
Dependent					mp 403	TD (0	775 (0)	770 (03	77000	70002	TD903
variable	Inte	rcept	TD40	TD40 ²	TD40 ³	TD60	TD60 ²	TD60 ³	TD80	$TD80^2$	TD80 ³
Total merch. volume	120.	1242	2.417718	-0.005525	0.000003922	1.099577	-0.002079	0.000001109	0.167639	-0.000359	0.000000193
Live LS Index	36.7	4457	-0.140238	0.000322	-0.000000219	-0.050308	0.000158	-0.000000123	0.1429	-0.000255	0.000000131
No. large boles	2.97	8045	-0.015887	0.000038785	-2.95867E-08	-0.007599	0.000015079	-8.7947E-09	0.000464	-0.000001197	6.60824E-10
CHDI value	9.90	5216	-0.020654	0.000037588	-2.16251E-08	-0.001933	0.000002257	-5.37747E-10	0.006354	-0.000015987	1.06186E-08
No. Shade tolerant stems	-5.8	69897	0.020623	-0.000044515	3.62442E-08	0.019235	-0.000020052	2.81208E-09	0.029368	-0.000040875	1.65639E-08
Model	n	MSE	Adj R ²	F	Р						
Total merch. volume Live LSc Index	64 64	359.2 96.3	0.87 0.18	49.5 2.5	0.0001 0.0177						
No. large boles	64	0.1	0.36	4.9	0.0001						
CHDI value	64	0.4	0.49	7.8	0.0001						
No. Shade tolerant stems	64	2.9	0.60	11.5	0.0001						

Table 9. Regression coefficients and model statistics for predicting extracted marchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 180-yr rotation strategy (Fusi rotation experiment in Fable 3). Independent variables are forming densities (TD - number of stems 500-or dob remaining after thimming) by stand age of entry (e.g., TD40 thinning density at use 40). Polynomial terms are indicated by the superscript – Volume is militable. Else all five late-successiona Table 11. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 80-yr rotation strategy (First rotation experiment in Table 5). Independent variables are thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LS Index - late-successional index based on all live attributes; density (no./ha) and CHDI values are at age 80 prior to the rotation harvest.

Dependent					Ind	lependent va	riables				
variable	Inte	ercept	TD40	TD40 ²	TD40 ³	TD60	TD60 ²	TD60 ³	TD80	TD80 ²	TD80 ³
Total merch. volume		.6016	2.873419	-0.008273	0.000006685	0.530152	-0.001395	0.000000905	na	na	na
Live LS Index	-13.	67135	0.119538	-0.000133	2.54709E-08	0.121067	-0.000147	4.47521E-08	na	na	na
No. boles (>80-cm dbh)	61.7	77906	-0.406603	0.000957	-0.000000708	-0.05868	0.00012	-7.33252E-08	na	na	na
CHDI value	11.9	90728	-0.073394	0.0002	-0.00000016	-0.000337	0.000006679	-6.13781E-09	na	na	na
No. Shade tolerant stems	-12.	39582	0.0745	-0.000133	7.32516E-08	0.045356	-0.00005423	1.57481E-08	na	na	na
Model	n	MSE	Adj R ²	F	Р						
Total merch. volume	16	458.3	0.79	39.8	0.0001						
Live LS Index	16	3.9	0.96	233.3	0.0001						
No. boles (>80-cm dbh)	16	6.3	0.87	71.5	0.0001						
CHDI value	16	0.1	0.84	54.8	0.0001						
No. Shade tolerant stems	16	0.7	0.94	164.1	0.0001						
		2		a Eul	1 2 5 8 ;		E S S				
											14.5
				- 8							

the variation. Variation explained in other models ranged from 49-94%. Models of CHDIrelated attributes explained the least amount of variation, ranging from 49-68%. Models for attributes other than extracted volume for the 100-yr rotation results are not reliable. The lack of consistent trends and/or variation among the thinning-density gradient for these treatments limited the ability of linear-regression models to adequate predict attributes. Other model forms, such as non-linear methods, may be attempted to improve predictive ability for the 100-yr rotation results.

Models for stem densities >60-cm dbh and SDI are shown in Table 8. Models are applicable to all four rotation strategies because of similar thinning methods among strategies. The obvious exception is that the age 80 predictions are not relevant in the 80-yr rotation strategy.

Second-rotation Models

Regression results are shown in Tables 12-15. Models for extracted volume, density of stems >60-cm dbh, and SDI explained 63-99% of the variance. Variance explained by models for other attributes ranged from 30-70%. Similar to results for the first-rotation models, models for CHDI attributes generally explained the least amount of variance.

The importance of thinning densities to long-term values of late-successional attributes varied among rotation strategies. Thinning densities in the first rotation had little influence on models for CHDI values at rotation harvest, and shade-tolerant attributes for the 80- and 260-yr rotation strategies. Thinning density at age 40 was not significant (P > 0.05) in models for these attributes for the 180-yr rotation. Across all rotation strategies, thinning densities of the second rotation had little to no influence in predicting stand age when large-bole criterion was satisfied or large-bole density at the end of a rotation. For the 180-yr rotation, >10 large boles per hectare were retained in the first-rotation harvest in all treatments examined. Thus, there was no need to generate a second-rotation model for this attribute.

Table 12. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 260-yr rotation strategy (Second rotation experiment in Table 2). Independent variables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m^3/ha ; Live LSc - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was satisfied; density (no./ha) and CHDI values are at age 260 prior to the rotation harvest. SDI is Stand Density Index.

