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Abstract. Vegetation maps serve as the basis for spatial
analysis of forest ecosystems and provide initial information
for simulations of forest landscape change. Because of the
limitations of current remote sensing technology, it is not
possible to directly measure forest understory attributes across
large spatial extents. Instead we used a predictive vegetation
mapping approach to model Tsuga heterophylla and Picea
sitchensis seedling patterns in a 3900-ha landscape in the
Oregon Coast Range, USA, as a function of Landsat TM
imagery, aerial photographs, digital elevation models, and
stream maps. Because the models explained only moderate
amounts of variability (R2 values of 0.24 - 0.56), we inter-
preted the predicted patterns as qualitative spatial trends rather
than precise maps.

P. sitchensis seedling patterns were tightly linked to the
riparian network, with highest densities in coastal riparian
areas. T. heterophylla seedlings exhibited complex patterns
related to topography and overstory forest cover, and were
also spatially clustered around patches of old-growth forest.
We hypothesize that the old growth served as refugia for this
fire-sensitive species following wildfires in the late 19th and
early 20th centuries. Low levels of T. heterophylla regenera-
tion in hardwood-dominated forests suggest that these patches
may succeed to shrublands rather than to conifer forest.

Predictive models of seedling patterns could be developed
for other landscapes where georeferenced inventory plots,
remote sensing data, digital elevation models, and climate
maps are available.

Keywords: Disturbance; Environmental gradient; Picea
sitchensis; Predictive vegetation mapping; Remote sensing;
Seed-source limitation; Spatial model; Tree seedling; Tsuga
heterophylla.

Introduction

Forest vegetation maps are used to assess landscape
pattern changes resulting from human land use
(Mladenoff et al. 1993; Spies et al. 1994), analyse wild-
life responses to landscape patterns (McGarigal &
McComb 1995; Ripple et al. 1997), and initialize spatial

simulations of forest landscape change (He & Mladenoff
1999). Maps of forest cover are typically derived from
either aerial photographs or satellite images and classify
forest patches by community type (Wolter et al. 1995)
or successional stage (Cohen et al. 1995). Although
emerging remote sensing technologies such as lidar
(light detection and ranging) hold promise for mapping
multiple canopy layers (Lefsky et al. 1999), it is not yet
possible to directly measure most forest understory
attributes across large spatial extents. Mapping forests
based on overstory characteristics is sufficient for many
applications, but information about specific understory
attributes such as subcanopy trees, dead wood, and tree
regeneration is often necessary for making ecological
assessments and initializing landscape models (Moeur
& Stage 1995; He et al. 1998). Thus, alternative ap-
proaches to mapping forest understory characteristics
are needed.

A lack of knowledge about understory tree re-
generation patterns, which influence rates and pathways
of forest succession, currently limits our ability to predict
landscape dynamics in coastal forests of the Pacific
Northwest, USA. Such forest dynamics are complex.
Overstory canopy gaps are created in young Pseudotsuga
menzeisii (Douglas-fir) and Alnus rubra (red alder)
stands by suppression mortality or by disturbances such
as wind, disease, or insects (Spies et al. 1990; Taylor
1990). Gaps are gradually filled in by the establishment
of conifers such as Tsuga heterophylla (western hemlock)
and Picea sitchensis (Sitka spruce), or by the release of
understory saplings that were present prior to the
disturbance. The presence of multiple gaps in a range of
sizes and developmental stages leads to the development
of a multilayered canopy that is a distinctive structural
characteristic of Pacific Northwest old-growth forests
(Franklin & Spies 1991) and an important component of
Strix occidentalis (Northern spotted owl) habitat (Mills
et al. 1993). In stands where tree regeneration is sparse
or absent in the forest understory, competition from
shrubs may limit seedling establishment in canopy gaps
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(Tappeiner et al. 1991) and multilayered structure will
develop slowly if at all.

