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Multiscale Assessment of Binary and
Continuous Landcover Variables for
MODIS Validation, Mapping, and
Modeling Applications

Bruce T. Milne* and Warren B. Cohenf

Validation, mapping, and modeling efforts require ac-
curate methods to transform process rates and ecosystem
attributes estimated from small field plots to the 250—
1000-m-wide cells used by a new generation of land
cover mapping sensors. We provide alternative scale
transformations, each with attendant assumptions and
limitations. The choice of method depends on spatial
characteristics of the land cover variables in question and
consequently may vary between biomes or with the in-
tended application. We extend the fractal similarity di-
mension renormalization method, previously developed
for binary maps, to continuous variables. The method
can preserve both the mean and the multifractal proper-
ties of the image, thereby satisfying a major goal, namely,
to provide accurate areal estimates without sacrificing in-
formation about within-site variation. The scale transfor-
mation enables the multifractal scaling exponents of land-
scapes or individual spectral bands to be brought in and
out of register with each other, thereby opening another
dimension upon which to detect the scales at which vari-
ous land use or terrain processes operate. Alternatively,
landscapes can be selectively resealed to highlight pat-
terns due to particular processes. We recommend geos-
tatistical procedures with which to assess spatial charac-
teristics both within a site and within individual image
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cells. We recommend that aggregation of fine-grain mea-
surements during validation of the Moderate Resolution
Imaging Spectrometer (MODIS) products be based on
continuous variables to reduce errors that originate from
uncertainties in binary maps. ©Elsevier Science Inc.,
1999

INTRODUCTION

Accurate determination of global net carbon flux is per-
haps the most urgent issue facing the ecological commu-
nity (Churkina and Running, 1998). Loading the atmo-
sphere with carbon in excess of the biosphere's steady
state cycling capacity has many well-known implications,
including increases in global temperature (Schlesinger,
1991). The capacity of the biosphere for carbon involves
interactions among various processes such as water and
energy supply, nutrient cycling, production, storage, and
respiration. Remote sensing combined with process mod-
eling and field validation offers the only currently feasi-
ble approach for assessing ecosystem capacities for car-
bon over vast regions. However, many crucial
assumptions are made in the course of relating field
measurements to the grid cells used in remote sensing
(Box et al., 1989). Accuracy assessment is virtually impos-
sible without expressions for the discrepancies between
estimates obtained from field plots and from remotely
sensed imagery. The problem is compounded when the
grid cells are large (60-1000 m) as is the case for the
next generation of sensors, such as the Moderate Resolu-
tion Imaging Spectrometer (MODIS; Ustin et al., 1991).
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Table I. Land Cover Variables Commonly Derived from Remotely Sensed Imagery for Use in Ecological Models

Variable Type Units Applications

Land cover Categorical, binary ha, % Model stratification, land use change, habitat characterization
LAI (one-sided) Continuous m2/m2 Transpirative surface in photosynthesis models
NPP Continuous gm-2 Estimate of carbon fixation minus respiration
Plant cover Continuous Basis of allometric relations to predict LAI; canopy models, phenology

In large cells, fluxes of energy and water may be regu-
lated by hydrological effects that occur at subcell scales
(White and Running, 1994; Rodriguez-Iturbe and Ri-
naldo, 1998). Thus, functional linkages within individual
cells may violate the assumption that land cover types
and locations are independent, thereby necessitating a
nonlinear mixing model to predict carbon flux.

Based on 36 spectral bands, MODIS will provide 42
standard data products describing atmospheric, aquatic,
and terrestrial conditions (Barnes et al., 1998). Of eco-
logical interest are estimates of land cover, biophysical
properties (Table 1), and hydrological inputs such as
snow, that are essential in all models of carbon, energy,
and water flux from ecosystems. With global coverage ev-
ery 1-2 days, MODIS will provide unprecedented data
of sufficient temporal resolution to unravel effects of cli-
matic variability, anthropogenic nutrient inputs, and land
use practices on global productivity, with wide applica-
tion to problems of biodiversity, ecosystem organization,
and landscape function.

Traditionally, ecologists have estimated biophysical
variables without much regard for location, as when net
primary productivity (NPP) and leaf area index (LAI) are
used in nonspatial compartment models of ecosystems.
However, real-space models are needed to represent the
juxtaposition of sources and sinks that affect fluxes of nu-
trients (Cooper et al., 1987). Similarly, canopy gap struc-
ture affects radiation inputs to the soil surface (Rich et
al., 1993) and nutrient cycling rates (Parsons et al.,
1994). Thus, ecologists need more complete knowledge
about the ability of coarse or medium resolution imagery
to represent the environment.

Field estimation techniques, and the operational def-
initions of variables such as LAI (Barclay, 1998, Gower
et al., 1999, this issue), vary widely among studies. Varia-
tion stems from physiognomic differences between
biomes and vegetation types that require different mea-
surement techniques. MODIS will provide comparability
among biomes by providing simultaneous global esti-
mates which will need to be validated using field mea-
surements. Field estimation of productivity and LAI is a
costly, time-consuming endeavor. In the best situations
estimation costs scale linearly with study size. Conse-
quently, repeatable, accurate estimates based on re-
motely sensed imagery over wide regions for little cost
are highly desirable, albeit subject to caveats (Baret and
Guyot, 1991). Here, we demonstrate how to use high

resolution Thematic Mapper (TM) imagery to prospect
for large MODIS cells within which to stratify field mea-
surements.

By alleviating the bulk of routine processing burdens
(Justice et al., 1998), the 42 standard MODIS products
will further increase the ecological community's use of
remotely sensed estimates of biophysical quantities. Sev-
eral difficult issues are entailed when coarse spatial reso-
lution data are used. The major issue is to determine the
limits to which ecological models based on spatially de-
tailed sensors, such as TM, can be applied to coarse res-
olution imagery from MODIS. Adoption of MODIS
amounts to a scale transformation that affects both the
design of validation studies and model formulation.

Scale transformations can be viewed in two ways, ei-
ther as a cartographic problem or as an ecological oppor-
tunity. First, scale transformation is problematical in that
the spatial structure and corresponding geostatistical
properties of a scene change with scale (Openshaw,
1984). Model calibrations developed at one scale are not
readily applied at others (O'Neill and Rust, 1979; Cale
et al., 1983; King et al., 1991) and may be further com-
plicated if many variables are of interest (Pierce and
Running, 1995). Errors introduced by scale transforma-
tion potentially confound estimates of net primary pro-
duction (NPP), leaf area index (LAI), and land cover
type which are the products from MODIS and similar
sensors. Validation of coarse resolution maps with field
measurements is not simple and generally lacks reliable
theory to guide the process. Second, changes in apparent
landscape structure with changes in scale may provide
new information about the scale domains (Burrough,
1983; O'Neill et al., 1991; Milne, 1988; Johnson et al.,
1992) over which particular processes operate (Jelinski
and Wu, 1995). Thus, purposeful changes in scale can be
used as tools to further ecological understanding of
process.

This study has two general goals: 1) to identify issues
concerning spatial aggregation, validation, and error as-
sessment that will be encountered as MODIS is applied
across diverse biomes, and 2) to recommend spatial ag-
gregation methods for use in modeling and validation ex-
ercises across a wide array of sites. A major antagonism
exists between the goals of projects conducted at dispa-
rate scales. Namely, the MODIS estimates of NPP, LAI,
and land cover do not characterize subcell patterning
that is both of interest to investigators at particular sites
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and a potential source of error at the 500-1000 m scale.
Thus, a focus of this article is to assess patterns within
cells that may alter MODIS estimates and simultane-
ously limit the utility of MODIS estimates of biophysical
properties at finer scales.