		1.208704	-9.600000198	0	0.000000368	0.000303613			
				Dependent	variable				
ndependent variables	Total merch. volume	Live LSc (age)	Large boles (age)	No. large boles	CHDI (age)	CHDI value	Shade tol. stems (age)	No. Shade tolerant stems	
ntercept	-9463.149	-1254.494	-8620.553	-507.4449	-1465.749	10.74509	-20.30008	162.5358	
RTD40	161.8981	20.1044	133.5752	7.252044	24,48679	0	0	0	
RTD40 ²	-0.810886	-0.100524	-0.668118	-0.036293	-0.122416	0	0	0	
RTD40 ³	0.001625	0.000201	0.001337	0.000072666	0.000245	0	0	0	
RTD40 ⁴	-0.000001109	-0.000000137	-0.000000912	-4.96E-08	-0.000000167	0	0	0	
RTD60	-5.183798	-0.233318	-1.853395	-0.112751	-0.122436	0	0	0	
RTD60 ²	0.020904	0.00085	0.006942	0.000438	0.000424	0	0	0	
RTD60 ³	-0.000029867	-0.000001158	-0.000009635	-0.000000614	-0.000000545	0	0	0	
RTD60 ⁴	1.37E-08	5E-10	4.4E-09	3E-10	2E-10	0	0	0	
RTD80	0.049162	-0.003736	-0.2545	-0.000476	0	0	0	0	
RTD80 ²	-0.002066	0	-0.000318	0	0	0	0	0	
RTD80 ³	0.00000413	0	0.000001447	0	0	0	0	0	
RTD80 ⁴	-2.1E-09	0	-9E-10	0	0	0	0	0	
RTD40	1.644631	0.522957	0.61466	0.204229	0.197119	-0.005865	0.822582	-0.192538	
RTD40 ²	-0.003204	-0.001087	-0.001467	-0.000558	-0.000416	0.000013119	-0.00172	0.000453	
RTD40 ³	0.000003248	0.000000997	0.000001652	0.000000583	0.00000044	-1.45E-08	0.000001423	-0.000000428	
RTD40 ⁴	-1.3E-09	-4E-10	-7E-10	-2E-10	-2E-10	0	-4E-10	1E-10	
RTD60	0.037058	0.096484	0	0.275173	-0.239598	0	0.385913	-0.304958	
RTD60 ²	0	-0.000071866	0	-0.000742	0.000711	0	-0.000891	0.000674	
RTD60 ³	0	0	0	0.000000758	-0.000000821	0	0.000000747	-0.000000581	
RTD60 ⁴	0	0	0	-3E-10	3E-10	0	-2E-10	2E-10	
RTD80	-0.026521	-0.090092	0	0.278949	-0.461587	0.012693	-0.06588	-0.39111	
RTD80 ²	0	0.000879	0	-0.000807	0.001663	-0.000052752	0.000728	0.000786	
RTD80 ³	0	-0.000001286	0	0.000000854	-0.000002037	6.91E-08	-0.000001089	-0.000000645	
RTD80 ⁴	0	5E-10	0	-3E-10	8E-10	0	4E-10	2E-10	

Table 12. Cont'd.

	Dencity	of stems >60-ci	m dhh		SDI	
Independent	Density	of stems >00-cl	in don		SDI	
variables	Age 40	Age 60	Age 80	Age 40	Age 60	Age 80
Intercept	342.5555	330.941	65.04144	3460.083	-53.6308	6026.332
FRTD40	-5.162858	-4.982682	0	-49.9783	0.702566	-89.20762
FRTD40 ²	0.025916	0.024987	0	0.249662	-0.001746	0.446012
FRTD40 ³	-0.000051957	-0.000050063	0	-0.000499	0.000001302	-0.000893
FRTD40 ^₄	3.55E-08	3.42E-08	0	0.0000034	0	0.000000609
FRTD60	0.086157	0.075807	-0.068071	0.930173	0.03129	0
FRTD60 ²	-0.000314	-0.00027	0.000291	-0.003924	0	0
FRTD60 ³	0.000000431	0.00000367	-0.00000043	0.000005801	0	0
FRTD60 ⁴	-2E-10	-2E-10	2E-10	-2.7E-09	0	0
FRTD80	0.022847	0.024806	0	0.164071	0.237325	0
FRTD80 ²	-0.000009172	-0.000029595	0	-0.000063465	-0.000441	0
FRTD80 ³	-5.56E-08	-0.000000018	0	-0.000000353	0.000000226	0
FRTD80⁴	0	0	0	3E-10	0	0
SRTD40	-0.005202	-0.008848	-0.32501	0.792614	0.839777	0
SRTD40 ²	0.000025545	0.00003658	0.000845	0.000357	-0.001569	0
SRTD40 ³	-4.65E-08	-5.85E-08	-0.000000888	-0.000001483	0.0000082	0
SRTD40 ⁴	0	0	3E-10	8E-10	0	0
SRTD60	0	0.005158	-0.053162	0	1.442525	0.755775
SRTD60 ²	0	-0.000022854	0.000165	0	-0.001321	-0.001863
SRTD60 ³	0	3.29E-08	-0.000000198	0	0.00000396	0.000002023
SRTD60 ⁴	0	0	1E-10	0	0	-8E-10
SRTD80	0	0	0	0	0	1.198729
SRTD80 ²	0	0	0	0	0	-0.000708
SRTD80 ³	0	0	0	0	0	0
SRTD80 ⁴	0	0	0	0	0	0