Previous research has shown that understory conifer
regeneration has a patchy distribution throughout much
of the Coast Range of Oregon, USA (Schrader 1998).
Knowing the spatial pattern of tree regeneration across
the landscape would enhance our ability to identify
areas where development of late-successional forest
structure might be limited by the absence of shade-
tolerant tree regeneration. This spatial information is
currently unavailable at the landscape scale because
measurements of understory vegetation are taken in
small, dispersed field plots. If plot data can be associated
with variables for which spatial data are available, it
may be possible to use these spatial variables to
interpolate between the isolated plots – the ‘predictive
vegetation mapping’ approach outlined by Franklin
(1995). Although this method has been used successfully
to map individual species (Sperduto & Congalton 1996;
Iverson et al. 1997; Guisan et al. 1998) and plant com-
munities (Frank 1988; Davis & Goetz 1990; Lees &
Ritman 1991; Brown 1994) in a number of ecosystems,
it has not been widely applied to predicting patterns of
regeneration in the forest understory (but see Baker &
Weisberg 1997).

Physiographic variables can be used to map regene-
ration patterns along environmental gradients. Digital
elevation models can be used to derive estimates of soil
moisture (Beven & Kirby 1979) and solar radiation
(Bonan 1989; Nikolov & Zeller 1992), as well as slope,
aspect, and other topographic indices. Overstory trees
can utilize large portions of available light and moisture,
thereby limiting resource availability in the understory
(Christy 1986). Consequently, the abundance of
understory seedlings and saplings is often sensitive to
variation in overstory cover (Collins & Good 1987;
Russell-Smith 1996; Schrader 1998) and can be
particularly high in canopy gaps (Gray & Spies 1996).
Maps of tree crown size, canopy cover, and stand age
provide some information about conditions in the forest
understory and can be derived from Landsat satellite
images (Cohen et al. 1995). It may be also possible to

use landscape attributes as indicators of potential seed
source areas. In landscapes of mixed forest age classes,
for example, old-growth patches represent areas that
have either escaped past fires or burned at lower severity
than the rest of the landscape. If these patches can be
identified using aerial photographs or satellite imagery,
they may serve as indicators of refugia for disturbance-
sensitive species (Camp et al. 1997).

Our main objective was to assess the potential for
developing predictive maps of understory tree regene-
ration in forests of the Pacific Northwest, USA, through
a case study of tree seedling patterns in a coastal Oregon
landscape. We developed statistical models of the pres-
ence and density of T. heterophylla and P. sitchensis
seedlings in an Oregon Coast Range landscape using
predictor variables available in a geographic informa-
tion system (GIS), and used these models to map seed-
ling patterns. To gain a better understanding of the
proximal factors influencing tree regeneration, we also
examined the relationships between the GIS variables
used in the models and stand composition and structure
variables measured in the field.

Study area

The 3900-ha Cummins Creek Wilderness (44∞ 15' N,
124∞ 5' W) encompasses three forested watersheds on
the central Oregon Coast (Fig. 1). The area is mostly
underlain by Yachats basalt, with deeply dissected terrain
and steep slopes. Soils are mostly well-drained Andisols
and Inceptisols. Elevation ranges from ca. 10 m near the
coast to over 800 m at the eastern boundary of the study
area. Climate is characterized by abundant precipitation
(1800 mm/yr near the coast) with the majority falling
during the winter months (November-March). Tem-
peratures typically range from 10 - 20 ∞C during the
growing season, and rarely fall below freezing in the
winter. Low-lying fog is common near the coast, and
may extend several km inland along river valleys
(Franklin & Dyrness 1988). P. menziesii and A. rubra
are the dominant tree species in young, post-fire stands,

Fig. 1. Map of the Cummins Creek Wild-
erness, including the stream network and
field plot locations. Cut stands were
excluded from the analysis. Old-growth
patches were delineated using aerial
photographs.
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whereas T. heterophylla and P. sitchensis are the most
common species of understory regeneration. T. hetero-
phylla can establish under closed forest canopies
(Harmon 1987) and can survive for decades in suppressed
form until it is released by canopy gap formation (Spies
et al. 1990). P. sitchensis is less shade-tolerant than T.
heterophylla, requiring higher light levels for establish-
ment (Harmon 1987) and larger gaps to reach the forest
canopy (Taylor 1990).