STATISTICAL AND PROCESS
ORIENTED APPROACHES

Over several decades, two major bodies of theory have
developed in parallel to explain and exploit spatial vari-
ability for many purposes. The first, geostatistics (Cres-
sie, 1991; Deutsch and Journel, 1992), has wide applica-
tion in the earth sciences, ecology, and the mining
industry. Geostatistics characterize spatial distributions of
one or more variables, so that point measurements can
be extrapolated to unmeasured locations, as when pros-
pecting. Generally, the geostatistical extrapolations rely
on systems of equations or stochastic processes (Deutsch
and Journel, 1992) to obtain unbiased estimates of ore
densities, biomass, or other variables from scattered
point measurements. Fractal geometry (Mandelbrot,
1982) is the second major theory of spatial structure and
organization that is applied readily to terrain, river net-
works (Rodriguez-Iturhe and Rinaldo, 1998) coastlines,
clouds, and myriad other systems (Feder, 1988). Al-
though fractal geometry is used simply to describe pat-
terns at many scales, several studies have focused on the
intimate links between dynamics and structure, to the
point of demonstrating how energy dissipation produces
fractal structures (e.g., Jensen et al., 1985; Sommerer
and Ott, 1993; Rodriguez-Iturbe and Rinaldo, 1998). Re-
cent derivations of fractal scaling laws via the renormal-
ization group (Wilson, 1979; Binney et al., 1993) rely on
detailed descriptions of stochastic processes and pur-
poseful changes in scale (Loreto et al., 1995). Despite
several superficial links between geostatistics and fractals
(e.g., Burrough, 1981), there is little theory to link the
two fields. Given that virtually all fractal and renormal-
ization approaches entail many to one mappings, or regu-
larizations, it is reasonable to expect a synthesis of regu-
larization theory with fractals and the renormalization
group so that both the statistical depth and process based
explanations of spatial complexity can be applied simulta-
neously. As a first attempt, this article treads in both are-
nas, primarily by applying fractal geometry and renor-
malization theory to derive an expression for the
geostatistics of indicator maps, which are at the root of
regularization theory.

Regularization theory Tipp et al., 1988a,b) provides
a single theoretical basis for the geostatistical properties
of both remotely sensed imagery and the selection of
field samples that are used to validate imagery. Formally,
we envision a random field f(x), where x is a vector in
space, time, or both, and f(x) is a realization of an er-
godic, spatially continuous stochastic process with sta-

tionary parameters. Then, both remote sensing and field
sampling amount to regularizations (sensu Jupp et al.,
1988a,b; Atkinson and Curran, 1995), by which spatially
integrated or averaged measures of the random field are
represented on a discrete lattice, that is, f(x) at many
points within each lattice cell (or image pixel) of length
L are mapped into a single value. Thus, the radiant field
is convolved with the sampling function of the sensor to
produce an image g(f(x),L). Clearly, spatial autocorrela-
tion affects the distribution of f(x) within the cell and
therefore the mean value in the cell. Regularization the-
ory is concerned with the statistical behavior of spatial
autocorrelation and semivariance as functions of cell
length, or scale. The theory can: 1) be used to identify
cell lengths that best enable detection of pattern (e.g.,
Hill, 1973), 2) characterize how variance changes with
scale, as needed for geostatistical interpolation, and 3)
design field sampling strategies that minimize the num-
ber of subsamples needed to estimate mean quantities
such as biomass or leaf area index.

SPATIAL VARIABILITY

In an ideal world, land cover, NPP, LAI, and percent
live plant cover would be homogeneously distributed
across the Earth's surface so that mean values and vari-
ances could be measured with quadrats of any size. Of
course, geological and biophysical quantities are gener-
ally correlated through space and time, giving rise to
nonrandom structure, patches, and clines. Spatial corre-
lations necessitate the use of geostatistics to extrapolate
measurements (Cressie, 1991; Deutsch and Journel,
1992). Spatial and temporal (Bilonick, 1985) variation are
characterized by the semivariance y(h), which is	 the
mean squared deviation of a variable at locations sepa-
rated by a given lag distance:

N(h)
y(h)=1/(2N(h)) E (z, —z,,h ) A ,	 (1)

=1

where z, is the variable at location i, N(h) is the number
of pairs of points separated by distance h and A is an
exponent equal to 2 for the classical semivariance. A
semivariogram is a graph of the semivariance versus lag.
Setting A equal to 1/2 produces the seinirodogram, while
2=1 applied to the absolute value 1z,-;+1,1 produces the
semimadogram. These variograms emphasize broad scale
structure, such as the lag at which the semivariance
reaches an asymptote (i.e., the range; Cressie, 1991;
Deutsch and Journel, 1992). The indicator semivariance
is measured by transforming z, to 1 if 	 a threshold
and 0 otherwise. Thus, the indicator semivariance is es-
sentially that of a binary map, and thereby characterizes
patterns of nominal variables.

The semivariance is relatively small when a variable
is correlated through space. Sampling with quadrats as
wide as the range ensures that autocorrelation is sub-
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sumed, leaving statistically homogeneous sampling units
that meet the assumption of independence (Hurlbert,
1984). In general, though, ecological studies that focus
on causal factors seek predictable relations between sys-
tem properties measured in small quadrats in the field
(e.g., soil moisture and stoniatal conductance). Unfortu-
nately, the homogeneity condition means that the varia-
tion within quadrats is as large as that among quadrats,
leading to nonsignificant models of system properties
based on remotely sensed measurements for which the
cell size may exceed the semivariograrn range of field
measurements (Friedl et al., 1995). Moreover, an as-
sumption of a finite variance cannot be made where the
semivariance fails to reach an asymptote, as for example
along dines or within fractals (Mandelbrot, 1982). Com-
parisons [Eq. (1)] along north—south versus east—west
orientations may produce different semivariograms due
to anisotropy, further complicating the statistical charac-
terization of pattern.

Parametric interpolations based on the relation be-
tween semnivariance and lag may entail an assumption of
stationarity, or constant statistical conditions throughout
the study area. Deutsch and Journel (1992) argue that
stationarity is an assumption implicit in parametric mod-
els, while nature may exhibit patterns for which paramet-
ric models are not readily constructed. Here, stationarity,
or the lack thereof, may affect various aggregation strate-
gies and perhaps the accuracy of the MODIS sensor, in
that behavior of a given method or sensor may vary
throughout a map, or within pixels, generally in unknown
ways (e.g., Stoms et al., 1997).

A major insight from regularization theory is that the
length of a lattice cell, or pixel, affects precision directly
according to

y(h,L)=------y(h)—y(L2),

where y(h,L) is the semivariance at lag h measured using
(image) cells of length L, y(h) is the parametric semivari-
ance of the spatially continuous field f(x), and 2(L 2 ) is
the within-cell mean semivariance; L 2 indicates that aver-
aging is over the area of the cell (Atkinson and Curran,
1995). Thus, regularization to cells of finite area de-
creases the image semivariance in proportion to L-2
(Jupp et al., 1988a).

A second conclusion is that regularization entails a
many to one mapping of f(x) into g(f(x),L) and thus a
reduction in the variance from which to mine predictive
relations between variables. For example, if we wish to
predict LAI at a sample point, we might begin with an
image measure of the normalized difference vegetation
index (NDVI) and the relation LAI=f(NDVI). Of course,
regularization has mapped a region L 2 of NDVI values
to a single NDVI', and an error will occur of size LAI —f
(NDVI'). Recent applications of renormalization to ter-
rain (Rodriguez-Iturbe and Rinaldo, 1998) show that ju-
dicial resealing of drainage networks can preserve statis-

tical properties of the map, while arbitrary regular-
izations of the elevation field do not. Thus, empirical and
theoretical studies of regularization should identify useful
scale transformations that preserve information needed
to model landscape processes accurately. The exact regu-
larization procedure will depend on the purpose.