Table 12. Cont'd.									
Total merch. volume	n 1024	MSE 1973.7	AdjR ²	F 197.3	P 0.0001		0.00002 		
Live LSc (age) Large boles (age) No. large boles	1024 1024 1024	146.7	0.64 0.50 0.77	107.2 74.2 184.5	0.0001 0.0001 0.0001	077001 1770-4280-00 0.0122012838 427053854			
CHDI (age) CHDI value	1024 1024		0.55 0.30	71.5 62.2	0.0001 0.0001				
Shade tolerant stems (age) No. Shade tolerant stems	1024 1024		0.67 0.86	198.5 614.4	0.0001 0.0001				
Density of stems >60-cm dbł	00036336								
Age 40 Age 60 Age 80	1024 1024 1024	0.8	0.74 0.73 0.78	209.6 155.0 331.6	0.0001 0.0001 0.0001				
SDI								100 A	
Age 40 Age 60	1024 1024		0.99 0.94	1365.5 1452.6	0.0001 0.0001				
Age 80	1024	679.5	0.94	1748.9	0.0001				

Dependent yarabie

Wen late-successional criteria were satisfied for the 180-yr rotation strategy (Socoud rotation experiment in Table 3). Independent strables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stears ≤60-em dob remaining after turning) by stand age of entry (e.g., TD-10 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is u'that: Live LSe - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was tatisfied; density (no./ha) and CHDI valves use at age 180 prior to the rotation harvest. SDI is Stand Density Index.

3.2

Table 13. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 180-yr rotation strategy (Second rotation experiment in Table 3). Independent variables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LSc - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was satisfied; density (no./ha) and CHDI values are at age 180 prior to the rotation harvest. SDI is Stand Density Index.

				Dependent v	ariable				
ndependent ariables	Total merch. volume	Live LSc (age)	Large boles (age)	No. large boles	CHDI (age)	CHDI value	Shade tol. stems (age)	No. Shade tolerant stems	
ntercept	231.2377	44.14681	0	30.84609	150.1011	5.272115	40.78671	129.3683	
RTD40	0.210721	0	0	0.027951	0	0	0	0	
RTD402	-0.000906	0	0	-0.000098609	0	0	0	0	
RTD403	0.000000864	0	0	9.18176E-08	0	0	0	0	
RTD404	0	0	0	0	0	0	0	0	
RTD60	3.83717	0.662164	0	0.013434	0.076946	0.00696	0.722994	-0.146903	
RTD602	-0.016951	-0.003094	0	0.000018977	-0.000468	-0.000022248	-0.00338	0.000695	
RTD603	0.000026326	0.000004895	0	-6.48338E-08	0.00000804	2.86742E-08	0.000005355	-0.000001104	
RTD604	-1.31904E-08	-2.46964E-09	0	3.53166E-11	-4.21588E-10	-1.26622E-11	-2.70655E-09	5.57917E-10	
RTD80	-1.892831	-0.358032	0	0	-0.076441	0	-0.405135	0.106081	
RTD802	0.012073	0.002312	0	0	0.000514	0	0.002605	-0.000608	
RTD803	-0.000020637	-0.000004064	0	0	-0.000000902	0	-0.00000457	0.000001052	
FRTD804	1.05914E-08	2.13663E-09	0	0	4.7014E-10	0	2.40064E-09	-5.54947E-10	
RTD40	1.237142	0.715513	0	-0.042948	0	0.006161	0.74032	-0.369647	
SRTD402	-0.003744	-0.002374	0	0.000096139	0	-0.000019747	-0.002504	0.000991	
SRTD403	0.000004707	0.000002747	0	-7.63543E-08	0	2.52729E-08	0.000002939	-0.000001025	
SRTD404	-2.03178E-09	-1.04807E-09	0	1.82623E-11	0	-1.10466E-11	-1.13456E-09	3.68717E-10	
SRTD60	0.697494	0.253643	0	-0.080071	-0.235843	0.018864	0.24835	-0.467254	
SRTD602	-0.001838	-0.001023	0	0.000256	0.000857	-0.000064099	-0.001021	0.001504	
SRTD603	0.000002026	0.000001397	0	-0.00000341	-0.000001221	8.14341E-08	0.000001424	-0.000001884	
SRTD604	-8.00962E-10	-6.05256E-10	0	1.58744E-10	5.97444E-10	-3.55599E-11	-6.32569E-10	8.19707E-10	
SRTD80	-0.003435	-0.279908	0	-0.009922	-0.381603	0.035625	-0.280534	-0.178918	
SRTD802	-0.000285	0.000466	0	-0.0000427	0.00074	-0.000105	0.000486	0.00055	
SRTD803	0.00000601	-0.000000257	0	0.000000105	-0.000000519	0.000000112	-0.000000293	-0.000000623	
SRTD804	-3.00505E-10	4.40142E-11	0	-5.46444E-11	1.0383E-10	-3.97044E-11	6.12423E-11	2.33564E-10	

Table 13. Cont'd.