Cummins Creek, like most of the Oregon Coast
Range, was affected by a series of large fires occurring
between the mid-19th and the early 20th centuries.
These burns have created a landscape mosaic dominated
by even-aged forests from 70 to 150 yr in age. Remnant
trees (defined as trees greater than 200 yr in age that
survived those wildfires) are rare, and are concentrated
in a few old-growth patches (defined as patches with > 3
remnant trees/ha) scattered throughout the wilderness
(Fig. 1). Less than 5% of the study area has been logged,
mostly around the perimeters – these harvested areas
were excluded from the study.

Methods

Field data collection

In 1997 we divided the landscape into two geo-
graphic zones (< 5 km from the coast and > 5 km from
the coast), as well as three hillslope (lower, middle, and
upper) and two riparian topographic zones (high-order
riparian areas encompassing third- and fourth-order
streams, low-order riparian areas encompassing first-
and second-order streams). Hillslopes were further sub-
divided into two aspect zones (north and south aspects).
We created a map of these zones using a GIS and
randomly selected four  sites in each of the 12 hillslope
strata (two geographic zones ¥ three topographic zones
¥ two aspect zones) and six sites in each of four riparian
strata (two geographic zones ¥ two topographic zones)
giving 72 sites. Because valley floors were typically
narrow in the first- and second-order streams (< 10 m in
width), the low-order riparian sites mostly encompassed
the adjacent footslopes. Most of the high-order riparian
sites were located entirely on the broad valley floors (20
- 140 m in width) of third- and fourth-order streams,
although some also overlapped the adjacent footslopes.

Each of the 72 sample sites encompassed approxi-
mately 0.25 ha, and was subsampled using three system-
atically located sets of nested circular plots. We re-
corded diameter at breast height (DBH) and species of
trees (≥  5 cm DBH) in 333-m2 plots (10.3 m radius), and
seedlings (≥ 10 cm in height and < 5 cm DBH) by
species in 167-m2 plots (7.3 m radius). Within each set

of nested plots, we measured dead down wood volume
along a 20 m transect using the line intercept method.
We measured percent tall shrub cover (≥ 1.5 m height) at
three points along each transect. All measurements were
corrected for slope angle based on the projected hori-
zontal area of each plot. We obtained increment cores
from several dominant, shade-intolerant trees at each
site and determined tree ages by counting annual rings
under a dissecting microscope.

In 1998, we sampled seedling density at 33 addi-
tional sites concentrated in geographic areas that had
been sparsely sampled in 1997. These locations were
chosen subjectively using topographic maps. We used
this selection method because it allowed us to choose
sites spanning the range of topographic strata mentioned
above while considering efficient travel paths through
the wilderness. Although these sites did not comprise a
truly random sample, they were not overtly biased
because we did not take vegetation characteristics into
account when selecting their locations.

GIS data layers

Sample site coordinates measured with a global po-
sition system (GPS) were converted into a GIS point
data layer. Site locations were then overlaid on a series
of GIS layers to obtain a set of predictor variables for
each site. Elevation and slope (Fig. 2a) were computed
using a U.S. Geological Survey 30-m digital elevation
model (DEM). We computed a slope curvature index in
ArcInfo GRID to distinguish convex land forms (high
index values) from concave landforms (low index val-
ues). Slope position (Fig. 2b) was computed using an
algorithm that interpolated between valley bottoms and
ridges – values ranged from 0 (valley bottoms) to 100
(ridge tops). Total solar radiation input during the grow-
ing season (May-September) was calculated using algo-
rithms developed by Bonan (1989) and Nikolov & Zeller
(1992). Distance from the ocean to each site was com-
puted in ArcInfo GRID. We used a detailed stream layer
provided by the Siuslaw National Forest to classify
streams by stream order.