Considering the accuracy of MODIS measurements,
some major issues are: 1) whether MODIS estimates of
land cover variables (Table 1) are affected by within cell
structure, 2) how to avoid biased MODIS estimates that
may occur within a scene, and 3) how to use a priori
assessments of spatial variation to minimize field sam-
pling efforts related to MODIS validation. We address
these issues primarily through empirical studies of imag-
ery and simulated regularizations.

ANALYSES

Our discussion of spatial analysis focuses on characteriza-
tions of within-cell variation to reduce the number of
field sampling locations needed for estimates of mean
values over a study area. We also consider components
of the semivariogram, such as the nugget, which can be
decomposed to represent processes that contribute to
pattern at various scales.

Within-Cell Variation
We examined within-cell structure via semivariance anal-
ysis of the Sevilleta LAI map and maps of the normal-
ized difference vegetation index (NDVI) for the Konza
Prairie and H. J. Andrews Long Term Ecological Re-
search sites (LTER; Franklin et al., 1990). The three
LTER sites represent a broad gradient ranging from
semiarid grasslands (Sevilleta), to tallgrass prairie
(Konza), to conifer forest (Andrews), and thus provide a
wide range of vegetated conditions, both in absolute
quantity of biomass and spatial structure. We used 100
km 2 subregions of the LTER sites for intensive studies.

The Sevilleta LAI map was created from an unsu-
pervised classification of 12 NDVI images, stratified by
season, from TM imagery. Field samples in support of
the mapping effort were obtained from 22 m diameter
plots stratified randomly among 30 classes. Percent cover
and height of each species, classified into guilds (i.e.,
forb, C3 grass, CQ grass, shrub, and Larrea tridentata, a
major shrub species which was treated separately) were
used in regressions to calculate LAI (P. Kemp, personal
communication). Each spectral class was then described
by the mean LAI obtained from replicate field samples
of that class. Thus, the Sevilleta LAI map shows the
mean LAI of the respective class.

To assess geostatistical variability within a biome, we
created one semivariogram for the Sevilleta LAI map us-
ing lags	 km (Figs. la and 2a). We hypothesized that
one or more break points would he found separating
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Figure 1. Leaf area index for a 5325 ha portion of the Sevi-
lleta Long Term Ecological Research site. Brightness is pro-
portional to LAI. A) Original 28.5 m resolution; B) second
ref-formalized image [see Eq. (6)] to 114 in cell width; C)
continued renormalizations to 228 m; D) 456 m resolution.

   

scale domains (O'Neill et al., 1991) over which different
semivariogram models would need to be fit to minimize
the sum of squared residuals. We followed Stauffer and
Stanley (1989) and identified a critical lag in the semiva-
riogram by examining residuals from logarithmic and
power laws that were fit preliminarily over the entire do-
main of lags. The critical lag was readily identified by
residuals equal to zero; increasing residuals away from
the critical lag indicated systematic errors that were
readily corrected by fitting different models below and
above the critical lag. With two models, the sum of
squared residuals over both domains was less than that
obtained from any single model.

The semivariance did not reach an asymptote at lags
<400 m (Fig. 2a), and was well characterized by a loga-
rithmic model. Thus, we expect field measurements to
be correlated if separated by distances less than the MO-
DIS cell size. At lags >400 m, a power law fit the semi-
variances well (Fig. 2a), suggesting that LAI at the Sevilleta
exhibits fractal properties at these scales (Mandelbrot,
1982, Burrough, 1981, Milne, 1991). Apparently, fractal
terrain with associated variation in soil resources, con-
trols plant patterning at broad scales. Since the semivari-
ance did not reach an asymptote, no TM cells can be
considered independent. By the same token, the strong
autocorrelation at lags <400 m indicated less variation
within MODIS pixels than among them. Thus, we hy-
pothesized that relatively few subsamples would be

4	 6
5100 2	 " 15000 2

Lag (m)

Figure 2. Sernivariance of leaf area index (LAI) in
the Sevilleta LTER. A) Analysis of 28.4 m wide cells
obtained from Landsat Thematic Mapper imagery; B)
variation among semivariograms of LAI in the 28.4 m
wide cells within the entire 10,000 rn 2 area (large
dots) and within successively larger pseudo-MODIS
cells ranging from 570 m to 10,000 m in length.

needed within a MODIS cell to characterize LAI for val-
idation purposes.

We evaluated this hypothesis by pooling TM cells to
form pseudo-MODIS cells (hereafter pMODIS cells) of
various widths. We then examined variation among semi-
variograms obtained within pMODIS cells (Fig. 2b). For
any given lag, semivariances varied over 2 orders of mag-
nitude. High semivariances within pMODIS cells oc-
curred where several contrasting land cover types con-
verged, as where dry streamheds, riparian woodlands,
and grasslands intersected (Fig. la). Repeated semivari-
ance analysis within larger and larger pMODIS cells re-
vealed a convergence of within-cell semivariograms on
the semivariogram for the entire study area, such that
the semivariograms from the four pMODIS cells of
length 4560 m were more similar to the overall semivari-
ogram than were those from the smaller pMODIS cells.
Thus, variation among high resolution cells should he
greater than among low resolution cells (Levin, 1992).
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Figure 3. Semivariances at selected lag distances and mean values of leaf area index and NDVI from the
Sevilleta, Konza Prairie, and H. J. Andrews LTER sites. Semivariances and means were computed from TM
cells within 500 m wide pseudo MODIS cells. The dashed line indicates the semivariance of TM cells over
the entire image at the specified lag, h.

Sample Points for Field Samples
Validation efforts require sample points that efficiently
estimate statistical properties such as mean biomass or
LAI for comparison with MODIS estimates. One strat-
egy is to target MODIS cells that are internally homoge-
neous, thereby requiring fewer samples to characterize
the cell. To determine how within-cell variation affects
estimates of the mean, we used TM maps of LAI (Sevil-
leta) and NDVI (Konza and Andrews) to measure and
compare the semivariance and mean within pMODIS
cells. Data management practices that include resam-
pling of imagery to match other archived data, such as
terrain and soil maps at the Sevilleta, Konza, arid An-
drews sites, provided TM cell sizes of 28.4 m, 33.0 in,
and 25.0 m, respectively (Fig. 3). Since we were inter-
ested in the highest semivariance that could be encoun-
tered within a pMODIS cell, but wanted to avoid arti-
facts from using too large a lag, we honored Nyquist
sampling theory and restricted our lag to —500/3 m
(O'Neill et al., 1996), thereby using 170.4 m, 165 m, and
150 m lags for the Sevilleta, Konza, and Andrews, re-
spectively. For reference, we used the corresponding
semivariance from an analysis of all the TM cells within
each 100 km 2 study area. Preferred pMODIS cells for
validation efforts were those with less variability than
the reference.

In the Sevilleta, cells with y(170.4) below 0.108 were
remarkably close to the mean LAI (Fig. 3a). Cells with
low semivariance have uniform canopies, of either grass
or mixtures of shrubs and grass. Greater scatter and a
significant correlation between semivariance and mean
LAI was apparent for y(170.4)>0.108 (r=0.49, n=84,
P=0.002). These highly variable pMODIS cells contain
mixtures of saltcedar (Tamarix pentandra) stands along
seasonally dry riverbeds adjacent to low LAI grasslands
(30-40% cover) and sparse shrublands.