Dependent variable

Independent	Density	of stems >60-c	m dbh		SDI	
variables	Age 40	Age 60	Age 80	Age 40	Age 60	Age 80
Intercept	22.92521	20.7744	22.51451	314.2305	134.297	152.4785
FRTD40	0.020477	0.025077	0.027793	-0.213722	0	0
FRTD402	-0.000045747	-0.000059366	-0.000076399	0.00048	0	0
FRTD403	3.49845E-08	4.53829E-08	6.37156E-08	-0.00000367	0	0
FRTD404	0	0	0	0	0	0
FRTD60	0.02018	0.014042	0.019048	-0.162491	0	-0.006444
FRTD602	-0.000023158	-0.000010642	-0.00002027	0.000317	0	0
FRTD603	8.07276E-09	2.28204E-10	5.00026E-09	-0.000000181	0	0
FRTD604	0	0	0	0	0	0
FRTD80	-0.013961	-0.012702	-0.008571	-0.045091	0	0
FRTD802	0.000032377	0.000029171	0.000024623	0.000057863	0	0
FRTD803	-2.07335E-08	-1.79962E-08	-1.71952E-08	-1.32913E-08	0	0
FRTD804	0	0	0	0	0	0
SRTD40	-0.002038	-0.002705	-0.022012	0.983526	0.494594	0.280227
SRTD402	0.000006013	0.000006973	0.000042029	-0.000729	-0.001508	-0.000699
SRTD403	-3.96503E-09	-4.3646E-09	-2.28182E-08	0.000000165	0.000001973	0.00000042
SRTD404	0	0	0	0	-8.99518E-10	0
SRTD60	0	0	-0.010576	0	2.240369	0.411648
SRTD602	0	0	0.000018872	0	-0.005588	-0.000641
SRTD603	0	0	-1.05034E-08	0	0.00000727	0.0000028
SRTD604	0	0	0	0	-3.51614E-09	0
SRTD80	0	0	0	0	0	1.658011
SRTD802	0	0	0	0	0	-0.002079
SRTD803	0	0	0	0	0	0.00000872
SRTD804	0	0	0	0	0	0
OF STANDARD CONTRACT	1079	100.0	191	stre income		

Sector.

.

30

Table 13. Cont'd.

Model	n	MSE	AdjR ²	F	Р
Total merch, volume	1024	420.6	0.81	185.2	0.0001
Live LSc (age)	1024	134.7	0.63	87.6	0.0001
Large boles (age)	1024	0	1.0	na	>0.0001
No. large boles	1024	2.7	0.73	146.0	0.0001
CHDI (age)	1024	23.9	0.90	546.9	0.0001
CHDI value	1024	0.1	0.84	338.5	0.0001
Shade tolerant stems (age)	1024	144.3	0.61	81.8	0.0001
No. Shade tolerant stems	1024	21.9	0.83	252.3	0.0001
Density of stems >60-cm dl	oh				
Age 40	1024	0.4	0.84	463.7	0.0001
Age 60	1024	0.5	0.81	362.8	0.0001
Age 80	1024	0.8	0.76	222.3	0.0001
FR 113801					
SDI					
Age 40	1024	26.7	0.99	4614.8	0.0001
Age 60	1024	496.8	0.96	3327.9	0.0001
Age 80	1024	704.5	0.96	2517.2	0.0001
			0.0000		
	T televilen				
		0.0255070			

er unter la commence

Second State (Second States) (S States) (Second States) (Se

Dependent variable

Tests B. Confid

Table 14. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 100-yr rotation strategy (Second rotation experiment in Table 4). Independent variables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LSc - all live late-successional criteria; '(age)' refers to stand age (yrs) when threshold level of corresponding variable was satisfied; density (no./ha) and CHDI values are at age 100 prior to the rotation harvest. SDI is Stand Density Index.

				Dependent v	ariable				
Independent variables	Total merch. volume	Live LSc (age)	Large boles (age)	No. large boles	CHDI (age)	CHDI value	Shade tol. stems (age)	No. Shade tolerant stems	
intercept	43.51953	30.80205	-65.03959	17.49667	78.11961	6.72533	-62.63608	2.48309	
FRTD40	1.534155	0.49871	0.467211	0.097739	0.372928	-0.005521	0.441156	0.03196	
FRTD40 ²	-0.003619	-0.001322	-0.001162	-0.000327	-0.001021	0.000012788	-0.001153	-0.000090808	
FRTD40 ³	0.000002808	0.000001029	0.000000919	0.000000287	0.000000823	-9.6E-09	0.000000892	7.31E-08	
FRTD40 ⁴	0	0	0	0	0	0	0	0	
FRTD60	0.578622	1.450495	0.762798	0.088927	0.162639	-0.000829	1.155288	0.016345	
FRTD60 ²	-0.002429	-0.006354	-0.003148	-0.000257	-0.00028	0.000001235	-0.005188	-0.000032845	
FRTD60 ³	0.000004226	0.000009708	0.000004734	0.000000274	0.000000133	-6E-10	0.000008024	1.79E-08	
FRTD60 ⁴	-2.4E-09	-4.8E-09	-2.3E-09	-1E-10	0	0	-0.000000004	0	
FRTD80	-1.640838	-0.548936	-0.399327	-0.001954	0.040893	0.000324	-0.574636	0.007419	
FRTD80 ²	0.00951	0.003636	0.00251	0	-0.000037539	-0.000000831	0.003701	-0.000013356	
FRTD80 ³	-0.000015671	-0.000006384	-0.000004279	0	0	6E-10	-0.000006437	6.6E-09	
FRTD80⁴	7.8E-09	3.3E-09	2.2E-09	0	0	0	3.4E-09	0	
SRTD40	1.003196	-0.301971	0	-0.072756	-0.148919	-0.002959	0.068871	0.037078	
SRTD40 ²	-0.002283	0.001343	0	0.000254	0.000403	0:000005198	-0.000256	-0.000128	
SRTD40 ³	0.000002097	-0.000002157	0	-0.00000327	-0.00000302	-0.00000003	0.000000407	0.000000103	
SRTD40 ^₄	-6E-10	1.2E-09	0	1E-10	0	0	-2E-10	0	
SRTD60	-0.000411	-0.02278	0	0.020535	-0.010514	-0.000626	-0.095578	-0.004063	
SRTD60 ²	0.000578	-0.000227	0	-0.000173	0	0.000002145	0.000406	0.000023422	
SRTD60 ³	-0.000002009	0.000000789	0	0.000000431	0	-2.9E-09	-0.000000767	-5.15E-08	
SRTD60⁴	1.7E-09	-6E-10	0	-3E-10	0	0	6E-10	0	
SRTD80	0.851485	-0.969003	0	-0.021367	-0.664091	0.001495	0.019952	0.054469	
SRTD80 ²	-0.002591	0.003744	0	0.000029914	0.00186	-0.000006542	-0.000151	-0.000184	
SRTD80 ³	0.000002789	-0.000005486	0	0	-0.000001479	0.00000006	0.000000351	0.000000154	
SRTD80 ⁴	-9E-10	2.7E-09	0	0	0	0	-2E-10	0	