Overstory vegetation GIS layers were created from
cloud-free 1988 Landsat TM imagery. The image was
resampled to 25 m resolution for consistency with previ-
ous remote sensing maps, and the reflectance bands
were transformed into brightness, greenness, and wetness
indices using the TM Tasseled Cap transformation.
Data for model building came from over 200 aerial
photo points on which vegetation cover, conifer cover,
broad-leaf cover and crown diameter were measured
using a zoom stereoscope. Both unsupervised classi-
fication (Wilkie and Finn 1996) and regression modeling
approaches (Cohen et al. 1995) were used to estimate
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open areas (< 70% vegetation cover), percent conifer
cover, percent broadleaf cover (Fig. 2c), and crown
diameter (Fig. 2d). Remote sensing methods are de-
scribed in more detail by Cohen et al. (2001). Although
there was a 9-yr (1988-1997) lag between image ac-
quisition and ground data collection, a comparison of
the vegetation layers with recent aerial photographs
indicated that current landscape patterns were similar
to those in 1988. Because the size of the field sites
(0.25 ha) was larger than the individual Landsat pixels
(0.0625 ha) we smoothed the continuous vegetation
layers by taking the mean values from a 3 ¥ 3 pixel
(0.56 ha) moving window (Wilkie & Finn 1996). This
smoothing also helped to reduce sensitivity to poten-
tial errors in the vegetation layers and in the location of
the ground plots.

Old-growth patches could not be accurately identi-
fied using the satellite imagery because many remnant
trees had broken tops and were intermixed with smaller
trees. We were able to identify four remnant old-growth
patches (defined as patches with > 3 trees/ha > 200 yr
old) using 1:12 000 scale 1995 color aerial photographs
viewed through a mirror stereoscope. Old-growth patches
were distinguished based on the presence of emergent
tree crowns, dead tops, and multilayered structure char-
acteristics of old-growth canopies. Patch boundaries
were delimited using acetate overlays on 1:25 000 scale
orthophotos, and were verified in the field at several
locations. The patch maps were digitized and converted
to 30-m grids, and the distance to each site from the
nearest old-growth patch was computed using ArcInfo
GRID.

Statistical models of regeneration

We developed separate statistical models for T.
heterophylla and P. sitchensis seedling density using
the GIS layers. Since both species were absent at a high
proportion of sites (63% for P. sitchensis and 45% for T.
heterophylla) we used a two-phase modeling approach
(Hamilton & Brickell 1983; Guisan et al. 1998). The
two-phase method allowed for the possibility that a
different set of factors might affect the presence of a
particular understory species as opposed to its abundance.
First, logistic regression models (Hosmer & Lemeshow
1989) were used to predict seedling presence using the
function

logit(p) = b0 + S bi xi (1)

where p is the probability of seedling presence, b0 and bi
are the regression coefficients, and xi are the independ-
ent variables. Standard least-squares linear regression
was used to model density at the sites where seedlings
were present using the function

log(y) = b0 + S bi xi (2)

where y is seedling density. Backward stepwise regres-
sion was used to reduce the initial pools of independent
variables to more parsimonious subsets. Interactions
among the independent variables were also explored.
All of the coefficients in the final models were statisti-
cally significant at the p < 0.05 level.

The models were applied to maps of the independent
variables to generate maps of predicted seedling patterns.
We examined two different methods for generating these
maps. First, the deterministic approach used the logistic
regression equations to classify seedlings as either present

Fig. 3. Maps of predicted seedling patterns: a. P. sitchensis
deterministic map; b. P. sitchensis probabilistic map; c. T.
heterophylla deterministic map; and d. T. heterophylla
probabilistic map. Individual grid cells are 30 m ¥ 30 m
(0.09 ha) in size. Hatched areas represent cut stands that were
excluded from the analysis.

Fig. 2. Maps of independent variables used to develop the
predictive maps: a. percent slope; b. slope position; c. percent
broadleaf cover; and d. crown diameter.
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or absent. The predicted probability in each grid cell
was computed as

p = 1/(1 + e - logit(p)) (3)

Seedlings were predicted to be present when p was
higher than the proportion of sampled sites with seedlings
present (0.37 for P. sitchensis and 0.55 for T.
heterophylla) and absent otherwise (Neter et al. 1989).
Where seedlings were predicted to be present, the linear
regression models were then applied to predict seedling
density.

Second, we generated a set of maps using a proba-
bilistic approach to predict seedling patterns. Instead of
using a fixed cutoff to predict presence/absence, we
generated a random number between 0 and 1 for each
site and modeled understory conifers as present where
this random variable was less than p. Stochastic variation
in the predicted density response was incorporated into
the predictions as follows

y = exp(b0 + S bi xi + N(0, s)) (4)

where N is a normal random variable and S is equivalent
to the square root of the mean squared error of the
regression equation (Neter et al. 1989).