Thus, field efforts to assess MODIS accuracy could

be minimized by stratifying samples according to within-
cell variance (Fig. 3). Effort to estimate the mean LAI
could be reduced by sampling from the set of MODIS
cells that have small internal semivariances (e.g., y(h)
--.0.05). However, since sensors should perform best in
such circumstances, efforts to validate the sensor should
also be devoted to cells with high internal semivariances.
There, nonadditive spectral effects of mixed canopies
could produce biased estimates of land cover properties.
We suggest that subsampling selected MODIS cells and
using high resolution TM imagery to make area-adjusted
estimates for the entire cell is an appropriate way of test-
ing the accuracy of MODIS estimates. Thus, asse ssment
of within-cell variation relative to the known LAI (Fig.
3) can guide experiments to evaluate MODIS for poten
tial bias due to subpixel variation.

Three orders of magnitude variation in semivariance
were also found for NDVI within pMODIS cells in the
Konza and Andrews sites (Figs. 3b, c). These sites have
many sources of variation in vegetation and biophysical
traits due to successional age of the plant communities,
experimental burning treatments, and terrain. Nonethe-
less, NDVI saturates 5-10 years after clearcut arid is not
meaningful with respect to LAI at Andrews or Konza
(Turner et al., 1999, this issue). Even greater spatial
variation would be expected for spectral variables other
than NDVI, such as wetness, a component of the TM
tasseled cap relation (Crist and Cicone, 1984), since wet-
ness is highly correlated with forest structure.

Semivariogram Decomposition
The nugget variance, or the semivariance at a lag of zero,
is a second useful characteristic of the semivariogram.
The nugget measures the within-cell variance, sometimes
interpreted as sampling error (Atkinson, 1997). Cressie
(1991, pp. 112, 130) decomposes the nugget into mea-
surement error plus variation clue to stationary processes
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Figure 4. Sernivariance of normalized difference vegetation
index for the H. J. Andrews LTER based on Thematic Map-
per (TM) imagery and on means of TM cells within 500 m
wide blocks.

that occur at subpixel scales. For example, broad scale,
among MODIS cell variation may be controlled by ter-
rain, but variation within MODIS cells could be due to
animal burrowing or treefall gaps that create microscale
pattern. The subcell process has its own inherent varia-
tion at all lags shorter than the length of the cell. Here,
the semivariance of TM cells characterizes the processes
within the pMODIS cells. If, for example, we average
NDVI from the TM cells within each pMODIS cell,
then, the semivariance of the mean values can be decom-
posed as in Eq. (2):

2 /ipmon15( 0 ) =2y-rm( 0 ) + 201rror,	 (2)

where yTM (0) is the nugget variation of TM measure-
ments within pMODIS cells and C rirro is the variance of
the measurement error associated with TM cells.

Similarly, the decomposition can be applied to the
entire semivariogram, in which case [Eq. (3)]

2Yoion1s(h ) = 2Yw(h )+2Yrah ) + 	 (3)
which includes variation due to a smoothly varying pro-
cess (W) whose semivariogram range is greater than the
distance between adjacent pMODIS cells; that is, it con-
tributes to autocorrelation among the pMODIS cells.
This decomposition provides an hypothesis for evaluating
transformations of maps from fine to coarse resolution;
namely, the semivariance of the coarse resolution image
should be related to the variance of finer grained mea-
surements taken within the cells.

As an example, we used NDVI measurements of the
Andrews and evaluated the relationship between the
semivariogram of the TM cells and the semivariogram of
mean NDVI calculated within 500-m-wide pMODIS
cells. Based on smaller TM cells, the within-pMODIS
semivariance was greater than that among means ex-

tracted from pMODIS cells (Fig. 4). An explanation for
this comes from the related observation that two loga-
rithmic models were needed to characterize the semiva-
riogram of TM cells (Fig. 4). The logarithmic model that
fit semivariances for lags <400 m shared similar coeffi-
cients to that of the semivariogram for means from
pMODIS cells (Fig. 4). Thus, averaging NDVI within
pMODIS cells cast the geostatistical properties of the
fine scale TM imagery up to the pMODIS cells. If the
MODIS sensor effectively averages, then we predict that
geostatistical properties of MODIS images will be fit by
the same semivariogram formulae used for high resolu-
tion images analyzed with lags---c_the length of MODIS
cells (see also Jupp et al., 1988b). Thus, if averaging oc-
curs, MODIS should capture fine scale geostatistical
properties of surface roughness and ground cover while
rendering them at relatively coarse scales. In other
terms, averaging may protect variation among the large
cells from attaining the range, and thereby preserve the
ability of independent variables to predict ecological re-
sponses, such as NPP, at the broad scale.

In summary, the semivariance analyses illustrate the
magnitude and nature of variation that can be expected
within MODIS cells. Sampling efforts can be minimized
where semivariances are small and can be exploited to
test MODIS estimates where they are large. The sim-
plest null hypothesis is that the accuracy of MODIS esti-
mates is the same regardless of within-cell variation.
Evaluations across sites might reveal interactions be-
tween biome and semivariance, possibly due to satura-
tion of NDVI at high LAI values in forested regions.
Given these considerations, we next review various spa-
tial aggregation methods by which fine scale data can be
cast to cell sizes comparable to MODIS products, gener-

A.
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ally for use in models to predict NPP for comparison
with MODIS.

AGGREGATION METHODS

There are many challenges in the transformation of eco-
system characteristics from fine to coarse scales. One
challenge stems from the idiosyncracies of the land cover
variables themselves (Table 1). Units of measure differ
among the variables, so care must be taken to construct
resealing procedures that preserve the units of measure
so that the resulting map remains useful for modeling.
Here, we divide the variables into two categories: binary
and continuous. For example, a typical thematic vegeta-
tion map is the union of a set of binary maps; pixels are
coded as one and only one vegetation type. In practice,
the many binary maps implicit in a thematic map can
be translated into multivariate continuous measures by
moving window techniques (Milne, 1991) or logistic re-
gression (Strauss, 1992). In contrast, continuous variables
such as elevation, LAI, and potential evapotranspiration
require aggregation techniques that preserve the units of
measure and statistical moments such as the mean. Here,
we address the various aggregation alternatives in turn
and use spatial renormalization theory to derive an ap-
proximation of the semivariance of random maps and
thereby link the renormalization aggregation methodol-
ogy with classical geostatistics.

Binary Variables
The simplest land cover map is binary, in which cells
have one of two states. A thematic map is simply the
union of several binary maps. Various intuitively reason-
able aggregation approaches can be used (e.g., nearest
neighbor resampling, majority rule, presence/absence;
Turner, 1989) in concert with theoretical frameworks to
manipulate the aggregation process (Milne et al., 1999).
Here we present a proportional reclassification method
and review spatial renormalization of binary maps in an-
ticipation of a continuous renormalization method to
follow.

Proportional reclassification to a coarser scale begins
with a thematic map obtained at relatively fine scale
(Fig. 5). Then, a coarse grid is superimposed on the map
and the proportion of each class within each coarse cell
is determined. Thus, several new maps describe the rela-
tive proportions of each class. The resulting vectors of
proportions can be subjected to cluster analysis to obtain
a cover map at the coarse scale or can be used as depen-
dent variables in regression models to investigate the ef-
fects of independent variables on landscape composition.