Table 14. Cont'd.

		Dependent variable									
	Density	of stems >60-cr	m dbh	0.030214	SDI	10000					
Independent											
variables	Age 40	Age 60	Age 80	Age 40	Age 60	Age 80					
ntercept	18.4232	52.69745	110.8063	241.9125	312.3278	390.8529					
FRTD40	0.083151	-0.079407	-0.13128	0.085253	0	-0.288487					
FRTD40 ²	-0.000203	0.000291	0.000458	-0.000483	0	0.000751					
FRTD40 ³	0.000000154	-0.000000255	-0.00000384	0.000000478	0	-0.00000057					
FRTD40 ⁴	0	0	0	0	0	0					
FRTD60	0.116073	0	-0.6865	0.109802	0.284856	-0.560708					
FRTD60 ²	-0.00018	0	0.00297	-0.000157	-0.001157	0.002382					
FRTD60 ³	7.83E-08	0	-0.000004493	5.54E-08	0.00000161	-0.000003629					
FRTD60 ⁴	0	0	2.2E-09	0	-7E-10	1.8E-09					
FRTD80	0.050954	-0.004331	0.159065	0.064045	0	0.147185					
FRTD80 ²	-0.000071423	0.000043127	-0.001238	-0.000159	0	-0.001231					
FRTD80 ³	2.63E-08	-3.73E-08	0.00000229	0.000000105	0	0.000002293					
FRTD80⁴	0	0	-1.2E-09	0	0	-1.2E-09					
SRTD40	0	0.009243	-0.07111	1.091563	0.248544	0.098709					
SRTD40 ²	0	-0.000042828	0.000186	-0.001562	-0.001123	-0.00084					
SRTD40 ³	0	3.96E-08	-0.000000233	0.00000888	0.00000178	0.00000152					
SRTD40 ⁴	0	0	1E-10	0	-9E-10	-8E-10					
SRTD60	0	0	-0.01061	0	0.099992	-0.264926					
SRTD60 ²	0	0	0.000128	0	0.004746	0.001674					
SRTD60 ³	0	0	-0.00000311	0	-0.000012505	-0.00000332					
SRTD60⁴	0	0	2E-10	0	8.7E-09	1.8E-09					
SRTD80	0	0	-0.00975	0	0	1.682711					
SRTD80 ²	0	0	0.000065804	0	0	-0.003057					
SRTD80 ³	0	0	-0.000000149	0	0	0.000000841					
SRTD80 ⁴	0	0	1E-10	0	0	1.4E-09					

Dependent variable

and the successional contents and model statustics for the 80-yr rotation strategy (Second rotation experiment in Eable 5). Independent stiables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stems 560-on 3th remaining after immig) by stand age of enery (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is "Tables in Live LS index - late-successional index based on all live attributes, density (no./ha) and CHDI values are at age 80 prior to the station harvest. SDI is Stand Density index. NOTE: threshold levels of live late successional attributes were not achieved in these imming experiments.

Model	r	n	MSE	AdjR ²	F	Р		
Total merch. volume Live LSc (age)		1024 1024	268.1 87.4	0.94 0.78	706.3 158.0	0.0001 0.0001		
Large boles (age) No. large boles		1024 1024	11.8 2.3	0.92 0.79	1024.9 209.6	0.0001 0.0001		
CHDI (age) CHDI value		1024 1024	113.2 0.01	0.72 0.86	178.6 355.3	0.0001 0.0001		
Shade tolerant stems (age) No. Shade tolerant stems		1024 1024	13.8 1.8	0.74 0.70	128.4 135.0	0.0001 0.0001		
Density of stems >60cm Age 40 Age 60 Age 80		1024 1024 1024	1.7 3.9 3.3	0.94 0.81 0.90	1709.8 481.6 411.0	0.0001 0.0001 0.0001		
SDI Age 40		1024	36.2	0.99	7702.3	0.0001		
Age 60 Age 80		1024 1024	349.8 228.0	0.94 0.96	1271.8 972.5	0.0001 0.0001		

Table 14. Cont'd.

23

Table 15. Regression coefficients and model statistics for predicting extracted merchantable volume, stand attributes, and stand age when late-successional criteria were satisfied for the 80-yr rotation strategy (Second rotation experiment in Table 5). Independent variables are first rotation (FR) or second rotation (SR) thinning densities (TD - number of stems \leq 60-cm dbh remaining after thinning) by stand age of entry (e.g., TD40 - thinning density at age 40). Polynomial terms are indicated by the superscript. Volume is m³/ha; Live LS Index - late-successional index based on all live attributes, density (no./ha) and CHDI values are at age 80 prior to the rotation harvest. SDI is Stand Density Index. NOTE: threshold levels of live late-successional attributes were not achieved in these thinning experiments.