Correlation of GIS variables with habitat features

The GIS variables used in predictive vegetation map-
ping typically serve as surrogates for more detailed,
ground-based measurements of site condition (Franklin
1995). We used Pearson product-moment correlations
to examine the relationships between GIS variables that
were included in the final models and a number of stand
composition and structure variables computed from
field data. Variation in stand structure and composition
across three topographic classes (hillslopes, low-order
riparian areas, and high-order riparian areas) was also
evaluated using one-way analysis of variance. Where
the overall F-test was statistically significant, multiple
comparisons were obtained using Tukey’s studentized

range test. Where necessary, we transformed the data
using root or logarithmic functions in order to meet the
assumptions of the statistical tests. These analyses in-
cluded only the 72 sites sampled in 1997 because they
were the only sites where we obtained detailed measure-
ments of stand structure. Stand structure variables in-
cluded P. sitchensis basal area, T. heterophylla basal
area, percent hardwood basal area, shrub cover, down
wood volume, and stand age. Crown competition factor
(Krajicek et al. 1961) was also computed as an index of
overstory canopy closure.

Results

Seedling Models

The probability of P. sitchensis seedling presence
decreased with distance from the coast and was greater
on lower hillslopes than on upper hillslopes (Table 1).
P.sitchensis seedling density also decreased with dis-
tance from the coast, and was higher in riparian areas than
on hillslopes (Table 2). The logistic regression model
correctly predicted presence or absence 82% of the time,
and the linear regression model explained 56% of the
variation in seedling density. The deterministic map
showed P. sitchensis seedlings occurring only in ripar-
ian areas and on lower hillslopes, with highest densities
near the coast (Fig. 3a). The abrupt termination of the P.
sitchensis distribution approximately seven km inland
reflected the fixed cutoff value used to predict seedling
presence. Similar patterns were evident in the proba-
bilistic map of P. sitchensis seedlings (Fig. 3b), though
fine-scale variability in P. sitchensis density was more
evident in the probabilistic map, and the predicted range
extended further inland than in the deterministic map.

The probability of T. heterophylla seedling presence
increased with crown diameter and decreased with
percent hardwood cover, slope angle, and distance from
remnant patches (Table 1). Density of T. heterophylla

Table 1.  Logistic regression models predicting presence and absence of tree seedlings.

Model R2 * % Error** Variable Coefficient X2 p value

P. sitchensis 0.54 18 Intercept 3.61 18.60 < 0.001
Distance from coast ----- 5.53 ¥     10-----4 19.41 < 0.001
Slope position ----- 0.0416 16.36 < 0.001

T. heterophylla 0.24 33 Intercept 1.791 3.89 0.049
(% Hardwood cover)1/2 ----- 0.0226 4.13 0.042
Crown diameter 0.0212 5.22 0.022
Slope angle ----- 0.0254 4.20 0.041
(Distance from Old-growth)1/2 ----- 0.0355 5.03 0.025

* R2 was computed using the method of Nagelkerke (1991).
** Percentage of sites that were incorrectly classified as having regeneration present or absent.
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seedlings was lower in high-order riparian areas than in
other parts of the landscape (Table 2). T. heterophylla
seedling density in low-order riparian areas decreased
with distance from the coast. T. heterophylla seedling
density was also greater on lower than upper hillslopes.
These models did not fit the data as well as the P.
sitchensis models. The logistic regression model correctly
predicted seedling presence or absence 67% of the time,
and the linear regression model explained 35% of the
variability in seedling density. The mapped distribution
of T. heterophylla regeneration showed large-scale
patterns related to the locations of remnant old-growth
patches, as well as finer-scale patterns reflecting variation
in overstory vegetation and topography (Fig. 3c). Pre-
dicted patterns changed considerably in the probabilistic
map (Fig. 3d). Although large-scale trends related to the
patterns of old-growth patches were still discernible,
residual variability obscured much of the finer-scale
pattern related to topography and overstory vegetation.