Aggregation strategies benefit from the broader the-
ory of renormalization (Gould and Tobochnik, 1988;
Creswick et al., 1992; Binney et al., 1993; Milne and
Johnson, 1993; Milne, 1998). Renormalization was devel-

aped in studies of critical phenomena in physics, where
phase transitions occur at particular densities or temper-
atures. In these situations, models based on averages
cannot characterize the geometric properties of the sys-
tem, largely because spatial correlations exist over vast
distances and there is no particular scale or quadrat size
in which to estimate a mean or variance. A homologous
problem occurs when assumptions of geostatistical sta-
tionarity are not valid or when variance increases steadily
with scale (Mandelbrot and Wallis, 1969); both are com-
mon in nature and notoriously difficult to represent by
Gausian distributions (e.g., Stanley et al., 1996). Because
landscapes share phase transition properties with physi-
cal systems (Milne et al., 1996; Keitt et al., 1997), the
theoretical depth of renormalization provides tools for
solving many scale transformation problems in ecology
and remote sensing.

A successful renormalization involves identification
of a quintessential property of a system to preserve while
reducing the number of cells on a map. After renormal-
ization, the map will retain a particular property if it was
there to begin with. In that sense, renormalization can
be viewed as a multiscale filter. For example, the nitro-
gen fixing capabilities of Alnus make it a biologically sig-
nificant component of the Pacific Northwest landscape.
Since alder covers <5% of the landscape, some aggrega-
tion procedures, such as the majority rule, would elimi-
nate the smallest alder patches in translations of 25 m
cells to 1 km (Benson and MacKenzie, 1995). However,
use of a presence/absence rule would ensure its occur-
rence on the coarse map.

The rate at which information is degraded by renor-
malization can be assessed. There are two cases: 1) when
the states of cells are independent and 2) when autocor-
relation exists among the cells. When cells are indepen-
dent, simple analytical expressions can be written for the
changes in land cover with changes in cell length, that
is, when the nugget of the indicator semivariance equals
the variance or when cell width exceeds the range. For
example, consider the majority rule implemented by di-
viding a binary map into blocks of 2 by 2 cells. Occupied
cells occur in various configurations, including the four
ways of having one occupied cell, six ways of having two
occupied cells, four ways of having three occupied cells,
and one way of having all four occupied (Gould and To-
bochnik, 1988). Any block of cells that has a majority of
occupied cells is reclassified as occupied. Of course,
since occupied cells occur with probability p and unoccu-
pied cells with probability 1—p, a particular configura-
tion, say three occupied and one unoccupied cell, occurs
with probability 401—p). Thus, assuming indepen-
dence, we can write a renormalization function to de-
scribe the proportion of occupied blocks after one appli-
cation of the rule:

=1/26p2(1_19)2+4p3(l_p)+p4
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Figure 5. Proportional reclassification of the H. J. Andrews MODLERS site cover map. The original
map (upper left) was developed from Landsat TM data and has a cell size of 25 m (Cohen et al., 1995).
Tallies of each class within nonoverlapping 1-km-wide cells were mapped separately in hues that corre-
spond to the TM classification color scheme. Intensity of the derived maps is proportional to the relative
proportion of the class in the cell.

=3p2(1 
..19)2+ 4p3(1	 +p4

=p2(3-2p),	 (4)

where the coefficient in the first term accommodates ties
when two cells are occupied. Thus, we can write other
renormalization rules (Milne and Johnson, 1993) and
apply them for scale transformation when cells are inde-
pendent. Unfortunately, independence is a special case,
and does not exist at lags shorter than the range (Fig. 2).
Thus, other characterizations must be made for empiri-
cal systems.

The so-called box scaling relation (Feder, 1988) is
an effective and simple aggregation expression for fractal
landscapes in which autocorrelation exists and a simple
presence/absence aggregation rule suffices. For example,
models of stream biogeochemistry and validation of MO-
DIS imagery would seem to require maps of nitrogen
fixing trees at very fine scale. Thus, a presence/absence
renormalization could be applied by inspecting each 2 by
2 block of cells on a map and retaining the entire block
if it contains at least one cell occupied by alder. Since
stream geometry and flow induce both statistical and
functional autocorrelation, respectively, the simple prob-
abilistic representation [Eq. (4)] of scale dependence
cannot be used. Rather, we tally the number of blocks
occupied as the map is subjected to a series of renormal-
izations. Cells are first aggregated into blocks of 2 by 2
cells, and then blocks of 2 by 2 blocks are aggregated,
to represent 16 cells, etc. For fractal patterns, the num-
ber of occupied blocks N(L) of length L scales as kL -D,
where k is a constant and D is the box fractal dimension.
The number of blocks (i.e., boxes in the fractal litera-
ture) can be expressed as a probability by dividing N(L)
by (E/L)2, which is the number of boxes that could fit on
a square map of length, or extent, E. Substitution from
the scaling relation gives

p'(L)=(k/E2)L2-D.	 (5)
Thus, both a statistical characterization and maps at each
scale are produced for modeling purposes.

Although the binary representation of the landscape
may not be very useful when rendered so coarsely, occu-
pied blocks for large L indicate where a more complete
or detailed representation of relevant processes is war-
ranted. Multiscale approaches are very useful in ecology,
in which a complete system model may he composed of
submodels in different forms (e.g., ordinary differential
equations, individual based models) rendered at spatial
and temporal scales that may vary among submodels. For
example, where physical conditions change abruptly, as
at ecotones, higher spatial resolution may be required to
accommodate large within-cell variance (Milne et al.,
1996). Large semivariances within a block (Fig. 2b) may
indicate the presence of some large structure, such as a
river, that traverses the block. Such structures are eco-
logically important because they regulate flows of matter
and energy across landscapes (Forman, 1995). In model-
ing effects of water and energy supply on ecosystem pro-
cesses, it is desirable to represent the structures created
by several cells together, as, for example, on terrain
maps, where distant peaks affect energy inputs via shad-
ing (Dubayah, 1994). Thus, the probability scaling rela-
tion [Eq. (5)] for binary maps provides information anal-
ogous to the semivariance [Eq. (1)] for continuous
measures.

In anticipation of a new aggregation technique for
continuous variables, described below, we briefly review
Milne and Johnson's (1993) renormalization technique
that maintains the similarity fractal dimension, and thus
among-cell correlations, as a binary map is aggregated.
For L=1 we define the similarity dimension D(1)=1n N/
In E (Mandelbrot, 1982), which is the ratio of the loga-
rithmic number of occupied cells to the logarithmic ex-
tent of the map. At coarser resolution, we expect the
proportion of the occupied map to vary as in Eq. (5).
Thus the number of occupied cells needed to satisfy the
scaling relation is R(L)=(E/L)D") for	 The goal is to
place R(L) occupied cells on the coarser resolution map
in such a way as to preserve as much as possible the spa-
tial autocorrelation of the finer resolution map.
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In practice, the renormalization begins by identifying
all nonoverlapping blocks of 2X2 cells (where blocks are
now of length L and cells of length L/2); blocks are la-
beled according to the number of occupied cells they
contain. Then, a frequency distribution is generated to
describe the number of blocks f(m) with m=4, 3, 2, or
1 occupied cells. Next, f(4) of the R(L) cells are placed
in the blocks of length L that have four occupied cells.
Once those are satisfied, the R(L)-f(4) remaining cells
are allocated to the blocks with the highest occupancy
rates until a frequency class that cannot be completely
allocated is found. Then, the remainder of R(L) cells are
allocated randomly to blocks of the incomplete class. The
end result is a renormalized map that preserves the
broad scale correlations and minimizes the rate of
change dp'(L)/dL (Milne and Johnson, 1993), thereby
reducing distortion of the map. Such aggregations are of
use when a model at coarse scale is expressed in terms
of parameters that are highly variable at fine scales.