				Dependent v	variable				
ndependent variables	Total merch. volume	Live LS Index	Large boles (age)	No. large boles	CHDI (age)	CHDI value	Shade tol. stems (age)	No. Shade tolerant stems	
ntercept	346.323	44.20803	0.00	-2.966667	0001	4.957523		-21.83035	
RTD40	-0.182832	0		0.035527		0		0	
FRTD40 ²	0.000536	0		-0.000075594		0 .		0	
FRTD40 ³	-0.000000428	0		5.23E-08		0		0	
FRTD40 ⁴	0	0		0		0		0	
FRTD60	0	0		-0.019184		0		0	
FRTD60 ²	0	0		0.00008585		0		0	
FRTD60 ³	0	0		-0.000000127		0		0	
FRTD60⁴	0	0		1E-10		0		0	
SRTD20	1.253236	0.23715		0.045513		-0.009705		0.185625	
SRTD20 ²	-0.003878	-0.000834		0.000119		0.000041006		-0.000702	
SRTD20 ³	0.000004689	0.000001088		-0.00000326		-5.96E-08		0.000000929	
SRTD20 ⁴	-0.000000002	-5E-10		2E-10		0		-4E-10	
SRTD40	1.271935	0.120294		0		0.000112		0.125384	
SRTD40 ²	-0.003078	-0.000358		0		0		-0.000431	
SRTD40 ³	0.000002902	0.00000374		0		0		0.000000507	
SRTD40 ⁴	-9E-10	-1E-10		0		0		-2E-10	
SRTD60	0.761364	0.254888		0		0.029874	23	0.139309	
SRTD60 ²	-0.001447	-0.000872		0		-0.000082714		-0.000454	
SRTD60 ³	0.00000967	0.000001071		0		9.32E-08		0.00000054	
SRTD60 ⁴	-2E-10	-4E-10		0		0		-2E-10	

Table 15. Cont'd.

Dependent variable

Independent	Density	of stems >60-cr	m dbh		SDI	
variables	Age 20	Age 40	Age 60	Age 20	Age 40	Age 60
Intercept	-4.007279	-4.086966	46.10226	-33.33315	-157.6669	-64.55457
FRTD40	0.038779	0.036403	0	-0.137709	0	0
FRTD40 ²	-0.000071552	-0.000069551	0	0.000241	0	0
FRTD40 ³	4.49E-08	4.52E-08	0	-0.000000133	0	0
FRTD40 ⁴	0	0	0	0	0	0
FRTD60	-0.016044	-0.011383	0	0.008209	0	0
FRTD60 ²	0.000078647	0.000056698	0	-0.000021108	0	0
FRTD60 ³	-0.00000012	-8.68E-08	0	1.44E-08	0	0
FRTD60 ⁴	1E-10	0	0	0	0	0
SRTD20	0.046179	0.044735	-0.090828	1.420502	1.579728	0.935416
SRTD20 ²	0.000204	0.000178	0.000107	-0.001515	-0.003258	-0.001688
SRTD20 ³	-0.000000491	-0.000000435	-3.71E-08	0.000000503	0.000003148	0.000000915
SRTD20 ⁴	3E-10	2E-10	0	0	-1.2E-09	0
SRTD40	0	0	0.058194	0	1.359528	0.556748
SRTD40 ²	0	õ	-0.000144	0	-0.002	-0.000944
SRTD40 ³	0	0	8.95E-08	0	0.000001544	0.000000466
SRTD40 ⁴	0	0	0	0	-5E-10	0
SRTD60	0	0	-0.032224	0	0	1.260011
SRTD60 ²	0	0	0.00007536	0	0	-0.001266
SRTD60 ³	0	0	-4.52E-08	0	0	0.000000355
SRTD60 ⁴	0	0	0	0	0	0.000000351
GITIDOU	0	V		0	0	0

Table 15. Cont'd.

Model	n	MSE	AdjR ²	F	Р	
Total merch, volume	1024	183.7	0.91	667.7	0.000	ī
Live LS Index	1024	16.4	0.67	174.2	0.000	1
No. large boles	1024	0.5	0.98	5270.4	0.000	1
CHDI value	1024	0.2	0.80	445.2	0.000	1
No. Shade tolerant stems	1024	6.5	0.71	214.6	0.000	1
THE LOWING						
Density of stems >60cm						
Age 20	1024	0.7	0.99	7096.0	0.000	1
Age 40	1024	0.7	0.98	5907.3	0.000	1
Age 60	1024	26.6	0.63	195.6	0.000	1
SDI						
Age 20	1024	49.8	0.99	1329.6	0.000	1
Age 40	1024	251.8	0.98	7009.4	0.000	
Age 60	1024	671.3	0.95	2227.5	0.000	-
Age ou	1024	071.5	0.95	6661.0	0.000	·1.579221
bic1090.	12-10		0	0		7

oldunay looknodell

Table 15. Conf'd.

CAVEATS

Caution should be exercised when using the regression meta-models. Comparing meta-model predictions with actual simulation results revealed differential accuracy across the thinning-density design. Meta-model predictions tend to be less accurate at the end points of the design (i.e., for combinations involving the lowest or highest thinning densities of the experimental design), which is somewhat typical of response-surface models. In general, predictions of developmental rates of late-successional attributes are lower at the low end of the design (i.e., 136-99-62). Extracted merchantable volume tends to be over estimated at the upper end of the design (i.e., all-all-*).