Correlation of GIS variables with Habitat Features

Remotely sensed measures of forest overstory veg-
etation were correlated with several stand structure vari-
ables, including crown competition factor, hardwood
basal area, shrub cover, down wood volume, and
overstory age (Table 3). Distance from the coast and
distance from old growth remnants had negative
correlations with overstory basal area of P. sitchensis
and T. heterophylla basal area. Lower hillslopes tended
to have older stands with a high proportion of hardwoods,
high shrub cover, and high volumes of down wood.
Slope angle was negatively correlated with down wood
volume. Riparian sites were older and had higher down
wood volumes and lower crown competition factors
than hillslope sites (Table 4). High-order riparian sites
had higher hardwood basal area than low-order riparian
areas and hillslopes. Low-order riparian areas had higher
shrub cover than hillslopes.

Table 2. Linear regression models predicting the natural logarithm of seedling density at sites where seedlings were present.

Model R2 Variable Coefficient t-statistic P value

P. sitchensis 0.56 Intercept 5.27 9.99 < 0.001
Riparian areas 3.20 4.23 < 0.001
Distance from coast -----2.28 ¥     10-4 ----- 1.75 0.090
Riparian areas ¥ Distance from coast ----- 5.25 ¥ 10-4 ----- 2.34 0.025

T. heterophylla 0.35 Intercept 5.87 11.04 < 0.001
Slope position ----- 0.0194 ----- 2.86 0.006
High-order riparian areas ----- 1.19 ----- 2.05 0.045
Low-order riparian areas 2.03 2.49 0.016
Distance from coast 2.77      ¥ 10-5 ----- 0.40 0.693
Low-order riparian areas ¥ Distance from coast 3.76  ¥ 10-3 ----- 2.23 0.030

Table 3. Pearson product-moment correlation (n = 72) between GIS variables used in the predictive models and stand attributes
measured in the field plots.

GIS Variables
Stand variables Distance from Slope angle Slope Percent Crown Distance

coast position hardwood diameter from old
cover growth

P. sitchensis basal area ----- 0.74** ----- 0.14 ----- 0.21 ----- 0.24  0.09 ----- 0.35**
'T. heterophylla basal area ----- 0.37** ----- 0.01 ----- 0.20 ----- 0.27  0.07 ----- 0.49**
Crown competition factor  0.05  0.20  0.48** ----- 0.37** ----- 0.34** ----- 0.09
% hardwood basal area  0.10 ----- 0.16 ----- 0.34**  0.71**  0.31**  0.22
Percent high shrub cover  0.18* ----- 0.01 ----- 0.32**  0.41**  0.14  0.13
Down wood volume  0.08 ----- 0.31** ----- 0.41**  0.12  0.27** ----- 0.21
Overstory age  0.09 ----- 0.16 ----- 0.57**  0.23  0.34**  0.15

*   p < 0.05; ** p < 0.01.
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Discussion

Seedling Patterns and Successional Pathways

Climatic and topographic gradients were the domi-
nant factors influencing landscape patterns of P.
sitchensis seedlings. Several factors may account for the
abundance of P. sitchensis seedlings in coastal riparian
areas. The first is the coastal fog zone, which extends
further inland along river valleys than on hillslopes
(Franklin & Dyrness 1988). P. sitchensis seedlings are
intolerant of moisture stress (Minore 1979), and low-
lying coastal fog during the dry summer months both
reduces evaporative demand and contributes precipitation
in the form of fog drip. P. sitchensis seedlings are also
relatively shade-intolerant, typically establishing in
relatively large gaps or under sparse overstory canopies.
The open canopied riparian and lower-hillslope forests
probably provide a more favorable environment for P.
sitchensis regeneration than the comparatively dense
upper-hillslope forests. The importance of dead wood
as a regeneration substrate for P. sitchensis has been
well established (Harmon & Franklin 1989; Gray &
Spies 1996) and the high volume of down wood in
riparian areas may provide more opportunities for
establishment than on hillslopes.