Continuous Variables
Models of net primary production are driven by continu-
ous variables that capture relevant aspects of vegetation
structure or energy supply (Prince and Goward, 1995) at
arbitrarily coarse resolution. For example, surface
roughness and shade are structural features that affect
water flux and the energy balance within the canopy
(Jensen et al., 1989), yet such variation is easily sub-
sumed at 30-1000 m cell sizes. Here, we present a spa-
tial aggregation method that preserves geometrical as-
pects of land cover so that the relevant consequences of
aerodynamics and radiation fluxes can be represented
meaningfully in models. Fortunately, canopies exhibit
statistically regular, predictable changes in geometry with
scale (Milne, 1991; Milne et al., 1996; Menenti et al.,
1996; Pachepsky et al., 1997) that we exploited in a new
aggregation method suitable for continuous measures
such as LAI.

Our method preserves both the mean and the spatial
arrangement of a continuous variable over the study
area. We use a scaling exponent, namely, the Lipschitz-
Holder exponent (Mandelbrot, 1982; Feder, 1988) to
characterize the relationship between scale, or cell length
L, and the local concentration of the variable. By pre-
serving the mean at each scale, the method avoids- -bias
that might otherwise creep into a coarse resolution map,
as, for example, by local averaging.

At successively coarser scales, we obtain new values
of a continuous variable z, in each cell i=-1, 2, 3, . .
n(L) by aggregating cells in a log, series, for example,
L=2, 4, 8, . . . Following the logic of Milne and John-
son's (1993) preservation of a scaling exponent across
many cell sizes, we conserve the sum, or "mass,"
M(1)=E z, of a continuous variable over the landscape
by allocating a renormalized mass M(L)=(E/L)' among

the new, larger cells, where E is the number of unit cells
along one edge of a square map and (5 is obtained at the
unit scale L=1. First we sum the continuous variable z,
to obtain (S=In M(1)/In E. The exponent (5 is then used
to constrain	 the allocation of the renormalized mass
M(L) for	 to each of the new, larger cells throughout
the aggregation process. Thus, the portion of the integral
in each cell of length L is p,(L)=E zi(L/2)/E z,(L/2),
where 1) the numerator is summed over all four cells of
length L/2 that compose the new block of length L, 2)
the denominator is summed over all cells on the map
such that Ep,(L)=1. A second exponent, the Lipschitz-
Holder exponent, is used to express p,(L) as a function
of L, that is, p,=La (Mandelbrot, 1982), where a has an
implicit subscript i. Thus, new cells of length L are as-
signed a renormalized value z,(L) by prorating a portion
of the renormalized sum to each:

z,(L)=p,(L)M(L)
=L"E°	 (6)

Allocation of M(L) to each cell is both a function of the
local density, which preserves the spatial pattern over the
image, and the global mass, represented by E'1.

As an example, a square 5323 ha region (E=256) of
the Sevilleta LAI map was resealed to coarse resolution
following Eq. (6) (Fig. 1). After resealing to 456 m reso-
lution, the mean LAI equaled 93% of the mean LAI
(1.147) at 28.5 m. A t-test for differences between mean
LAI at the two scales, assuming unequal variances, gave
t=0.143 (p>0.05), indicating that the original mean
was preserved.

Given its reliance on a, the renormalization should
preserve not only the mean value but also the geometri-
cal properties of the image. We used multifractal mea-
sures (Halsey et al., 1986; Feder, 1988) to characterize
the geometry and to study its behavior with changes in
scale. Multifractals enable an image to be partitioned
into subsets of varying intensity, thereby enabling the
fractal geometry of each subset to be described indepen-
dently. Partitioning leads to the notion of an image as
the union of a set of images that are nonzero in some
locations and zero in most others. The partitions are in-
dexed by q with which the set of associated cells that
contain nonzero values number N(q,e), where e is the
fraction of the extent occupied by a single cell. By defini-
tion, the mass exponent

In e	 In (E/L)-'

r -	

(7)lim	 In Epl(L) 

characterizes the scaling behavio(EriLo if many subsets of the
image, indexed by q. Low values of q emphasize small
pi (L) and high q emphasize large values. When q=0, the
summands in Eq. (7) all equal 1, thereby providing a
count of nonzero cells. When all z,(L)>0, r(q)=2, which
is the dimension of the plane in which the image resides.
In the limit as L—.0, the exponent forms a monotonic,

T(q)= Inn In N(q,e)
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Figure 6. Mass exponents z(q) for
maps of leaf area index and normal-
ized difference vegetation index
(NDVI) from the Sevilleta and Konza
LTERs, respectively. Each curve rep-
resents exponents obtained after re-
normalization of images to larger cell
widths. Inset: semivariogram of NDVI
for the Konza LTER.

decreasing function of q (Halsey et al., 1986). Thus, devi-
ations between the r(q) curves obtained at various L pro-
vide measures of aggregation error.

Under renormalization, the Sevilleta LAI map exhib-
ited a remarkable preservation of the r(q) function (Fig.
6), indicating that the coarse resolution map contained
the same geometrical structure, or more specifically, par-
titioning of LAI among cells, as the finest scale map.
Given the reiterative fashion in which the renormalized
mass is constructed [Eq. (6)], and the consequent lump-
ing of adjacent cells over hundreds of meters, the con-
stant spectrum of mass exponents indicates that much of
the geometry present at the finest scale in the Sevilleta
has been preserved. Such is not always the case. In
applying the renormalization to the Konza NDVI image
(Fig. 7), we found changes in r(q) with L (Fig. 6). First,
the finest scale Konza map had a different r(q) curve
from that of the Sevilleta LAI for q<O, suggesting that
low NDVI values at Konza and low LAI at Sevilleta were
governed by different processes at that scale (see Sole
and Manrubia, 1995); curves were indistinguishable for
q>0. For negative q the visually apparent differences in
the distributions of low LAI and NDVI values on the two
landscapes (Figs. la and 7a) explain differences in the
mass exponents (Fig. 6). Interestingly, renormalization to
L=132 m (Fig. 7b) brought the Konza r(q) curve pre-
cisely onto that of the Sevilleta for all q, while further
renormalization moved the Konza curve off the Sevilleta

Figure 7. Normalized difference vegetation index (NDVI)
for a 7136 ha portion of the Konza LTER. Brightness is pro-
portional to NDVI. A) Original 33.0 in resolution; B) second
renormalized image at 132 m cell width; C) continued re-
normalization to 264 m; D) 528 m resolution.
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curve, both below and above q=0. Comparison of the
Konza 132 m map (Fig. 7b) with those of the Sevilleta
(Fig. 1) suggest that the riparian areas dominate the im-
age at 132 m in the Konza, leading to similar r(q) curves.
At broad scales (300-2000 m), the semivariogram for
Konza (Fig. 6 inset) exhibited a power law with an expo-
nent equal to 0.105, corresponding to a fractal dimension
of 1.94 (Burrough, 1981), which being close to 2, testifies
to the homogeneous appearance of the NDVI at coarse
resolution (Fig. 7d). Other processes, such as land use
practices and experimental burning treatments that con-
trol patch boundaries visible at 66 m (Fig. 7a), were ap-
parently more important at fine scales. Thus, multifrac-
tals illustrated a great potential to both: 1) classify
landscapes that share similar r(q) curves as being con-
trolled by similar processes and 2) select scales at which
to render landscape patterns controlled by particular
processes.

Derivation of Semivariance by Renormalization
Our goal of aggregating fine scale maps of continuous
and binary, or thematic, variables (Table 1) requires con-
sideration of how changes in cell size relate to standard
geostatistical properties. Here, we describe a fundamen-
tal relation between the geostatistics of continuous versus
binary land cover variables. The relation has implications
both for the expected values of geostatistical measure-
ments and for the representation of ecologically relevant
spatial features, such as stream networks and landforms.