Additionally, the user is responsible for determining the feasibility of a thinning combination. Strategies which retain more stems in a second or third entry than in a preceding entry are not always possible, although the number of feasible combinations increases with increasing removal of stems in preceding entries due to natural regeneration. Examples of feasible thinning combinations are presented in Appendix A of Garman et al. (in press). Related to this is the domain of realistic input conditions. Meta-models will not reliably predict results of thinning combinations outside the range of those used in the simulation experiments. Lastly, meta-models presented here are specific to the thinning methods of the simulation study (see Tables 2-5). They should not be used to estimate responses for any other thinning approaches.

In general, meta-model predictions should be used to compare relative merits of different thinning combinations. However, precision of estimates varies among attributes. Comparisons of meta-model predictions and simulated values are presented in Table 16. Percentiles of absolute percent difference shown in this table can be used as a guide to assess the general precision of model predictions, in addition to the model statistics presented in Tables 8-15. In general, extracted merchantable volume and stand age when all late-successional threshold levels were attained are the most reliable estimates, especially in the first-rotation models.

Table 16. Percentiles of absolute percent difference between meta-model predictions and simulated values. Value to the left of the '/' is 5th percentile; value to the right is 95th percentile.

Rotation strategy	Total merch. volume	Live LSc (age)	Large boles (age)	No. large boles	CHDI (age)	CHDI value	Shade tol. stems (age)	No. Shade tolerant stems	
First Rotation				8 8 2 9	. to to				
260-yr	0.07/2.24	0.63/21.35	0.22/5.70	0.44/16.03	1.73/31.31	0.41/14.41	0.35/19.86	2.31/35.13	
180-yr	0.15/3.79	0.63/21.35	0.22/5.70	0.47/22.23	1.73/31.31	0.28/8.85	0.35/19.86	1.49/51.45	
100-yr	0.11/5.46	2.39/48.381	na/na	0.00/81.29	na/na	0.72/15.31	na/na	0.57/67.99	
80-yr	0.20/6.14	0.28/18.901	na/na	0.00/33.37	na/na	0.29/12.77	na/na	0.00/33.26	
Second Rotation									
260-yr	0.48/12.97	0.52/19.57	1.53/75.58	0.67/24.34	0.74/29.20	0.12/6.57	0.70/26.02	0.61/22.55	
180-yr	0.22/6.18	0.62/19.60	0.00/0.00	0.56/14.99	0.33/12.84	0.22/7.47	0.68/20.46	1.01/33.10	
100-yr	0.22/7.85	0.67/27.89	0.26/21.60	0.47/12.71	0.81/33.42	0.09/2.75	0.42/19.63	0.65/21.76	
80-yr	0.09/3.82	2.60/8.461	na/na	0.26/13.34	na/na	0.40/12.82	na/na	1.09/54.44	

Detetion	Density	of stems >60-	cm dbh	SDI			
Rotation strategy	Age 40	Age 60	Age 80	Age 40	Age 60	Age 80	
First Rotation			8	<u></u>	4 2 9	E 2 3	
260-yr	0/0	0.10/11.28	0.23/15.09	0/0	0.70/13.83	0.54/20.92	
180-yr	0/0	0.10/11.28	0.23/15.09	0/0	0.70/13.83	0.54/20.92	
100-yr	0/0	0.10/11.28	0.23/15.09	0/0	0.70/13.83	0.54/20.92	
80-yr ²	0/0	0.10/11.28	na/na	0/0	0.70/13.83	0.54/20.92	
Second Rotation							
260-yr	0.27/14.31	0.66/14.65	1.23/32.32	0.10/5.37	0.53/12.88	0.98/57.87	
180-yr	0.11/4.43	0.10/5.23	0.22/7.22	0.06/2.14	0.27/7.57	0.29/10.10	
100-yr	0.15/5.67	0.28/8.07	0.25/7.04	0.06/2.84	0.21/6.93	0.17/5.82	
80-yr ²	0.29/14.67	0.28/16.99	na/na	0.26/6.83	0.25/10.39	0.59/13.6	

¹ - Live LS Index

² - values are for thinning entries at ages 20,40,60

CALCULATIONS WITH THE META-MODELS

Standard methods of calculation can be employed to derive meta-model estimates (e.g., handheld calculator or spread-sheet). Additionally, an interactive computer program, called RESP, is provided to facilitate rapid assessment of thinning regimes. RESP uses the meta-models reported in Tables 8-15 to estimate ecological and timber volume responses over one to two rotations for the four rotation strategies (see Tables 2-5). RESP queries the user for the number of rotations, the rotation strategy, and thinning densities for up to three entries per rotation. Estimates of responses are displayed only on the screen. Definitions and units of the output are documented below.