T. heterophylla seedlings were distributed more
widely across the landscape than P. sitchensis, and were
related to forest overstory variables as well as climate
and topography. Increasing probability of T. heterophylla
seedling occurrence with crown diameter may reflect
structural changes that occur with increasing stand age
such as larger tree sizes, decreasing canopy cover, and
increasing down wood volume (Spies & Franklin 1991).
Most of the hardwood- (primarily A. rubra) dominated
stands within the Cummins Creek Wilderness lack T.
heterophylla in their understories. Of the 30 sample

sites with more than 40% hardwood cover, only 33%
had T. heterophylla regeneration present. This relation-
ship may reflect low seed availability and competition
from tall, dense shrubs in the understory of hardwood-
dominated stands. Because of high P. sitchensis regen-
eration in many riparian areas near the coast, some of
the hardwood patches along coastal streams may even-
tually develop into conifer stands. The surrounding
conifer matrix may subsume relatively small hardwood
patches (< 0.1 ha) as adjacent tree crowns expand into
the area formerly occupied by hardwoods. It seems
unlikely, however, that most large hardwood patches in
riparian areas farther from the coast and on hillslopes
will have sufficient understory seedling densities to
succeed to conifer stands over the next several decades.
In many cases, these stands may instead succeed to
stable, shrub-dominated communities as the overstory
hardwoods senesce (Tappeiner 1991). Although studies
have explored the ecology and dynamics of transient
canopy gaps in Pacific Northwest forests (Spies et al.
1990; Taylor 1990), little work has been done on the
ecology of persistent canopy gaps. More research is
needed to provide a scientific basis for managing this
vegetation type.

Disturbance and historical legacies

Biological legacies, such as remnant old-growth trees,
are known to influence the pathways and rates of suc-
cession within forest stands (Swanson & Franklin 1992).
Our results suggest a landscape-scale relationship be-
tween T. heterophylla regeneration and old-growth
patches, at the scale of hundreds to thousands of meters.
T. heterophylla has thin bark, shallow roots, and relatively
inflammable foliage that make it extremely fire-sensitive
(Agee 1993). Old-growth patches represent areas where
fires were less severe and more T. heterophylla survived

Table 4. Mean values of stand attributes measured in the field plots for each of three landscape categories used in the predictive
models. Standard errors are given in parentheses. Values for each variable with different letters were significantly different at the p
< 0.05 level based on multiple comparisons using Tukey’s studentized range test.

Landscape unit

Stand variables High-order Low-order Hillslope
riparian area  riparian area (n = 74)

(n = 14) (n = 18)

P. sitchensis basal area (m2/ha) 14.8 (6.4) 9.0 (3.3) 11.1 (3.6)
T. heterophylla basal area (m2/ha) 3.2 (1.8) 8.9 (4.2) 5.2 ( 1.2)
Crown competition factor 116.6a (18.4) 133.5a (16.2) 226.6b (9.5)
Percent hardwood basal area 51.5a (10.8) 21.0b (5.5) 13.2b (3.0)
Percent high shrub cover 18.8ab (18.8) 34.8a (5.7) 14.3b (2.6)
Down wood volume (m3/ha) 1566.6a (389.7) 1848.8a (295.6) 747.8b (142.1)
Overstory age (yr) 116.0a (4.4) 114.8a (3.9) 99.2b (2.6)
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than in other portions of the landscape. Higher seed
availability following fire may account for the higher
basal areas of T. heterophylla currently found in and
near old-growth patches. Because most seed dispersal
distances for T. heterophylla beneath closed canopies
are very short, on the order of tens of meters (Schrader
1998), the current seedling pattern is still linked to the
overstory trees that established after fire.

Other factors besides seed source availability, such
as shading by the remnant tree patches and variation in
soil characteristics or substrate availability might have
also influenced the spatial pattern of T. heterophylla. In
addition, the old-growth trees found on the landscape
today do not represent all of the seed sources present
following the fires. Trees are often damaged but not
killed outright and may survive long enough to disperse
seeds, only to succumb within a few years to pathogens
and disease (Franklin et al. 1987); some historical patches
of remnant trees may no longer exist in the current
landscape. Despite these caveats, the spatial association
of T. heterophylla seedlings with old-growth patches
does suggest that the spatial pattern of fires has a
persistent influence on the landscape patterns and
successional pathways in these forests.