Here we consider the indicator semivariance (Deutsch
and joumel, 1992), defined as the semivariance of a bi-
nary indicator variable z, at location i, which is assigned
a value of 1 whenever a continuous variable y, is greater
than an arbitrary cutoff value and 0 otherwise; the trans-
formation produces a binary map. After making the indi-
cator transformation, the semivariance is computed from
the z,'s as in Eq. (1). In the spirit of spatial renormaliza-
tion (e.g., Gould and Tobochnik, 1988), it is useful to
consider how the various configurations of zeros and
ones within 2X2 blocks of cells contribute to the indica-
tor semivariance and how these contributions change as
a map is rendered at ever coarser resolution.

Recall again the majority renormalization rule (Turner,
1989), in which 2X2 cell blocks are inspected, and the
entire block is relabeled according to whichever class is
in the majority; ties are settled by flipping a coin. Thus,
the proportion of a random, binary map that is still occu-
pied after majority rule renormalization isrp =3p2(1-73)2+

4p3 (1—p)+p 4. Terms in the equation describe the num-
ber of ways of obtaining two, three, or four occupied
cells in a block such that the majority rule is satisfied.
Iteration of the function reveals that maps beginning at
p=0.5 remain so, while maps with p<1/2 converge on
p=0; maps with p>1/2 converge on p=l. Thus, 1/2 is a

nontrivial fixed point of the renormalization, reflecting
the 50:50 rule by which ties are resolved during the spa-
tial aggregation process. Iteration reveals a fundamental
property of a map, in this case, whether a particular land
cover class is in the majority, or not.

Here, we use renormalization to examine how the
indicator semivariance behaves with	 a coarsening of
scale. In so doing, we reveal fundamental spatial proper-
ties of the binary transformation 	 1) of continuous
variables and define characteristic densities and semivari-
ances of random maps. The results provide a means of
detecting spatial scales at which independence is
achieved and makes standard geostatistical theory com-
plementary to multifractal analyses.

For convenience, restricting the lag to h=L= 1 (i.e.,
z, is compared to z, +L in the north, south, east, and west
directions only) reveals that various block configurations
produce particular sums of squared differences [Eq. (1)].
For example, in the trivial cases of empty or full blocks,
all possible pairwise comparisons produce (z,—z„,)2-=0
because there is no within-block variance. However, with
one or three occupied cells the respective sums of
squared deviations equal 4. Two occupied cells 'situated
orthogonally to one another produce a squared deviation
of 4; diagonally arranged duplets yield a squared devia-
tion of 8.

Thus, the configurations that contribute to nonzero
values for the indicator semivariance are those with one,
two, or three occupied cells. To maintain accurate in-
tercell distances of i+L, we restrict the 2-cell cases to
those having occupied neighbors in the cardinal direc-
tions, of which there are four configurations. Each rele-
vant configuration occurs on a random map, or equiva-
lently on a map rendered with cells of length equal to
the range, at rates equal to 4p(1—p)3, 4p2(1—p) 2, and
4p3 (1—p) for the 1-, 2-, and 3-cell cases, respectively.
Thus, upon renormalization, a map beginning with p oc-
cupied cells obtains a new proportion p' according to

p'=4p(1—p)3+4p2(1_p)2+4p3(1_p)
3

E /f(1 —p)4-"' 	 (8)m=i

The expected indicator semivariance for h=L can he
written using the renormalized probability. The number
of blocks containing m occupied cells on a map is always
(E/L)24r(1—p)4-m since there are four equivalent rota-
tions of each configuration. The expected semivariance
is obtained by weighting the number of blocks of each
configuration by the respective sum of squared devia-
tions [Eq. (1); i.e., four in each case) and dividing by
twice the number of comparisons, including those made
in the empty and hill blocks. Since there are eight cell-to-
cell comparisons within each block, the total number of
comparisons on the map is 8(E/L) 2 and the semivariance.
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Figure 8. Simulated renormalization trajectories
of the probability of having occupied cells at suc-
cessively coarser scales [Eq. (8)]. A) Example
trajectories as a function of the number of cells
(L) along one edge of square renormalized ran-
dom maps; B) successive probabilities p' ob-
tained from initial probabilities p. The labeled
curves indicate the renormalized values after
changing to cell widths of 2 and 4 unit cells. As
L increases, p' reaches a constant value of 0.68.

y(h)- 16(EIL)2Ep' (1 — p' )4—
16(E/L)2

(9)
The effects of increases in block length, or equiva-

lently lag, are investigated by iterating the renormaliza-
tion relation, starting with a given p, to reveal the asymp-
totic behavior of the map upon aggregation. Transient
behavior is common for one to 10 or more iterations,
corresponding to increases in cell length L from 1 to
1024 or more (Fig. 8a). Eventually, all initial p values
lodge at 0.68, which is a stable point of Eq. (8). Some
initial p reach the stable point at finer scales than others,
due to the nonlinear nature of the discrete mappings
from one scale to the next (Fig. 8b). Some maps require
>20 iterations to reach asymptotic behavior measurable
to four decimal places. This is equivalent to increasing
the original cell size L from 2° to 2 20, or decreasing the
10,000-in-wide LTER study sites to a width of 9.5 mm.

In general, spatial aggregation of land cover maps will he
governed by the transient dynamics with great sensitivity
to the initial configuration of occupied cells.

To investigate the predicted indicator semivariance
[Eq. (9)], we constructed binary maps by thresholding
the Konza and Sevilleta maps at approximately p=0.5
(Fig. 9). We renormalized the maps by the indicator rule
and measured the semivariance [Eq. (1)] at each scale.
We predicted: 1) that the observed semivariance and p'
would converge on y°(h) and p° as h approached the
range, thereby indicating membership in the class of ran-
dom maps, and 2) that the semivariance and density of
images rendered at scales finer than the range would de-
viate from the fixed points, thereby indicating nonran-
dom structure. We included five random maps (p=0.5)
of the same size for comparison with the empirical maps.

After the transient period, Eqs. (8) and (9) converge
on a fixed point with coordinates y"(h), p' for all initial
p (Fig. 10). Thus, the model predicts the well-known re-
sult that random maps exhibit the same semivariance at
all scales. Renormalization of the empirical binary images
(Fig. 9) produced trajectories of semivariances and asso-
ciated probabilities that deviated from those of random
maps (Fig. 10) until cell sizes approximated the range.
We tested the ability of the model to predict y(L=32)
and p* of random maps. There was no significant differ-
ence between the renormalized probabilities and the
predicted (t= —1.67, P=0.17, N=5) but the observed
sernivariances were significantly higher than expected
(t=8.77, P=0.0009, N=5). Renormalizations based on
small blocks are known to have small biases (Gould and
Tobochnik, 1988) because of artifacts that creep in as
two adjoining blocks conspire on the real map to pro-
duce configurations that are not represented in the
model. Nonetheless, a better renormalization relation
might be found that incorporates block-to-block corre-
lations.

In light of sharing identical mass exponents at L=4
(i.e., cell widths of 114 m and 132 m in the Sevilleta and
Konza, respectively; Fig. 6), the proximity of renormal-
ized p and y(L) at these scales (Fig. 10) suggests the
same similarity. IIowever, since the Sevilleta trajectory
explores a range of values, despite exhibiting identical
mass exponents at all scales (Fig. 6), the semivariance
and p alone appear insufficient to identify patterns
driven by a given process.