FIRST ROTATION RESULT Total Merch. Volume	 - designates results for a first-rotation strategy - cubm/ha of volume removed in all thinning entries and final rotation harvest
Live LSc (age) Live LS Index	 stand age when threshold levels of all live late-successional attributes are attained LS Index based on all live late-successional attributes. Displayed when threshold values are generally not attained (i.e., 100- and 80-yr rotation strategies).
Large boles (age)	- stand age when large-bole (>100-cm dbh) criterion is attained
No. large boles	- density of large boles (>100-cm dbh) at the end of the rotation but prior to the final rotation harvest
No. boles >80-cm dbh	- density of boles >80-cm dbh. Used in the 80-yr, first rotation strategy.
CHDI (age) CHDI value Shade tolerant stems (age) No. shade tolerant stems	 stand age when CHDI criterion is attained CHDI value at the end of the rotation but prior to the final rotation harvest stand age when shade-tolerant stem criterion is attained density of shade-tolerant stems (>40-cm dbh) at the end of the rotation but prior to the final rotation harvest
No. stems >60-cm 1st entry No. stems >60-cm 2nd entry No. stems >60-cm 3rd entry SDI after 1st entry SDI after 2nd entry SDI after 3rd entry	 density of stems >60-cm dbh present in the first thinning entry density of stems >60-cm dbh present in the second thinning entry density of stems >60-cm dbh present in the third thinning entry Stand Density Index resulting from the first thinning entry Stand Density Index resulting from the second thinning entry Stand Density Index resulting from the third thinning entry Stand Density Index resulting from the third thinning entry

SECOND ROTATION RESU	ILTS- designates results for a second-rotation strategy
Total Merch. Volume	- cubm/ha of volume removed in all thinning entries and final rotation harvest
Live LSc (age) Live LS Index	 stand age when threshold levels of all live late-successional attributes are attained LS Index based on all live late-successional attributes. Displayed when threshold values are generally not attained (i.e., 100- and 80-yr rotation strategies).
Large boles (age)	- stand age when large-bole (>100-cm dbh) criterion is attained
No. large boles	- density of large boles (>100-cm dbh) at the end of the rotation but prior to the final rotation harvest
CHDI (age)	- stand age when CHDI criterion is attained
CHDI value	- CHDI value at the end of the rotation but prior to the final rotation harvest
Shade tolerant stems (age)	- stand age when shade-tolerant stem criterion is attained
No. shade tolerant stems	- density of shade-tolerant stems (>40-cm dbh) at the end of the rotation but prior to the final rotation harvest
No. stems >60-cm 1st entry	- density of stems >60-cm dbh present in the first thinning entry
No. stems >60-cm 2nd entry	- density of stems >60-cm dbh present in the second thinning entry
No. stems >60-cm 3rd entry	- density of stems >60-cm dbh present in the third thinning entry
SDI after 1st entry	- Stand Density Index resulting from the first thinning entry
SDI after 2nd entry	- Stand DensityJanuary 20, 2001 Index resulting from the second thinning entry
SDI after 3rd entry	- Stand Density Index resulting from the third thinning entry

NOTE: all density values are No./ha; stand age is in years since the last rotation harvest. If threshold levels of late-successional attributes are not attained by the end of the rotation (e.g., 80-100 yr first rotation strategies, and 80-yr second rotation strategy), stand-age estimates are not displayed and the LS Index is displayed instead of the Live LSc estimate. Also, density of boles >80-cm dbh is displayed for the 80-yr first-rotation treatments due the lack of development of large boles (>100-cm dbh). When evaluating a second-rotation strategy, results for the first-rotation treatment are displayed first followed by results for the second-rotation strategy.

To use RESP, copy RESP.exe and RESP.dat (which is the list of equation coefficients read by RESP.exe) from the enclosed diskette to the same directory on your hard disk. RESP can be executed by typing RESP at the DOS prompt, or through the Run menu item in Windows (when using the Run command, enter the pathname of the directory containing RESP.exe plus the full name of the program - RESP.exe). NOTE: upon terminating the program within Windows, the temporary DOS window created at program initiation may not go away. If this happens, simply select the delete button at the upper right of the temporary window.

LITERATURE CITED

Franklin, J. F. and T. A. Spies. 1991. Ecological definitions of old-growth Douglas-fir forests. Pages 61-69 *in* L. F. Ruggiero, K. A. Aubrey, A. B. Carey, and M. H. Huff (Tech. Eds.). Wildlife and vegetation of unmanaged Douglas-fir forests. USDA Forest Service, Pacific Northwest Research Station General Tech. Report PNW-GTR-285, Portland OR.

Garman, S. L., J. H. Cissel, and J. H. Mayo. in press. Accelerating development of latesuccessional conditions in young managed Douglas-fir stands: a simulation study. USDA Forest Service, Pacific Northwest Research Stn. General Tech. Report.

Harmon, M. E., S. L. Garman, and W. K. Ferrell. 1996. Modeling historical patterns of tree utilization in the Pacific Northwest: carbon sequestration implications. Ecological Applications, 6:641-652.

USDA Forest Service. 1993. Region 6: Interim old growth definition. Pacific Northwest Research Station, Portland, OR.

LITERATURE CITED

Franklin, J. F. and T. A. Spies. 1991. Helological definitions of eld-growth Douglas-Steforests. Pages 61-69 in L. F. Ruggiero, K. A. Aubrey, A. B. Carey, and M. H. Huff (Tech. Eds.). Wildlife and vegetation of unmanaged Douglas-fit forests. USDA Forest Service, Pacific Northwest Research Station General Tech. Report PNW-GTR-285, Portland OR.

Ghrman, S. L., J. H. Cissel, and J. H. Mayo. in press. Accelerating development of latesuccessional conditions in young managed Douglas-fir stands: a simulation study. USDA Forest Service, Pacific Northwest Research Stn. General Tech. Report.

Heonon, M. E., S. L. Garman, and W. K. Ferrell. 1996. Modeling historical patterns of tree will zation in the Pacific Northwest: carbon sequestration implications. Ecological Applications, 6:641-652

UNDA Forest Service. 1993. Region 6: Interim old growth definition. Pacific Northwest Research Station. Portland, OR.