Model evaluation

Although we found statistically significant relation-
ships between understory variables and the mapped
explanatory variables, the models explained only low to
moderate amounts of the spatial variability in seedling
presence and density. Some of the noise arises from the
coarse scale of the predictor variables. Seedling
establishment and survival are known to be associated
with many microsite-scale factors such as environmen-
tal suitability (Harmon 1987; Christy 1986), substrate
availability (Harmon & Franklin 1989; Gray & Spies
1996), and competition with other plants (Maguire &
Forman 1983; Harmon & Franklin 1989). Our choice of
predictor variables was limited by the requirement that
they be available as GIS layers. Although the environ-
mental indices reflected variation with distance from
the coast and physiography, they could not predict
finer-scale micro-environmental patterns that can have
a strong influence on regeneration. Similarly, although
the estimates of overstory vegetation derived from remote
sensing were correlated with a number of stand-level
variables there was still a large amount of structural
variability that could not be predicted from these
measures. Other less predictable factors such as inter-
annual variability in the size of seed crops (Pickford
1929) and short-term climate fluctuations (Baker 1990)
also limit our ability to predict the occurrence and
abundance of regeneration based on habitat alone.

Most predictions made using statistical models ignore
the uncertainty that is associated with each predicted
response. When models explain only a small amount of
the total variability, they will predict a narrower range
of variability than is present in the actual landscape.
This phenomenon is evident in the comparison between
deterministic and probabilistic maps. In the case of P.
sitchensis seedlings, the statistical models explain more
than half of the variation in presence and density and the
two maps are quite similar. In contrast, the T. heterophylla
models account for less of the variability in the response,
and the predicted patterns change drastically once
uncertainty is introduced. When the presence of T.
heterophylla regeneration is predicted with a deter-
ministic model, for example, the model predicts a large
patch void of regeneration in the central and southern
portion of the study area (Fig. 3c). When probabilistic
predictions are used, the map instead predicts a gradient
from high frequencies in and around old-growth patches
to low frequencies in large hardwood patches and in
areas far from old growth (Fig. 3d). Although the
probabilistic map does not provide an accurate predic-
tion for any given site, the larger-scale pattern may be
more representative of the actual landscape than the
deterministic map – T. heterophylla regeneration is never
completely absent from large portions of the landscape,
nor does it occur at uniformly high density in others.

The potential for modeling seedling patterns in the
forest understory will vary depending on the auteco-
logical characteristics and life history traits of the species,
as well as the environmental patterns and disturbance
history of the landscape. The predictive vegetation map-
ping technique will be most effective when the regen-
eration niche of a species is relatively narrow and can be
readily measured with GIS variables. This was the case
with P. sitchensis seedlings, which were largely re-
stricted to coastal riparian areas. When species have a
broader regeneration niche that is influence by a large
number of environmental factors, predictive vegetation
mapping will be more difficult. This was the situation
with T. heterophylla seedlings, which were distributed
across the entire study area in relation to climate,
topography, and overstory canopy conditions. Potential
effects of historical disturbances and seed source
limitations are particularly problematic, because GIS
maps of these variables are difficult, if not impossible,
to obtain. Predictive vegetation maps should be
interpreted cautiously when the underlying models
explain only a small proportion of the total variability in
the response. In most cases, it is probably more reasonable
to interpret these predicted patterns as qualitative trends
rather than precise, quantitative predictions.
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Conclusions

Despite their limitations, predictive maps of tree
seedlings and other understory vegetation attributes can
provide valuable spatial information for use in manage-
ment and conservation as long as they are used appropri-
ately. For example, where the lack of tree regeneration
is a management concern, predictive maps of understory
seedling patterns could used to identify portions of the
landscape where low regeneration levels are most likely
to occur. Additional research, monitoring, or manage-
ment activities could then be focused in these areas.
Because the models presented in this study are cali-
brated to a specific landscape, they should not be di-
rectly applied to other areas. However, the plot-based
inventories, and GIS data bases needed to develop these
models are becoming increasing available in the United
States as a result of research and monitoring efforts by
federal land management agencies. The general methods
outlined here could be linked with these new data sources
to model landscape patterns of tree seedlings or other
understory plant species in a variety of landscapes.
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