There are rich implications for scale transformations
of binary or thematic maps. First, the ultimate configura-
tion of occupied cells at the coarse resolution is ex-
tremely dependent on, or sensitive to, the configuration
of cells on the original map, since the number of itera-
tions required to reach the stable probability varies with
the original p (Fig. 8a). This is due to the way in which
blocks of cells are first reclassified, only to form new
blocks with their neighbors at a coarser resolution. Many
permutations of occupied cells exist, leading to idiosyn-
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Figure 9. Renormalization of binary
images for the Konza LTER (panels
A—D) and the Sevilleta LTER (E—H).
White regions indicate values below the
50th (Konza) and 66th (Sevilleta) per-
centiles of NDVI and LAI, respectively.
The indicator rule was used in each
case and the renormalized images mag-
nified to show detail.

cratic neighborhood geometries or polygon shapes. Sec-
ond, the origin of this sensitivity is implicit in the cre-
ation of the indicator variable. Specifically, once y; is
thresholded to 0 or 1, information is lost as to exactly
how different the y values were in two adjacent cells. In
some cases, adjacent cells may differ little, but if they
span the classification threshold, they will be segregated
into two classes, as would two neighboring cells with y
values in opposite tails of the distribution. Thus, preci-
sion is sacrificed, and the price is uncertainty about the
disparity between cells. Third, the indicator semivariance

Figure 10. Renormalization trajectories of the semivari-
ance and the probability of having occupied cells. Iteration
of the model [Eqs. (8) and (9)] starting with various ini-
tial probabilities p yields the parabola which collapses to
y*(11) and p° (dashed lines) at coarse scales. Analyses of
empirical maps from the Sevilleta and Konza and of ran-
dom maps (solid squares) are included. Numbers 114
and 132 indicate selected cell lengths (m) for the Sevilleta
and Konza, respectively.

0.0	 0.2	 0.4	 0.6	 * 0.8	 1.0
p	 p

is extremely sensitive to measurement or classification
errors on the original map, since errors both alter the
initial p value and produce errors in the configurations.
Fourth, the fluctuations in the probabilities with scale
will induce fluctuations in the indicator semivariance.

In contrast, nonrandom binary maps have nontrivial
spatial correlations among the block configurations
(Milne, 1992) and a function other than Eq. (9) is needed
for the expected semivariance. The spatial correlations
among block configurations can be modeled by measur-
ing the scale dependent, perhaps fractal, geometry of the
configurations [Eq. (5)]. As above [Eq. (9)], all occupied
cells that are in the orthogonal 2-cell configurations are
retained while diagonally connected 2-cell blocks are ig-
nored. Thus, assuming isotropy so that each of the four
possible rotations of each block are included, the renor-
malization relation for the proportion p' becomes Eq. (10):

3
p'(L) = 4/E2 c„,L2-°(-),	 (10)

where D(m) is the box dimension of blocks containing rn
occupied cells. The behavior of p' (L) as a function of L
will depend on the map. Analogous functions could be
made if the number of occupied blocks varied logarith-
mically or exponentially with scale.

CONCLUSIONS

Our first goal was to identify major issues involving the
use of MODIS as a source of ecological information. For
one, new sensors involve an implicit change in scale from
the traditional 1 m2 quadrats used in the field to the
500-1000-m-wide cells. Changes in scale alter the appar-
ent geostatistical properties of the landscape, including
subpixel variation (i.e., the nugget), the apparent effect
of processes that affect the nugget [Eq. (2)], the lags
over which patterns are nonrandom, and the averaging
accomplished by the coarse spatial resolution sensor.
However, changes in scale provide an important tool
with which ecologists can search for novel patterns of
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system organization and dynamics. Simultaneously, rela-
tions are needed to translate patterns and estimates from
one scale to another (King et al., 1991), as basic quanti-
ties such as the number of lakes on a landscape change
with scale (Benson and MacKenzie, 1995). Second,
knowledge of subcell patterning is needed to design and
implement field campaigns to validate MODIS estimates.
Clearly, geostatistical evaluations at subpixel scales are
useful for identifying locations to sample mean values
with least effort (Fig. 3). Third, ecologically relevant flow
networks may be obscured by coarse resolution imagery
obtained by averaging (Rodriguez-Iturbe and Rinaldo,
1998), as, for example, where detrital pools affect nutri-
ent concentrations downstream, or where fires passing
through networks of fuel effectively connect distant loca-
tions. Coarse depictions of landscapes may obscure eco-
logically relevant information that pertains to fine-scale
processes.

Major errors may be produced if nonlinear func-
tional relations are applied to linearly transformed imag-
ery (Cale et al., 1983). Wilson (1979; 1983) explains that
renormalization effectively drives a map into another re-
gion of parameter space. For that reason, we would ex-
pect the nonlinearly renormalized map to behave differ-
ently in a nonlinear model than a linearly resealed map.
Much as aeronautical engineers understand how to apply
measurements made in wind tunnels to real aircraft, fu-
ture ecological applications may be able to use multifrac-
tal scaling exponents (Fig. 6) to rescale coarse resolution
predictions back to the ground. Reduced image resolu-
tion creates both tradeoffs and opportunities.

With daily estimates of fundamental biophysical vari-
ables, even at 1000 m resolution, the potential for driving
fine-scale process models over relatively small study ar-
eas is profound and promises a robust, biophysical foun-
dation upon which to build ecologies of populations,
communities, landscapes, and ecosystems. In the same
vein, coarse scale renderings of landscapes may challenge
ecologists to identify limits to the spatial extents over
which various processes operate, thereby leading to a
clearer characterization of the relevant ecological hierar-
chies (Allen and Starr, 1982; O'Neill et al., 1986).

Our second major goal was to recommend strategies
for spatially aggregating fine scale imagery. Tradeoffs
here involve the dichotomy between continuous and the-
matic imagery. In general, coarse resolution land cover
maps should be made from spatially averaged or renor-
malized continuous images to avoid errors created by ag-
gregating fine-scale binary maps. Errors vary with the
density of the binary images (Fig. 8) and scale (Fig. 6).
After aggregating spectral bands separately in such a way
as to preserve the multifractal structure (Fig. 6), we as-
sume that classification methods that work for high reso-
lution images will work for the aggregated images only
if covariances are preserved. A related solution is to rep-
resent land cover at coarse scales with a vector that de-

scribes the relative percentages of land cover types ob-
served at fine scale (Fig. 5).

Spatial aggregation of continuous variables creates
opportunities for novel classifications. To filter variables
at different scales, one could use spectral bands or de-
rived variables that have been aggregated to different
scales and resampled to a common scale before classifi-
cation. For example, aggregation of near-infrared bands
to very course scale to obtain independence of pixel val-
ues, combined with a finely resolved visible band, might
enable better representation of advective energy fluxes
due to high albedo from small features. Likewise, nonlin-
ear mixing of spectral signatures at coarse resolution
might be investigated by renormalizing each band to sev-
eral scales and then using multivariate analysis to deter-
mine the band and scale combinations most related to
the coarse resolution imagery. Recent work with "fractal
regularizations" and multiscale data structures (Chou et
al., 1994) provide examples. Thus, purposeful manipula-
tion of image resolution through geostatistical analysis
and spatial aggregation constitutes a general strategy for
formulating new predictions based on remotely sensed
imagery.

This research was funded in part by the Terrestrial Ecology
Program, Office of Mission to Planet Earth, NASA (NAGW-
4880), as part of the MODLERS project and by EPA 153-2244
subcontract to BTM. J. Briggs generously provided the Konza
imagery. G. Shore, T. Maddux, K Taugher, and E. Muldavin
contributed substantially to construction of the Sevilleta LAI
map. Suggestions from R. V. O'Neill and two anonymous re-
viewers broadened the context of the work. Sevilleta LTER
Publication No. 141.
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